Locally Random Groups

KEIVAN MALLAHI-KARAI, AMIR MOHAMMADI, & ALIREZA SALEHI GOLSEFIDY

To Gopal Prasad on the occasion of his 75th birthday

ABSTRACT. In this work, we introduce and study the notion of *local randomness* for compact metric groups. We prove a mixing inequality as well as a product result for locally random groups under an additional *dimension condition* on the volume of small balls, and provide several examples of such groups. In particular, this leads to new examples of groups satisfying such a mixing inequality. In the same context, we develop a Littlewood–Paley decomposition and explore its connection to the existence of a spectral gap for random walks. Moreover, under the dimension condition alone, we prove a multi-scale entropy gain result à la Bourgain–Gamburd and Tao.

1. Introduction

The aim of this work is to introduce and study the notion of *local randomness* for the class of compact metric groups. As the name suggests, this notion aims at capturing a certain form of randomness exhibited by these groups. Before proceeding to the precise definition of this notion, let us make a few general remarks on the terminology and motivations behind the definition.

The notion of randomness is often understood as the lack of low-complexity structure. One approach towards defining randomness is *statistical randomness*. Roughly speaking, statistical randomness requires the putative random (sometimes called pseudo-random) object to pass certain randomness tests, which are passed by truly random objects. Quasi-random graphs, introduced by Chung, Graham, and Wilson [11], are examples of this kind. For instance, in such a graph the number of edges connecting subsets A, B of vertices is close to $\delta |A||B|$, mimicking the typical behavior of Erdös–Rényi random graphs with density δ .

An alternative approach towards defining randomness is based on the nonexistence of low-complexity models. In taking up such an approach, we need to clarify what a model means and how its complexity is measured. Quasi-random groups, as named by Gowers, provide examples for this approach. Recall that a finite group G is said to be K-quasi-random when it admits no nontrivial unitary representations of degree less than K. If we view a unitary representation of a

Received May 5, 2021. Revision received January 3, 2022.

K.M.-K. was partially supported by the DFG grant DI506/14-1. A.M. was partially supported by the NSF. A.S.G. was partially supported by the NSF.

finite group as a *model* and its degree as its complexity, then quasi-random groups are precisely groups without low-complexity models.

One of the main results of Gowers's work, intertwining these two approaches, is that Cayley graphs of quasi-random groups with respect to *large* generating sets yield quasi-random graphs in the sense of Chung, Graham, and Wilson. This is based on a mixing inequality established in [15] and generalized in [1]. Let us remark that, prior to [15], the quasi-randomness had been implicitly exploited by Sarnak and Xue [20], Gamburd [13], and Bourgain and Gamburd [7].

In the present work we will define the notion of local randomness for a compact group G equipped with a compatible bi-invariant metric d by means of an inequality of the form

$$\|\pi(x) - \pi(y)\|_{\text{op}} \le C_0 (\dim \pi)^L d(x, y),$$
 (1.1)

where C_0 and L are parameters and π varies over unitary representation of G; see Definition 2.1 for the precise definition. The relation between this inequality and the nonexistence of low-complexity models for G can be understood as follows. Consider an η -discretization of G, that is, a maximal set of points in G that are pairwise η -apart. From (1.1) it follows that for a unitary representation π of G (a model) to map these points to matrices that are pairwise at distance $\eta^{1-\epsilon}$, dim π needs to be polynomially large in η^{-1} . Thus, a group satisfying (1.1) fails to have a low complexity discretized model.

As the definition indicates, local randomness of a compact group depends on the choice of a compatible metric. In Corollary 5.6, we show that semisimple Lie groups are exactly those groups that are locally random with respect to *all* compatible metrics. In contrast to this, compact groups that are locally random with respect to *some* compatible metric are exactly those with finitely many nonequivalent irreducible representations of a given degree, see Theorem 2.3.

One of the main properties of locally random groups is the mixing inequality proved in Theorem 2.4. This can be seen as an instance of statistical randomness and a multi-scale analogue of the mixing inequality alluded to above. This inequality is much more fruitful in the presence of a *dimension condition*, see (DC). In particular, it will enable us to prove a *product result*, Theorem 2.8, for subsets with large metric entropy, a result that can be best understood as a multi-scale version of Gowers's product theorem.

In order to study the behavior of random walks on locally random groups, we adapt the Littlewood–Paley theory [6; 10] to this context. As an application, we will show that the study of a spectral gap for random walks on G can be reduced to that of functions living at small scale; see Theorem 2.10 and Theorem 9.3.

Notable examples of groups to which our results apply include finite products of perfect real and *p*-adic analytic compact Lie groups. In the special case of profinite groups, local randomness is intimately connected to the notion of quasi-randomness introduced and studied in [24]; see Proposition 5.9 for precise statements. It is also worth mentioning that inequality (1.1) has been implicitly used in [12] to establish the existence of a dimension gap for Borelean subgroups of compact Lie groups.

Our last theorem, Theorem 2.12, is an entropy gaining result in the spirit of a major ingredient of the Bourgain–Gamburd expansion machine. Roughly speaking, this theorem asserts that when X and Y are independent G-valued random variables, the Rényi entropy of XY at scale η is larger than the average of the Rényi entropies of X and Y at scale η by a definite amount, unless algebraic obstructions exist. This can be viewed as a weighted version of Tao's result [22] and a common extension of [6; 19; 5; 10].

In a forthcoming work, we will consider open compact subgroups of analytic simple Lie groups over local fields of characteristic zero. Using Theorems 2.12 and 9.3, we will prove that if two such groups are not locally isomorphic, then they are *spectrally independent*.

This paper is structured as follows. In Section 2, we review some basic definitions, set some notation, and state the main results of the paper. In Section 3, we gather a number of basic tools, ranging from abstract harmonic analysis to notions related to metric spaces. Sections 4 and 5 feature prominent examples and fundamental properties of locally random groups. In Section 6, we prove a number of mixing properties for locally random groups, which are employed in Section 7 to show the product theorem. In Section 8, we discuss in detail a Littlewood–Paley decomposition of locally random groups. The connection to the spectral gap, stated in Theorem 2.10, is established in Section 9. Finally, in Section 10, we prove Theorem 2.12.

2. Basic Definitions and Statement of Results

In this section, we state the main results of the paper. Let us begin by defining the notion of local randomness.

DEFINITION 2.1. Suppose that G is a compact group and d is a compatible biinvariant metric on G. For parameters $C_0 \ge 1$ and $L \ge 1$, we say (G, d) is Llocally random with coefficient C_0 if for every irreducible unitary representation π of G and all $x, y \in G$ the following inequality holds:

$$\|\pi(x) - \pi(y)\|_{\text{op}} \le C_0 (\dim \pi)^L d(x, y).$$
 (2.1)

We say a compact group G is *locally random* if (G, d) is L-locally random with coefficient C_0 for some bi-invariant metric d on G and some values of L and C_0 .

- Remark 2.2. (1) It is a standard fact [16, Proposition 8.43] that every second countable compact group can be equipped with a compatible bi-invariant metric.
- (2) One can easily check that (2.1) only depends on the unitary isomorphism class of π .
- (3) In the rest of the paper, we will drop d from the notation and use the phrase G is L-locally random with coefficient C_0 . Often, the implicit metric d is a standard metric on G.

Our first theorem gives a characterization of locally random groups in terms of their unitary dual.

THEOREM 2.3 (Characterization). Suppose that G is a compact second countable group. Then G is locally random if and only if G has only finitely many nonisomorphic irreducible representations of a given degree.

In [3] it is proved that a finitely generated profinite group has only finitely many irreducible representations of a given degree if and only if G has the FAb property, that is, every open subgroup of G has finite abelianization. In view of Theorem 2.3, the group $\prod_{n\geq 1} \mathrm{SU}(2)$ is not a locally random group, but $\prod_{n\geq 2} \mathrm{SU}(n)$ is a locally random group.

For $\eta > 0$ and $x \in G$, denote the open ball of radius η centered at x by x_{η} . The L^1 -normalized indicator function of the ball 1_{η} is denoted by $P_{\eta} := \frac{\mathbb{1}_{1_{\eta}}}{|1_{\eta}|}$, where $|\cdot|$ denotes the Haar measure. For $f \in L^1(G)$ and a probability measure μ on G, we write $f_{\eta} = f * P_{\eta}$ and $\mu_{\eta} = \mu * P_{\eta}$, see (3.1) and (3.2) for the definition of convolution.

THEOREM 2.4 (Scaled mixing inequality). Suppose that G is an L-locally random group with coefficient C_0 . Then for every $f, g \in L^2(G)$ we have

$$||f * g||_2^2 \le 2||f_{\eta} * g_{\eta}||_2^2 + \eta^{1/(2L)}||f||_2^2||g||_2^2$$

so long as $C_0\sqrt{\eta} \leq \frac{1}{10}$.

Similar statements for finite groups, simple Lie groups, and perfect Lie groups have been established thanks to the work of many authors, see for example [15; 1; 9; 10; 4]. It is worth mentioning that without any assumption on the compact group G, the inequality $||f * g||_2 \le ||f||_2 ||g||_2$ holds. In this view, Theorem 2.4 is a drastic improvement on this for functions with small f_{η} in the presence of local randomness.

DEFINITION 2.5. Suppose that X is a metric space and $A \subseteq X$. For $\eta \in (0, 1)$, $\mathcal{N}_{\eta}(A)$ denotes the least number of open balls of radius η with centers in A required to cover A. The metric entropy of A at scale η is defined by

$$h(A; \eta) := \log \mathcal{N}_{\eta}(A).$$

DEFINITION 2.6. Let G be a compact group equipped with a compatible metric d. We say (G, d) satisfies a dimension condition $DC(C_1, d_0)$ if there exist $C_1 \ge 1$ and $d_0 > 0$ such that for all $\eta \in (0, 1)$ the following bounds hold:

$$\frac{1}{C_1} \eta^{d_0} \le |1_{\eta}| \le C_1 \eta^{d_0}. \tag{DC}$$

Remark 2.7. (1) Measures satisfying this condition are also known as Ahlfors (or Ahlfors–David) d_0 -regular measures.

(2) Whenever d is clear from the context, we suppress d from the notation and simply write that G satisfies a dimension condition $DC(C_1, d_0)$.

Our third theorem shows that local randomness is particularly effective in the presence of a dimension condition.

THEOREM 2.8 (Product theorem for locally random groups). Suppose that G is an L-locally random group with coefficient C_0 . Suppose that G satisfies the dimension condition (DC)(C_1, d_0). Then for every $\varepsilon > 0$ and every $\delta \ll_{L,d_0} \varepsilon$ the following holds: for all $\eta > 0$ and $A, B \subseteq G$ satisfying

$$\frac{h(A;\eta) + h(B;\eta)}{2} \ge (1 - \delta)h(G;\eta)$$

and $\eta^{\varepsilon} \leq (2C_0C_1)^{-R}$ where $R = R(L, d_0)$ is a fixed polynomial of L and d_0 , we have

$$A_{\eta}B_{\eta}B_{\eta}^{-1}A_{\eta}^{-1}\supseteq 1_{\eta^{\varepsilon}}.$$

A careful examination of the proof yields that the implied constant in $\delta \ll_{L,d_0} \varepsilon$ depends polynomially on L and d_0 . Theorem 2.8 can be compared with similar results in [15] and [12].

DEFINITION 2.9. Suppose that G is a compact group and μ is a symmetric Borel probability measure. Denote by T_{μ} the convolution operator on $L^2(G)$ mapping f to $\mu * f$. For a subrepresentation (π, \mathcal{H}_{π}) of $L^2_0(G)$, we let

$$\lambda(\mu; \mathcal{H}_{\pi}) := ||T_{\mu}|_{\mathcal{H}_{\pi}}||_{\text{op}} \quad \text{and} \quad \mathcal{L}(\mu; \mathcal{H}_{\pi}) := -\log \lambda(\mu; \mathcal{H}_{\pi}).$$

Given a G-valued random variable X, we define the $R\acute{e}nyi$ entropy of X at scale η by

$$H_2(X; \eta) := \log(1/|1_{\eta}|) - \log \|\mu_{\eta}\|_2^2$$

where μ is the distribution (or the law) of X.

THEOREM 2.10. Suppose that G is an L-locally random group with coefficient C_0 . Suppose that G satisfies $(DC)(C_1, d_0)$. Then there exists $\eta_0 > 0$ small enough depending on the parameters and a subrepresentation \mathcal{H}_0 (exceptional subspace) of $L^2(G)$ such that the following statements hold:

- (1) (dimension bound) dim $\mathcal{H}_0 \leq 2C_0\eta_0^{-d_0}$.
- (2) (spectral gap) Let μ be a symmetric Borel probability measure whose support generates a dense subgroup of G. Let $a > \max(4Ld_0, 4L + 2)$, and for $i \ge 1$ set $\eta_i := \eta_0^{a^i}$. If for constant $C_2 > 0$ and for every positive integer i there exists an integer $l_i \le C_2h(G; \eta_i)$ such that

(Large entropy at scale
$$\eta_i$$
) $H_2(\mu^{(l_i)}; \eta_i) \ge \left(1 - \frac{1}{20Ld_0a^3}\right)h(G; \eta_i),$

then

$$\mathcal{L}(\mu; L^2(G) \ominus \mathcal{H}_0) \ge \frac{1}{40C_2Ld_0a^3}.$$

In particular, $\mathcal{L}(\mu; L_0^2(G)) > 0$.

Finally, we prove a multi-scale entropy gain result which is in the spirit of [8, Lemma 2.1] by Bourgain and Gamburd, and is a weighted version of [22, Theorem 6.10] by Tao. More details on the background of this result will be mentioned in Section 10. Before we state this result, we recall the definition of an approximate subgroup.

DEFINITION 2.11. A subset X of a group G is called a K-approximate subgroup if X is a symmetric subset, that is, $X = X^{-1}$, and there exists a subset $T \subseteq X \cdot X$ such that $\#T \subseteq K$ and $X \cdot X \subseteq T \cdot X$.

Theorem 2.12. Suppose that G is a compact group which satisfies the dimension condition at scale η , that is,

$$C^{-1}\eta^{d_0} \le |1_{a\eta}| \le C\eta^{d_0}$$

holds for all $a \in [C'^{-1}, C']$, where $C > 1, C' \gg 1, d_0 > 0$ are fixed numbers. Suppose that X and Y are independent Borel G-valued random variables. If

$$H_2(XY; \eta) \le \log K + \frac{H_2(X; \eta) + H_2(Y; \eta)}{2}$$

for some positive number $K \ge (C2^{d_0})^{O(1)}$, then there are $H \subseteq G$ and $x, y \in G$ satisfying the following properties:

- (1) (Approximate structure) H is an $O(K^{O(1)})$ -approximate subgroup.
- (2) (Metric entropy) $|h(H; \eta) H_2(X; \eta)| \ll \log K$.
- (3) (Almost equidistribution) Let Z be a random variable with the uniform distribution over $1_{3\eta}$ independent of X and Y. Then

$$\mathbb{P}(XZ \in (xH)_{\eta}) \ge K^{-O(1)}$$
 and $\mathbb{P}(YZ \in (Hy)_{\eta}) \ge K^{-O(1)}$.

Moreover,

$$|\{h \in H_{\eta} | \mathbb{P}(X \in (xh)_{3\eta}) \ge \widehat{C} K^{-10} 2^{-H_2(X;\eta)}\}| \ge K^{-O(1)} |H_{\eta}|,$$

where \widehat{C} is a constant of the form $(C2^{d_0})^{O(1)}$.

3. Preliminaries and Notation

The purpose of this section is to provide the necessary definitions and fix the notation for the rest of the paper. For reader's convenience, these have been organized in two subsections.

Let G be a compact Hausdorff second countable topological group. It is well known that G can be equipped with a bi-invariant metric that induces the topology of G. Moreover, there exists a unique bi-invariant probability measure defined on the Borel σ -algebra of G, called the Haar measure. For a Borel measurable subset A of G, the Haar measure of G is denoted by G or G or G in G in G in G with respect to the Haar measure is denoted, interchangeably, by G or G or

the space (of equivalence classes) of complex-valued functions f on G satisfying $\int_G |f(x)|^p dx < \infty$. For $f \in L^p(G)$, we write

$$||f||_p = \left(\int_G |f(x)|^p dx\right)^{1/p}.$$

We will also denote by C(G) the Banach space of complex-valued continuous functions $f: G \to \mathbb{C}$, equipped with the supremum norm. For $f, g \in L^1(G)$ the convolution f * g is defined by

$$(f * g)(x) = \int_{G} f(y)g(y^{-1}x) \, dy.$$
 (3.1)

It is a fact that $(L^1(G), +, *)$ is a unital Banach algebra and if $f \in L^1(G)$ is a class function, then f is in the center of this Banach algebra. Note also that $L^2(G)$ is naturally equipped with the inner product defined by $\langle f, g \rangle = \int_G f\overline{g}$ is a Hilbert space.

When \mathcal{H} is a Hilbert space and $T : \mathcal{H} \to \mathcal{H}$ is a bounded linear operator, we will define the operator norm of T by

$$||T||_{\text{op}} = \sup_{v \in \mathcal{H} \setminus \{0\}} \frac{||Tv||}{||v||}.$$

When \mathcal{H} is finite-dimensional, the Hilbert–Schmidt norm of T is defined by

$$||T||_{HS} = (\text{Tr}(TT^*))^{1/2},$$

where T^* denotes the conjugate transpose of the operator T. Note that when S and T are linear operators on a finite-dimensional Hilbert space \mathscr{H} , the following inequality holds:

$$||TS||_{HS} \le ||T||_{op} ||S||_{HS}.$$

For a Hilbert space \mathcal{H} , we write $U(\mathcal{H})$ for the group of unitary operators of \mathcal{H} . A homomorphism $\pi: G \to U(\mathcal{H})$ is continuous if the map

$$G \times \mathcal{H} \to \mathcal{H}, \qquad (g, v) \mapsto g \cdot v$$

is continuous. A unitary representation of G (or sometimes called a G-representation) is a pair (\mathcal{H},π) consisting of a Hilbert space \mathcal{H} and a continuous homomorphism $\pi:G\to \mathrm{U}(\mathcal{H})$. A closed subspace $\mathcal{H}'\subseteq\mathcal{H}$ is called G-invariant (or simply invariant when G is clear from the context) if for every $g\in G$ and every $v\in \mathcal{H}'$, one has $g\cdot v\in \mathcal{H}'$. A representation (\mathcal{H},π) is called irreducible when $\dim\mathcal{H}\geq 1$ and the only invariant subspaces are $\{0\}$ and \mathcal{H} itself. The set of equivalence classes of irreducible unitary representations of G is called the unitary dual of G and is denoted by \widehat{G} . If \mathcal{H}' is an invariant subspace of \mathcal{H} , we sometimes denote by $\mathcal{H}\ominus\mathcal{H}'$ the orthogonal complement of \mathcal{H}' in \mathcal{H} , which is itself an invariant subspace of \mathcal{H} . The set of vectors $v\in \mathcal{H}$ satisfying $\pi(g)v=v$ for all $g\in G$ is clearly a closed invariant subspace of \mathcal{H} and is denoted by \mathcal{H}^G .

The group G acts on $L^2(G)$ via $(g \cdot f)(x) = f(g^{-1}x)$, preserving the L^2 -norm. Hence, it defines a unitary representation of G on $L^2(G)$, which is called the regular representation of G.

Suppose that μ and ν are Borel measures on G and $f \in L^1(G)$. The convolution $\mu * f$ is defined by

$$(\mu * f)(x) = \int_{G} f(y^{-1}x) \, \mathrm{d}\mu(y). \tag{3.2}$$

Similarly, the convolution $\mu * \nu$ is the probability measure on G defined through its action on continuous functions via

$$\int_G f d(\mu * \nu) = \int_G \int_G f(xy) d\mu(x) d\nu(y),$$

where $f \in C(G)$. The following special cases of Young's inequality for $f, g \in L^2(G)$ and probability measure μ will be freely used in this paper:

$$||f * g||_2 \le ||f||_1 ||g||_2, \qquad ||f * g||_\infty \le ||f||_2 ||g||_2, ||\mu * f||_2 \le ||f||_2.$$
(3.3)

Let us enumerate a number of well-known facts about unitary representations of G. First, it is known that every $\pi \in \widehat{G}$ is of finite dimension and that every unitary representation of G can be decomposed as an orthogonal direct sum of $\pi \in \widehat{G}$. A function $f \in L^2(G)$ is called G-finite if there exists a finite-dimensional G-invariant subspace of $L^2(G)$ containing f. It is clear that G-finite functions form a subspace of $L^2(G)$. We will denote this subspace by $\mathcal{E}(G)$. It follows from the classical Peter–Weyl theorem that $\mathcal{E}(G) \subseteq C(G)$ and that $\mathcal{E}(G)$ is dense in $L^2(G)$.

