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Abstract

Natural language processing (NLP) models
trained on people-generated data can be un-
reliable because, without any constraints, they
can learn from spurious correlations that are not
relevant to the task. We hypothesize that enrich-
ing models with speaker information in a con-
trolled, educated way can guide them to pick up
on relevant inductive biases. For the speaker-
driven task of predicting code-switching points
in English–Spanish bilingual dialogues, we
show that adding sociolinguistically-grounded
speaker features as prepended prompts signif-
icantly improves accuracy. We find that by
adding influential phrases to the input, speaker-
informed models learn useful and explainable
linguistic information. To our knowledge, we
are the first to incorporate speaker characteris-
tics in a neural model for code-switching, and
more generally, take a step towards develop-
ing transparent, personalized models that use
speaker information in a controlled way.

1 Introduction

Imbalanced datasets, flawed annotation schemes,
and even model architectures themselves can all
cause neural models to encode and propagate bi-
ases by incorrectly correlating social information
with labels for a task (Sun et al., 2019; Field et al.,
2021). As a result, models may be brittle and offen-
sive in the presence of racial or gender attributes
(Kiritchenko and Mohammad, 2018; Nozza et al.,
2021), unsuitable for processing mixed-language
text or dialect variations (Sap et al., 2019; Kumar
et al., 2021; Winata et al., 2021), or ones that can
miscommunicate intents in translation setups. Con-
textualizing models in social factors is important
for preventing these issues and building more so-
cially intelligent and culturally sensitive NLP tech-
nologies (Hovy and Yang, 2021).

We hypothesize that grounding models in
speaker information can help them learn more

useful inductive biases, thereby improving per-
formance on person-oriented classification tasks.
We test this hypothesis on the task of predicting
code-switching (language mixing) in a multilin-
gual dialogue, which is inherently linguistically
and socially driven (Li, 2013). Prior approaches
for predicting code-switching consider only shal-
low linguistic context (Doğruöz et al., 2021). As
we show in our experiments1, using a standard
Transformer-based classifier (Conneau et al., 2020)
trained with only linguistic context results in sub-
optimal and unstable models. Moreover, we believe
code-switch prediction is a suitable first task for
learning speaker-driven inductive biases; we can
test whether models learn useful relationships be-
tween social attributes while minimizing the risk of
building a model that perpetuates social prejudices.

We ground the models in relevant social fac-
tors, such as age, native language, and language-
mixing preference of the interlocutors, via text-
based speaker descriptions or prompts (cf. Zhong
et al., 2021; Wei et al., 2021). We find that prepend-
ing speaker prompts to dialogue contexts improves
performance significantly, and leads to more stable
generalizations. Our prompts are different from
the embedding-based personas of Li et al. (2016)
and the synthesized descriptions from Persona-
Chat (Zhang et al., 2018), capturing theoretically
grounded social and linguistic properties of speak-
ers, as opposed to hobbies or occupations.

To analyze the inductive biases that the models
learn, we use SelfExplain (Rajagopal et al., 2021)—
an interpretable text classification model highlight-
ing key phrases in the input text. We propose a
new method for aggregating the interpretations pro-
duced by SelfExplain to explain model predictions
and align them with sociolinguistic literature.

We motivate our study of predicting code-
switching in §2, and describe the task and inter-

1All data and code will be available at https://

github.com/ostapen/Switch-and-Explain.
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Prompt Speaker Description Example

List
ASH is first speaker, older, female, from Spanish speaking country, between English and
Spanish prefers both, rarely switches languages.

JAC is second speaker, older, male, from Spanish speaking country, between English and
Spanish prefers both, never switches languages.

Sentence
ASH is a middle-aged woman from a Spanish speaking country. Between English and
Spanish she prefers both, and she rarely switches languages. ASH speaks first.

JAC is a middle-aged man from a Spanish speaking country. Between English and
Spanish he prefers both, and he never switches languages. JAC speaks second.

Partner
ASH, JAC are all middle-aged from a Spanish speaking country. Between English and
Spanish they prefer both.

ASH is a woman and rarely switches languages. JAC is a man and never switches
languages. ASH speaks first.

Table 1: Examples of prompts for two speakers ID’d ASH and JAC, structured in the three different forms: List,
Sentence, and Partner. We prepend these prompts to dialogue context D to train our speaker-grounded models. All
prompts cover attribute set A consisting of age, gender, country of origin, language preference, code-switching
preference, and speaker order in the global dialogue context. Sentence and List prompts are similar in that they
describe speakers separately; Sentence prompts are more prose-like. Partner prompts first highlight similarities
between speakers, capturing speaker entrainment features, before describing unique features of each speaker.

vents us from labeling monolingual utterances as
code-switched only because they have an ambigu-
ous term such as a proper noun.

