


we build can only be trustworthy as long as the

evaluation data are representative. Gebru et al.

(2021) and Bender and Friedman (2018) recognize

the importance of this information, including them

in their proposed guidelines for “datasheets” and

“data statements” respectively; but most datasets

unfortunately lack such meta-information. To the

best of our knowledge, MaRVL (Liu et al., 2021) is

the only dataset that is culturally-aware by design

in terms of its content.2

We propose a method to estimate a dataset’s

cultural representativeness by mapping it onto the

physical space that language speakers occupy, pro-

ducing visualizations such as Figure 1. Our contri-

butions are summarized below:

• We present a method to map NLP datasets unto

geographical areas (in our case, countries) and

use it to evaluate how well the data represent the

underlying users of the language. We perform an

analysis of the socio-economic correlates of the

dataset maps we create. We find that dataset rep-

resentativeness largely correlates with economic

measures (GDP), with geographical proximity

and population being secondary.

• We test a simple strategy for performing entity

linking by-passing the need for named entity

recognition. We evaluate its efficacy on 19 lan-

guages, showing that we can get within up to

85% of a NER-informed harder-to-obtain model.

We also show that encouragingly, using either

model largely leads to similar dataset maps.

2 Mapping Datasets to Countries

Assumptions This work makes two assumptions:

that (a) data locality matters, i.e., speakers of a

language are more likely to talk about or refer to

local news, events, entities, etc as opposed to ones

from a different side of the world, and (b) that we

can capture this locality by only focusing on en-

tities. Kumar et al. (2019) discuss these topical

correlations that are present in datasets,3 noting

that they exist and that L1 language identification

models tend to pick up on them, i.e. if a text men-

tions Finland, a L1 langid model is probably go-

ing to predict that the speaker is Finnish, because

p(Finland∣L1 = Finnish) is generally high. In

that work Kumar et al. (2019) make explicit effort

2Datasets designed to capture dialectal variations, e.g.,
SD-QA (Faisal et al., 2021), are culturally-aware in terms of
annotator selection, but there is no guarantee that their content
is also culturally-relevant for the language speakers.

3See §2 of their paper.

to avoid learning such correlations because they

are interested in building models for p(L1∣text)
(i.e. p(L1 = Finnish∣Finland)) that are not con-

founded by the reverse conditional. The mere fact

they need to do this, though, confirms that real-

world text has such topical confounds.

As for our second assumption that we can cap-

ture these topical correlations by only looking at

entities, one need only to take a look at Table 2

of Kumar et al. (2019), which lists the top topi-

cal confounding words based on log-odds scores

for each L1 language in their dataset: all lists in-

clude either entities related to a country where that

language is spoken (e.g. ‘Merkel’, the name of a

former chancellor, for German) or topical adjec-

tives (e.g. ‘romanian’ for Romanian).

Approach For a given dataset, our method fol-

lows a simple recipe:

1. Identify named entities present in the dataset.

2. Perform entity linking to wikidata IDs.

3. Use Wikidata to link entities to countries.

We discuss each step below.

Entity Recognition Step Standard entity linking

is treated as the sequence of two main tasks: entity

recognition and entity disambiguation. One ap-

proach is to first process the text to extract entities

and then disambiguate these entities to the correct

entries of a given knowledge base (eg. Wikipedia).

This approach relies on NER model quality.

However, to perform analysis on several datasets

spanning several low-resource languages, one

needs good-quality NER models in all these lan-

guages. The interested reader will find a discussion

on the cross-lingual consistency of NER models in

Appendix F.4 As we show in Section §4, we can

bypass this NER step if we tolerate a small penalty

in accuracy.

Entity Linking Step In this step we map named

entities to their respective Wikidata IDs. We further

discuss this step in Section §4.

From Entities to Countries We produce maps

to visualize the geographical coverage of the

datasets we study, discussing their properties and

our findings in Section §3.