For $\pi \in \widehat{G}$ and $f \in L^1(G)$, the Fourier coefficient $\widehat{f}(\pi)$ is defined by

$$\widehat{f}(\pi) = \int_G f(g)\pi(g)^* \, \mathrm{d}g.$$

One can show that for $f, g \in L^1(G)$ and $\pi \in \widehat{G}$, we have

$$\widehat{f * g}(\pi) = \widehat{g}(\pi) \widehat{f}(\pi).$$

Parseval's theorem states that for all $f \in L^2(G)$ the following identity holds:

$$||f||_2^2 = \sum_{\pi \in \widehat{G}} \dim \pi ||\widehat{f}(\pi)||_{HS}^2.$$

Finally, we will remark that G is Abelian if and only if every $\pi \in \widehat{G}$ is one-dimensional. In this case, the previous discussion reduces to the classical Fourier analysis on Abelian groups.

Here we will collect a number of definitions from additive combinatorics that will be needed later. Let G be as before, and recall that d denotes a bi-invariant metric on G. The ball of radius $\eta > 0$ centered as $x \in G$ is denoted by x_{η} . The η -neighborhood of a set A, denoted by A_{η} , is the union of all x_{η} with $x \in A$.

A subset $A \subseteq G$ is said to be η -separated if the distance between every two points in A is at least η . An η -cover for A is a collection of balls of radius η with

centers in A whose union covers A. Recall that the minimum size of an η -cover of A (which is finite by compactness of G) is denoted by $\mathcal{N}_{\eta}(A)$. The value

$$h(A; \eta) := \log \mathcal{N}_{\eta}(A)$$

is called the metric entropy of A at scale η .

The characteristic function of a set A is denoted by $\mathbb{1}_A$. For $\eta>0$, we write $P_\eta=\frac{\mathbb{1}_{1_\eta}}{|1_\eta|}$. Note that P_η belongs to the center of the Banach algebra $L^1(G)$. For $f\in L^1(G)$ (μ probability measure on G, respectively) we write f_η (μ_η , respectively) instead of $f*P_\eta$ ($\mu*P_\eta$, respectively). The cardinality of a finite set A is denoted by #A. The Rényi entropy of a G-valued Borel random variable X at scale $\eta>0$ is defined by

$$H_2(X; \eta) := \log(1/|1_{\eta}|) - \log \|\mu_{\eta}\|_2^2$$

where μ is the distribution measure of X. Since $H_2(X; \eta)$ depends only on the distribution measure μ of X, we will sometimes write $H_2(\mu; \eta)$ instead of $H_2(X; \eta)$.

We will use Vinogradov's notation $A \ll_{c_1,c_2} B$ to denote that $A \leq CB$, where $C = C(c_1, c_2)$ is a positive function of c_1, c_2 . We write $A \ll B$ to denote that $A \leq CB$ for some absolute constant C > 0. We similarly define \gg_{c_1,c_2} and \gg for the reverse relations.

4. Local Randomness and Representations with Bounded Dimension

The main goal of this section is to prove Theorem 2.3. Along the way some basic properties of locally random groups will also be proved.

Suppose that $f: \mathbb{Z}^+ \to \mathbb{R}^+$ is an unbounded strictly increasing function, and define

$$d_{G,f}(x,y) := \sup_{\pi \in \widehat{G}} \frac{\|\pi(x) - \pi(y)\|_{\text{op}}}{f(\dim \pi)}.$$
 (4.1)

Note that $\frac{\|\pi(x)-\pi(y)\|_{op}}{f(\dim \pi)}$ depends only on the (unitary) isomorphism class of π . In the sequel we often assume $\pi:G\to U(n)$ for some $n\in\mathbb{N}$. Moreover, we remark that if π is a finite dimensional unitary representation of G with the orthogonal decomposition $\pi=\bigoplus_{i\in I}\pi_i$ into irreducible representations, then

$$\frac{\|\pi(x) - \pi(y)\|_{\text{op}}}{f(\dim \pi)} \le \max_{i \in I} \frac{\|\pi_i(x) - \pi_i(y)\|_{\text{op}}}{f(\dim \pi_i)} \le d_{G,f}(x, y). \tag{4.2}$$

LEMMA 4.1. Suppose that G is a compact group and $f: \mathbb{Z}^+ \to \mathbb{R}^+$ is a strictly increasing function. Let $d_{G,f}$ be defined as in (4.1); then $d_{G,f}$ is a well-defined bounded, bi-invariant metric on G.

Proof. Since $\|\pi(x)\|_{op} = 1$ for all $\pi \in \widehat{G}$ and all $x \in G$, we have that $d_{G,L}(x, y) \le 2/f(1)$ for any $x, y \in G$ —we also used the fact that f is increasing. Since $\pi(z)$ is a unitary matrix for any $z \in G$,

$$\|\pi(x) - \pi(y)\|_{\text{op}} = \|\pi(zx) - \pi(zy)\|_{\text{op}} = \|\pi(xz) - \pi(yz)\|_{\text{op}}.$$

This implies $d_{G,f}$ is bi-invariant. Clearly $d_{G,f}$ satisfies the triangle inequality. By the Peter–Weyl theorem, if $x \neq y$, then there is $\pi \in \widehat{G}$ such that $\pi(x) \neq \pi(y)$. Hence, if $x \neq y$, then $d_{G,f}(x,y) \neq 0$, from which the claim follows.

Next we want to explore the conditions under which the metric $d_{G,f}$ gives us the same topology as the original topology of G. Indeed it suffices to study neighborhoods of the identity.

Lemma 4.2. In the previous setting, $d_{G,f}$ induces the original topology of G if and only if

$$\lim_{x \to 1} d_{G,f}(x,1) = 0.$$

Proof. In order to distinguish the two topologies on G, we let G_f denote the topological space whose point set is G and whose topology is generated by the metric $d_{G,f}$.

If G and G_f coincide, then $\lim_{x\to 1} d_{G,f}(x,1) = 0$.

Conversely, let $I_G: G \to G_f$ be the identity map. Since $d_{G,f}$ is bi-invariant, $\lim_{x\to 1} d_{G,f}(x,1) = 0$ implies $\lim_{x\to y} d_{G,f}(x,y) = 0$ for all $y\in G$. Hence I_G is continuous. Since G is compact and I_G is a continuous bijection, it is a homeomorphism; this finishes the argument.

The following is a generalization of Theorem 2.3.

Theorem 4.3. Suppose that G is a compact group. The following statements are equivalent.

- (1) For any unbounded strictly increasing function $f: \mathbb{Z}^+ \to \mathbb{R}^+$, the metric $d_{G,f}$ induces the original topology of G.
- (2) For some unbounded strictly increasing function $f: \mathbb{Z}^+ \to \mathbb{R}^+$, the metric $d_{G,f}$ induces the original topology of G.
- (3) For any positive integer n, $\{\pi \in \widehat{G} | \dim \pi \le n\}$ is finite.

Proof. Clearly (1) implies (2). Let us prove that (2) implies (3). Assume the contrary, and suppose that there are infinitely many inequivalent unitary representations π_n of G of some dimension d. Since $d_{G,f}$ induces the topology for some f, we conclude that the family $\pi_n : G \to U_d(\mathbb{C})$ is an equicontinuous family of representations. Therefore, by the Arzelá–Ascoli theorem, there exists a converging subsequence $\{\pi_{n_i}\}$, which contradicts the orthogonality of the characters of representations $\{\pi_{n_i}\}$.

Finally, we prove that (3) implies (1). Suppose that $f: \mathbb{Z}^+ \to \mathbb{R}^+$ is a strictly increasing function. By Lemma 4.2 we need to show that $\lim_{x\to 1} d_{G,f}(x,1) = 0$. Since f is increasing and unbounded, for given $\varepsilon > 0$, there are only finitely many representations $\{\pi_1, \ldots, \pi_n\} \subset \widehat{G}$ such that $f(\dim \pi_i) < 2/\varepsilon$. Hence, for all $\pi \in \widehat{G} \setminus \{\pi_1, \ldots, \pi_n\}$ and all $x \in G$, we have

$$\frac{\|\pi(x) - I\|_{\text{op}}}{f(\dim \pi)} \le \frac{2}{f(\dim \pi)} \le \varepsilon.$$

Since π_i s are continuous, there is $\eta > 0$ such that for all $x \in 1_{\eta}$ we have

$$\|\pi_i(x) - I\|_{\text{op}} \le \varepsilon f(1)$$

for all $i \in [1..n]$. Altogether, we get that for all $x \in \mathbb{I}_{\eta}$ and all $\pi \in \widehat{G}$ we have

$$\frac{\|\pi(x) - I\|_{\text{op}}}{f(\dim \pi)} \le \varepsilon,$$

which implies that $d_{G,f}(x,1) \le \varepsilon$ for all $x \in 1_{\eta}$; and the claim follows.

Proof of Theorem 2.3. Suppose that G is locally random; that means G has a metric such that for all $x \in G$ and $\pi \in \widehat{G}$ we have

$$\|\pi(x) - I\|_{\text{op}} \le C_0(\dim \pi)^L d(x, 1).$$

Let $f: \mathbb{Z}^+ \to \mathbb{R}^+$, $f(n) := C_0 n^L$; then f is strictly increasing and $\lim_{x \to 1} d_{G,f}(x,1) = 0$. Hence, for every $n \ge 1$, it follows from Theorem 4.3, that there are only finitely many elements of \widehat{G} of dimension at most n.

Conversely, suppose that for all integers $n \ge 1$, there are only finitely many elements of \widehat{G} of dimension at most n. Set $f: \mathbb{Z}^+ \to \mathbb{R}^+$, f(n) := n. By Theorem 4.3, $d_{G,f}$ induces the original topology of G, and with respect to this metric, for all $x, y \in G$ and $\pi \in \widehat{G}$, we have

$$\|\pi(x) - \pi(y)\|_{\text{op}} \le (\dim \pi) d_{G, f}(x, y);$$

therefore, G is locally random.

Theorem 2.3 has interesting consequences for the structure of locally random groups.

DEFINITION 4.4. A compact group G has the FAb property if $H^{ab} := H/\overline{[H, H]}$ is finite for any open subgroup H of G.

COROLLARY 4.5. If G is locally random, then G has the FAb property.

Proof. If H is an open subgroup of G and H^{ab} is infinite, then H will have infinitely many one-dimensional irreducible representations all factored through H^{ab} , leading to infinitely many representations of G of dimension [G:H], which contradicts Theorem 2.3.

COROLLARY 4.6. If G is locally random, then G has only finitely many open subgroups of index at most n for any positive integer n.

Proof. Suppose to the contrary that G has infinitely many open subgroups $\{H_i\}_{i=1}^{\infty}$ of index at most n. Let π_i be the representation of G on $L^2(G/H_i)$. Since by Theorem 2.3 there are only finitely many inequivalent representations of dimension at most n, $N := \bigcap_i \ker \pi_i$ is an open subgroup of G. Now, the sequence $\{H_i/N\}_{i=1}^{\infty}$ consists of distinct subgroups of a finite group G/N, which is a contradiction.

5. Local Randomness, Dimension Condition, and Important Examples

As we pointed out earlier, local randomness is particularly powerful when in addition the chosen metric has a *dimension condition* (DC). Furthermore, several important examples, for example, analytic compact groups, come equipped with a natural metric, and we would like to know whether G is locally random with respect to this natural metric.

In this section we address this question. In particular, we show that compact simple Lie groups (with respect to their natural metric) are locally random; we also provide a connection between quasi-randomness and local randomness for profinite groups.

We begin with investigating local randomness of quotients and products. Indeed, Theorem 2.3 implies that

- (1) if G is locally random and N is a closed normal subgroup, then G/N is locally random;
- (2) if G_1 and G_2 are locally random, then $G_1 \times G_2$ is locally random.

These statements, however, do not provide information regarding the metrics (or the involved parameters) with respect to which these groups are locally random. The following two lemmas prove the statements with some control on the involved metrics.

LEMMA 5.1. Suppose that G is L-locally random with coefficient C_0 , and let N be a closed normal subgroup of G. Then G/N equipped with the natural quotient metric is L-locally random with coefficient C_0 .

Proof. Let us recall that given a bi-invariant metric d on G, the natural quotient metric on G/N is $d(xN, yN) := \inf_{h,h' \in N} d(xh, yh')$.

For $\overline{\pi} \in \widehat{G/N}$, let $\pi(x) := \overline{\pi}(xN)$; then $\pi \in \widehat{G}$. For $x, y \in G$ and every $\varepsilon > 0$, there exist $h, h' \in N$ such that

$$d(xh, xh') < d(xN, yN) + \varepsilon$$
.

From this we conclude

$$\|\overline{\pi}(xN) - \overline{\pi}(yN)\|_{\text{op}} = \|\pi(xh) - \pi(yh')\|_{\text{op}} \le C_0(\dim \pi)^L d(xh, yh')$$

$$\le C_0(\dim \overline{\pi})^L (d(xN, yN) + \varepsilon).$$

The claim follows as ε is an arbitrary positive number.

LEMMA 5.2. Suppose that G_i is an L_i -locally random group with coefficient C_i for i = 1, 2. Then $G_1 \times G_2$ is an $\max\{L_1, L_2\}$ -locally random group with coefficient $C_1 + C_2$ with respect to the maximum metric.

Proof. We know that any $\pi \in \widehat{G_1} \times \widehat{G_2}$ is of the form $\pi_1 \otimes \pi_2$ for some $\pi_i \in \widehat{G_i}$. It is also well known that for any two matrices a and b we have $||a \otimes b||_{op} =$

 $||a||_{\text{op}}||b||_{\text{op}}$. Let $L := \max\{L_1, L_2\}$ and $C_0 := C_1 + C_2$. Then for any $(g_1, g_2) \in G_1 \times G_2$ we have

$$\begin{split} &\|\pi(g_1, g_2) - I\|_{\text{op}} \\ &= \|\pi_1(g_1) \otimes \pi_2(g_2) - I \otimes I\|_{\text{op}} \\ &\leq \|\pi_1(g_1) \otimes \pi_2(g_2) - I \otimes \pi_2(g_2)\|_{\text{op}} + \|I \otimes \pi_2(g_2) - I \otimes I\|_{\text{op}} \\ &= \|(\pi_1(g_1) - I) \otimes \pi_2(g_2)\|_{\text{op}} + \|I \otimes (\pi_2(g_2) - I)\|_{\text{op}} \\ &= \|\pi_1(g_1) - I\|_{\text{op}} + \|\pi_2(g_2) - I\|_{\text{op}} \\ &\leq C_1(\dim \pi_1)^L d_1(g_1, 1) + C_2(\dim \pi_2)^L d_2(g_2, 1) \\ &\leq C_0(\dim \pi)^L d((g_1, g_2), (1, 1)), \end{split}$$

from which the claim follows.

The following is essentially proved for the standard metric d_0 in [12, Lemme 3.1, 3.2].

PROPOSITION 5.3. Suppose that G is a compact semisimple Lie group with a compatible bi-invariant metric d. Then (G,d) is 1-locally random with coefficient $C_0 := C_0(G,d)$.

We start with the following lemma.

Lemma 5.4. Let d be a bi-invariant metric on a connected compact semisimple Lie group with the standard metric d_0 . Then for all $g \in G$ we have

$$d(g, 1) \gg_{d_0, d} d_0(g, 1)$$
.

Proof. Let us recall the construction of the standard metric d_0 . It is well known that the Killing form is a negative definite bilinear form on the Lie algebra \mathfrak{g} , therefore,

$$\langle X, Y \rangle := -\operatorname{Tr}(\operatorname{ad}(X)\operatorname{ad}(Y))$$

defines an invariant inner product on $\mathfrak g$ and hence a bi-invariant metric on G, which induces d_0 . Fix a maximal torus T of G with the Lie algebra $\mathfrak t$. There exists $\eta_0' := \eta_0'(G)$ such that for every $X \in \mathfrak t$ with $\|X\| \le \eta_0'$ we have

$$||X|| \ll d_0(\exp_T(X), 1) \ll ||X||.$$

Since every element of G belongs to a conjugate of T, the map from $G \times T$ to G sending (g,t) to $g^{-1}tg$ is open. This implies that there exists $\eta_0 = \eta_0(G,d)$ such that $\bigcup_{g \in G} g^{-1} \exp_T(\{X \in \mathfrak{t} : \|X\| \leq \eta_0'\})g$ contains a ball of radius η_0 with respect to the metric d. Let

$$K_0 = \min\{d(\exp_T(X), 1) : X \in \mathfrak{t}, ||X|| \in [\eta'_0/2, \eta'_0]\}.$$

For $X \in \mathfrak{t}$ with $||X|| \le \eta_0'/4$, let n be the least positive integer such that $||nX|| \ge \eta_0'/2$. By the triangle inequality, we have

$$d(\exp_T(X), 1) \ge \frac{1}{n} d(\exp_T(nX), 1) \ge \frac{K_0}{n} \ge \frac{K_0 ||X||}{\eta'_0}.$$

For every $g \in G$ with $d(g, 1) < \eta_0$, find $X \in \mathfrak{t}$ of norm less than η'_0 such that g is conjugate to $\exp_T(X)$. It follows that

$$d(g, 1) = d(\exp_T(X), 1) \ge \frac{K_0 ||X||}{\eta'_0} \gg_{d_0, d} d_0(\exp_T(X), 1) = d_0(g, 1).$$

This establishes the inequality for all g in a neighborhood of 1. On the complement of this set, d(g, 1) is bounded from below, from which the claim follows.

Proof of Proposition 5.3. Without loss of generality, we can assume that G is connected. In view of Lemma 5.4, it suffices to prove the claim for the natural metric d_0 . Let Φ be the set of roots with respect to T, and let Φ^+ be a set of positive roots. Let π be an irreducible unitary representation of G. Let $W_{\pi} := \{\lambda_1, \ldots, \lambda_n\}$ be the set of weights of π , and let λ denote the highest weight of π with respect to Φ^+ . We have

$$\mathcal{H}_{\pi} = \bigoplus_{i=1}^{n} \ker(\pi(\exp_{T}(X)) - e^{i\lambda_{j}(X)}I),$$

where \exp_T denotes the restriction of the exponential map \exp_G to t.

As before, let $\eta'_0 := \eta'_0(G)$ be such that for any $X \in \mathfrak{t}$ with $||X|| \leq \eta'_0$ we have

$$||X|| \ll d_0(\exp_T(X), 1) \ll ||X||,$$

and choose $\eta_0=\eta_0(G)$ such that $1_{\eta_0}\subset\bigcup_{g\in G}g^{-1}\exp_T(\{X\in\mathfrak{t}:\|X\|\leq\eta_0'\})g$. Let $g\in 1_{\eta_0}$. Then

$$\|\pi_{\lambda}(g) - I\|_{\text{op}} = \|\pi_{\lambda}(\exp_{T}(X)) - I\|_{\text{op}} = \max_{\lambda_{j} \in W_{\pi_{\lambda}}} |e^{i\lambda_{j}(X)} - 1|$$

$$\leq \max_{\lambda_{j} \in W_{\pi_{\lambda}}} |\lambda_{j}(X)| \ll \|\lambda\| \|X\| \ll \|\lambda\| d_{0}(\exp_{T}(X), 1)$$

$$= \|\lambda\| d_{0}(g, 1). \tag{5.1}$$

On the other hand, by Weyl's formula

$$\dim \pi = \prod_{\alpha \in \Phi^+} \frac{\langle \lambda + \rho, \alpha \rangle}{\langle \rho, \alpha \rangle},$$

where ρ is the half of the sum of the positive roots. For every $\alpha \in \Phi^+$, we have $\frac{\langle \lambda + \rho, \alpha \rangle}{\langle \rho, \alpha \rangle} \ge 1$. Moreover, since elements of Φ^+ contain a basis for the dual space of \mathfrak{t} , it follows that there exists $\alpha \in \Phi^+$ for which $\langle \lambda, \alpha \rangle \gg_G \|\lambda\|$. This implies that

$$\dim \pi \gg_G \|\lambda\|. \tag{5.2}$$

By (5.1) and (5.2) we get

$$\|\pi_{\lambda}(g) - I\|_{\text{op}} \le C'_0(G)(\dim \pi)d_0(g, 1)$$

for some $C_0'(G)$ and any $g \in 1_{\eta_0}$. Therefore, G is 1-locally random with coefficient $C_0 := \frac{2C_0'(G)}{\eta_0}$.

LEMMA 5.5. Let G be a compact metrizable group such that for every compatible metric d the pair (G, d) is L-locally random with coefficient C for some C, L > 0. Then G is a Lie group.