Speaker-Aware Grounding Each utterance in
the dialogue context has a speaker associated with
it. Let the set of all speakers in the dialogue con-
text be S = {s1, s2, s3, . . . , sM}. We define a
speaker-aware prompt P = {p1, p2, p3, . . . , pK}
as a concatenation of K strings pi, each describing
an attribute of a speaker in the dialogue. Together,
P describes the unique attributes of all M speakers
in the dialogue context.

Our proposed speaker-guided models take as
input P · D = [p1, . . . , pK , di−w, . . . , d

′

i], the con-
catenation of prompts and dialogue context. We
encode the inputs with a multilingual Transformer-
based architecture (Devlin et al., 2019; Conneau
et al., 2020) before using a linear layer to predict
the presence or absence of a code-switch.

3.2 Generating Speaker Prompts

We incorporate global information about each
speaker in a dialogue using different prompt styles,
generating a prompt P for a given dialogue context
D. In theory, these prompts have the potential to
change the model’s priors by contextualizing dia-
logue with speaker information and should be more
useful for predicting upcoming language switches.
We consider two aspects when designing prompts.

Content The prompt describes all speakers S
in the dialogue using a set of speaker attributes
A = {a1, a2, . . . , aT }. To create a description
Pm for speaker sm ∈ S, we combine phrases
psm1

, psm2
, . . . , psmT

, such that each phrase cor-
responds to exactly one attribute. As Table 1 indi-
cates, we use speaker IDs to tie a speaker to her
description, and all prompts cover the full set of
attributes, A, for all speakers in D.

Form We consider three prompt forms: List, Sen-

tence, and Partner. The prompt form determines
both the resulting structure of prompt string P and
the way we combine local attribute phrases pj to
generate a speaker description Pi. Table 1 provides
concrete examples of List, Sentence, and Partner
prompts for a pair of speakers.

List and Sentence prompts do not explicitly
relate speakers to each other: the final prompt
P = {P1, . . . , Pm, . . . , PM} concatenates individ-
ual speaker prompts Pi. List forms combine all
attributes in a speaker description Pm with com-
mas, while Sentence forms are more prose-like.
These prompt forms are most straightforward to
implement and simply concatenate each speaker
profile without considering interactions of features.
The model must implicitly learn how attributes be-
tween different speakers relate to one another in a
way that influences code-switching behavior.

Speaker entrainment or accommodation influ-
ences code-switching behavior (Bawa et al., 2020;
Ahn et al., 2020; Myslín and Levy, 2015; Parekh
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et al., 2020). Thus, we also created Partner prompts
to explicitly highlight relationships between speak-
ers. We hypothesize that these are more useful than
the List and Sentence forms, from which the model
must implicitly learn speaker relationships. Partner
prompts include an initial Pi containing attribute
qualities that all speakers share:

Pi :=
�

paj |aj = vk, ∀s ∈ S
"

,

where aj ∈ A and vk is a value taken on
by attribute aj . As an example, all speakers
may prefer Spanish, so Pi will contain an at-
tribute string pi capturing this. The final partner
prompt is Ppartner = {Pi, P1, P2, . . . , PM}, where
speaker-specific descriptions P1, P2, . . . , PM high-
light unique values of each speaker.

We prepend prompts P to dialogue context D
using [EOS] tokens for separation. We do not vary
the feature order in a given prompt, but additional
prompt tuning may reveal an optimal presentation
of features in these prompts.

3.3 Interpretable Text Classification

Our proposed setup takes as input the dialogue con-
text and a prepended speaker prompt. To explain
predictions of the baseline and our speaker-aware
setups, we use SelfExplain (Rajagopal et al., 2021),
a framework for interpreting text-based deep learn-
ing classifiers using phrases from the input. Self-
Explain incorporates a Locally Interpretable Layer
(LIL) and a Globally Interpretable Layer (GIL).
GIL retrieves the top-k relevant phrases in the train-
ing set for the given instance, while LIL ranks local
phrases within the input according to their influ-
ence on the final prediction. LIL quantifies the
effects that subtracting a local phrase representa-
tion from the full sentence have on the resulting
prediction. We exclusively use LIL to highlight
phrases in the speaker prompts and dialogues to
identify both social factors and linguistic context
influential to models; through post-hoc analysis,
we can reveal whether these features can be corrob-
orated with prior literature or indicate a model’s
reliance on spurious confounds. We do not use the
GIL layer because we do not have instance-level
speaker metadata; instead, speaker features are on
the dialogue-level and will not yield useful top-k
results. Figure 4 illustrates our full proposed model
with two classification heads: one for prediction
and one for interpretation. §7.1 describes how we
score phrases according to their influence on the
final prediction.