4Discussion summary: state-of-the-art NER models are
not cross-lingually consistent, i.e. they do not produce the
same entity labels when presented with translations of the
same sentence. We recommend using parallel data as part
of the evaluation sets in multiple languages to measure this
important aspect of models’ performance.
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To link entities to countries,5 we rely on Wiki-

data entries, depending on the type of entity:

• for persons, we log their places of birth (P19) and

death (P20), and country of citizenship (P27);

• for locations, we search for their associated coun-

try (P17); and

• for organizations, we use the links of the ‘lo-

cated_at’ (P276) and ‘headquartered_at’ (P159)

relations.

Since places of birth/death and headquarters are

not necessarily at the country level, we perform

a second step of associating these locations with

countries. In cases where the result does not cor-

respond to a modern-day country (as can often be

the case with historical figures), we do not make

any attempts to link it to any modern day countries,

excluding them from the analysis.

For example, the entry for Nicolaus Copernicus

(Q619) lists him as born in Toruń (Q47554) which

is then mapped to Poland; as having died in From-

bork (Q497115) that also maps to Poland; and as

a citizen of the Kingdom of Poland (Q1649871)

which is not mapped to any modern-day country;

so he is only linked to Poland. Albert Einstein is

similarly mapped to both Germany and the United

States, due to his places of birth (Ulm) and death

(Princeton).

3 Dataset-Country Maps

Before delving into our case studies, we first list

a set of statistics of interest that one could extract

from our produced dataset-country maps, in order

to gauge a dataset’s representativeness.

Representativeness Measures We will avoid

providing a single metric, largely because the ideal

metric to use will be very dataset-specific and re-

lated to the goals of the creators of the dataset and

the socioeconomic correlates they are interested in

(see discussion in Section §3.3).

As a first straightforward representativeness mea-

sure, we will compute the percentage of entities

associated with countries where the language

is largely spoken. For example, according to

Ethnologue (Eberhard et al., 2021), most Swahili

speakers6 reside in Tanzania, Kenya, Uganda, DR.

Congo, and Rwanda. For a Swahili dataset, then,

we compute the percentage of all entities associated

with this set of countries (“in-country”).

5A single entity can be associated with a set of more than
one countries.

6In the case of Swahili they are often second-language
speakers.

Notions of equity or fairness across countries

could be measured by various fairness metrics,

given the distribution of entities over countries in a

dataset: from simply computing the standard devia-

tion of the observations,7 to treating countries as a

population and computing fairness indices like the

popular Gini index (Gini, 1912; Gastwirth, 1972) or

the indices proposed by Speicher et al. (2018). We

will opt for a simpler, much more interpretable mea-

sure, the number of countries not represented

in the dataset i.e. countries with associated entity

count below a given threshold (we use zero for sim-

plicity but higher values would also be reasonable

for large datasets).

Last, especially for languages with significant

amounts of speakers in more than one country, it

is important to go deeper and measure the repre-

sentativeness of this in-country portion. For a sim-

ple example, an English dataset with entities only

from the UK is probably not representative of Nige-

rian or Jamaican English speakers. Hence, we will

create two distributions over the countries where

the language is largely spoken: the distribution of

speaker populations (as available from Ethnologue

and other public data), and the distribution of enti-

ties observed in the dataset. Discrepancies between

these two distributions will reveal potential issues.

While one could easily compute some measure of

distance between the two distributions (e.g. the

Bhattacharyya coefficient (Bhattacharyya, 1943)),

in this work we will rely on the interpretable advan-

tages of the visualizations. Measures of fairness

could be computed for this portion of the dataset,

similarly as discussed above.

In the example dataset of the Swahili portion of

MasakhaNER in Figure 1, the utility of our method

is apparent. Through the visualization, a researcher

can quickly confirm that the dataset seems to not

reflect the users of the language to a large extent:

only about 17% of the entities indeed correspond to

Tanzania, Kenya, Uganda, DR. Congo, or Rwanda

(where Swahili and its varieties are treated as a

lingua franca, at least in portions of these coun-

tries). Wealthy or populous countries like USA,

France, and China, are well-represented,8 as one

would expect, while 156 countries and territories

have no representation. At the same time, the vi-

sualization allows a researcher to identify gaps:

7Or approximations thereof such as the max-min of the
observations, as used by (Debnath et al., 2021).