Proof. The claim is clear when G is finite. Henceforth, we will assume that G is an infinite compact metrizable group. Let $(\pi_i)_{i\geq 1}$ be an enumeration of all elements of \widehat{G} ordered such that the sequence $(\dim \pi_i)_{i\geq 1}$ is nondecreasing. For $m\geq 1$, let

$$\rho_m: G \to \prod_{1 \le n \le m} \pi_n(G)$$

denote the direct sum $\pi_1 \oplus \cdots \oplus \pi_m$. Equip G with the bi-invariant metric defined by

$$d(g, 1) = \sum_{n=1}^{\infty} e^{-nD_n} \|\pi_n(g) - I\|_{\text{op}},$$

where $D_n = \deg \pi_n$. It is not hard to see that $d(g,1) \to 0$ if $g \to 1$ in G. By virtue of Lemma 4.2, this metric is compatible with the topology of G. If ρ_m is injective for some $m \ge 1$, then it follows that G is homeomorphic to a closed subgroup of the Lie group $\rho_m(G)$, and hence is itself a compact Lie group. Suppose this fails for all $m \ge 1$ and pick a sequence $g_m \in \ker \rho_m \setminus \{1\}$. For each $g \in G \setminus \{1\}$, write j(g) for the least index j such that $g \notin \ker \rho_j$. It follows from the choice of g_m that

$$d(g_m, 1) \le 2 \sum_{i=m+1}^{\infty} e^{-iD_i} \le 4e^{-j_m D_{j_m}},$$

where $j_m = j(g_m) \ge m+1$. Let $\lambda \ne 1$ be an eigenvalue of $\rho_{j_m}(g_m)$. There exists an integer k such that $|\lambda^k - 1| \ge \sqrt{3}$. This implies that after replacing g_m with an appropriate power (if necessary) we can assume that $\|\rho_{j_m}(g_m) - I\|_{\text{op}} \ge \sqrt{3}$. Hence, for every choice of L, C > 0, all sufficiently large $m \ge 1$, we have

$$C(\dim \rho_{j_m})^L d(g_m, 1) \le 4CD_{j_m}^L e^{-j_m D_{j_m}} < \sqrt{3} \le \|\rho_{j_m}(g_m) - I\|_{\text{op.}}$$

This shows that (G, d) is not L-locally random with coefficient C.

COROLLARY 5.6. Let G be a metrizable compact group. Then G is a (possibly disconnected) semisimple Lie group if and only if, for every compatible metric d, we have (G, d) is L(d)-locally random with coefficient C(d).

Proof. Assuming that G is a semisimple Lie group, the claim follows from Proposition 5.3. Conversely, by Lemma 5.5, G is a Lie group. Now, it follows from Lemma 4.5 that the connected component of the identity in G has a finite abelianization, implying that G is semisimple.

We now turn to the case of profinite groups. Following Varjú [24], a profinite group G will be called (c, α) -quasi-random if for all $\pi \in \widehat{G}$ we have

$$\dim \pi \ge c(\#\pi(G))^{\alpha}.$$

This is a natural extension of Gowers's notion of quasi-randomness to profinite setting.

Our next objective in this section is to relate this notion, which does not depend on the metric structure of G, to local randomness. Indeed, if G is a finitely generated (c, α) -quasi-random group, then it has only finitely many irreducible unitary representations of a given dimension. Therefore, by Theorem 2.3, we deduce that such a group is locally random. We will investigate this relationship in more detail.

The following discussion is inspired by the *p*-adic setting. Suppose that *G* is equipped with a bi-invariant metric, and define the *level* of $\pi \in \widehat{G}$ as

$$\ell(\pi) := \sup\{\eta^{-1} | 1_{\eta} \nsubseteq \ker \pi\},\$$

so for all $\varepsilon > 0$ we have $1_{(\ell(\pi)+\varepsilon)^{-1}} \subseteq \ker \pi$. If 1_{η} is a normal subgroup for every $\eta > 0$, then $\pi(G)$ is a factor of $G/1_{(\ell(\pi)+\varepsilon)^{-1}}$. Hence

$$\#\pi(G) \le |1_{(\ell(\pi)+\varepsilon)^{-1}}|^{-1}.$$
 (5.3)

If, in addition, G satisfies (DC), then we conclude from (5.3) that $\#\pi(G) \le C_1(\ell(\pi) + \varepsilon)^{d_0}$ for all $\varepsilon > 0$. Therefore,

$$\#\pi(G) < C_1 \ell(\pi)^{d_0}. \tag{5.4}$$

In view of the inequality, we define a *metric quasi-randomness* for profinite groups.

DEFINITION 5.7. A compact group G with a given bi-invariant metric is said to be (C, A)-metric quasi-random if the following two conditions are satisfied:

- (1) For all $\eta > 0$, 1_{η} is a subgroup of G.
- (2) For all $\pi \in \widehat{G}$, we have $\ell(\pi) \leq C(\dim \pi)^A$.

Hence by (5.4) we get the following.

LEMMA 5.8. Suppose that G is a (C, A)-metric quasi-random group and $|1_{\eta}| \leq C_1 \eta^{d_0}$ for all $\eta > 0$ where C_1 and d_0 are positive constants. Then G is $((C_1 C^{d_0})^{-1}, 1/(Ad_0))$ -quasi-random.

Next we prove that L-local randomness (with some parameters) and metric quasirandomness are equivalent when balls centered at 1 are subgroups.

Proposition 5.9. Suppose that G is a compact group with a bi-invariant metric. Suppose that $G=1_1$ and 1_η is a subgroup of G for all $\eta \in (0,1]$. Then G is L-locally random with coefficient C_0 if and only if G is (C,L)-metric quasi-random, where $C=C_0$ in one direction and $C_0=2C$ in the other direction.

Proof. Suppose that G is locally random, and let $\pi \in \widehat{G}$ be nontrivial. For $x \in 1_{\eta}$ we have

$$\|\pi(x) - I\|_{\text{op}} \le C_0 (\dim \pi)^L \eta.$$

In particular, if $\eta < C_0^{-1}(\dim \pi)^{-L}$ and $x \in 1_\eta$, then for any $n \in \mathbb{Z}$, $\|\pi(x)^n - I\|_{op} < 1$. This implies $\log(\pi(x)^n)$ is well defined for all integer n—recall that $\pi(x) \in U_{\dim \pi}(\mathbb{C})$. Furthermore, $\log(\pi(x)^n) = n\log(\pi(x))$. Since G is profinite, $\pi(G)$ is a finite group, and hence $\pi(x)$ is torsion for any $x \in G$. Therefore, for some positive integer n, we have $0 = \log(\pi(x)^n) = n\log(\pi(x))$, which implies that $\pi(x) = I$. That is,

$$1_{\eta} \subseteq \ker \pi \quad \text{if } \eta < C_0^{-1} (\dim \pi)^{-L}. \tag{5.5}$$

By (5.5) we have

$$\ell(\pi) < C_0(\dim \pi)^L$$

which implies that G is (C_0, L) -metric quasi-random.

To see the other implication, note that for all $\pi \in \widehat{G}$ and any $x \in G$, $\pi(x) \neq I$ implies that $d(x, 1) \geq 1/\ell(\pi)$. Therefore,

$$\|\pi(x) - I\|_{\text{op}} \le 2 \le 2\ell(\pi)d(x, 1) \le 2C(\dim \pi)^{L}d(x, 1),$$

which implies that G is L-locally random with coefficient 2C.

In [18, Lemma 20], using Howe's Kirillov theory, it is proved that an open compact subgroup G of a p-adic analytic group with a perfect Lie algebra is (C, A)-metric quasi-random for some positive numbers C and A depending on G. Thus, by Proposition 5.9 we obtain an important family of locally random groups.

PROPOSITION 5.10. Suppose that G is a compact open subgroup of a p-adic analytic group with a perfect Lie algebra. Then, for some positive number L and C_0 , G is L-locally random with coefficient C_0 .

6. Mixing Inequality for Locally Random Groups

In this section, we prove Theorem 2.4 and derive a number of its corollaries.

6.1. High and Low Frequencies and the Proof of Theorem 2.4

The proof of Theorem 2.4 involves splitting the terms in Parseval's theorem for $\|f\|^2$ into the sum of contributions from *low frequency* and *high frequency* terms. By low (resp. high) frequency terms, we mean terms coming from irreducible representations of small (resp. large) degree. The low frequency terms can be bounded by the local randomness assumption, whereas high frequency terms are dealt with using a trivial bound. For $f \in L^2(G)$ and a threshold parameter D, write

$$L(f; D) := \sum_{\pi \in \widehat{G}, \dim \pi \le D} \dim \pi \|\widehat{f}(\pi)\|_{\mathrm{HS}}^2$$

$$\tag{6.1}$$

for the low frequency terms and

$$H(f; D) := \sum_{\pi \in \widehat{G}, \dim \pi > D} \dim \pi \|\widehat{f}(\pi)\|_{\mathrm{HS}}^{2}$$

$$\tag{6.2}$$

for the high frequency terms. By Parseval's theorem, $||f||_2^2 = L(f; D) + H(f; D)$ holds.

LEMMA 6.1. In the previous setting, we have

$$L(f*g;D) \le L(f;D)L(g;D)$$
 and $H(f*g;D) < \frac{1}{D}H(f;D)H(g;D)$.

Proof. We have $\|\widehat{f * g}(\pi)\|_{HS} = \|\widehat{g}(\pi)\widehat{f}(\pi)\|_{HS} \le \|\widehat{g}(\pi)\|_{HS} \|\widehat{f}(\pi)\|_{HS}$ and

$$\begin{split} L(f*g;D) &= \sum_{\pi \in \widehat{G}, \dim \pi \leq D} \dim \pi \, \| \, \widehat{f*g}(\pi) \|_{\mathrm{HS}}^2 \\ &\leq \bigg(\sum_{\pi \in \widehat{G}, \dim \pi \leq D} \dim \pi \, \| \, \widehat{f}(\pi) \|_{\mathrm{HS}}^2 \bigg) \bigg(\sum_{\pi \in \widehat{G}, \dim \pi \leq D} \dim \pi \, \| \, \widehat{g}(\pi) \|_{\mathrm{HS}}^2 \bigg) \\ &< L(f;D) L(g;D). \end{split}$$

Similarly, we have the inequality

$$\begin{split} &H(f*g;D) \\ &= \sum_{\pi \in \widehat{G}, \dim \pi > D} \dim \pi \, \| \widehat{f*g}(\pi) \|_{\mathrm{HS}}^2 \\ &< \frac{1}{D} \bigg(\sum_{\pi \in \widehat{G}, \dim \pi > D} \dim \pi \, \| \widehat{f}(\pi) \|_{\mathrm{HS}}^2 \bigg) \bigg(\sum_{\pi \in \widehat{G}, \dim \pi > D} \dim \pi \, \| \widehat{g}(\pi) \|_{\mathrm{HS}}^2 \bigg) \\ &\leq \frac{1}{D} H(f;D) H(g;D), \end{split}$$

as we claimed. \Box

LEMMA 6.2 (Fourier terms in low frequencies). Suppose that G is L-locally random with coefficient C_0 . Then, for all $\eta > 0$ and $\pi \in \widehat{G}$, we have

$$\|\widehat{P}_n(\pi) - I\|_{\text{op}} \le C_0(\dim \pi)^L \eta.$$

Proof. For all $x \in 1_{\eta}$, we have $\|\pi(x) - I\|_{\text{op}} \leq C_0 (\dim \pi)^L d(1, x) \leq C_0 (\dim \pi)^L \eta$. Therefore,

$$\|\widehat{P}_{\eta}(\pi) - I\|_{\text{op}} = \left\| \int P_{\eta}(x)(\pi(x)^* - I) \, \mathrm{d}x \right\|_{\text{op}} \le C_0(\dim \pi)^L \eta.$$

LEMMA 6.3. Suppose that G is an L-locally random group with coefficient C_0 . Let $\eta > 0$ and $D \ge 1$ be two parameters satisfying $C_0D^L\eta < 1$. Then

$$L(f; D) \le (1 - C_0 D^L \eta)^{-2} L(f_{\eta}; D) \le (1 - C_0 D^L \eta)^{-2} ||f_{\eta}||_2^2,$$

where $f_{\eta} = P_{\eta} * f$.

Proof. The second inequality is clear because of $L(f_{\eta}; D) \leq ||f_{\eta}||_{2}^{2}$.

П

We now show the first inequality. Note that

$$L(f_{\eta}; D) = \sum_{\pi \in \widehat{G}, \dim \pi \le D} \dim \pi \|\widehat{P}_{\eta}(\pi)\widehat{f}(\pi)\|_{\mathrm{HS}}^{2}.$$

$$(6.3)$$

We have

$$\begin{split} \|\widehat{P}_{\eta}(\pi)\widehat{f}(\pi)\|_{\mathrm{HS}} &= \|\widehat{f}(\pi) - (I - \widehat{P}_{\eta}(\pi))\widehat{f}(\pi)\|_{\mathrm{HS}} \\ &\geq (1 - C_0(\dim \pi)^L \eta) \|\widehat{f}(\pi)\|_{\mathrm{HS}} \quad \text{(by Lemma 6.2)} \\ &\geq (1 - C_0 D^L \eta) \|\widehat{f}(\pi)\|_{\mathrm{HS}}. \end{split}$$

This estimate and (6.3) imply that

$$L(f_{\eta}; D) \ge (1 - C_0 D^L \eta)^2 L(f; D),$$
 (6.4)

which finishes the proof.

Proof of Theorem 2.4. Let η be as in the statement of the theorem, and let $D = (\sqrt{\eta})^{-1/L}$.

By Lemmas 6.1 and 6.3, we have

$$\begin{split} \|f * g\|_2^2 &= L(f * g; D) + H(f * g; D) \\ &\leq L(f; D) L(g; D) + \frac{1}{D} H(f; D) H(g; D) \\ &\leq (1 - C_0 D^L \eta)^{-4} \|f_\eta\|_2^2 \|g_\eta\|_2^2 + \frac{1}{D} \|f\|_2^2 \|g\|_2^2. \end{split}$$

Note that $(1 - C_0 D^L \eta)^{-4} = (1 - C_0 \sqrt{\eta})^{-4} \le 0.9^{-4} \le 2$. The claim follows from here.

6.2. An Almost Orthogonality and Further Mixing Inequalities

The inequality in Theorem 2.4 is nontrivial only when $\|f_\eta\|_2$ and $\|g_\eta\|_2$ are small. In this section, we show that $(f-f_\eta)_{\eta'}$ is small when η is polynomially smaller than η' . Thus applying the mixing inequality of Theorem 2.4 to $(f-f_\eta)_{\eta'}$ and g, we get a meaningful mixing. We will then use this to prove a product theorem. To get a better understanding of the discussion, consider the case when 1_η is a subgroup of G. Then $f\mapsto f_\eta$ is the orthogonal projection onto the space of 1_η -invariant functions in $L^2(G)$ and $(f-f_\eta)_\eta=0$; hence, one may let $\eta'=\eta$.

Results in this section require only a dimension condition at a given scale. This is implied by (DC), but is more general.

Let us recall that any class function in $L^1(G)$ is in the center of the Banach algebra $(L^1(G), +, *)$; therefore, P_{η} is in the center of $L^1(G)$ for any η .

Lemma 6.4. Suppose that G is an L-locally random group with coefficient C_0 . For every $C_1 > 0$ and every $\eta \ll_{C_0,C_1,L} 1$, we have the following. Suppose that $\eta' \geq \eta^{1/(4Ld_0)}$ satisfies $|1_{\eta'}| \geq \frac{1}{C_1} \eta'^{d_0}$. Then for every $f \in L^2(G)$ we have

$$||(f - f_n)_{n'}||_2 \le \eta^{1/(8L)} ||f||_2.$$

Proof. Let D be a threshold parameter which will be set later. Then

$$\begin{split} L((f-f_{\eta})_{\eta'};D) &= \sum_{\pi \in \widehat{G}, \dim \pi \leq D} \dim \pi \, \| \, \widehat{f}(\pi) \widehat{P}_{\eta'}(\pi) (I-\widehat{P}_{\eta}(\pi)) \|_{\mathrm{HS}}^2 \\ &\leq \sum_{\pi \in \widehat{G}, \dim \pi \leq D} \dim \pi \, \| I-\widehat{P}_{\eta}(\pi) \|_{\mathrm{op}}^2 \| \, \widehat{P}_{\eta'}(\pi) \|_{\mathrm{op}}^2 \| \, \widehat{f}(\pi) \|_{\mathrm{HS}}^2 \\ &\leq (C_0 D^L \eta)^2 L(f;D) \quad \text{(by Lemma 6.2)}. \end{split}$$

We used $||AB||_{HS} \le ||A||_{op} ||B||_{HS}$ for matrices A and B for the first inequality, and $||\widehat{P}_{\eta'}(\pi)||_{op} \le 1$ in the final inequality. For the high frequencies we have

$$\begin{split} &H((f-f_{\eta})_{\eta'};D) \\ &= \sum_{\pi \in \widehat{G}, \dim \pi > D} \dim \pi \, \| \, \widehat{f}(\pi) \, \widehat{P}_{\eta'}(\pi) (I-\widehat{P}_{\eta}(\pi)) \|_{\mathrm{HS}}^2 \\ &\leq \sum_{\pi \in \widehat{G}, \dim \pi > D} \dim \pi \, \| I-\widehat{P}_{\eta}(\pi) \|_{\mathrm{op}}^2 \| \, \widehat{P}_{\eta'}(\pi) \|_{\mathrm{op}}^2 \| \, \widehat{f}(\pi) \|_{\mathrm{HS}}^2 \\ &\leq \frac{4}{D} H(P_{\eta'};D) H(f;D) \leq \frac{4}{D} \| P_{\eta'} \|_2^2 H(f;D) = \frac{4}{D|\mathbf{1}_{\eta'}|} H(f;D), \end{split}$$

where we used the trivial bound $||I - \widehat{P}_{\eta}(\pi)||_{\text{op}} \le 2$. Combining these two estimates, we conclude

$$\|(f - f_{\eta})_{\eta'}\|_{2}^{2} \le \left((C_{0}D^{L}\eta)^{2} + \frac{4}{D|1_{\eta'}|}\right)\|f\|_{2}^{2}.$$

Setting $D = \eta^{-1/(2L)}$, we get the desired inequality.

In the rest of this section we will prove a number of mixing inequalities.

LEMMA 6.5. Suppose that G is an L-locally random group with coefficient C_0 . For every integer $m \geq 2$, $C_1 > 0$, and $\eta \ll_{C_0,C_1,L} 1$, we have the following. Suppose that $\eta' \geq \eta^{1/(4Ld_0)}$ satisfies $C_0 \sqrt{\eta'} < 0.1$ and $|1_{\eta'}| \geq \frac{1}{C_1} \eta'^{d_0}$. Then, for all $f_1, \ldots, f_m \in L^2(G)$, we have

$$\|(f_1 - (f_1)_{\eta}) * f_2 * \cdots * f_m\|_2 \le \sqrt{6} \eta'^{1/(4L)} \prod_{i=1}^m \|f_i\|_2.$$

Proof. We proceed by induction on m. Let us start with the base case m = 2. By Theorem 2.4, we have that $\|(f_1 - (f_1)_{\eta}) * f_2\|_2^2$ is bounded from above by

$$2\|(f_1 - (f_1)_{\eta})_{\eta'}\|_2^2\|(f_2)_{\eta'}\|_2^2 + {\eta'}^{1/(2L)}\|f_1 - (f_1)_{\eta}\|_2^2\|f_2\|_2^2, \tag{6.5}$$

where we used $||f * g||_2 \le ||f||_2 ||g||_2$ for any two functions $f, g \in L^2(G)$. By Lemma 6.4 we have

$$\|(f_1 - (f_1)_n)_{n'}\|_2 \le \eta^{1/(8L)} \|f_1\|_2. \tag{6.6}$$

Since $||f * g||_2 \le ||f||_1 ||g||_2$, we have

$$||f_1 - (f_1)_{\eta}||_2 \le ||1 - P_{\eta}||_1 ||f_1||_2 \le 2||f_1||_2$$
 and $||(f_2)_{\eta'}||_2 \le ||f_2||_2$. (6.7)

By (6.5), (6.6), and (6.7), we get that $||(f_1 - (f_1)_{\eta}) * f_2||_2^2$ is bounded from above by

$$2(\eta^{1/(8L)}\|f_1\|_2)^2\|f_2\|_2^2 + 4\eta'^{1/(2L)}\|f_1\|_2^2\|f_2\|_2^2.$$

Therefore

$$\|(f_1 - (f_1)_{\eta}) * f_2\|_2 \le \sqrt{6}\eta'^{1/(4L)} \|f_1\|_2 \|f_2\|_2.$$

This concludes the proof for m = 2. Now, suppose that the inequality holds for some value of m, and set

$$F_m := (f_1 - (f_1)_{\eta}) * f_2 * \cdots * f_m.$$

By Young's inequality, we have

$$||F_m * f_{m+1}||_2 \le ||F_m||_2 ||f_{m+1}||_1.$$

Now, by the inductive hypothesis, we have $||F_m||_2 \le \sqrt{6}\eta'^{1/(4L)} \prod_{i=1}^m ||f_i||_2$. Hence,

$$||F_m * f_{m+1}||_2 \le \sqrt{6} \eta'^{1/(4L)} \prod_{i=1}^{m+1} ||f_i||_2,$$

where we also used $||f_{m+1}||_1 \le ||f_{m+1}||_2$.