4 Ethical Considerations

Data Privacy In line with prior behavioral stud-
ies, our work illustrates that sociolinguistic cues
are essential for predicting code-switching points.
To deploy our speaker-informed model, we must
protect the identity and privacy of users through
techniques such as federated machine learning: de-
ploying local models to end-users without sending
any user information back to the cloud (Konečný
et al., 2016). Local models and data should be
encrypted to prevent breaches and tampering with
algorithms, as well as possible reconstruction of
training data (Hitaj et al., 2017; Carlini et al., 2019;
Zhang et al., 2020), minimizing the risk of leaking
speaker information. Additionally, deployed sys-
tems should only collect and access information if
the user agrees to it. All conversational participants
voluntarily shared the data we use.

Moreover, this research is important to conduct
because there is evidence that human users react
positively to appropriately adaptive technologies
(Branigan et al., 2010). Specifically, initial experi-
ments indicate that users rate dialogue systems that
incorporate code-switching higher than ones that
do not (or that do it less naturally) (Ahn et al., 2020;
Bawa et al., 2020). A classifier, such as the one we
explore in this work, can be very useful for devel-
oping a naturalistic dialogue system that is useful
and enjoyable to use by people of diverse linguis-
tic backgrounds. Our work focuses on English-
Spanish code-switching which is widespread and
accepted, but different regions and cultures have
varying opinions of code-switching. It is important
to understand these before building an application
for a new language pair (Doğruöz et al., 2021).

5 Experimental Setup

5.1 Dialogue Data

Our task requires a dataset which not only has nat-
ural, mixed-language dialogue, but includes also
information about its speakers. We use the Ban-
gor Miami (Deuchar et al., 2014) dataset (BM)
containing 56 transcribed dialogues in mixed En-
glish and Spanish. Most dialogues are between
two speakers, but may contain three or four; an-
other set of dialogues records only one speaker’s
side of the conversation. These “monologues” are
still useful to study how linguistic cues influence
code-switching. Moreover, language IDs are pro-
vided for every token. The dataset includes a ques-
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tionnaire of self-reported information about each
conversational participant; this includes dialogue-
independent, macro-social features such as age,
gender, and country of origin, as well as language
preferences and speaker-provided linguistic ability.
We identify each country according to the primary
language (English, Spanish, or neither) spoken in
the country and bin age features into four com-
parative groups ranging from youngest to oldest.
An order feature indicates which speaker spoke
first, second, etc. in the global dialogue context; we
hypothesize that speakers may entrain, or change
their speech to match, those who start a conversa-
tion (Ahn et al., 2020). Altogether, six features
define our attribute set A.

5.2 Code-switching Dataset Creation

For each dialogue in BM, we extract all existing
code-switch points; for a given switched word, we
retain all left-most context in its containing utter-
ance and vary the number of prior utterances that
are included as context between 1, 2, 3, and 5. To
generate negative examples, we select monolingual
utterances by sampling from a binomial distribu-
tion with p = 0.75. For each retained utterance, we
randomly choose three potential switch points (ex-
tracting leftmost context in the same way), result-
ing in a dataset that is approximately 25% switched.

Creating Splits Most speakers participate in only
one of the 56 dialogues in the corpus. To help en-
sure the model sees new dialogue context in train-
ing and testing time, we split the train, validation,
and test splits by conversation in a 60:20:20 ratio.
For each dialogue, we compute the multilinguality
index (M-Index) (Barnett et al., 2000), a measure
between 0 and 1 indicating the mixedness in the
text: 0 is monolingual text, while 1 is a code-switch
at every word. We stratify the conversations by
the M-Index and code-switching labels to enforce
a more balanced distribution of monolingual and
mixed-language conversations.

We down-sample monolingual examples to bal-
ance training and validation splits and report results
on unbalanced validation and test sets. Table 2
shows the proportions of code-switched examples.

Set Validation Test

Balanced 0.500 0.500
Unbalanced 0.250 0.252

Table 2: Proportion of code-switched examples in the
balanced and unbalanced validation and test splits.

Our final balanced training and validation splits
have about 14,000 and 3,000 examples, while the
unbalanced validation and test sets have approxi-
mately 7,000 and 9,000 examples, respectively.

Marking Dialogue Turns The baseline setup
does not incorporate speaker cues. Instead we use
[EOT] and [EOU] tokens at the end of each utter-
ance to signify end-of-turn and end-of-utterance,
respectively. Given two consecutive utterances, an
[EOT] signifies a change in speakers, while [EOU]
indicates no change. In the speaker-informed
setup, unique speaker IDs distinguish utterances
from each speaker, and we prepend informative
prompts characterizing the conversational partici-
pant(s). Prompts include user-reported metadata of
personal preferences and characteristics. We use
three prompt templates, as detailed in Section 3.