8over-represented?
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rather than contexts), namely SQuAD (Rajpurkar

et al., 2016), MLQA (Lewis et al., 2020), TyDi-

QA (Clark et al., 2020), and Natural Ques-

tions (Kwiatkowski et al., 2019, NQ;), which have

unique characteristics that lend themselves to inter-

esting comparisons. SQuAD is a large English-only

dataset (although it has been translated through ef-

forts like XQuAD (Artetxe et al., 2020)). MLQA is

a n-way parallel multilingual dataset covering 7 lan-

guages, created by translating an English dataset.

TyDi-QA is another multilingual dataset covering

11 languages, but each language portion is derived

separately, without translation involved. Last, NQ

is an English QA dataset created based on real-

world queries on the Google search engine for

which annotators found relevant Wikipedia con-

text, unlike the other datasets that were created by

annotators forming questions given a context.

Additional Datasets While not further dis-

cussed in this paper, additional visualizations

for more datasets (e.g. for the X-FACTR

benchmark (Jiang et al., 2020), and several ma-

chine translation benchmarks) are available in

the project’s webpage: https://nlp.cs.gmu.edu/

project/datasetmaps/.

3.2 Discussion

Beyond Figure 1, we also show example maps in

Figure 2 for NQ, MLQA, SQuAD, and the English

portion of TyDi-QA. We provide additional maps

for all other datasets in Appendix G.

Comparing datasets The comparison of

MasakhaNER to the WikiANN dataset (see

Appendix G) reveals that the former is rather more

localized (e.g. more than 80% of the identified

entities in the Dholuo dataset are related to Kenya)

while the latter includes a smaller portion from

the countries where most native speakers reside

(between 10%-20%) and almost always also

includes several entries that are very European- or

western-centric.

The effect of the participatory design (∀ et al.,

2020) approach on creating the MasakhaNER

dataset, where data are curated from local sources,

is clear in all language portions of the dataset, with

data being highly representative of the speakers. In

Figures 8–9 (App. G) the majority of entities in the

Wolof portion are from Senegal and neighboring

countries (as well as France, the former colonial

power of the area), and the Yoruba and Igbo ones

are centered on Nigeria.

Figure 2 allows for a direct comparison of dif-

ferent QA datasets (also see maps for other TyDi-

QA languages in Appendix G). The first notable

point has to do with NQ, which was built based on

real-world English-language queries to the Google

search engine. Since such queries happen all over

the world, this is reflected in the dataset, which

includes entities from almost all countries in the

world. Two types of countries are particularly repre-

sented: ones where English is an official language

(USA, UK, Australia, but also, to a lesser extent,

India, Nigeria, South Africa, and the Philippines);

and wealthy ones (European, Japan, China, etc). In

our view, NQ is an exemplar of a representative

dataset, because it not only includes representation

of most countries where the language is spoken

(with the sum of these entities being in their large

majority in-country: 80%) but due to its size it also

includes entities from almost all countries.

SQuAD also has a large percentage in-country

(63%) but it is less representative of different En-

glishes than NQ. India, for instance, is relatively

under-represented in all datasets; in SQuAD it

ranks 7th, but it ranks 3rd in NQ (see red bars in

bottom left of figures). On the other hand, the ge-

ographical representativeness of both MLQA and

TyDi-QA (their English portion) is lacking. Since

these datasets rely on Wikipedia articles for their

creation, and Wikipedia has a significant western-

country bias (Greenstein and Zhu, 2012; Hube and

Fetahu, 2018), most entities come from Europe, the

US, and the Middle East. All these datasets under-

represent English speakers from English-speaking

countries of the Global South like Kenya, South

Africa, or Nigeria, since there are practically al-

most no entities from these countries. MLQA fur-

ther under-represents the speakers of all other lan-

guages it includes beyond English, since all data

are translations of the English one. Contrast this to

TyDi-QA and its visualized Swahili portion which,

even though still quite western-centric, does have a

higher representation from countries where Swahili

is spoken than the TyDi-QA English portion.