PROPOSITION 6.6. Suppose that G is an L-locally random group with coefficient C_0 . For every integer $m \geq 2$, $C_1 > 0$, and $\eta \ll_{C_0,C_1,L} 1$, we have the following. Suppose that $\eta' \geq \eta^{1/(4Ld_0)}$ satisfies $C_0\sqrt{\eta'} < 0.1$ and $|1_{\eta'}| \geq \frac{1}{C_1}\eta'^{d_0}$. Suppose $f_1, \ldots, f_m, f_{m+1} \in L^2(G)$. Then

$$||f_1*\cdots*f_{m+1}-f_1*\cdots*f_{m+1}*P_{\eta}||_{\infty} \leq \sqrt{6}\eta'^{1/(4L)}\prod_{i=1}^{m+1}||f_i||_2.$$

Proof. Recall that $||f * g||_{\infty} \le ||f||_2 ||g||_2$, see (3.3). Therefore, from the fact that P_{η} is in the center of $(L^1(G), +, *)$, we obtain

$$||f_1 * \cdots * f_{m+1} - f_1 * \cdots * f_{m+1} * P_{\eta}||_{\infty}$$

$$\leq ||(f_1 - (f_1)_{\eta}) * \cdots * f_m||_2 ||f_{m+1}||_2.$$

The claim thus follows from Lemma 6.5.

COROLLARY 6.7. Suppose that G is an L-locally random group with coefficient C_0 . For every integer $m \ge 2$, $C_1 > 0$, and $\eta \ll_{C_0,C_1,L} 1$, we have the following. Suppose that $\eta' \ge \eta^{1/(4Ld_0)}$ satisfies $C_0\sqrt{\eta'} < 0.1$ and $|1_{\eta'}| \ge \frac{1}{C_1}\eta'^{d_0}$. Suppose $f_1, \ldots, f_m, f_{m+1} \in L^2(G)$. Then

$$||f_1*\cdots*f_{m+1}-(f_1)_{\eta}*\cdots*(f_{m+1})_{\eta}||_{\infty} \leq m\sqrt{6}\eta'^{1/(4L)}\prod_{i=1}^{m+1}||f_i||_2.$$

Proof. Let $F_1 := f_1 * \cdots * f_{m+1}$ and $F_{k+1} := (f_1)_{\eta} * \cdots * (f_k)_{\eta} * f_{k+1} * \cdots * f_{m+1}$ for any $1 \le k \le m$. By Proposition 6.6 and the fact that P_{η} is in the center of $(L^1(G), +, *)$, for any k, we have

$$||F_k - F_{k+1}||_{\infty} \le \sqrt{6} \eta'^{1/(4L)} \prod_{i=1}^{k-1} ||(f_i)_{\eta}||_2 \prod_{i=k}^{m+1} ||f_i||_2$$
$$\le \sqrt{6} \eta'^{1/(4L)} \prod_{i=1}^{m+1} ||f_i||_2.$$

Therefore, $||F_1 - F_{m+1}||_{\infty} \le m\sqrt{6}\eta'^{1/(4L)} \prod_{i=1}^{m+1} ||f_i||_2$, and the claim follows.

7. A Product Result for Large Subsets

The main goal of this section is to prove Theorem 2.8. We start by recalling a number of definitions and setting some notation. Suppose that X is a metric space and A is a nonempty subset of X. Recall that for $\eta \in (0, 1)$, x_{η} denotes the ball of radius η centered at x, and similarly A_{η} denotes the union of all x_{η} with $x \in A$. We write $\mathcal{N}_{\eta}(A)$ for the least number of open balls of radius η with centers in A that cover A. The metric entropy of A at scale η is defined by $h(A; \eta) := \log \mathcal{N}_{\eta}(A)$. A maximal η -separated subset \mathcal{C} of A has the property that every distinct $x, x' \in \mathcal{C}$ is at least η apart and its η -neighborhood covers A.

The metric space we will be working with is a metrizable compact group G equipped with bi-invariant metric denoted by $d(\cdot, \cdot)$. We will assume further that the pair (G, d) enjoys the dimension condition $DC(C, d_0)$ defined in (DC).

LEMMA 7.1 (Uniformly comparable quantities). Fix a subset $A \subseteq X$ and $\eta > 0$, and let $A^* \subseteq A$ be a maximal η -separated subset of A, and write $\overline{A} = (A^*)_{\eta}$. Then A^* is finite, \overline{A} is open, and $A^* \subseteq A \subseteq \overline{A}$. Moreover, the ratio of any two quantities among

$$|\overline{A}|/|1_{\eta}|, \qquad |A_{\eta}|/|1_{\eta}|, \qquad \mathcal{N}_{\eta}(A), \qquad \#A^*$$

is bounded from above by $\Omega = 2^{d_0}C^2$.

Proof. Write $N = \mathcal{N}_{\eta}(A)$ and denote by $\{(x_i)_{\eta}\}_{i=1}^{N}$ a minimal η -cover of A with centers in A. For each $x \in A_{\eta}$, there exists some $1 \le i \le N$ such that $x \in (x_i)_{2\eta}$, implying that $A_{\eta} \subseteq \bigcup_{i=1}^{N} (x_i)_{2\eta}$. Therefore

$$|A_n| \le N|1_{2n}| \le 2^{d_0} C^2 N|1_n|, \tag{7.1}$$

where the last inequality follows from an application of (DC).

Since A^* is a maximal η -separated subset of A, the open balls $\{x_{\eta}\}_{x \in A^*}$ form an η -cover of A with centers in A, and hence

$$\mathcal{N}_{\eta}(A) \le \#A^*. \tag{7.2}$$

Finally, since A^* is η -separated, each two balls in the family $\{x_{\eta/2} : x \in A^*\}$ are pairwise disjoint, yielding

$$|A_{\eta/2}^*| = (\#A^*) |1_{\eta/2}|.$$

This implies that

$$\#A^* \le \frac{|A_{\eta}^*|}{|1_{\eta/2}|} \le 2^{d_0} C^2 \frac{|A_{\eta}|}{|1_{\eta}|}.$$
 (7.3)

This completes the proof.

REMARK 7.2. From now on, whenever two positive quantities X and Y are within a multiplicative factor of the form $\Omega^{O(1)}$ of one another, we will write $X \approx Y$. Similarly, we write $X \preccurlyeq Y$ to state that X/Y is bounded from above by an expression of the form $\Omega^{O(1)}$, where the implied constants are not of importance. Using this notation, we can now write

$$\mathcal{N}_{\eta}(A) \approx \#A^* \approx \frac{|A_{\eta}|}{|1_n|}.$$

REMARK 7.3. The proof of Lemma 7.1 only uses the dimension condition for η , 2η and $\eta/2$. We will use this fact later.

COROLLARY 7.4. Suppose that G is a compact group that satisfies (DC). Then, for every fixed constant $c \ge 1$ and every nonempty subset A of G and every $0 < \eta < 1$, we have

$$|A_{c\eta}| \approx |A_{\eta}|.$$

Proof. Since $|A_{c\eta}| \ge |A_{\eta}|$, we will need to prove the reverse inequality. Denote by $A^*(\eta)$ and $A^*(c\eta)$, respectively, maximal η -separated and $c\eta$ -separated subsets of A. By Lemma 7.1 we have that $\#A^*(c\eta) \approx \frac{|A_{c\eta}|}{|I_{c\eta}|}$. Clearly we have $\#A^*(c\eta) \le \#A^*(\eta)$, implying

$$\frac{|A_{c\eta}|}{|1_{c\eta}|} \preccurlyeq \frac{|A_{\eta}|}{|1_{\eta}|}.$$

Hence

$$|A_{c\eta}| \leq \frac{|1_{c\eta}|}{|1_n|} |A_{\eta}| \approx |A_{\eta}|;$$

and the claim follows.

For a Borel measurable set $A \subseteq G$ with |A| > 0 and $\eta > 0$, define

$$\chi_{A,\eta} = \left(\frac{1}{|A|} \mathbb{1}_A\right) * \mathbb{1}_{\eta}.$$

Some basic properties of $\chi_{A,\eta}$ are summarized in the next lemma.

LEMMA 7.5. Let G be as before and $0 < \eta < 1$.

(1) For a measurable subset of positive measure $A \subseteq G$, we have

$$\chi_{A,\eta}(x) = \frac{|A \cap x_{\eta}|}{|A||1_{\eta}|}.$$

- (2) $\chi_{A,\eta}$ is supported on η -neighborhood of A and has L^{∞} norm at most 1/|A|.
- (3) For $A \subseteq B$ of positive measure,

$$\chi_{A,\eta}(x) \leq \frac{|B|}{|A|} \chi_{B,\eta}(x).$$

(4) If $d(x, y) < \rho < 1$, then

$$\chi_{A,\eta}(x) \preccurlyeq \left(\frac{\eta+\rho}{\eta}\right)^{d_0} \chi_{A,\eta+\rho}(y).$$

Proof. Since 1_{η} is a symmetric subset, we have

$$\chi_{A,\eta}(x) = \frac{1}{|A||1_{\eta}|} \int_{G} \mathbb{1}_{A \cap x_{\eta}}(y) \, dy,$$

from which part (1) follows. Part (2) follows immediately from part (1). Part (3) is clear. To show part (4), observe that $y_{\eta+\rho} \supseteq x_{\eta}$. It thus follows from the dimension condition that

$$\chi_{A,\eta}(x) \le \frac{|A \cap y_{\eta+\rho}|}{|A||1_{\eta}|} = \frac{|1_{\eta+\rho}|}{|1_{\eta}|} \chi_{A,\eta+\rho}(y) \le \left(\frac{\eta+\rho}{\eta}\right)^{d_0} \chi_{A,\eta+\rho}(y). \tag{7.4}$$

The next lemma, which is a version of Markov's inequality, establishes another quantity that is comparable to the ones in Lemma 7.1.

LEMMA 7.6 (Density points). Let G be as before, $A \subseteq G$, and $0 < \eta < \rho < 1$. Fixing η , let A^* be a maximal η -separated subset of A, and $\overline{A} := A_{\eta}^*$. For a threshold parameter $0 < \tau < 1$, we let

$$A_{\text{high}} := \{ x \in A^* : \chi_{\overline{A}, 3\rho}(x) > \tau \}.$$

Under the condition that $\tau \leq 1$ (see Remark 7.2), we have

$$|\overline{A}| \leq |(A_{\text{high}})_{\rho}|.$$

Proof. Every point x in the support of $\chi_{\overline{A},\rho}$ lies at distance less than ρ from \overline{A} and hence at distance less than $\eta + \rho < 2\rho$ from a point $\overline{x} \in A^*$:

supp
$$\chi_{\overline{A},\rho} \subseteq (A^*)_{2\rho}$$
.

By part (4) of Lemma 7.5 we have

$$\chi_{\overline{A},\rho}(x) \preccurlyeq \chi_{\overline{A},3\rho}(\overline{x}).$$
(7.5)

Write $Z = (A_{high})_{2\rho}$. If $x \in G \setminus Z$, then the \overline{x} is in $A^* \setminus A_{high}$, which means

$$\chi_{\overline{A},3\rho}(\overline{x}) \le \tau. \tag{7.6}$$

By (7.5) and (7.6) we deduce that for $x \in G \setminus Z$ and $\tau \leq 1$

$$\chi_{\overline{A},\rho}(x) \le 1/2.$$

This means that the density function $\chi_{\overline{A},\rho}$ is concentrated on Z:

$$1/2 \le \int_{Z} \chi_{\overline{A},\rho}(x) \, \mathrm{d}x \le \frac{|(A_{\mathrm{high}})_{2\rho}|}{|\overline{A}|}; \tag{7.7}$$

where the last inequality follows from the fact that $\chi_{\overline{A},\rho}$ is bounded by $1/|\overline{A}|$. The claim now follows from Corollary 7.4.

Proof of Theorem 2.8. As before we will choose maximal η -separated subsets $A^* \subseteq A$ and $B^* \subseteq B$, set $\overline{A} = (A^*)_{\eta}$ and $\overline{B} = (B^*)_{\eta}$. Also write $C = B^{-1}A^{-1}$ and $\overline{C} = \overline{B}^{-1}\overline{A}^{-1}$. Note that in this proof we are deviating from the notation we used earlier in that here \overline{C} is *not* defined to be $(C^*)_{\eta}$.

By the mixing inequality given in Corollary 6.7, for $\rho := \eta^{\varepsilon}$, we have

$$\|\chi_{\overline{A}} * \chi_{\overline{B}} * \chi_{\overline{C}} - \chi_{\overline{A},5\rho} * \chi_{\overline{B},5\rho} * \chi_{\overline{C},5\rho}\|_{\infty}$$

$$\leq \rho^{O_{L,d_0}(1)} \|\chi_{\overline{A}}\|_2 \|\chi_{\overline{B}}\|_2 \|\chi_{\overline{C}}\|_2. \tag{7.8}$$

The main step of the proof is to show that for all $x \in 1_{\rho}$ the following inequality holds:

$$\chi_{\overline{A},5\rho} * \chi_{\overline{B},5\rho} * \chi_{\overline{C},5\rho}(x) \succcurlyeq \frac{(|\overline{A}||\overline{B}|)^{3/2}}{|\overline{C}|}.$$

Let $\tau \leq 1$ be as in Lemma 7.6. For any $y \in (A_{\text{high}})_{\rho}$, there is $y' \in A_{\text{high}}$ such that $d(y', y) < \rho$. By part (4) of Lemma 7.5, we have that

$$\chi_{\overline{A},5\rho}(y) \succcurlyeq \chi_{\overline{A},4\rho}(y) \succcurlyeq \chi_{\overline{A},3\rho}(y') \succcurlyeq 1. \tag{7.9}$$

Similarly, for $z \in (B_{high})_{\rho}$ we have

$$\chi_{\overline{B},4\rho}(z) \geq 1. \tag{7.10}$$

For $y \in (A_{\text{high}})_{\rho}$, $z \in (B_{\text{high}})_{\rho}$, and $x \in 1_{\rho}$, by part (4) of Lemma 7.5 we have

$$\chi_{\overline{C},4\rho}(z^{-1}y^{-1}x) \succcurlyeq \chi_{\overline{C},3\rho}(z^{-1}y^{-1}).$$
 (7.11)

On the other hand, by part (1) of Lemma 7.5 we have

$$\chi_{\overline{C},3\rho}(z^{-1}y^{-1}) = \chi_{\overline{C}^{-1}z^{-1},3\rho}(y) = \chi_{y^{-1}\overline{C}^{-1},3\rho}(z).$$
(7.12)

Since $z \in (B_{\text{high}})_{\rho}$, there exists some $z' \in B_{\text{high}}$ such that $d(z,z') \leq \rho$. Moreover, using the definition $\overline{C} = \overline{B}^{-1} \overline{A}^{-1}$, we have that $\overline{A} \subseteq \overline{C}^{-1} z'^{-1}$. Similarly, from $d(y,y') \leq \rho$, we see that $\overline{B} \subseteq y' \overline{C}^{-1}$. Hence by (7.11), and (7.12) and estimate (7.9) we have

$$\chi_{\overline{C},5\rho}(z^{-1}y^{-1}x) \succcurlyeq \chi_{\overline{C},4\rho}(z'^{-1}y^{-1}x) \quad \text{(part (4) of Lemma 7.5)}$$

$$\succcurlyeq \chi_{\overline{C},3\rho}(z'^{-1}y^{-1}) \quad \text{(by (7.11))}$$

$$= \chi_{\overline{C}^{-1}z'^{-1},3\rho}(y) \quad \text{(by (7.12))}$$

$$\succcurlyeq \frac{|\overline{A}|}{|\overline{C}|} \chi_{\overline{A},3\rho}(y) \quad \text{(part (3) of Lemma 7.5)}$$

$$\succcurlyeq \frac{|\overline{A}|}{|\overline{C}|}$$
 (by $y \in A_{high}$).

Similarly,

$$\chi_{\overline{C},5\rho}(z^{-1}y^{-1}x) \succcurlyeq \frac{|\overline{B}|}{|\overline{C}|}.$$

Combining these two inequalities gives

$$\chi_{\overline{C},5\rho}(z^{-1}y^{-1}x) \succcurlyeq \max\left\{\frac{|\overline{A}|}{|\overline{C}|}, \frac{|\overline{B}|}{|\overline{C}|}\right\} \ge \frac{|\overline{A}|^{1/2}|\overline{B}|^{1/2}}{|\overline{C}|}.$$
 (7.13)

By (7.9), (7.10), and (7.13), Lemma 7.6, Corollary 7.4, for $x \in 1_{\rho}$, we get that

$$\chi_{\overline{A},5\rho} * \chi_{\overline{B},5\rho} * \chi_{\overline{C},5\rho}(x) \succcurlyeq |(A_{\text{high}})_{\rho}| |(B_{\text{high}})_{\rho}| \cdot \frac{|\overline{A}|^{1/2}|\overline{B}|^{1/2}}{|\overline{C}|} \succcurlyeq \frac{(|\overline{A}||\overline{B}|)^{3/2}}{|\overline{C}|}.$$

In order to show $x \in \overline{A} \cdot \overline{B} \cdot \overline{C}$, by (7.8), it suffices to prove that for δ small enough we have

$$\frac{(|\overline{A}||\overline{B}|)^{3/2}}{|\overline{C}|} > \alpha \rho^{\beta} (|\overline{A}||\overline{B}||\overline{C}|)^{-1/2},$$

where β is a fixed positive number that depends on L, d_0 , and α is a fixed positive number that depends on L, d_0 , C_0 , C_1 . This inequality holds if and only if $|\overline{A}||\overline{B}| > \sqrt{\alpha} \rho^{\beta/2} |\overline{C}|^{1/4}$, which, in view of $|\overline{C}| \le 1$, follows from

$$|\overline{A}||\overline{B}| > \sqrt{\alpha}\eta^{(\beta/2)\varepsilon}.$$
 (7.14)

Now, recall the condition $\frac{h(A;\eta)+h(B;\eta)}{2} > (1-\delta)h(G;\eta)$. This implies

$$|A_{\eta}||B_{\eta}| \geqslant |1_{\eta}|^{-2\delta} \geqslant \eta^{2\delta d_0}. \tag{7.15}$$

Consequently, applying Lemma 7.1, we obtain $|\overline{A}||\overline{B}| \ge E^{-1}\eta^{2\delta d_0}$, where $E = \Omega^{O(1)}$. Finally, note that if $\eta^{\varepsilon} \ll_{\alpha,\beta,d_0} 1$, then for $\delta \ll_{\beta,d_0} \varepsilon$ we have $E^{-1}\eta^{2\delta d_0} > \sqrt{\alpha}\eta^{(\beta/2)\varepsilon}$. This and (7.15) imply (7.14). The proof is complete.

8. A Littlewood-Paley Decomposition for Locally Random Groups

In this section, we give a decomposition of $L^2(G)$ into almost orthogonal subspaces of functions, each consisting of functions *living at a different scale*. This notion will be defined later (see Definition 8.7). We first treat the case of profinite groups, which is somewhat simpler and sharper results can be obtained. Then, in the next subsection, we deal with the general case of locally random groups.

Let G be a profinite group, equipped with a bi-invariant metric d such that balls centered at the identity element form a family of normal subgroups. Such a metric always exists. In fact, if G is presented as the inverse limit of finite groups $(G_i)_{i\geq 1}$, then we can define the distance d(g,h) to be 2^{-i} where i is the largest

index with the property that $\pi_i(g) = \pi_i(h)$. Here $\pi_i : G \to G_i$ denotes the natural projection.

LEMMA 8.1. Suppose that G is a compact group and N is a normal open subgroup of G. Let $f_N := \frac{\mathbb{1}_N}{|N|}$. Then $T_N : L^2(G) \to L^2(G)$, $T_N(g) := f_N * g$ is the orthogonal projection onto the subspace $L^2(G)^N := \{f \in L^2(G) | f(gn) = f(g) \text{ for all } n \in N, g \in G\}$ of N-invariant functions. In addition,

$$q: L^2(G)^N \to L^2(G/N), \qquad q(g)(xN) := g(x)$$

is a well-defined unitary G-module isomorphism.

Proof. The proof is a standard computation.

Given a *G*-valued random variable *X* with distribution measure μ , let $X_{\eta} = XZ$, where *Z* is a random variable with distribution $P_{\eta} = \frac{\mathbb{1}_{1\eta}}{|I_{\eta}|}$ independent of *X*.

Lemma 8.2. Let μ_{η} denote the density function of X_{η} . Then $\mu_{\eta}(x) = \frac{\mu(x_{\eta})}{|I_{\eta}|}$ for all $x \in G$.