5.3 Training Details

We use XLM-RoBERTa (XLMR) (Conneau et al.,
2020) to encode the text and jointly fine-tune
XLMR on the code-switch prediction task. As a
baseline, we use an XLMR model without prompt
inputs P . Our speaker-prompted models, SP-
XLMR, are trained by prepending speaker prompts
to the dialogue context. The small size of our
dataset results in higher variability in performance.
To mitigate this, we select 10 random seeds, and
train a given model setup (i.e., list prompt, no
prompt, etc.) on each seed. The number of seeds
is arbitrary; however, we choose a generous num-
ber of seeds to yield a tighter confidence interval
for our results. We use 3 prompt types, resulting
in 30 speaker-prompted models and 10 baseline
models. We refer to speaker-prompted models as
SP-XLMR and to the non-speaker baseline as sim-
ply XLMR. All models are trained using AdamW
optimizers with a weight decay of 1e−3 for a maxi-
mum of 10 epochs. SP-XLMR models are trained
with a learning rate of 5e−5 and XLMR models use
a learning rate of 1e−5. To refer to a particular
speaker-prompted model, we use a combination of
prompt form and context size, for example, LIST-5.

We report accuracy, F1, precision, and recall on
the unbalanced validation and test sets. We use the
Mann Whitney U significance test because it does
not assume normally-distributed population means.

6 Evaluation

Speaker prompts significantly improve code-

switch prediction. Table 3 includes average ac-
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curacy and F1 of XLMR, LIST, SENTENCE, and
PARTNER models, across all context windows and
seeds on the unbalanced validation and test sets.
Each value is an average of 40 models. Adding
prompt features boosts accuracy upwards of 5-
8 percent points and F1 by .04-.05 compared to
XLMR; XLMR does not even surpass the major-
ity baseline in accuracy. Based on validation set
results, partner features are most helpful, confirm-
ing our sociolinguistically-driven hypothesis (see
Section 3.2) Moreover, the standard deviation of
XLMR accuracy is more than twice as large (3.66 on
validation and 2.95 on test) as that of any speaker-
prompted model. The improvements in accuracy
and decrease in variation between models suggest
that explicit speaker information guides models
to learn relevant inductive biases for the code-
switching task. However, we cannot guarantee that
the trained models will not reveal harmful social
biases in other tasks.

We see similar trends, regarding accuracy, F1,
and standard deviation, in Table 4, which includes
results for SP-XLMR and XLMR across the different
context windows; each SP-XLMR and XLMR value
is an average of 30 and 10 models, respectively.
Larger context windows are helpful for both model
types. Tables 8 and 9 include precision and recall
scores for each prompt type and context window;
in general, speaker-prompted models have upwards
of .10 points higher precision than baseline XLMR,
indicating that speaker information helps to iden-
tify valid switch points. As the context window
increases, all speaker prompt types yield fairly sim-
ilar performance. However, when context sizes
are small (1 or 2 previous utterances only), Partner
and Sentence prompts yield higher accuracy and
precision than List models, perhaps because these
prose-like formats are more useful for the model
than a simple concatenate list of features.

Using irrelevant speaker descriptions worsens

model performance. As a control, we generated
synthetic descriptions for each speaker, including
features such as favorite foods and weather, owned
pets, and height. None of these attributes are dis-
cussed in the conversations and would not explicitly
influence code-switch production. After generating
descriptions in the Sentence and Partner format, we
prepend them to dialogues using a context window
of 5. According to the results in Table 5, these
pseudo-descriptions significantly decrease perfor-
mance, even relative to the baseline XLMR model

Validation Test

Model Acc. (%) F1 Acc. (%) F1

Majority 75.0 – 74.8 –
Minority 25.0 .294 25.2 .296
XLMR 70.3 ±3.66 .573 72.0 ±2.95 .591

List 77.6 ±1.68 .615 79.7 ±1.13 .632

Sentence 78.1 ±1.60 .618 79.5 ±1.31 .630
Partner 78.3 ±1.58 .621 79.4 ±1.50 .622

Table 3: Average accuracy and F1 scores of prompt
models and XLM-R on validation and test sets. There
are N=40 models for all setups. Majority and Minority
baselines are included for comparison. Bold scores
indicate the best performance on the split. All results
are significant (p < 0.0001) by Mann-Whitney U Tests.

trained with a context window of 5. The results
indicate that domain knowledge is useful to under-
stand which speaker features to add to a model to
improve performance, and they give more support
to the claim that relevant speaker information helps
guide models to useful inductive biases.

7 Explaining Performance Gaps

Compared to baseline models, speaker models not
only attain higher accuracy and F1 scores, but they
also have a much smaller standard deviation in
scores. For these experiments, we seek to explain
our findings using the important phrases identified
by LIL. Within a speaker prompt P , each speaker
characteristic maps to its own phrase (i.e., from

an English-speaking country); in the dialogue, we
extract 5-gram phrases using a sliding window. We
detail our approach to scoring phrase influence and
analyze key dialogue and speaker features.