This discussion brings forth the importance of

being cautious with claims regarding systems’ util-

ity, when evaluated on these datasets. One could ar-

gue that a QA system that is evaluated on NQ does

indeed give a good estimation of real-world utility;

a system evaluated on TyDi-QA gives a distorted

notion of utility (biased towards western-based

speakers and against speakers from the Global
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TyDi-QA (11) MLQA (1) SQUAD (1) NaturalQ. (1)
Factors φ Expl. Var. MAE Expl. Var. MAE Expl. Var. MAE Expl. Var. MAE

pop 0.272 0.431 0.317 0.401 0.277 1.230 0.395 1.18
gdp 0.507 0.349 0.561 0.332 0.516 1.023 0.535 1.069
gdppc 0.176 0.458 0.182 0.458 0.127 1.345 0.144 1.463
land 0.107 0.504 0.166 0.469 0.142 1.380 0.152 1.459
geo 0.075 0.499 0.040 0.495 0.062 1.393 0.030 1.561

geo+gdp 0.550 0.333 0.579 0.321 0.552 0.932 0.550 1.054
pop+gdp+geo 0.532 0.337 0.548 0.326 0.534 0.940 0.550 1.005
pop+gdp+gdppc+geo 0.555 0.321 0.576 0.310 0.531 0.918 0.570 0.973

all 5 factors 0.538 0.325 0.566 0.312 0.524 0.924 0.561 0.981

Table 1: Empirical comparison of factors on QA datasets, averaging over their respective languages (number in

parentheses). We report the five-fold cross-validation explained variance and mean absolute error of a linear model.

South); a system evaluated on MLQA will give an

estimation as good as one evaluated on TyDi-QA,

but only on the English portion. We clarify that this

does not diminish the utility of the datasets them-

selves as tools for comparing models and making

progress in NLP: MLQA is extremely useful for

comparing models across languages on the exact

same data, thus facilitating easy comparisons of

the cross-lingual abilities of QA systems, without

the need for approximations or additional statisti-

cal tests. But we argue that MLQA should not be

used to asses the potential utility of QA systems

for German or Telugu speakers.

Similar observations can be made about com-

paring two similar projects that aim at testing the

memorization abilities of large language models,

namely X-FACTR and multi-LAMA (mLAMA;

Kassner et al., 2021) – see corresponding Figures

in Appendix G. Both of these build on top of Wiki-

data and the mTREx dataset. However, mLAMA

translates English prompts and uses entity-relation

triples mined from the English portion of Wikidata,

unlike X-FACTR which uses different data for each

language, mined from their respective portion of

Wikidata. Both are still western-biased, since they

rely on Wikipedia, but one (X-FACTR) is better at

giving an indication of potential downstream utility

to users.

3.3 Socioeconomic Correlates

In this section we attempt to explain our findings

from the previous section, tying them to socioeco-

nomic factors.

Empirical Comparison of Factors We identify

socioeconomic factors φ that could be used to ex-

plain the observed geographic distribution of the

entities in the datasets we study. These are:

• a country’s population φpop

• a country’s gross domestic product (GDP) φgdp

• a country’s GDP per capita φgdppc

• a country’s landmass φland

• a country’s geographical distance from coun-

try/ies where the language is spoken φgeo

The first four factors are global and fixed. The

fifth one is relative to the language of the dataset

we are currently studying. For example, when we

focus on the Yoruba portion of the mTREx dataset,

we use Nigeria (where Yoruba is spoken) as the

focal point and compute distances to all other coun-

tries. The assumption here is that a Yoruba speaker

is more likely to use or be interested in entities

first from their home country (Nigeria), then from

its neighboring countries (Cameroon, Chad, Niger,

Benin) and less likely of distant countries (e.g. Ar-

gentina, Canada, or New Zealand). Hence, we

assume the probability to be inversely correlated

with the country’s distance. For macro-languages

or ones used extensively in more than one country,

we use a population-weighted combination of the

factors of all relevant countries.