Proof. By definition, for all $f \in C(G)$ we have

$$\int_{G} f(x)\mu_{\eta}(x) dx = \int_{G} \int_{G} f(xy)P_{\eta}(y) dy d\mu(x). \tag{8.1}$$

Notice that the right-hand side of (8.1) is equal to

$$\int_{G} \int_{G} f(z) P_{\eta}(x^{-1}z) \, \mathrm{d}z \, \mathrm{d}\mu(x) = \int_{G} f(z) \int_{G} P_{\eta}(x^{-1}z) \, \mathrm{d}\mu(x) \, \mathrm{d}z$$
$$= \int_{G} f(z) \frac{\mu(z_{\eta})}{|1_{\eta}|} \, \mathrm{d}z.$$

Define the *Rényi entropy of X at scale* η by

$$H_2(X; \eta) := \log(1/|1_{\eta}|) - \log \|\mu_{\eta}\|_2^2,$$
 (8.2)

where μ is the distribution of X. We also write $H_2(\mu; \eta)$ instead of $H_2(X; \eta)$. Let us observe that by Lemma 8.2 we have

$$\|\mu_{\eta}\|_{\infty} \le 1/|1_{\eta}|;$$
 and so $\|\mu_{\eta}\|_{2}^{2} \le 1/|1_{\eta}|,$

which implies that $H_2(X; \eta) \ge 0$.

Proposition 8.3. Suppose that G is a compact group with a given bi-invariant metric such that 1_{η} is a subgroup of G for all $\eta > 0$. Suppose that G is an L-locally random group with coefficient C_0 . Suppose that G satisfies the dimension condition $DC(C_1, d_0)$. Let μ be a symmetric Borel probability measure on G whose support generates a dense subgroup of G. Fix a number a > 1 and $\eta_0 < 1$,

and for all $i \ge 1$, let $\eta_i := \eta_0^{a^i}$ and $\mathcal{H}_i := L^2(G)^{1_{\eta_i}}$. Suppose that $C_2 > 0$ is such that, for every $i \gg 1$, there exists an integer $l_i \le C_2h(G; \eta_i)$ such that

(Large entropy at scale
$$\eta$$
) $H_2(\mu^{(l_i)}; \eta_i) \ge \left(1 - \frac{1}{8Ld_0a}\right)h(G; \eta_i).$

Then there exists $i_0 \ge 1$ such that

$$\mathcal{L}(\mu; L^2(G) \ominus \mathcal{H}_{i_0}) \ge \frac{1}{16C_2Ld_0a}.$$

In particular, $\mathcal{L}(\mu; G) = \mathcal{L}(\mu; L_0^2(G)) > 0$.

Proof. For all i and $f \in \mathcal{H}_{i+1} \ominus \mathcal{H}_i$, we have $f_{\eta_i} = 0$ and $f_{\eta_{i+1}} = f$. Hence, for $f \in \mathcal{H}_{i+1} \ominus \mathcal{H}_i$ and every symmetric Borel probability measure ν , we have $\|\nu * f\|_2 = \|\nu_{\eta_{i+1}} * f_{\eta_{i+1}}\|_2$. Applying Theorem 2.4, for $i \gg 1$, we obtain

$$\begin{split} \|\nu * f\|_{2}^{2} &\leq 2\|\nu_{\eta_{i}}\|_{2}^{2}\|f_{\eta_{i}}\|_{2}^{2} + \eta_{i}^{1/(2L)}\|\nu_{\eta_{i+1}}\|_{2}^{2}\|f_{\eta_{i+1}}\|_{2}^{2} \\ &= \eta_{i}^{1/(2L)}\|\nu_{\eta_{i+1}}\|_{2}^{2}\|f\|_{2}^{2} = \eta_{i+1}^{1/(2La)}\|\nu_{\eta_{i+1}}\|_{2}^{2}\|f\|_{2}^{2}. \end{split}$$

This implies

$$2\mathcal{L}(\nu; \mathcal{H}_{i+1} \ominus \mathcal{H}_i) \ge H_2(\nu; \eta_{i+1}) - h(G; \eta_{i+1}) - \frac{1}{2L_a} \log \eta_{i+1}.$$

Since 1_{η} is a group, $h(G; \eta) = \log(1/|1_{\eta}|)$; and so by the dimension condition we have

$$|h(G; \eta) + d_0 \log \eta| \leq \log C_1$$
.

Therefore, by the previous inequality, for $\eta_{i+1} \ll_{C_1} 1$, we have

$$2\mathcal{L}(\nu;\mathcal{H}_{i+1}\ominus\mathcal{H}_i)\geq H_2(\nu;\eta_{i+1})-\left(1-\frac{1}{4Ld_0a}\right)h(G;\eta_{i+1}).$$

Applying the inequality for $\nu := \mu^{(l_{i+1})}$ coupled with

$$\mathcal{L}(\mu^{(l_{i+1})}; \mathcal{H}_{i+1} \ominus \mathcal{H}_i) = l_{i+1} \mathcal{L}(\mu; \mathcal{H}_{i+1} \ominus \mathcal{H}_i)$$

implies that for $i \gg 1$ we have

$$\mathcal{L}(\mu; \mathcal{H}_{i+1} \ominus \mathcal{H}_i) \ge \frac{1}{16C_2Ld_0a}.$$

As a result, $\mathcal{L}(\mu; L^2(G) \ominus \mathcal{H}_{i_0}) \ge \frac{1}{16C_2Ld_0a}$ for some i_0 . Since $\mathcal{H}_{i_0} \ominus \mathbb{C}\mathbb{1}_G$ is a finite dimensional subspace of $L^2_0(G)$, and the support of μ generates a dense subgroup, we have $\mathcal{L}(\mu; G) > 0$.

Now we interpret the spaces $\mathcal{H}_{i+1} \ominus \mathcal{H}_i$ s in terms of certain convolution operators. This point of view will be extended to an arbitrary locally random group.

Lemma 8.4. Suppose that G is a compact group, $G := N_1 \supseteq N_2 \supseteq \cdots$ is a sequence of normal open subgroups of G that form a basis for the neighborhoods of 1. For integers $i \ge 1$, let

$$\Delta_i : L^2(G) \to L^2(G), \, \Delta_i(g) := f_{N_{i+1}} * g - f_{N_i} * g,$$

and let $\Delta_0(g) := f_{N_1} * g$. Then the following statements hold:

- (1) For all $g \in L^2(G)$, we have $g = \sum_{i=0}^{\infty} \Delta_i(g)$ in $L^2(G)$.
- (2) For all $i \neq j$ and $g \in L^2(G)$, we have $\Delta_i(g) \perp \Delta_j(g)$.
- (3) For all $g \in L^2(G)$, we have $||g||_2^2 = \sum_{i=0}^{\infty} ||\Delta_i(g)||_2^2$.
- (4) If μ is a Borel probability measure on G, then $\Delta_i(\mu * f) = \mu * \Delta_i(f)$ for all i.

Proof. For every integer $k \ge 1$, define $\mathcal{H}_k := L^2(G)^{N_k}$. Since $G := N_1 \supseteq N_2 \supseteq \cdots$, we have $\mathbb{C}\mathbb{1}_G = \mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots$. By Lemma 8.1, we have that $f_{N_j} * g$ is the orthogonal projection of g onto \mathcal{H}_j for any j. And so $\Delta_i(g) \in \mathcal{H}_{i+1} \ominus \mathcal{H}_i$ for positive integer i, and $\Delta_0(g) \in \mathcal{H}_1$. This implies (2).

Every element g of the matrix algebra $\mathcal{E}(G)$ generates a finite dimensional G-submodule M of $L^2(G)$, defining a unitary representation $\pi_M: G \to \mathcal{U}(M)$. Since G is profinite, we have that $\pi_M(G)$ is a finite group. Hence $\ker \pi_M$ is an open subgroup of G. Therefore, $N_k \subseteq \ker \pi_M$ for some k, implying $g \in \mathcal{H}_k$. It follows that $g = \sum_{i=0}^j \Delta_i(g)$ for all $j \geq k-1$. By the Peter–Weyl theorem, $\mathcal{E}(G)$ is dense in $L^2(G)$, from which part (1) follows. Part (3) is an immediate implication of (1) and (2).

In order to prove (4), note that if f is a class function, then

$$\mu * (f * g) = f * (\mu * g).$$

Since f_{N_i} s are class functions, the claim follows.

REMARK 8.5. It follows from the previous argument that $\mathcal{E}(G) = \bigcup_{i=1}^{\infty} L^2(G)^{N_i}$.

8.2. The General Case

In the rest of this section we will prove a generalization of Lemma 8.4 that applies to general locally random groups. The results of this section will be crucially used in the next section to prove a generalization of Proposition 8.3. Another result of this section, Proposition 8.8, is a Fourier theoretic interpretation of the notion of *living at a given scale* (see Definition 8.7 for definition), which parallels the classical Paley–Littlewood theory.

A major difficulty in dealing with the general case is that, unlike profinite groups, neighborhoods of identity are only *approximate* subgroups in general compact groups. Throughout this section, we will assume that the group G satisfies the following two properties:

- (1) G is a compact group which is L-locally random with coefficient C_0 .
- (2) (DC)(C_1 , d_0): for all $\eta > 0$,

$$C_1^{-1}\eta^{d_0} \le |1_{\eta}| \le C_1\eta^{d_0}.$$

As in Proposition 8.3, we let η_0 be a small positive number, whose value will be specified later. Also fix

$$a \ge 4Ld_0$$
, and set $\eta_i := \eta_0^{a^i}$ for $i \ge 1$.

As in Lemma 8.4, we define a family of operators $\Delta_i : L^2(G) \to L^2(G)$ by setting $\Delta_0(g) := P_{\eta_0} * g$, and for every $i \ge 1$,

$$\Delta_i(g) := (P_{\eta_{i+1}} - P_{\eta_i}) * g. \tag{8.3}$$

Since P_{η} is invariant under conjugation, Δ_i s commute with any convolution operator (including convolution by a Borel probability measure), and for all $x, x' \in G$ we have

$$\lambda(x) \circ \rho(x') \circ \Delta_i = \Delta_i \circ \lambda(x) \circ \rho(x'),$$

where λ and ρ denote, respectively, the left and right-regular representations of

We showed previously that if 1_{η} s are subgroups, then $(\Delta_i(g))_{\eta_i} = 0$ and $(\Delta_i(g))_{\eta_{i+1}} = \Delta_i(g)$. We start by showing an approximate version of these equalities. In this section, we only establish properties of the operators Δ_i s and postpone the discussion on their connections with spectral gap properties of T_{μ} to the next section.

PROPOSITION 8.6. In the setting of this section, if integers i, j, k satisfy $0 \le j < i$ and k > i + 1, then the following hold:

- $$\begin{split} \bullet & \ \, (Averaging \ to \ zero) \ \|\Delta_i(g)_{\eta_j}\|_2 \ll_{C_0,C_1,L} \ \eta_0^{a^i/(4L+2)} \|g\|_2. \\ \bullet & \ \, (Almost \ invariant) \ \|\Delta_i(g)_{\eta_k} \Delta_i(g)\|_2 \leq 2\eta_0^{a^k/(8L)} \|g\|_2. \end{split}$$

Proof. The argument for the first part is fairly similar to the one presented for Lemma 6.4. We let D be a threshold parameter whose value will be set later and estimate the corresponding low frequency and high frequency terms. By Lemma 6.2 we have

$$\|\widehat{P}_{\eta}(\pi) - I\|_{\text{op}} \le C_0 (\dim \pi)^L \eta.$$

Combined with the trivial bound $\|\widehat{P}_{\eta}(\pi)\|_{\text{op}} \leq 1$, this implies

$$L(\Delta_{i}(g)_{\eta_{j}}; D) = \sum_{\pi \in \widehat{G}, \dim \pi \leq D} \dim \pi \| \widehat{P}_{\eta_{j}}(\pi) (\widehat{P}_{\eta_{i+1}}(\pi) - \widehat{P}_{\eta_{i}}(\pi)) \widehat{g}(\pi) \|_{HS}^{2}$$

$$\leq C_{0}^{2} D^{2L} (\eta_{i+1} + \eta_{i})^{2} L(g; D) \leq 4C_{0}^{2} D^{2L} \eta_{i}^{2} \|g\|_{2}^{2}. \tag{8.4}$$

For the high frequency term, by Lemma 6.1 and the trivial bound $\|\widehat{P}_{\eta_{i+1}}(\pi) - \widehat{P}_{\eta_{i+1}}(\pi)\|$ $\widehat{P}_{\eta_i}(\pi)|_{op} \leq 2$, we have

$$H(\Delta_{i}(g)_{\eta_{j}}; D) = \sum_{\pi \in \widehat{G}, \dim \pi > D} \dim \pi \| \widehat{P}_{\eta_{j}}(\pi) (\widehat{P}_{\eta_{i+1}}(\pi) - \widehat{P}_{\eta_{i}}(\pi)) \widehat{g}(\pi) \|_{HS}^{2}$$

$$\leq \frac{4}{D} H(P_{\eta_{j}}; D) H(g; D) \leq \frac{4}{D|1_{\eta_{j}}|} \|g\|_{2}^{2} \leq \frac{4C_{1}}{D\eta_{j}^{d_{0}}} \|g\|_{2}^{2}. \quad (8.5)$$

We choose D such that $4C_0^2D^{2L}\eta_i^2 = \frac{4C_1}{D\eta_i^{d_0}}$, which implies that D equals $\eta_{\,i}^{\,-d_0/(2L+1)}\eta_i^{\,-2/(2L+1)}$ up to a multiplicative factor, which is a function of the

constants C_0 , C_1 , and L. Hence by (8.4) and (8.5) we get

$$\|\Delta_i(g)_{\eta_j}\|_2^2 \ll_{C_0,C_1,L} \eta_j^{-d_0+d_0/(2L+1)} \eta_i^{2/(2L+1)} \|g\|_2^2.$$

Notice that

$$\eta_i^{-d_0+d_0/(2L+1)}\eta_i^{2/(2L+1)} = \eta_0^{\frac{2}{2L+1}a^i - \frac{2Ld_0}{2L+1}a^j};$$

and $a^{i} - (2Ld_{0})a^{j} \ge a^{i}(1 - (2Ld_{0})a^{-1}) \ge a^{i}/2$. Therefore,

$$\|\Delta_i(g)_{\eta_j}\|_2^2 \ll_{C_0,C_1,L} \eta_0^{a^i/(2L+1)} \|g\|_2^2;$$

and the first part follows.

For the second part, we use Lemma 6.4 to obtain

$$\begin{split} \|\Delta_{i}(g)_{\eta_{k}} - \Delta_{i}(g)\|_{2} &= \|\Delta_{i}(g_{\eta_{k}} - g)\|_{2} \\ &\leq \|(g_{\eta_{k}} - g)_{\eta_{i+1}}\|_{2} + \|(g_{\eta_{k}} - g)_{\eta_{i}}\|_{2} \\ &\leq 2\eta_{k}^{1/(8L)}\|g\|_{2}. \end{split}$$

DEFINITION 8.7. We say $g \in L^2(G)$ lives at scale η (with parameter a) if

- (Averaging to zero) $||g_{n^{1/a}}||_2 \le \eta^{1/(2a)} ||g||_2$.
- (Almost invariant) $||g_{n^{a^2}} g||_2 \le \eta^{a/2} ||g||_2$.

From Proposition 8.6 we deduce that if $\|\Delta_i(g)\|_2/\|g\|_2 \gg 1$, then $\Delta_i(g)$ lives at scale η_i . The next proposition provides a Fourier theoretic understanding of this notion.

For every $\pi \in \widehat{G}$, let H_{π} denote the subspace of $L^2(G)$ spanned by the matrix coefficients of π . Given an interval $I \subset \mathbb{R}$, set

$$\mathcal{H}_I := \bigoplus_{\pi \in \widehat{G}. \dim \pi \in I} H_{\pi}$$

and denote by $\pi_I: L^2(G) \to \mathcal{H}_I$ the corresponding orthogonal projection.

Proposition 8.8. Let $0 < \eta < 1$ be a parameter.

(1) Suppose that $f \in L^2(G)$ lives at scale η . Then

$$\|\pi_{I_{\eta}}(f)\|_{2}^{2} \ge (1 - 8\eta^{1/(2a)})\|f\|_{2}^{2},$$

where $I_{\eta} = \left[\frac{1}{2C_0}\eta^{-1/(La)}, 2C_0\eta^{-d_0a^2}\right].$

(2) Let
$$I'_{\eta} = [C_1 \eta^{-\frac{d_0+1}{a}}, C_0^{\frac{-1}{L}} \eta^{\frac{-2a^2+a}{2L}}]$$
. Then every $f \in \mathcal{H}_{I'_{\eta}}$ lives at scale η .

Proof. Without loss of generality, assume that $||f||_2 = 1$. To see part (1), it suffices to show that

$$L(f; (2C_0)^{-1}\eta^{-1/(La)}) \le 4\eta^{1/2a}$$
 and $H(f; 2C_0\eta^{-d_0a^2}) \le 4\eta^{a/2}$. (8.6)

By Lemma 6.3, for an arbitrary threshold D satisfying $C_0D^L\eta^{1/a} < 1$, we have $L(f; D) \le (1 - C_0D^L\eta^{1/a})^{-2}L(f_{\eta^{1/a}}; D) \le (1 - C_0D^L\eta^{1/a})^{-2}\eta^{1/(2a)}$.

In the last inequality we used $||f_{\eta^{1/a}}||_2 \le \eta^{1/(2a)}||f||_2$, which holds since f lives at scale η . Setting $D := \frac{1}{2C_0} \eta^{-1/(La)}$, the first inequality in (8.6) follows.

To show the second inequality in (8.6), we note that

$$\begin{split} \|f\|_{2}^{2} - \|f_{\eta^{a^{2}}}\|_{2}^{2} &= (\|f\|_{2} - \|f_{\eta^{a^{2}}}\|_{2})(\|f\|_{2} + \|f_{\eta^{a^{2}}}\|_{2}) \\ &\leq 2\|f - f_{\eta^{a^{2}}}\|_{2} \leq 2\eta^{a/2}. \end{split} \tag{8.7}$$

Since $\|P_{\eta^{a^2}}\|_1 = 1$, for all $\pi \in \widehat{G}$ we have $\|\widehat{P}_{\eta^{a^2}}(\pi)\|_{op} \leq 1$. In consequence, Lemma 6.1 implies that for an arbitrary threshold D' we have

$$L(f; D') - L(f_{n^{a^2}}; D') \ge 0.$$

This and (8.7) imply that

$$H(f; D') - H(f_{n^{a^2}}; D') \le 2\eta^{a/2}.$$

Altogether, we deduce

$$\begin{split} H(f;D') & \leq 2\eta^{a/2} + H(f_{\eta^{a^2}};D') \\ & \leq 2\eta^{a/2} + \frac{1}{D'} H(P_{\eta^{a^2}};D') H(f;D') \quad \text{(by Lemma 6.1)} \\ & \leq 2\eta^{a/2} + \frac{1}{D'|1_{\eta^{a^2}}|} H(f;D') \quad \text{(by } H(P_{\eta^{a^2}};D') \leq \|1_{\eta^{a^2}}\|_2^2) \\ & \leq 2\eta^{a/2} + \frac{C_0}{D' \eta^{d_0 a^2}} H(f;D'). \end{split}$$

Therefore $(1 - \frac{C_0}{D'\eta^{d_0a^2}})H(f;D') \le 2\eta^{a/2}$. Setting $D' := 2C_0\eta^{-d_0a^2}$, the claim in part (1) follows.

We now turn to part (2). Let $f \in \mathcal{H}_{I'_{\eta}}$ be a unit vector. Note that, for every π with $\dim \pi \notin I'_{\eta}$, $\hat{f}(\pi) = 0$. In particular, L(f; D) = 0 for any $D < C_1 \eta^{-\frac{d_0+1}{a}}$. Therefore, by Lemma 6.1, we have

$$\begin{split} \|f_{\eta^{1/a}}\|_2^2 &= \|P_{\eta^{1/a}} * f\|_2^2 \leq C_1^{-1} \eta^{(d_0+1)/a} \|P_{\eta^{1/a}}\|_2^2 \|f\|_2^2 \\ &\leq C_1^{-1} \eta^{(d_0+1)/a} \frac{1}{|1_{\eta^{1/a}}|} \leq \eta^{1/a}; \end{split}$$

we used (DC) in the second inequality.

To verify the required bound for $||f_{\eta^{a^2}} - f||_2$, we use Lemma 6.2 combined with the fact that for every π with dim $\pi \notin I'_n$, $\hat{f}(\pi) = 0$, and conclude that

$$\begin{split} \|f_{\eta^{a^2}} - f\|_2^2 &= \sum_{\dim \pi \in I_\eta'} \dim(\pi) \|(I - \hat{P}_{\eta^{a^2}}(\pi)) \hat{f}(\pi)\|_{\mathrm{HS}}^2 \\ &\leq \sum_{\dim \pi \in I_\eta'} \dim(\pi) \|I - \hat{P}_{\eta^{a^2}}(\pi)\|_{\mathrm{op}}^2 \|\hat{f}(\pi)\|_{\mathrm{HS}}^2 \end{split}$$

$$\leq \sum_{\dim \pi \in I'_{\eta}} C_0^2 \dim(\pi)^{2L} \eta^{2a^2} \dim(\pi) \|\hat{f}(\pi)\|_{\mathrm{HS}}^2 \leq \eta^a.$$

This completes the proof of part (2) and the lemma.