7.1 Computing Phrase Relevance

Our goals are to (a) identify phrases in the input
whose removal will change the resulting model pre-
diction and (b) identify phrases which contribute
high confidence to the resulting model prediction.
Let F be the full textual input consisting of sole di-
alogue context or dialogue context prepended with
prompts, while ZF is the softmax output from our
classifier. Let j be the index of the class predicted
from the full input. LIL inputs ZF along with a se-
ries of masks, each corresponding to a local phrase
in either the dialogue or the speaker prompt. Let nt

be a local phrase, such that nt is either a speaker
phrase pi or an n-gram in an utterance di ∈ D.
Using LIL, we quantify the effect of removing the
representation of phrase nt from the representation
of F by comparing the activation differences of
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Validation Test

SP-XLMR XLM-R SP-XLMR XLM-R

Ctx Acc. (%) F1 Acc. (%) F1 Acc. (%) F1 Acc. (%) F1

1 76.9 ±1.96 .605 66.4 ±2.84 .540 78.8 ±1.54 .607 69.5 ±2.75 .565
2 77.9 ±1.10 .615 70.3 ±3.27 .572 79.6 ±1.13 .629 71.8 ±2.23 .587
3 78.6 ±1.17 .622 71.4 ±1.92 .582 80.0 ±0.96 .636 72.4 ±2.31 .598
5 78.7 ±1.56 .631 73.1 ±2.74 .598 79.7 ±1.34 .639 74.2 ±2.39 .612

Table 4: Average Accuracy and F1 of prompt models and baseline XLM-R on validation and test sets, for N=30
SP-XLMR models and N=10 XLMR models. All results are significant (p < 0.0001) by Mann Whitney U Tests.

Znt and Zf at index j, and we analyze the result-
ing sign and magnitude to address goals (a) and (b),
respectively:

C :=

�

1 argmaxZnt = j

−1 argmaxZnt ̸= j
(1)

r(nt) = C |zntj − zFj
| (2)

where zntj and zFj
are the softmax scores of the

phrase-ablated sentence and the full sentence, re-
spectively, at index j, and r(nt) is the relevance
score of nt. As Equations 1 and 2 indicate, we
analyze a local phrase’s score as follows:
Sign A positive sign (C = 1) indicates that the rep-

resentation without nt does not change the re-
sulting prediction. A negative score (C = −1)
indicates a more influential phrase because its
ablation results in a different prediction.

Magnitude corresponds to the weight of the con-
tribution of a particular phrase. If the acti-
vation difference is high in magnitude, then
nt strongly influences the resulting prediction.
Magnitudes near 0 indicate a non-influential
phrase.

Our scoring approach differs slightly from the
original implementation (see Appendix A.2).

7.2 Analyzing Dialogue Phrases

Given a context size, the dialogue phrase masks are
identical for SP-XLMR and XLMR; thus, we di-
rectly compare which phrases are most informative
in the presence and absence of speaker features. We
consider only phrases which are influential enough
to change a given model’s prediction after their rep-
resentations are subtracted from the full-sentence
representations (phrases with a negative score).

Setting context size to 5, we identify examples
from the validation set for which the majority of SP-
XLMR models (out of 30) predicted correctly and
the majority of XLMR models (out of 10) predicted

incorrectly. Nearly 95% of such examples are not
switched, indicating that added speaker informa-
tion helps improve model precision. We sample a
portion of these instances for our analysis.

For a given validation set example and model
setup, we track all influential phrases and count
the number of models for which each phrase is in-
fluential. To account for phrase interactions, we
track the agreement on co-occurring pairs and trios
of important phrases. We compare only top-10 in-
fluential phrases. We use 10 phrases because all
models rank at least 10 phrases as influential (but
not 15 or 20). Phrase scores in the top-k, where
k < 10, tend to all be very similar. We are not in-
terested in small-scale score differences, and thus,
equally consider all phrases ranked in the top-10.
We hypothesize that speaker models (1) exhibit
more phrase agreements compared to baseline mod-
els and (2) use more helpful and relevant linguistic
features for code-switch prediction.

Most speaker models agree on which phrases

are important. In addition to tracking which
individual phrases are in the top-10, we analyze
how many pairs and trios of phrases are in the
top-10 list. Figure 2 indicates that the majority of
speaker-prompted models (out of 30) tend to agree
on the top-10 important phrase groupings, espe-
cially across single and pairwise groupings. The
speaker models likely pick up on similar inductive
biases, as revealed through the higher feature agree-
ment among these models. Only around 38-40% of
baseline models tend to agree on which phrases are
most important, potentially explaining the higher
standard deviation in results among the baseline
models compared to the speaker models.