To measure the effect of such factors it is com-

mon to perform a correlational analysis, where

one measures Spearman’s rank correlation coef-

ficient ρ between the dataset’s observed geograph-

ical distribution and the factors φ . It is impor-

tant, though, that the factors are potentially co-

variate, particularly population and GDP. Hence,

we instead compute the variance explained by a

linear regression model with factors φ as input, i.e.,

aφpop+bφgdp+cφgdppc+dφgeo+e with a–e learned

parameters, trained to predict the log of observed

entity count of a country. We report explained

variance and mean absolute error from five-fold

cross-validation experiments to avoid overfitting.

Socioeconomic Correlates and Discussion The

results with different combination of factors for the

QA datasets are listed in Table 1.10 The best sin-

10See Appendix H for NER datasets, and Appendix I for a
breakdown by language for all datasets.
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gle predictor is, perhaps unsurprisingly, the GDP

of the countries where the language is spoken: all

datasets essentially over-represent wealthy coun-

tries (e.g. USA, China, or European ones). Note

that GDP per capita is not as good a predictor, nei-

ther is landmass. A combination of geographical

distance with GDP explains most of the variance

we observe for all datasets, an observation that

confirms the intuitions we discussed before based

solely on the visualizations. Importantly, the fact

that including population statistics into the model

deteriorates its performance is further proof that our

datasets are not representative of or proportional to

the underlying populations. The only dataset that

is indeed better explained by including population

(and GDP per capita) is NQ, which we already ar-

gued presents an exemplar of representativeness

due to its construction protocol.

Limitations It is important to note that our as-

sumptions are also limiting factors in our analyses.

Mapping languages to countries is inherently lossy.

It ignores, for instance, the millions of immigrants

scattered throughout the world whose L1 language

could be different than the dominant language(s) in

the region where they reside. Another issue is that

for many languages the necessary granularity level

is certainly more fine than country; if a dataset does

not include any entities related to the Basque coun-

try but does include a lot of entities from Spain and

France, our analysis will incorrectly deem it repre-

sentative, even though the dataset could have been

a lot more culturally-relevant for Basque speakers

by actually including Basque-related entities.

Another limitation lies in the current state of the

methods and data resources on which our approach

relies. Beyond discrepancies in NER/EL across lan-

guages (addressing which is beyond the scope of

this work), we suspect that Wikidata suffers from

the same western-centric biases that Wikipedia is

known for (Greenstein and Zhu, 2012). As a result,

we might be underestimating the cultural represen-

tativeness of datasets in low-resource languages.

An additional hurdle, and why we avoid pro-

viding a single concrete representativeness score

or something similar, is that the ideal combina-

tion of socioeconomic factors can be subjective.

It could be argued, for instance, either that geo-

graphic proximity by itself should be enough, or

that it should not matter at all. Even further, other

factors that we did not consider (e.g. literacy rate

or web access) might influence dataset construction

decisions. In any case, we share the coefficients of

the NQ model, since it is the most representative

dataset we studied, at least for English: a = 0.1.46

(for φpop), b=0.87 (φgdp), c=25.4 (φgdppc), d =0.41

(φgeo). We believe that ideally GDP should not

matter (b→ 0) and that a combination of speaker

population and geographic proximity is ideal.11

3.4 Geographical Breakdown of Models’

Performance

Beyond the analysis of the datasets themselves, we

can also break down the performance of models by

geographical regions, by associating test (or dev)

set samples containing entities with the geographi-

cal location of said entities. Since most test sets are

rather small (a few hundred to a couple thousand

instances) we have to coarsen our analysis: we map

each country to a broader region (Africa, Americas,

Asia, Europe, Oceania), keeping historical entities

in a separate category (History).12

We perform such a case study on TyDi-QA,

comparing the performance on the TyDi-QA de-

velopment sets of two models: one trained mono-

lingually on the training set of each language of

TyDi-QA (gold task), and another model trained

by Debnath et al. (2021) on English SQuAD and

automatically generated translations in the target

languages. Example results on Telugu shown in

Figure 3 reveal some notable trends.13 First, train-

ing set representation (green bars in the Figures)

is not a necessary condition for good test set per-

formance (red bars). Some test set instances (e.g.

with historical and African entities) receive simi-

lar test F1 score from both models. Perhaps the

most interesting though, is the comparison of the

Asian and European portions of the test set: the

Telugu monolingual model achieves similar perfor-

mance in these two subsets; but the SQuAD-trained

model is almost 20 percentage points worse on the

Asian subset, showing the potential unfairness of

translation-based models (Debnath et al., 2021).