We will now prove an almost orthogonality of the images of Δ_i s and show that their sum is dense in $L^2(G)$.

LEMMA 8.9. In the setting of this section, for nonnegative integers j < i - 1 and $g \in L^2(G)$, we have

$$\|\Delta_i \Delta_j\|_{\text{op}} \ll_{C_0, C_1, L} \eta_i^{1/(4L+2)} \quad and$$
$$|\langle \Delta_i(g), \Delta_j(g) \rangle| \ll_{C_0, C_1, L} \eta_i^{1/(4L+2)} \|g\|_2^2.$$

Proof. Since Δ_i is a self-adjoint operator, we have $\langle \Delta_i(g), \Delta_j(g) \rangle = \langle g, \Delta_i(\Delta_j(g)) \rangle$; this implies

$$|\langle \Delta_i(g), \Delta_j(g) \rangle| \le ||\Delta_i \Delta_j||_{\text{op}} ||g||_2^2$$
.

By the first part of Proposition 8.6, for j > 0, we have

$$\|\Delta_i \Delta_j(g)\|_2 = \|\Delta_i(g)_{\eta_{j+1}} - \Delta_i(g)_{\eta_j}\|_2 \ll_{C_0, C_1, L} \eta_i^{1/(4L+2)} \|g\|_2.$$

For j = 0 it is similar and the claims follow.

Lemma 8.10. In the setting of this section, $g = \sum_{i=0}^{\infty} \Delta_i(g)$ for any $g \in L^2(G)$.

Proof. It suffices to show that for all $g \in L^2(G)$, $\|g - \sum_{i=1}^n \Delta_i(g)\|_2 = \|g - g_{\eta_{n+1}}\|_2$ tends to zero as $n \to \infty$. By the Peter–Weyl theorem, for every $\varepsilon > 0$, there is $f \in C(G)$ such that $\|f - g\|_2 \le \varepsilon$. Since G is compact, f is uniformly continuous. Let $\eta > 0$ be such that

$$d(x, y) \le \eta$$
 implies that $|f(x) - f(y)| \le \varepsilon$.

For $n\gg_{\varepsilon} 1$, we have $\|f_{\eta_n}-f\|_{\infty}\leq \varepsilon$. Hence $\|f_{\eta_n}-f\|_2\leq \varepsilon$. On the other hand, $\|f-g\|_2\leq \varepsilon$ implies that $\|f_{\eta_n}-g_{\eta_n}\|_2\leq \varepsilon$. Therefore, for $n\gg_{\varepsilon} 1$, we have

$$\|g - g_{\eta_n}\|_2 \le \|g - f\|_2 + \|f - f_{\eta_n}\|_2 + \|f_{\eta_n} - g_{\eta_n}\|_2 \le 3\varepsilon.$$

Thus $\lim_{n\to\infty} g_{\eta_n} = g$ in L^2 , from which the claim follows.

By a similar argument as in the proof of the Cotlar–Stein lemma (see [10, Lemma 6.3], and also [21, Chapter VII]), we will prove the following.

PROPOSITION 8.11. In the setting of this section, for $\eta_0 \ll_{C_0,C_1,L} 1$ and $g \in L^2(G)$, we have

$$\|g\|_2^2 \ll \sum_{i=0}^{\infty} \|\Delta_i(g)\|_2^2 \ll \|g\|_2^2.$$
 (8.8)

In preparation for the proof, we will need to establish some inequalities.

Lemma 8.12. In the setting of this section, for a nonnegative integer i, we have

$$\sum_{j=0}^{\infty} \|\Delta_i \Delta_j\|_{\text{op}}^{1/2} \ll_{C_0, C_1, L} 1.$$

Proof. By Lemma 8.9 and $\|\Delta_j\|_{op} \le 2$, we get that

$$\sum_{j=0}^{\infty} \|\Delta_i \Delta_j\|_{\text{op}}^{1/2} \le 6 + O_{C_0, C_1, L} \left(\sum_{j=1}^{\infty} \eta_0^{a^j/(4L+2)}\right) \ll_{C_0, C_1, L} 1.$$

The proof of the next lemma is based on the proof of the Cotlar-Stein lemma.

LEMMA 8.13. In the previous setting, for every $g \in L^2(G)$, we have

$$\sum_{i,j} |\langle \Delta_i(g), \Delta_j(g) \rangle| \ll ||g||_2^2.$$

Proof. For a given $g \in L^2(G)$, for every $i \neq j$, choose $u_{i,j} \in \mathbb{S}^1 \cup \{0\}$ such that $|\langle \Delta_i(g), \Delta_j(g) \rangle| = u_{i,j} \langle \Delta_i(g), \Delta_j(g) \rangle$, where $u_{i,j} = 0$ if $\langle \Delta_i(g), \Delta_j(g) \rangle = 0$. Then, for every integer $N \geq 1$, we have

$$\sum_{0 \le i, j \le N} |\langle \Delta_i(g), \Delta_j(g) \rangle| = \langle R_N(g), g \rangle,$$

where $R_N = \sum_{0 \le i,j \le N} u_{i,j} \Delta_j \Delta_i$. Thus, it is enough to prove that for all possible choices of $u_{i,j}$ and all $N \ge 1$ we have $||R_N||_{\text{op}} \le \Phi$ for a fixed positive number Φ . Since Δ_i s are self-adjoint and pairwise commuting, for every positive integer k we have $||R_N^k||_{\text{op}} = ||R_N||_{\text{op}}^k$. By the triangle inequality, we have

$$\|R_N\|_{op}^k \leq \sum_{0 \leq i_l, j_l \leq N, \forall 1 \leq l \leq k} \|\Delta_{i_1} \Delta_{j_1} \cdots \Delta_{i_k} \Delta_{j_k}\|_{op}.$$

Since

$$\begin{split} \| \Delta_{i_1} \Delta_{j_1} \cdots \Delta_{i_k} \Delta_{j_k} \| \\ & \leq \min \Biggl(\prod_{l=1}^k \| \Delta_{i_l} \Delta_{j_l} \|_{\text{op}}, \| \Delta_{i_1} \|_{\text{op}} \| \Delta_{j_k} \|_{\text{op}} \prod_{l=1}^{k-1} \| \Delta_{j_l} \Delta_{i_{l+1}} \|_{\text{op}} \Biggr), \end{split}$$

we have that

$$\|\Delta_{i_1}\Delta_{j_1}\cdots\Delta_{i_k}\Delta_{j_k}\|_{op} \le 4\left(\prod_{l=1}^k \|\Delta_{i_l}\Delta_{j_l}\|_{op}\prod_{l=1}^{k-1} \|\Delta_{j_l}\Delta_{i_{l+1}}\|_{op}\right)^{1/2}.$$

Altogether we get

$$||R_N||_{\text{op}}^k \le 4 \sum_{i_1=0}^N \sum_{j_1=0}^N \cdots \sum_{j_k=0}^N \left(\prod_{l=1}^k ||\Delta_{i_l} \Delta_{j_l}||_{\text{op}} \prod_{l=1}^{k-1} ||\Delta_{j_l} \Delta_{i_{l+1}}||_{\text{op}} \right)^{1/2}$$

$$= 4 \sum_{i_1=0}^N \sum_{j_1=0}^N \cdots \sum_{i_k=0}^N \left(\prod_{l=1}^{k-1} ||\Delta_{i_l} \Delta_{j_l}||_{\text{op}} \prod_{l=1}^{k-1} ||\Delta_{j_l} \Delta_{i_{l+1}}||_{\text{op}} \right)^{1/2}$$

$$\times \left(\sum_{i_{k}=0}^{N} \|\Delta_{i_{k}} \Delta_{j_{k}}\|_{\operatorname{op}}^{1/2}\right). \tag{8.9}$$

By repeatedly using Lemma 8.12, it follows that there is a constant $M := M(C_0, C_1, L)$ such that

$$||R_N||_{\text{op}}^k \le 4(N+1)M^{2k-1},$$

which implies $||R_N||_{\text{op}} \le 4^{1/k} (N+1)^{1/k} M^2$ for any positive integer k. The claim follows from here.

COROLLARY 8.14. In the setting of this section, for $g \in L^2(G)$ we have that

$$\sum_{i=0}^{\infty} \|\Delta_i(g)\|_2^2 \ll \|g\|_2^2, \text{ and } \sum_{i=0}^{\infty} |\langle \Delta_i(g), \Delta_{i+1}(g) \rangle| \le \sum_{i=0}^{\infty} \|\Delta_i(g)\|_2^2.$$

Proof. The first inequality is a weaker version of the inequality given in Lemma 8.13. Applying the Cauchy–Schwarz inequality twice, we obtain

$$\begin{split} \sum_{i=0}^{\infty} |\langle \Delta_{i}(g), \Delta_{i+1}(g) \rangle| &\leq \sum_{i=0}^{\infty} \|\Delta_{i}(g)\|_{2} \|\Delta_{i+1}(g)\|_{2} \\ &\leq \left(\sum_{i=0}^{\infty} \|\Delta_{i}(g)\|_{2}^{2}\right)^{1/2} \left(\sum_{i=0}^{\infty} \|\Delta_{i+1}(g)\|_{2}^{2}\right)^{1/2} \\ &\leq \sum_{i=0}^{\infty} \|\Delta_{i}(g)\|_{2}^{2}. \end{split}$$

Proof of Proposition 8.11. By Lemma 8.10 we have $g = \sum_{i=1}^{\infty} \Delta_i(g)$. It follows that

$$\begin{split} \|g\|_{2}^{2} &= \sum_{0 \leq i,j} \langle \Delta_{i}(g), \Delta_{j}(g) \rangle \\ &= \sum_{i=0}^{\infty} \|\Delta_{i}(g)\|_{2}^{2} + 2 \sum_{i=0}^{\infty} \langle \Delta_{i}(g), \Delta_{i+1}(g) \rangle + 2 \sum_{0 \leq i < j, |i-j| > 1} \langle \Delta_{i}(g), \Delta_{j}(g) \rangle \\ &\leq 3 \sum_{i=0}^{\infty} \|\Delta_{i}(g)\|_{2}^{2} + 2 \sum_{0 \leq i < j, |i-j| > 1} |\langle \Delta_{i}(g), \Delta_{j}(g) \rangle| \\ &\leq 3 \sum_{i=0}^{\infty} \|\Delta_{i}(g)\|_{2}^{2} + O_{C_{0}, C_{1}, L} \left(\sum_{0 \leq i < j, |i-j| > 1} \eta_{0}^{a^{j}/(4L+2)} \right) \|g\|_{2}^{2}) \\ &\leq 3 \sum_{i=0}^{\infty} \|\Delta_{i}(g)\|_{2}^{2} + O_{C_{0}, C_{1}, L} (\eta_{0}^{a/(4L+2)}) \|g\|_{2}^{2} \\ &\leq 3 \sum_{i=0}^{\infty} \|\Delta_{i}(g)\|_{2}^{2} + (1/2) \|g\|_{2}^{2}, \end{split}$$

where (8.10) is deduced from Corollary 8.14 and (8.11) follows from Lemma 8.9. The reverse inequality is already proven in Corollary 8.14.

9. Littlewood-Paley Decomposition and Spectral Gap

The main goal of this section is to prove Theorem 2.10 which is a generalization of Proposition 8.3 for general locally random groups. At the end, we will show how the existence of spectral gap can be reduced to study the gap for functions that live at small scales, Theorem 9.3.

We continue to assume that G is a compact group satisfying the following two properties:

- (1) G is an L-locally random group with coefficient C_0 .
- (2) (DC)(C_1 , d_0): for all $\eta > 0$,

$$C_1^{-1}\eta^{d_0} \le |1_{\eta}| \le C_1\eta^{d_0}.$$

Fix $a > \max(4Ld_0, 4L + 2)$, and set η_0 to be a sufficiently small positive number whose value will be determined later and $\eta_i := \eta_0^{a^i}$. Define $(\Delta_i)_{i \ge 0}$ as in (8.3). We begin with a basic property of these operators.

Lemma 9.1. For all $j \ge 0$, Δ_j is a compact operator. Moreover, for any symmetric Borel probability measure μ on G, there exists an orthonormal basis $\{e_i\}_{i=1}^{\infty}$ of $L^2(G)$ consisting of common eigenfunctions of $\{\Delta_j : j \geq 0\}$ and T_{μ} .

Proof. Since Δ_i is a convolution operator by a function in $L^2(G)$, it is a compact operator. Further, since 1_n is a symmetric subset, Δ_i is a self-adjoint operator.

The construction of an orthonormal basis consisting of eigenvectors for $\{\Delta_i\}$ and T_{μ} follows from standard arguments in view of commutativity of the family, compactness of $\{\Delta_j\}$, and the fact that $f = \sum_{j=0}^{\infty} \Delta_j(f)$ for any $f \in L^2(G)$.

LEMMA 9.2. In the setting of this section, suppose that $\{e_i\}_{i=1}^{\infty}$ is an orthonormal basis of $L^2(G)$ which consists of common eigenfunctions of $\Delta_j s$ (see Lemma 9.1). Suppose $\Delta_j(e_i) = \alpha_{ji}e_i$ for all $i \ge 1$ and $j \ge 0$. Then

- $$\begin{split} \bullet & \ \|(e_i)_{\eta_{j-1}}\|_2 \ll_{C_0,C_1,L} |\alpha_{ji}|^{-1} \eta_j^{1/(4L+2)} \ if \ j \geq 1. \\ \bullet & \ \|(e_i)_{\eta_{j+2}} e_i\|_2 \leq 2|\alpha_{ji}|^{-1} \eta_{j+2}^{1/(8L)}. \end{split}$$

In particular, if $|\alpha_{ji}| \ge \eta_j^{1/(8L+4)}$, then e_i lives at scale η_j .

Proof. This is an immediate consequence of Proposition 8.6.

Proof of Theorem 2.10. We will use the previous notation. Let $I_i :=$ $\{i \in \mathbb{Z}^+ | |\alpha_{ji}| \ge \eta_j^{1/(8L+4)}\}, \ E := \mathbb{Z}^+ \setminus \bigcup_{j=1}^{\infty} I_j, \text{ and for } i \in I_j \text{ we let } \mathcal{H}_{ji} := I_j$ $\ker(\Delta_i - \alpha_{ii}I)$.

We will show that the claim holds with \mathcal{H}_0 the space spanned by $\{e_i : i \in E\}$. Let us first show that \mathcal{H}_0 is finite dimensional. By definition, for all $i \in E$ and all positive integers j, we have

$$|\alpha_{ji}| \le \eta_j^{1/(8L+4)}.$$

On the other hand, by Lemma 8.10 we have $\sum_{i=0}^{\infty} \alpha_{i} = 1$. Therefore

$$|1 - \alpha_{0i}| \le \sum_{j=1}^{\infty} \eta_j^{1/(8L+4)} \le \eta_0^{1/(8L+4)}.$$

Therefore $\alpha_{0i} > 1 - \eta_0^{1/(8L+4)}$ for any $i \in E$. Notice that Δ_0 is a Hilbert–Schmidt operator with kernel k(x, y) := $P_{\eta_0}(xy^{-1})$. Therefore $P_{\eta_0}(xy^{-1}) = \sum_i \alpha_{0i} e_i(x) \overline{e_i(y)}$. This implies that

$$\frac{1}{|1_{\eta_0}|} = \int_G \int_G P_{\eta_0}(xy^{-1})^2 \, \mathrm{d}y \, \mathrm{d}x = \sum_i |\alpha_{0i}|^2.$$

By the equality, we get

$$(1 - \eta_0^{1/(8L+4)})^2 \# E \le \frac{1}{|1_{n_0}|};$$

which implies that dim $\mathcal{H}_0 \leq \frac{2}{|\mathbf{1}_{n_0}|}$.

We now investigate spectral properties of T_{μ} on $\mathcal{H}_{ji} = \ker(\Delta_j - \alpha_{ji}I)$. It is clear that \mathcal{H}_{ji} is a finite-dimensional subrepresentation of $L^2(G)$. Since e_k s are also eigenfunctions of T_{μ} ,

$$\mathcal{L}(\mu; \mathcal{H}_{ji}) = \min\{-\log \|\mu * e_k\|_2 : e_k \in \mathcal{H}_{ij}\}.$$

Let $\nu = \mu^{(l)}$ for some positive integer l to be specified later, and let $e_k \in \mathcal{H}_{ii}$; note that $\alpha_{ik} = \alpha_{ji}$. By the definition of \mathcal{H}_{ij} and Lemma 9.2, e_k lives at scale η_j . Thus we have

$$|\|(e_k)_{\eta_{j+2}} * v\|_2 - \|(e_k * v)\|_2| \le \|((e_k)_{\eta_{j+2}} - e_k) * v\|_2 \le \eta_j^{a/2},$$

which implies that $|\|(e_k)_{\eta_{i+2}} * \nu\|_2^2 - \|e_k * \nu\|_2^2| \le 2\eta_i^{a/2}$. Therefore,

$$\|e_k * \nu\|_2^2 \le 2\eta_i^{a/2} + \|(e_k)_{\eta_{j+2}} * \nu\|_2^2.$$
 (9.1)

On the other hand, by the mixing inequality (see Theorem 2.4), we have

$$\begin{split} \|(e_{k})_{\eta_{j+2}} * \nu\|_{2}^{2} &= \|e_{k} * \nu_{\eta_{j+2}}\|_{2}^{2} \\ &\leq 2 \|(e_{k})_{\eta_{j}^{1/a}}\|_{2}^{2} \|(\nu_{\eta_{j+2}})_{\eta_{j}^{1/a}}\|_{2}^{2} + \eta_{j}^{1/(8aL)} \|\nu_{\eta_{j+2}}\|_{2}^{2} \\ &\leq (2\eta_{j}^{1/a} + \eta_{j}^{1/(8aL)}) \|\nu_{\eta_{j+2}}\|_{2}^{2} \leq 3\eta_{j}^{1/(8aL)} \|\nu_{\eta_{j+2}}\|_{2}^{2}, \end{split}$$
(9.2)

where the second inequality follows from the fact that e_k lives as scale η_i .

By (9.1) and (9.2), for every $k \in I_i$, we have

$$\begin{aligned} -2\log(\|e_k * \nu\|_2) &\geq -\log(2\eta_j^{a/2} + 3\eta_j^{1/(8aL)} \|\nu_{\eta_{j+2}}\|_2^2) \\ &\geq -\log 5 - \log(\max(\eta_j^{a/2}, \eta_j^{1/(8aL)} \|\nu_{\eta_{j+2}}\|_2^2)). \end{aligned}$$

For $\eta_0 \ll_{L,d_0} 1$ small enough, one obtains

$$-2\log(\|e_k * \nu\|_2)$$

$$\geq \min\left(-\frac{1}{3a}\log \eta_{j+2}, -\frac{1}{9a^3L}\log \eta_{j+2} - \log \|\nu_{\eta_{j+2}}\|_2^2\right). \tag{9.3}$$

By Lemma 7.1 and the dimension condition, we have

$$|h(G; \eta) - \log(1/|1_{\eta}|)| \ll_{d_0, C_1} 1$$
, and $|\log(1/|1_{\eta}|) + d_0 \log \eta| \ll_{d_0, C_1} 1$. (9.4)

Hence for $\eta_0 \ll_{C_0, C_1, L} 1$, by (9.3) and (9.4), we have

$$-2\log(\|e_k * v\|_2)$$

$$\geq \min\left(\frac{1}{4d_0a}h(G;\eta_j), \frac{1}{10Ld_0a^3}h(G;\eta_j) - \log\|\nu_{\eta_{j+2}}\|_2^2\right)$$

$$\geq \min\left(\frac{1}{4d_0a}h(G;\eta_j), H_2(\nu;\eta_{j+2}) - \left(1 - \frac{1}{10Ld_0a^3}\right)h(G;\eta_j)\right). \quad (9.5)$$

By the assumption for some $l_{j+2} \le C_2 h(G; \eta_{j+2})$, we have

$$H_2(\mu^{(l_{j+2})};\eta_{j+2}) \geq \left(1 - \frac{1}{20Ld_0a^3}\right)h(G;\eta_{j+2});$$

and so, by applying inequality (9.5) to $\nu = \mu^{(l_{j+2})}$, for every $i \in I_i$ we have

$$\mathcal{L}(\mu; \mathcal{H}_{ji}) \ge \min\left(\frac{1}{8C_2d_0a}, \frac{1}{40C_2Ld_0a^3}\right) = \frac{1}{40C_2Ld_0a^3}.$$
 (9.6)

Altogether, (9.6) and the definition of \mathcal{H}_0 imply

$$\mathcal{L}(\mu; L^2(G) \ominus \mathcal{H}_0) \ge \frac{1}{40C_2Ld_0a^3},$$

as we claimed.