Speaker models make better use of language in-

formation. On monolingual (negative) examples,
both speaker-prompted and baseline models tend
to look at a majority of monolingual phrases in the
same languages (English or Spanish), and these
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models and evaluate on the validation set. Note
that this is different from the phrase ablations us-
ing LIL because we finetune the XLM-R encoder
during the training process; in this setup, the ab-
lated feature information is never backpropagated
to update the encoder weights.

The results of these experiments (see Appendix
A.5) give some evidence that language preference,
mixing, and age information have statistically sig-
nificant effects on the performance of Partner-5
models, but this does not hold for the Sentence-5
models. We have strong evidence to believe that
these speaker attributes have more complex un-
derlying relationships and leave the exploration of
these multi-feature interactions for future work.

8 Related Work

Our use of prompts2 is similar to Zhong et al.
(2021) and Wei et al. (2021), who rely on prompts
to put models in different states for different tasks.

Speaker Personas Open-domain dialogue agents
which act according to a persona are more natu-
ral and engaging than the non-personalized base-
lines (Li et al., 2016); these personas can be short,
superficial descriptions generated through crowd-
sourcing (Zhang et al., 2018), gathered from Red-
dit (Mazaré et al., 2018), or self-learned (inferred)
from dialogue context (Madotto et al., 2019; Cheng
et al., 2019). These works, however, primarily eval-
uate dialogue content and only in one language
(English) instead of analyzing how speaker proper-
ties influence the downstream dialogue structure.

Addressing Model Bias Prior works for miti-
gating social biases feature adversarial learning
(Pryzant et al., 2018; Elazar and Goldberg, 2018),
counterfactual data augmentation (Zmigrod et al.,
2019; Kaushik et al., 2020) or dataset balanc-
ing (Zhao et al., 2017), and more recently, us-
ing an interpretability-driven approach to uncover
and controllably demote hidden biases (Han and
Tsvetkov, 2021). Techniques for adapting to lin-
guistic variants and mixed-language data include
adversarial learning to pick up on key linguistic
cues (Kumar et al., 2021), augmenting datasets
with synthetic text (Winata et al., 2019) or ex-
amples of variants that models underperform on
(Chopra et al., 2021), discriminative learning (Go-
nen and Goldberg, 2019), and transfer learning with

2Our prompts are data-dependent and fixed, and thus rather
unrelated to the prompt tuning literature (Liu et al., 2021).

morphological cues (Aguilar and Solorio, 2020).

Codeswitch Prediction The first work in code-
switch prediction (Solorio and Liu, 2008) uses
Naive Bayes (NB) on lexical and syntactic fea-
tures of shallow word context before switch bound-
aries from a small, self-collected dataset of English-
Spanish conversations. Another NB approach pre-
dicts switch points on Turkish-Dutch social media
data (Papalexakis et al., 2014), additionally using
multi-word expressions and emoticons in their ex-
periments. Piergallini et al. (2016) extend the tech-
niques of the prior two works to Swahili-English
codeswitched data. Two fine-grained logistic re-
gression analyses (Fricke and Kootstra, 2016; Mys-
lín and Levy, 2015) go beyond lexical informa-
tion, incorporating psycholinguistic properties such
as word accessibility and priming effects, and in-
clude binary features to code for properties such as
speaker age and preceding utterance language.

9 Conclusion

To the best of our knowledge, this is the first work
incorporating sociolinguistically-grounded social
factors in an interpretable neural model for code-
switch point prediction. Our speaker-aware models
can better leverage mixed-language linguistic cues,
compared to a text-only baseline: specifically, we
showed performance gains of up to 7% in accu-
racy and .05 points in F1 scores on an imbalanced
code-switching dataset. Our work is limited to
one language pair and uses a small dataset. Thus,
additional studies are necessary to assess the gener-
alizability of our findings to other languages. More-
over, speaker identities can change dynamically in
different settings. Linguistic preferences may also
change over time. We could move beyond static
personas, refining them using local dialogue con-
text. In addition, speaker-grounded models must
be carefully engineered to protect user privacy, us-
ing proxies for personal information and keeping
private information away from shared resources.

In the future, we would like to explore whether
such speaker prompting can improve models in
other person-centered tasks, e.g., coreference res-
olution (especially for datasets explicitly testing
gender biases) or sentiment analysis. Using tech-
niques such as data augmentation, we can explic-
itly guide models away from biases learned during
training. With ethical considerations in mind, our
work advances the state-of-the-art in building more
adaptable and person-aware NLP technologies.

3861



Acknowledgements

We thank Vidhisha Balachandran, Dheeraj Rajo-
gopal, Xiaochuang Han, Artidoro Pagnoni, and the
anonymous reviewers for providing valuable feed-
back on our work. This work was supported in part
by grant No. 2019785 from the United States-Israel
Binational Science Foundation (BSF), National
Science Foundation (NSF) grants No. 2007960,
2007656, 2125201 and 2040926, and by grant No.
LU 856/13-1 from the Deutsche Forschungsge-
meinschaft (DFG).