For most TyDi-QA languages (Indonesian being an

exception, see Table 2) the macro-standard devia-

tion (computed over the averages of the 6 region

subsets) is larger for the SQuAD-trained model

(which is, hence, less fair than models trained on

11However regrettable a fact, it is undeniable that western
culture and politics have world-wide effects. So their (over-
)representation as a result of their high influence (and GDP)
might actually reflect the true interests of people everywhere!

12Future work could explore a different clustering.
13See Table 4 in Appendix D for all languages.
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in future work would yield improvements.

Effect on downstream maps We compare the

dataset maps we obtain using NER-Relaxed and

NER-Informed (using gold annotations) models in

our pipeline for the MasakhaNER dataset. Overall,

the maps are very similar. An example visualiza-

tion of the two maps obtained for Swahili is in

Figure 5 in Appendix E.1.

The NER-Informed model produces slightly

fewer entities overall (likely exhibiting higher pre-

cision for lower link recall) but there are mini-

mal differences on the representativeness measures

e.g., the in-country percentage changes from 15.3%

(NER-Informed) to 16.9% (NER-Relaxed). We

can compare the distributions of the top-k countries

obtained with the two models using Ranked Bi-

ased Overlap (RBO; higher is better; Webber et al.,

2010).16 The results for varying values for k (top-k

countries) are presented in Table 6 in Appendix E.1.

We overall obtain very high RBO values (> .8 for

k = 10) for all language portions and all values of

k. For example for 8 of the 10 MasakhNER lan-

guages the two models almost completely agree on

the top-10 countries with only slight variations in

their ranking. Dholuo and Amharic are the ones

exhibiting the worse overlap (but still > .5 RBO).

5 Conclusion

We present a recipe for visualizing how representa-

tive NLP datasets are with respect to the underlying

language speakers. We plan to further improve our

tool17 by making NER/EL models more robustly

handle low-resource languages. We will also ex-

pand our dataset and task coverage, to get a broader

overview of the current utility of NLP systems.
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Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
Tamchyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.
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A Responsible NLP Notes

We use this section to expand on potential limita-

tions and risks of this work.

An inherent limitation of this work is that many

datasets are constructed with the goal of answering

scientific questions – not necessarily to be used to

build NLP systems that serve language users. If

our tool is applied without the assumptions behind

dataset construction in mind, it might lead to undue

criticisms of existing datasets. It us also important

to reiterate that no tool, including ours, will ever

be 100% accurate, so our tool should be used as

an indicator of the cultural representativeness of

language datasets, not as a tool that can provide

definitive answers.

All scientific artifacts used in this paper are pub-

licly available under permissive licenses for fair

use. We are not re-distributing any data or code,

beyond the code that we wrote ourselves (which

will be released under a CC-0 license) and the ad-

ditional annotations on top of the existing datasets

which map the datasets to Wikidata entries (Wiki-

data data are also available under a CC-0 license).

Our use of our data is consistent with their intended

use.

B Related Work

Effective measurement of dataset quality is an as-

pect of fast-growing significance. Training large

language models require huge amount of data and

as a result, the inference generated by these pre-

trained language model as well as the fine-tuned

models often show inherent data bias. In a re-

cent work (Swayamdipta et al., 2020), the authors

present how data-quality aware design-decision can

improve the overall model performance. They for-

mulated categorization of data-regions based on

characteristics such as out-of-distribution feature,

class-probability fluctuation and annotation-level

discrepancy.

Usually, multilingual datasets are collected from

diverse places. So it is important to assess whether

the utility of these datasets are representative

enough to reflect upon the native speakers. We

find the MasakhaNER (Adelani et al., 2021) is one

such dataset that was collected from local sources

and the data characteristics can be mapped to lo-

cal users as a result. In addition, language models

often requires to be truly language-agnostic de-

pending on the tasks, but one recent work shows

that, the current state-of-the-art language applica-

tions are far from achieving this goal (Joshi et al.,

2020). The authors present quantitative assessment

of available applications and language-resource tra-

jectories which turns out not uniformly distributed

over the usefulness of targeted users and speakers

from all parts of the world.