Since the group generated by the support of μ is dense in G and dim $\mathcal{H}_0 < \infty$, it follows that $\mathcal{L}(\mu; L_0^2(G)) > 0$.

The following theorem is a corollary of the proof of Theorem 2.10.

Theorem 9.3. In the previous setting, suppose that μ is a symmetric Borel probability measure on G, and the group generated by the support of μ is dense in G. Suppose that there exist $C_3 > 0$, c > 0, and $0 < \eta_0 < 1$ such that, for every $\eta \le \eta_0$ and every function $g \in L^2(G)$ which lives at scale η , there exists $l \le C_3 \log(1/\eta)$ such that

$$\|\mu^{(l)} * g\|_2 \le \eta^c \|g\|_2.$$

Then there is a subrepresentation \mathcal{H}_0 of $L^2(G)$ with dim $\mathcal{H}_0 \leq 2C_0\eta_0^{-d_0}$ such that

$$\mathcal{L}(\mu; L^2(G) \ominus \mathcal{H}_0) \ge \frac{c}{C_3}$$
.

In particular, $\mathcal{L}(\mu; G) > 0$.

Proof. Without loss of generality, assume that η_0 is sufficiently small so that Theorem 2.10 holds. As before, fix $a > \max(4Ld_0, 4L + 2)$, and for $i \ge 1$, set $\eta_i := \eta_0^{a^i}$. Let $\{e_i\}_{i=1}^{\infty}$, the sets I_j s, and E be as in the proof of Theorem 2.10. Define \mathcal{H}_0 as in that proof as well.

For all $i \in I_j$, e_i is a function which lives at scale η_j . This, together with the assumption, implies that $\|\mu^{(l_{ji})} * e_i\|_2 \le \eta_j^c$ for some positive integer $l_{ji} \le C_3 \log(1/\eta_j)$. Hence

$$C_3 \log(1/\eta_j) \mathcal{L}(\mu; \mathcal{H}_{ji}) \ge -c \log \eta_j$$

where $\mathcal{H}_{ji} := \ker(\Delta_j - \alpha_{ji}I)$. In view of this, we have $\mathcal{L}(\mu; L^2(G) \ominus \mathcal{H}_0) \ge c/C_3$.

Finally, since the group generated by the support of μ is dense in G and \mathcal{H}_0 is finite dimensional, it follows that $\mathcal{L}(\mu; L_0^2(G)) > 0$.

10. Gaining Entropy in a Multi-Scale Setting

The goal of this section is to prove Theorem 2.12. In their seminal work [6], Bourgain and Gamburd proved that, if X and Y are random variables taking values in a finite group G, then the Rényi entropy of XY will be substantially larger than the average of the Rényi entropies of X and Y, unless there is an algebraic obstruction, see also [23, Lemma 15]. This type of result had been proved earlier for random variables X and Y that are uniformly distributed in subsets X and X and X that are uniformly distributed in subsets X and X and X respectively. For Abelian groups, this is due to Balog and Szemerédi [2] and Gowers [14]. For general groups, this was proved by Tao [22]. In the same work, Tao also proves a multi-scale version of this result. In this section, we will prove a multi-scale version of the aforementioned result of Bourgain and Gamburd, which can be considered as a weighted version of [22]. Similar results have been proved earlier for some specific groups in [19; 5; 17; 10]. We start by recalling the definition of an approximate subgroup.

DEFINITION 10.1. For $K \ge 1$, a subset X of a group G is called a K-approximate subgroup if X is symmetric, that is, $X = X^{-1}$ and there exists $T \subseteq X \cdot X$ with $\#T \le K$ such that $X \cdot X \subseteq T \cdot X$.

Recall also that if X is a random variable taking finitely many values, then the Rényi entropy (of order 2) of X is defined by

$$H_2(X) = -\log\left(\sum_{x} \mathbb{P}(X=x)^2\right),$$

where, here and in what follows, log refers to logarithm in base 2. It is easy to see that when X and Y take values in a group G, $H_2(XY) \ge \frac{H_2(X) + H_2(Y)}{2}$ holds.

THEOREM 10.2 (Bourgain–Gamburd). Let G be a finite group, and suppose that X and Y are two G-valued random variables. If

$$H_2(XY) \le \frac{H_2(X) + H_2(Y)}{2} + \log K$$

for some positive number $K \ge 2$, then there exists $H \subseteq G$ such that:

- (1) (Approximate structure) H is an $O(K^{O(1)})$ -approximate subgroup.
- (2) (Controlling the order) $|\log(\#H) H_2(X)| \ll \log K$.
- (3) (Almost equidistribution) There are elements $x, y \in G$ such that, for all $h \in H$,

$$\mathbb{P}(X = xh) \ge K^{-O(1)}(\#H)^{-1}, \qquad \mathbb{P}(Y = hy) \ge K^{-O(1)}(\#H)^{-1}.$$

More generally, suppose that G is an arbitrary compact group and $A, B \subseteq G$ are two measurable subsets of positive measure. The energy of the pair (A, B) is defined by

$$E(A, B) := \|\mathbb{1}_A * \mathbb{1}_B\|_2^2. \tag{10.1}$$

When G is finite, this reduces to

$$E(A, B) = \#Q(A, B)/(\#G)^3,$$

where

$$Q(A, B) := \{(a, b, a', b') \in A \times B \times A \times B | ab = a'b'\}.$$

For general compact groups, the notion of η -approximate energy has been introduced in [22]. We will work with two different metrics on G^4 : For $(g_i)_{1 \le i \le 4}$ and $(g'_i)_{1 \le i \le 4}$ in G^4 , define

$$d^{+}((g_{i})_{1 \leq i \leq 4}, (g'_{i})_{1 \leq i \leq 4}) := \sum_{1 \leq i \leq 4} d(g_{i}, g'_{i}) \quad \text{and}$$

$$d((g_{i})_{1 \leq i \leq 4}, (g'_{i})_{1 \leq i \leq 4}) := \max_{1 \leq i \leq 4} d(g_{i}, g'_{i}).$$

$$(10.2)$$

For nonempty $A, B \subseteq G$ and $\eta > 0$, we let

$$E_{\eta}(A,B) := \mathcal{N}_{\eta}(Q_{\eta}(A,B)), \tag{10.3}$$

where

$$Q_{\eta}(A, B) := \{(a, b, a', b') \in A \times B \times A \times B | ab \in (a'b')_{\eta}\},\$$

where \mathcal{N}_{η} is computed with respect to d^+ .

The results of this section are proved under a weaker dimension condition that we now define. We say that (G, d) satisfies the dimension condition at scale η with parameter C' if there exist C > 1 and $d_0 > 0$ such that

$$C^{-1}\eta^{d_0} \le |1_{cn}| \le C\eta^{d_0}$$

holds for all $c \in [C'^{-1}, C']$.

Abusing the notation, for two positive quantities X and Y, we write $X \leq Y$ if X/Y is bounded from above by an expression of the form $\Omega^{O(1)}$, where $\Omega = 2^{d_0}C^2$. If $X \leq Y$ and $Y \leq X$, we write $X \approx Y$.

THEOREM 10.3 ([22], Theorem 6.10). Suppose that G is a compact group with a fixed bi-invariant metric. Suppose that $A, B \subseteq G$ are nonempty. For every $\eta > 0$ and $K \succcurlyeq 1$, if G satisfies the dimension condition at scale η with parameter C' (which is a large universal constant) and the energy bound

(EB)
$$E_{\eta}(A, B) \gg K^{-O(1)} \mathcal{N}_{\eta}(A)^{3/2} \mathcal{N}_{\eta}(B)^{3/2}$$

holds, then there is $H \subseteq G$ such that

- (1) (Approximate structure) H is an $K^{O(1)}$ -approximate subgroup;
- (2) (Controlling the metric entropy) $|h(H; \eta) \frac{h(A; \eta) + h(B; \eta)}{2}| \le \log K$;
- (3) (Large intersection) There are $x, y \in G$ such that $|\tilde{h}(A \cap xH; \eta) h(A; \eta)| \le \log K$ and $|h(B \cap Hy; \eta) h(B; \eta)| \le \log K$.

Theorem 2.12 is both a multi-scale version of Theorem 10.2 and a weighted version of Theorem 10.3.

Let X and Y be Borel random variables whose distributions are given by measures μ and ν , respectively. Let $\mu_{\eta} := \mu * P_{\eta}$ and $\nu_{\eta} := \nu * P_{\eta}$. The idea of the proof is to approximate μ_{η} and ν_{η} by step functions and find subsets of η -neighborhoods of supports of μ and ν with large η -approximate energy. We will then apply Theorem 10.3 to finish the proof. The following lemma summarizes some of the properties of the function μ_{η} .

LEMMA 10.4. Suppose that G is a compact group and G satisfies the dimension condition at scale η with parameter C' for some $C' \gg 1$ (larger than a universal constant). Suppose that μ and ν are two Borel probability measures on G and $f \in L^2(G)$ is nonnegative. Then

- (1) For all $y \in x_{\eta}$ and $c \in [C'^{-1}, C' 1]$, we have $\mu_{c\eta}(y) \leq \mu_{(c+1)\eta}(x)$ and $f_{c\eta}(y) \leq f_{(c+1)\eta}(x)$; in particular $\mu_{\eta}(y) \leq \mu_{2\eta}(x) \leq \mu_{3\eta}(y)$.
- (2) For any $\eta, \eta' > 0$ and $y \in G$, we have $P_{\eta'}(y) \leq \frac{|1_{\eta+\eta'}|}{|1_{\eta'}|} P_{\eta'+\eta} * P_{\eta}(y)$ (see [10, Lemma A.5]).
- (3) For $c \in [(C'-1)^{-1}, (C'-1)]$, we have $\|\mu_{c\eta}\|_2 \approx \|\mu_{\eta}\|_2$ and $\|f_{c\eta}\|_2 \approx \|f_{\eta}\|_2$.
- $(4) \ \|\mu_{\eta} * \nu_{\eta}\|_{2} \leq \|(\mu * \nu)_{\eta}\|_{2} \leq \|\mu_{\eta} * \nu_{\eta}\|_{2}.$

Proof. The sequence of inequalities

$$\mu_{c\eta}(y) = \frac{\mu(y_{c\eta})}{|1_{c\eta}|} \le \frac{|1_{(c+1)\eta}|}{|1_{c\eta}|} \cdot \frac{\mu(x_{(c+1)\eta})}{|1_{(c+1)\eta}|} \le \mu_{(c+1)\eta}(x)$$

proves the first claim of part (1). The second claim of (1) is a special case. Part (2) is an easy consequence of the fact that, if $y \in 1_{\eta'}$, then for any $x \in 1_{\eta}$ we have $x^{-1}y \in 1_{\eta'+\eta}$.

For part (3), by symmetry we can and will assume that c > 1. Note that

$$\mu_{\eta}(y) = \frac{\mu(y_{\eta})}{|1_{\eta}|} \le \frac{|1_{c\eta}|}{|1_{\eta}|} \cdot \frac{\mu(y_{c\eta})}{|1_{c\eta}|} \le \mu_{c\eta}(y).$$

Hence, we have $\|\mu_{\eta}\|_2 \leq \|\mu_{c\eta}\|_2$ and, in particular, $\|f_{\eta}\|_2 \leq \|f_{c\eta}\|_2$. In order to prove the reverse inequality, note that by (2) we have $\mu_{c\eta} \leq P_{(c+1)\eta} * \mu_{\eta}$ and

 $f_{c\eta} \preccurlyeq P_{(c+1)\eta} * f_{\eta}$. These imply that

$$\|\mu_{c\eta}\|_2 \leq \|P_{(c+1)\eta} * \mu_{\eta}\|_2 \leq \|\mu_{\eta}\|_2$$
 and $\|f_{c\eta}\|_2 \leq \|P_{(c+1)\eta} * f_{\eta}\|_2 \leq \|f_{\eta}\|_2$.

Finally, to prove (4), first note that

$$\|\mu_{\eta} * \nu_{\eta}\|_{2} = \|P_{\eta} * (\mu * \nu)_{\eta}\|_{2} \le \|(\mu * \nu)_{\eta}\|_{2}.$$

Part (2) implies that $P_{\eta} \leq P_{2\eta} * P_{\eta}$, which, in turn, shows that

$$(\mu * \nu)_n \leq \mu_{2n} * \nu_n. \tag{10.4}$$

On the other hand, using (3) and the fact that $\mu * \nu_{\eta}$ is a nonnegative function, we have

$$\|\mu_{2n} * \nu_n\|_2 = \|(\mu * \nu_n)_{2n}\|_2 \approx \|(\mu * \nu_n)_n\|_2 = \|\mu_n * \nu_n\|_2; \tag{10.5}$$

applying (10.4) and (10.5) we obtain the desired inequality.
$$\Box$$

From now on, we will assume that μ and ν denote the distributions of the random variables X and Y, respectively, and that the inequality

$$H_2(XY; \eta) \le \log K + \frac{H_2(X; \eta) + H_2(Y; \eta)}{2}$$

holds. Hence we have

$$\|(\mu * \nu)_{\eta}\|_{2} \ge K^{-1} \|\mu_{\eta}\|_{2}^{1/2} \|\nu_{\eta}\|_{2}^{1/2}.$$

By Lemma 10.4 and the inequality we deduce that

$$\|\mu_{\eta} * \nu_{\eta}\|_{2} \geq K^{-1} \|\mu_{\eta}\|_{2}^{1/2} \|\nu_{\eta}\|_{2}^{1/2}. \tag{10.6}$$

By (3.3), we have $\|\mu_n * \nu_n\|_2 \le \min(\|\mu_n\|_2, \|\nu_n\|_2)$, which implies

$$K^{-2}\|\mu_n\|_2 \leq \|\nu_n\|_2 \leq K^2\|\mu_n\|_2. \tag{10.7}$$

To find the desired step function approximation of μ_{η} , we discretize G and then choose subsets of this discrete model according to the value of μ_{η} . We fix a maximal η -separating subset \mathcal{C} of G.

As it was mentioned in Remark 7.3, the proof of Lemma 7.1 only uses the dimension condition for η , $\eta/2$ and 2η . Hence for $c \in [(C'/2)^{-1}, C'/2]$ we have

$$\mathcal{N}_{c\eta}(A) \approx \frac{|A_{\eta}|}{|1_{\eta}|}.\tag{10.8}$$

We partition C according to the value of $\mu_{2\eta}$ as follows:

$$C(\mu; >) := \{ x \in C | \mu_{2\eta}(x) > K^{10} \| \mu_{\eta} \|_{2}^{2} \}, \tag{10.9}$$

$$\mathcal{C}(\mu; <) := \{ x \in \mathcal{C} | \mu_{2\eta}(x) < K^{-10} \| \mu_{\eta} \|_{2}^{2} \}, \tag{10.10}$$

and

$$\mathcal{C}(\mu; \sim) := \{ x \in \mathcal{C} | K^{-10} \| \mu_{\eta} \|_{2}^{2} \le \mu_{2\eta}(x) \le K^{10} \| \mu_{\eta} \|_{2}^{2} \}. \tag{10.11}$$

We also define the following functions:

$$\mu_{\eta}^{>} := \mathbb{1}_{\mathcal{C}(\mu;>)_{\eta}} \cdot \mu_{\eta}, \qquad \mu_{\eta}^{<} := \mathbb{1}_{\mathcal{C}(\mu;<)_{\eta}} \cdot \mu_{\eta},$$
 (10.12)

and

$$\mu_{\eta}^{\sim}(x) := \begin{cases} \mu_{\eta}(x) & \text{if } x \notin \mathcal{C}(\mu; >)_{\eta} \cup \mathcal{C}(\mu; <)_{\eta}, \\ 0 & \text{otherwise.} \end{cases}$$

And so $\mu_{\eta}(x) \leq \mu_{\eta}^{>}(x) + \mu_{\eta}^{<}(x) + \mu_{\eta}^{\sim}(x)$, and inequality can possibly occur only in $\mathcal{C}(\mu; >)_{\eta} \cap \mathcal{C}(\mu; <)_{\eta}$. The functions $\mu_{\eta}^{>}$ and $\mu_{\eta}^{<}$ should be viewed as *tails* of μ_{η} and will now be shown to be negligible.

Lemma 10.5. In the previous setting, $\|\mu_{\eta}^{>}\|_{1} \leq K^{-10}$ and $\|\mu_{\eta}^{<}\|_{2} \leq K^{-5}\|\mu_{\eta}\|_{2}$.

Proof. For any $y \in C(\mu; >)_{\eta}$, there is $x \in C(\mu, >)$ such that $y \in x_{\eta}$. Applying part (1) of Lemma 10.4, we have

$$\mu_{3\eta}(y) \succcurlyeq \mu_{2\eta}(x) > K^{10} \|\mu_{\eta}\|_{2}^{2}$$

On the other hand, by part (3) of Lemma 10.4, we have $\|\mu_{\eta}\|_2 \approx \|\mu_{3\eta}\|_2$. Hence, we have

$$\|\mu_{\eta}\|_{2}^{2} \succcurlyeq \int_{\mathcal{C}(\mu, >)_{\eta}} \mu_{3\eta}(y)^{2} \, \mathrm{d}y \succcurlyeq K^{10} \|\mu_{\eta}\|_{2}^{2} \int_{\mathcal{C}(\mu, >)_{\eta}} \mu_{\eta}(y) \, \mathrm{d}y$$
$$= K^{10} \|\mu_{\eta}\|_{2}^{2} \|\mu_{\eta}^{>}\|_{1},$$

which implies the first inequality.

For any $y \in \mathcal{C}(\mu, <)_{\eta}$, there is $x \in \mathcal{C}(\mu, <)$ such that $y \in x_{\eta}$; and so by part (1) of Lemma 10.4 we have $\mu_{\eta}(y) \leq \mu_{2\eta}(x) \leq K^{-10} \|\mu_{\eta}\|_{2}^{2}$. Therefore

$$\|\mu_{\eta}^{<}\|_{2}^{2} = \int_{\mathcal{C}(\mu_{n} <)_{n}} \mu_{\eta}(y)^{2} dy \leq K^{-10} \|\mu_{\eta}\|_{2}^{2} \int_{\mathcal{C}(\mu_{n} <)_{n}} \mu_{\eta}(y) dy \leq K^{-10} \|\mu_{\eta}\|_{2}^{2};$$

and the second inequality follows.

COROLLARY 10.6. In the previous setting, $\|\mu_{\eta}^{\sim} * \nu_{\eta}^{\sim}\|_{2} \ge (2K)^{-1} \|\mu_{\eta}\|_{2}^{1/2} \|\nu_{\eta}\|_{2}^{1/2}$ if $K \ge 1$.

Proof. For all $y \in G$, we have $\mu_{\eta}(y) \ge \mu_{\eta}^{\sim}(y)$. By Lemma 10.5 and (10.7), we have

$$\|\mu_{\eta}^{>} * \nu_{\eta}\|_{2} \leq K^{-10} \|\nu_{\eta}\|_{2} \leq K^{-9} \|\mu_{\eta}\|_{2}^{1/2} \|\nu_{\eta}\|_{2}^{1/2}, \tag{10.13}$$

$$\|\mu_{\eta}^{<} * \nu_{\eta}\|_{2} \le \|\mu_{\eta}^{<}\|_{2} \le K^{-5} \|\mu_{\eta}\|_{2} \le K^{-4} \|\mu_{\eta}\|_{2}^{1/2} \|\nu_{\eta}\|_{2}^{1/2}, \tag{10.14}$$

$$\|\mu_{\eta}^{\sim} * \nu_{\eta}^{>}\|_{2} \leq K^{-10} \|\mu_{\eta}^{\sim}\|_{2} \leq K^{-10} \|\mu_{\eta}\|_{2} \leq K^{-9} \|\mu_{\eta}\|_{2}^{1/2} \|\nu_{\eta}\|_{2}^{1/2}, \quad (10.15)$$

$$\|\mu_{\eta}^{\sim} * \nu_{\eta}^{<}\|_{2} \leq \|\mu_{\eta}^{\sim}\|_{1} \|\mu_{\eta}^{<}\|_{2} \leq K^{-5} \|\nu_{\eta}\|_{2} \leq K^{-4} \|\mu_{\eta}\|_{2}^{1/2} \|\nu_{\eta}\|_{2}^{1/2}.$$
 (10.16)

Hence by the triangle inequality and $\mu_{\eta}(y) \le \mu_{\eta}^{>}(y) + \mu_{\eta}^{<}(y) + \mu_{\eta}^{\sim}(y)$ we get

$$\|\mu_n^{\sim} * \nu_n^{\sim}\|_2 \ge (K^{-1} - \Omega^{O(1)}(2K^{-4} + 2K^{-9}))\|\mu_n\|_2^{1/2}\|\nu_n\|_2^{1/2}.$$

For $K \geq 1$, the claim follows.

We will now apply Corollary 10.6 to prove that the energy $E_{16\eta}(C^{\sim}(\mu;\eta), C^{\sim}(\nu;\eta))$ is *large*. Using this bound and Theorem 10.3, we deduce Theorem 2.12.