References

Gustavo Aguilar and Thamar Solorio. 2020. From
English to code-switching: Transfer learning with
strong morphological clues. In Proc. ACL, pages
8033–8044.

Emily Ahn, Cecilia Jimenez, Yulia Tsvetkov, and
Alan W Black. 2020. What code-switching strategies
are effective in dialogue systems? In Proc. of the
Society for Computation in Linguistics (SCiL) 2020.

Ruthanna Barnett, Eva Codó, Eva Eppler, Montse
Forcadell, Penelope Gardner-Chloros, Roeland
Van Hout, Melissa Moyer, Maria Carme Torras,
Maria Teresa Turell, Mark Sebba, et al. 2000. The
lides coding manual: A document for preparing
and analyzing language interaction data version 1.1–
july 1999. International Journal of Bilingualism,
4(2):131–271.

Anshul Bawa, Pranav Khadpe, Pratik Joshi, Kalika
Bali, and Monojit Choudhury. 2020. Do multilingual
users prefer chat-bots that code-mix? let’s nudge
and find out! Proc. ACM Hum.-Comput. Interact.,
4(CSCW1).

Anne L. Beatty-Martínez, Christian A. Navarro-Torres,
and Paola E. Dussias. 2020. Codeswitching: A bilin-
gual toolkit for opportunistic speech planning. Fron-
tiers in Psychology, 11:1699.

Holly P Branigan, Martin J Pickering, Jamie Pearson,
and Janet F McLean. 2010. Linguistic alignment be-
tween people and computers. Journal of Pragmatics,
42(9):2355–2368.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neural
networks. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 267–284.

Hao Cheng, Hao Fang, and Mari Ostendorf. 2019. A dy-
namic speaker model for conversational interactions.
In Proc. NAACL-HLT, pages 2772–2785.

Parul Chopra, Sai Krishna Rallabandi, Alan W Black,
and Khyathi Raghavi Chandu. 2021. Switch point

biased self-training: Re-purposing pretrained models
for code-switching. In Findings of the ACL: EMNLP
2021.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Proc.
ACL, pages 8440–8451.

Margaret Deuchar, Peredur Davies, Jon Russell Herring,
M. Carmen Parafita Couto, and Diana Carter. 2014.
5. building bilingual corpora. In Enlli Môn Thomas
and Ineke Mennen, editors, Advances in the Study of
Bilingualism, pages 93–110. Multilingual Matters.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proc. NAACL-HLT, pages 4171—-4186.
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Validation Test

Acc. (%) F1 Acc. (%) F1

C-Partner-5 58.0 ±15.3 .502 62.1 ±17.1 .491
C-Sentence-5 56.2 ±16.9 .372 61.4 ±18.6 .351
XLMR-5 73.1 ±2.74 .598 74.2 ±2.39 .612
Partner-5 78.8 ±1.22 .629 79.5 ±1.27 .629
Sentence-5 78.2 ±1.86 .632 79.4 ±1.60 .644

Table 5: Average accuracy and F1 of Speaker Control models in the Partner and Sentence formats, with context
size 5 (C-Partner-5 and C-Sentence-5, respectively). The descriptions contain synthetic speaker features that are not
relevant to code-switching. We include the baseline XLMR-5, Partner-5, and Sentence-5 models for reference.

6 illustrates the percentage of code-switched points
that occur when conversational participants prefer
a given feature, both in the dataset and in the pre-
dictions from the (P)artner, (S)entence, and (L)ist
models that use a context size of 5.

Table 6 illustrates that the Partner, Sentence, and
List-5 models capture fairly well the relationship
between speaker preference and the presence of
code-switching. Specifically, the true percentages
of code-switches that occur when conversational
participants prefer to code-switch, or to speak En-
glish, Spanish, or both languages, are very close
to those predicted by the three models. Most code-
switches occur when there is a speaker present
who prefers to code-switch, to speak Spanish, or
to speak both English and Spanish. The majority
of code-switches (about 68%) occur when at least
one conversational participant prefers to speak both
English and Spanish. More code-switches occur
when at least one conversational participant, other
than the current speaker, prefers a feature, indicat-
ing that speakers may accommodate their partners.
This accommodation can influence communication
more than the speaker’s own preferences.

A.5 Speaker Ablation Results

To analyze which speaker features influence code-
switch predictions, we ablate a phrase, correspond-
ing to one of six speaker features (age, gender,
country of origin, language and code-switching
preferences, and speaker order). Table 7 indicates
that linguistic preferences are most influential.

A.6 Validation and Test Results

Tables 8 and 9 illustrate the results of all XLMR and
SP-XLMR models over different context sizes on
the validation and test sets, respectively.

A.7 Model Architecture Diagram

Figure 4 illustrates the high-level model architec-
ture of our proposed SP-XLMR models. The inputs

Pref. Speaker P-5 S-5 L-5 True

Switch
Any 44.3 45.8 44.2 44.4

Current 20.4 20.8 20.2 19.6
Non-Current 24.0 25.0 24.0 24.8

English
Any 21.7 22.9 24.0 22.4

Current 0 0 0 0
Non-Current 21.7 22.9 24.0 22.4

Spanish
Any 53.7 55.8 54.4 56.8

Current 23.6 24.1 23.5 25.8
Non-Current 30.0 31.7 30.9 31.0

Both
Any 68.0 67.4 68.6 68.0

Current 31.1 32.3 32.0 33.7
Non-Current 36.6 35.2 36.6 34.2

Table 6: Percentages of true and predicted code-
switches that occur given the presence of speakers with
different linguistic preferences. We consider four lin-
guistic attributes: preference to code-switch, as well as
preferences for English, Spanish, or both. We perform
our analysis using true and predicted switch-points from
the (P)artner-5, (S)entence-5, and (L)ist-5 models on
the validation set. N=10 for all setups.

Partner-5 Sentence-5

Feature Acc. (%) F1 Acc. (%) F1

Full 78.9 ± 1.23 .629 78.2 ± 1.86 .632
Language *76.9 ±1.82 .627 77.7 ±1.84 .629
Mixing *77.8 ±1.34 .632 78.9 ±1.72 .636
Country 79.0 ±1.54 .635 78.4 ±1.60 .632
Order 78.9 ±1.75 .631 78.4 ±1.30 .632

Gender 78.0 ±1.90 .630 77.6 ±2.12 .627
Age *77.5 ±1.09 .626 79.1 ±1.80 .634

Table 7: Average accuracy and F1 scores of speaker-
ablated Partner-5 and Sentence-5 models on the vali-
dation set. N=10 for both setups. Full (non-ablated)
models are included for comparison. Starred results are
significant (p < 0.05) by Mann-Whitney U Tests.

include speaker information prepended to dialogue
prompts and phrase masks for the LIL part of Self-
Explain. Our baseline model, XLMR is similar,
except it does not input speaker descriptions or
speaker phrase masks.
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Model Type Context Acc. (%) F1 Recall Precision

Majority - 75.0 – – –
List 1 75.9 ± 1.390 .601 .723 .515
List 2 77.4 ± 0.932 .609 .704 .538
List 3 78.3 ± 1.191 .620 .710 .553
List 5 78.9 ± 1.418 .631 .721 .564
Partner 1 77.4 ± 2.301 .611 .706 .541
Partner 2 78.3 ± 0.966 .618 .704 .552
Partner 3 78.7 ± 0.982 .626 .712 .559
Partner 5 78.8 ± 1.228 .629 .717 .562
Sentence 1 77.5 ± 1.667 .605 .689 .542
Sentence 2 77.9 ± 1.210 .616 .710 .546
Sentence 3 78.2 ± 1.255 .621 .695 .563
Sentence 5 78.2 ± 1.863 .632 .745 .551
XLMR 1 66.4 ± 2.836 .540 .789 .413
XLMR 2 70.3 ± 3.269 .572 .790 .452
XLMR 3 71.4 ± 1.916 .582 .796 .460
XLMR 5 73.1 ± 2.739 .598 .799 .480

Table 8: Performance of all models on the validation set (25.0% code-switched). Each value is an average of N=10
models.

Model Type Context Acc. (%) F1 Recall Precision

Majority - 74.8 – – –
List 1 78.9 ± 1.247 .614 .667 .572
List 2 79.7 ± 1.063 .630 .685 .584
List 3 80.0 ± 0.769 .640 .704 .588
List 5 80.2 ± 0.919 .643 .709 .590
Partner 1 78.5 ± 1.966 .598 .635 .570
Partner 2 79.4 ± 1.120 .624 .678 .581
Partner 3 80.0 ± 0.927 .635 .690 .589
Partner 5 79.5 ± 1.268 .629 .692 .581
Sentence 1 79.0 ± 1.260 .609 .659 .575
Sentence 2 79.6 ± 1.095 .634 .704 .579
Sentence 3 80.0 ± 1.021 .634 .694 .586
Sentence 5 79.4 ± 1.602 .644 .742 .573
XLMR 1 69.5 ± 2.755 .565 .787 .443
XLMR 2 71.8 ± 2.231 .587 .797 .467
XLMR 3 72.4 ± 2.312 .598 .813 .474
XLMR 5 74.2 ± 2.394 .612 .809 .495

Table 9: Performance of all models on the test set (25.2% code-switched). Each value is an average of N=10
models.
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