LEMMA 10.7. For nonempty sets $A, B \subseteq G$, we have

$$E_{\eta/6}(A, B) \leq \frac{E(A_{\eta}, B_{\eta})}{|1_{\eta}|^3} \leq E_{16\eta}(A, B).$$

Proof. By definition $E_{\eta}(A, B) := \mathcal{N}_{\eta}(Q_{\eta}(A, B))$ with d^+ -metric on G^4 . Hence by Lemma 7.1 we have

$$E_{\eta}(A, B) \approx \frac{|(Q_{\eta}(A, B))_{\eta}|}{|(1, 1, 1, 1)_{\eta}^{+}|},$$

where + indicates that we are using the d^+ -metric. Since

$$(1, 1, 1, 1)_{\eta/4} \subseteq (1, 1, 1, 1)_{\eta}^{+} \subseteq (1, 1, 1, 1)_{\eta},$$

by $|1_{c\eta}| \approx |1_{\eta}|$ we deduce

$$E_{\eta}(A, B) \approx \frac{|(Q_{\eta}(A, B))_{\eta}|}{|1_{\eta}|^4}.$$
 (10.17)

Based on (10.17), we will focus on $|Q_{\eta}(A, B)_{\eta}|$ and relate it to energies of thickened sets. First, we will express $E(A_{\eta}, B_{\eta})$ as the measure of a subset of G^3 :

$$E(A_{\eta}, B_{\eta}) = \|\mathbb{1}_{A_{\eta}} * \mathbb{1}_{B_{\eta}}\|_{2}^{2}$$

$$= \int_{G} \int_{G} \mathbb{1}_{A_{\eta}}(x) \mathbb{1}_{B_{\eta}}(x^{-1}y) \mathbb{1}_{A_{\eta}}(z) \mathbb{1}_{B_{\eta}}(z^{-1}y) dx dz dy$$

$$= |\{(x, z, y) \in A_{\eta} \times A_{\eta} \times G | x^{-1}y \in B_{\eta}, z^{-1}y \in B_{\eta}\}|$$

$$= |\{(x, z, t) \in A_{\eta} \times A_{\eta} \times B_{\eta} | z^{-1}xt \in B_{\eta}\}|.$$
(10.18)

Using (10.18), we can find an upper bound for $|Q_{\eta}(A, B)_{\eta}|$. We have

$$|Q_{\eta}(A, B)_{\eta}| \leq |\{(x_{1}, x_{2}, y_{1}, y_{2}) \in A_{\eta} \times A_{\eta} \times B_{\eta} \times B_{\eta} | y_{2}^{-1} x_{2}^{-1} y_{1} x_{1} \in 1_{5\eta}\}|$$

$$= |\{(x_{1}, x_{2}, y_{1}, h) \in A_{\eta} \times A_{\eta} \times B_{\eta} \times 1_{5\eta} | x_{2}^{-1} x_{1} y_{2} h^{-1} \in B_{\eta}\}|$$

$$\leq |\{(x_{1}, x_{2}, y_{1}, h) \in A_{\eta} \times A_{\eta} \times B_{\eta} \times 1_{5\eta} | x_{2}^{-1} x_{1} y_{2} \in B_{6\eta}\}|$$

$$\leq |1_{\eta}| |\{(x_{1}, x_{2}, y_{1}) \in A_{6\eta} \times A_{6\eta} \times B_{6\eta} | x_{2}^{-1} x_{1} y_{2} \in B_{6\eta}\}|$$

$$= |1_{\eta}| E(A_{6\eta}, B_{6\eta}). \tag{10.19}$$

Again using (10.18), we find a lower bound for $|Q_{\eta}(A, B)_{\eta}|$:

$$\begin{aligned} |Q_{\eta}(A,B)_{\eta}| \\ &\geq |\{(x_{1},x_{2},y_{1},y_{2}) \in A_{\eta/8} \times A_{\eta/8} \times B_{\eta/8} \times B_{\eta/8} | y_{2}^{-1} x_{2}^{-1} y_{1} x_{1} \in 1_{\eta/2}\}| \\ &= |\{(x_{1},x_{2},y_{1},h) \in A_{\eta/8} \times A_{\eta/8} \times B_{\eta/8} \times 1_{\eta/2} | x_{2}^{-1} y_{1} x_{1} h^{-1} \in B_{\eta/8}\}| \\ &\geq |\{(x_{1},x_{2},y_{1},h) \in A_{\eta/8} \times A_{\eta/8} \times B_{\eta/8} \times 1_{\eta/16} | x_{2}^{-1} y_{1} x_{1} h^{-1} \in B_{\eta/16}\}| \\ &\geq |1_{\eta}| E(A_{\eta/16},B_{\eta/16}). \end{aligned}$$
(10.20)

By (10.17), (10.19), and (10.20), claim follows.

LEMMA 10.8. In the previous setting, $\frac{1}{K^{O(1)} \|\mu_n\|_2^2} \leq |\mathcal{C}(\mu, \sim)_{\eta}| \leq \frac{K^{O(1)}}{\|\mu_n\|_2^2}$.

Proof. For all $y \in C(\mu, \sim)_{\eta}$, there exists $x \in C(\mu, \sim)$ such that $y \in x_{\eta}$. Hence, by part (1) of Lemma 10.4, we have

$$\mu_{3\eta}(y) \succcurlyeq \mu_{2\eta}(x) \succcurlyeq K^{-10} \|\mu_{\eta}\|_{2}^{2}$$

which implies that

$$\|\mu_{3\eta}\|_2^2 \geq K^{-20} \|\mu_{\eta}\|_2^4 |\mathcal{C}(\mu, \sim)_{\eta}|.$$

Therefore by part (3) of Lemma 10.4 we deduce that

$$|\mathcal{C}(\mu, \sim)_{\eta}| \preccurlyeq \frac{K^{20}}{\|\mu_{\eta}\|_{2}^{2}}.$$

It follows from the definition of μ_{η}^{\sim} that the support of μ_{η}^{\sim} is a subset of $\mathcal{C}(\mu, \sim)_{\eta}$. Hence if $\mu_{\eta}^{\sim}(y) \neq 0$, then there is $x \in \mathcal{C}(\mu, \sim)$ such that $y \in x_{\eta}$. So, by part (1) of Lemma 10.4, we have

$$\mu_{\eta}(y) \preccurlyeq \mu_{2\eta}(x) \leq K^{10} \|\mu_{\eta}\|_{2}^{2}, \quad \text{which implies } \|\mu_{\eta}^{\sim}\|_{\infty} \preccurlyeq K^{10} \|\mu_{\eta}\|_{2}^{2}. \quad (10.21)$$

Therefore we get

$$\|\mu_{\eta}^{\sim}\|_{2}^{2} \leq \|\mu_{\eta}^{\sim}\|_{\infty}^{2} |\mathcal{C}(\mu, \sim)_{\eta}| \leq K^{20} \|\mu_{\eta}\|_{2}^{4} |\mathcal{C}(\mu, \sim)_{\eta}|. \tag{10.22}$$

By (10.7), Corollary 10.6, and (10.22), we get

$$\begin{split} K^{-2} \|\mu_{\eta}\|_{2}^{2} & \leq \|\mu_{\eta}\|_{2} \|\nu_{\eta}\|_{2} \leq K^{2} \|\mu_{\eta}^{\sim} * \nu_{\eta}^{\sim}\|_{2}^{2} \\ & \leq K^{2} \|\mu_{\eta}^{\sim}\|_{2}^{2} \leq K^{22} \|\mu_{\eta}\|_{2}^{4} |\mathcal{C}(\mu, \sim)_{\eta}|. \end{split}$$

Therefore

$$\frac{1}{K^{24}\|\mu_{\eta}\|_{2}^{2}} \preccurlyeq |\mathcal{C}(\mu, \sim)_{\eta}|;$$

and the claim follows.

Proposition 10.9. In the previous setting the inequality

$$E_{16\eta}(\mathcal{C}(\mu;\sim),\mathcal{C}(\nu;\sim)) \succcurlyeq \frac{1}{K^{O(1)}} \mathcal{N}_{16\eta}(\mathcal{C}(\mu;\sim))^{3/2} \mathcal{N}_{16\eta}(\mathcal{C}(\nu;\sim))^{3/2}$$

holds, where $C(\mu; \sim)$ is defined in (10.11).

Proof. By (10.21), we have

$$\mu_{\eta}^{\sim} \preccurlyeq (K^{10} \| \mu_{\eta} \|_{2}^{2}) \mathbb{1}_{\mathcal{C}(\mu, \sim)_{\eta}} \quad \text{and} \quad \nu_{\eta}^{\sim} \preccurlyeq (K^{10} \| \nu_{\eta} \|_{2}^{2}) \mathbb{1}_{\mathcal{C}(\nu, \sim)_{\eta}}.$$

It follows that

$$\begin{split} \|\mu_{\eta}^{\sim} * \nu_{\eta}^{\sim}\|_{2}^{2} & \leq K^{40} \|\mu_{\eta}\|_{2}^{4} \|\nu_{\eta}\|_{2}^{4} \|\mathbb{1}_{\mathcal{C}(\mu, \sim)_{\eta}} * \mathbb{1}_{\mathcal{C}(\nu, \sim)_{\eta}}\|_{2}^{2} \\ & = K^{40} \|\mu_{\eta}\|_{2}^{4} \|\nu_{\eta}\|_{2}^{4} E(\mathcal{C}(\mu, \sim)_{\eta}, \mathcal{C}(\nu, \sim)_{\eta}). \end{split}$$

By Corollary 10.6 and the inequality we have

$$K^{-2}\|\mu_{\eta}\|_{2}\|\nu_{\eta}\|_{2} \leq K^{40}\|\mu_{\eta}\|_{2}^{4}\|\nu_{\eta}\|_{2}^{4}E(\mathcal{C}(\mu,\sim)_{\eta},\mathcal{C}(\nu,\sim)_{\eta}). \tag{10.23}$$

By Lemma 10.8 and (10.23), we obtain

$$K^{-O(1)}|\mathcal{C}(\mu, \sim)_n)|^{3/2}|\mathcal{C}(\nu, \sim)_n)|^{3/2} \leq E(\mathcal{C}(\mu, \sim)_n, \mathcal{C}(\nu, \sim)_n);$$
 (10.24)

and so, by Lemma 7.1 and Lemma 10.7, we deduce

$$K^{-O(1)}\mathcal{N}_{16\eta}(\mathcal{C}(\mu,\sim))^{3/2}\mathcal{N}_{16\eta}(\mathcal{C}(\nu,\sim))^{3/2} \preccurlyeq E_{16\eta}(\mathcal{C}(\mu,\sim),\mathcal{C}(\nu,\sim));$$

and the claim follows.

Proof of Theorem 2.12. Recall that μ and ν denote the distribution measures of random variables X and Y, respectively, and Z denotes a random variable independent of X and Y with uniform distribution over 1_{3n} .

By Proposition 10.9, for $K \geq 1$, we can apply Theorem 10.3 to the sets A = $\mathcal{C}(\mu; \sim)$ and $B = \mathcal{C}(\nu; \sim)$ to obtain $H \subseteq G$ and $x, y \in G$ such that

- (1) (Approximate structure) H is an $K^{O(1)}$ -approximate subgroup. (2) (Controlling the metric entropy) $|h(H; 16\eta) \frac{h(\mathcal{C}(\mu; \sim); 16\eta) + h(\mathcal{C}(\nu; \sim); 16\eta)}{2}| \le$ $\log K$.
- (3) (Large intersection) $|h(\mathcal{C}(\mu; \sim) \cap xH; 16\eta) h(\mathcal{C}(\mu; \sim); 16\eta)| < \log K$ and

$$|h(\mathcal{C}(v; \sim) \cap Hy; 16\eta) - h(\mathcal{C}(v; \sim); 16\eta)| \le \log K.$$

We will show that Theorem 2.12 holds for these choices of $H \subseteq G$ and $x, y \in G$. By Lemma 7.1 we have $|\log \mathcal{N}_{16n}(\mathcal{C}(\mu; \sim)) - \log(|\mathcal{C}(\mu; \sim)_n|/|1_n|)| \leq 1$. Hence, Lemma 10.8 implies

$$|\log \mathcal{N}_{16\eta}(\mathcal{C}(\mu; \sim)) - (\log(1/|1_{\eta}|) - \log \|\mu_{\eta}\|_{2}^{2})| \ll \log K$$

if $K \geq 1$. Thus

$$|\log \mathcal{N}_{16n}(\mathcal{C}(\mu; \sim)) - H_2(\mu; \eta)| \ll \log K. \tag{10.25}$$

By (10.25), Lemma 7.1, and part (2) of Theorem 10.3, we have

$$\left| h(H; \eta) - \frac{H_2(\mu; \eta) + H_2(\nu; \eta)}{2} \right| \ll \log K$$

if $K \geq 1$. We also notice that by (10.7) we have $|H_2(\mu; \eta) - H_2(\nu; \eta)| \ll \log K$. Combining these two facts we deduce that

$$|h(H; \eta) - H_2(\mu; \eta)| \ll \log K$$
.

This proves the second property mentioned in Theorem 2.12 for the set H. Finally, to prove the third property, note that

$$\mathcal{N}_n(\mathcal{C}(\mu; \sim) \cap xH) \succcurlyeq K^{-O(1)} \mathcal{N}_n(\mathcal{C}(\mu; \sim));$$

and so by (10.25) we get

$$\mathcal{N}_{\eta}(\mathcal{C}(\mu; \sim) \cap xH) \succcurlyeq K^{-O(1)} 2^{H_2(\mu; \eta)}. \tag{10.26}$$

On the other hand, by Lemma 7.1, Corollary 7.4, and the fact that $\mathcal{C}(\mu; \sim)$ is an η -separated set, we have

$$\mathcal{N}_{\eta}(\mathcal{C}(\mu;\sim)\cap xH)\approx \mathcal{N}_{\eta/2}(\mathcal{C}(\mu;\sim)\cap xH)=\#(\mathcal{C}(\mu;\sim)\cap xH).$$

Altogether we have

$$\#(\mathcal{C}(\mu; \sim) \cap xH) \succcurlyeq K^{-O(1)} 2^{H_2(\mu; \eta)}.$$
 (10.27)

For every $z' \in \mathcal{C}(\mu; \sim)_{\eta}$, there exist $z \in \mathcal{C}(\mu; \sim)$ such that $z' \in z_{\eta}$. Since $\mu_{3\eta}(z') = \mu(z'_{3\eta})/|1_{3\eta}|$ and $\mu_{2\eta}(z) \geq K^{-10} \|\mu_{\eta}\|_2^2$, by part (1) of Lemma 10.4 we have

$$\mu_{3\eta}(z') \succcurlyeq \mu_{2\eta}(z) \ge K^{-10} \|\mu_{\eta}\|_2^2 \quad \text{and} \quad \mu(z'_{3\eta}) \ge \widehat{C} K^{-10} 2^{-H_2(\mu;\eta)}, \quad (10.28)$$

where $\widehat{C} = \Omega^{O(1)}$. Therefore

$$\mathbb{P}(XZ \in (xH)_{\eta}) \ge \int_{(\mathcal{C}(\mu; \sim) \cap xH)_{\eta}} \mu_{3\eta}(z') \, \mathrm{d}z'$$

$$\succcurlyeq K^{-10} \|\mu_{\eta}\|_{2}^{2} |(\mathcal{C}(\mu; \sim) \cap xH)_{\eta}|$$

$$\approx K^{-10} 2^{-H_{2}(\mu; \eta)} \mathcal{N}_{\eta}(\mathcal{C}(\mu; \sim) \cap xH) \succcurlyeq K^{-O(1)}.$$

The lower bound for $\mathbb{P}(ZY \in (Hy)_{\eta})$ can be proved by a similar argument. Finally, to prove the last claim, we have

$$\begin{split} |\{h \in H_{\eta} | \mathbb{P}(X \in (xh)_{3\eta}) \geq \widehat{C}K^{-10}2^{-H_{2}(X;\eta)}\}| \\ &= |\{z' \in (xH)_{\eta} | \mu(z'_{3\eta}) \geq \widehat{C}K^{-10}2^{-H_{2}(X;\eta)}\}| \\ &\geq |\{z' \in (\mathcal{C}(\mu; \sim) \cap xH)_{\eta} | \mu(z'_{3\eta}) \geq \widehat{C}K^{-10}2^{-H_{2}(X;\eta)}\}| \\ &= |(\mathcal{C}(\mu; \sim) \cap xH)_{\eta}| \\ &\geq K^{-O(1)}2^{H_{2}(\mu;\eta)} \cdot |1_{\eta}| = K^{-O(1)}|H_{\eta}|. \end{split}$$

This proves the claim.

ACKNOWLEDGMENTS. The authors would like to thank Péter Varjú for helpful comments. K.M.-K. and A.M. also thank Bernoulli Center in Lausanne for its hospitality. K.M.-K. would like to thank the Department of Mathematics at UCSD where part of the research was conducted. The authors would like to thank the anonymous referees for careful reading of the manuscript and their useful suggestions.

References

- L. Babai, N. Nikolov, and L. Pyber, *Product growth and mixing in finite groups*, Proceedings of the nineteenth annual ACM-SIAM symposium on discrete algorithms, pp. 248–257, ACM, New York, 2008.
- [2] A. Balog and E. Szemerédi, *A statistical theorem of set addition*, Combinatorica 14 (1994), no. 3, 263–268.
- [3] H. Bass, A. Lubotzky, A. R. Magid, and S. Mozes, *The proalgebraic completion of rigid groups*, Proceedings of the conference on geometric and combinatorial group theory, part II (Haifa, 2000), 95, pp. 19–58, 2002.
- [4] Y. Benoist and N. de Saxcé, *Convolution in perfect Lie groups*, Math. Proc. Cambridge Philos. Soc. 161 (2016), no. 1, 31–45.
- [5] _____, A spectral gap theorem in simple Lie groups, Invent. Math. 205 (2016), no. 2, 337–361.
- [6] J. Bourgain and A. Gamburd, On the spectral gap for finitely-generated subgroups of SU(2), Invent. Math. 171 (2008), no. 1, 83–121.

- [7] ______, Uniform expansion bounds for Cayley graphs of $SL_2(\mathbb{F}_p)$, Ann. of Math. (2) 167 (2008), no. 2, 625–642.
- [8] _____, Expansion and random walks in $SL_d(\mathbb{Z}/p^n\mathbb{Z})$. II, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 5, 1057–1103, With an appendix by Bourgain.
- [9] _____, A spectral gap theorem in SU(d), J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1455–1511.
- [10] R. Boutonnet, A. Ioana, and A. Salehi Golsefidy, *Local spectral gap in simple Lie groups and applications*, Invent. Math. 208 (2017), no. 3, 715–802.
- [11] F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), no. 4, 345–362.
- [12] N. de Saxcé, Trou dimensionnel dans les groupes de Lie compacts semisimples via les séries de Fourier, J. Anal. Math. 120 (2013), 311–331.
- [13] A. Gamburd, On the spectral gap for infinite index "congruence" subgroups of SL₂(**Z**), Israel J. Math. 127 (2002), 157–200.
- [14] W. T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465–588.
- [15] ______, Quasirandom groups, Combin. Probab. Comput. 17 (2008), no. 3, 363–387.
- [16] K. H. Hofmann and S. A. Morris, *The structure of compact groups: a primer for students a handbook for the expert*, de Gruyter, Berlin, 2006.
- [17] E. Lindenstrauss and N. de Saxcé, *Hausdorff dimension and subgroups of SU*(2), Israel J. Math. 209 (2015), no. 1, 335–354.
- [18] A. Salehi Golsefidy, Super-approximation, II: the p-adic case and the case of bounded powers of square-free integers, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 7, 2163–2232.
- [19] A. Salehi Golsefidy and P. P. Varjú, *Expansion in perfect groups*, Geom. Funct. Anal. 22 (2012), no. 6, 1832–1891.
- [20] P. Sarnak and X. X. Xue, *Bounds for multiplicities of automorphic representations*, Duke Math. J. 64 (1991), no. 1, 207–227.
- [21] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton University Press, Princeton, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.
- [22] T. Tao, Product set estimates for non-commutative groups, Combinatorica 28 (2008), no. 5, 547–594.
- [23] P. P. Varjú, Expansion in $SL_d(\mathcal{O}_K/I)$, I square-free, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 1, 273–305.
- [24] ______, Random walks in compact groups, Doc. Math. 18 (2013), 1137–1175.

K. Mallahi-Karai
Department of Math. & Logistics
Jacobs University
Campus Ring I, 28759
Bremen
Germany

A. Mohammadi Mathematics Department University of California San Diego, CA 92093-0112 USA

ammohammadi@ucsd.edu

k.mallahikarai@jacobs-university.de

A. S. Golsefidy Mathematics Department University of California San Diego, CA 92093-0112 USA

golsefidy@ucsd.edu