Linking dataset entities to geospatial concept is

one integral part of our proposed methodology. On-

going geospatial semantics research mostly focuses

on extracting spatial and temporal entities (Kokla

and Guilbert, 2020; Purves et al., 2018). The usual

approach is to first extract geo-location concepts

(i.e. geotagging) from semi-structured as well as

unstructured data and then linking those entities to

location based knowledge ontology (i.e. geocod-

ing). In (Gritta et al., 2019), the authors propose a

task-metric-evaluation framework to evaluate exist-

ing NER based geoparsing methods. The primary

findings suggest that NER based geo-tagger models

in general rely on instant word-sense while avoid-

ing contextual information.

One important aspect of our study is the evalua-

tion of cross-lingual consistency while performing

multilingual NER or El tasks. In (Bianchi et al.,

2021), the authors focus on the consistency evalu-

ation of language-invariant properties. In an ideal

scenario, the properties should not be changed via

the language transformation models but commer-

cially available models are not prone to avoid do-

main dependency.

C Dataset Statistics

See details in Table 3.

D Geographical Breakdown of Models

Performance

See details in Table 4.

E NER-Informed vs NER-Relaxed

Models

In this section, we report the detailed results (see

Table 5) from our experiment with using intermedi-

ate NER model vs skipping this step.

E.1 Comparison of NER-Informed and

NER-Relaxed Maps

This experiment was performed on MasakhaNER

data. See Figure 5 for example maps in Swahili.

The distributions of the top-k countries we obtain

with the two models (one using the gold NER
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Dataset Data-
split

Languages Language
count

Sentence
count

WikiANN train russian, polish, kazakh, bulgarian, finnish,
ukrainian, afrikaans, hindi, yoruba, hungarian,
dutch-flemish, korean, persian, japanese, javanese,
portuguese, hebrew, arabic, spanish-castilian, ben-
gali, urdu, indonesian, tamil, english, malay-
alam, tagalog, basque, thai, german, romanian-
moldavian-moldovan, chinese, telugu, azerbaijani,
quechua, modern-greek, turkish, marathi, georgian,
estonian, italian, panjabi, burmese, french, gujarati,
malay, lithuanian, swahili, vietnamese

48 658600

TyDi-QA train english, korean, japanese, telugu, russian, thai, ara-
bic, finnish, bengali, swahili, indonesian

11 166905

MasakhaNER train igbo, wolof, nigerian pidgin, kinyarwanda, amharic,
hausa, yoruba, ganda, swahili, dholuo

10 12906

SQuAD train english 1 130319

MLQA dev, test english, simplified chinese, german, arabic, spanish,
hindi, vietnamese

7 12738

WMT
NEWS

dev, test polish, kazakh, finnish, xhosa, hindi, japanese, ben-
gali, tamil, zulu, romanian; moldavian; moldovan,
chinese, estonian, french, gujarati, inuktitut, lithua-
nian, turkish, latvian, dholuo, english

20 126972

Natural
Questions

train english 1 307373

Table 3: Statistics of the datasets we study.

europe asia africa americas history oceania

swahili (80.3, 88.9) (64.1, 83.4) (75.5, 81.4) (88.1, 89.3) (83.3, 100) (86.5, 81.2)
bengali (60.0, 79.6) (71.0, 79.5) - - (100, 100) (0, 100)
arabic (65.2, 79.0) (74.5, 82.6) (72.3, 79.0) (82.4, 82.6) (36.3 65.6) (100, 100)
korean (19.3, 23) (30.4, 36.5) (0, 0) (23.9, 24.6) (42.9, 52.4) -
english (74.7, 89.2) (84.0, 80.2) (60.0, 60.0) (75.6, 82.9) (100, 100) (93.3, 93.3)
indonesian (79.4, 88.5) (75.3, 84) (80, 100) (79.9, 84.7) (83.3, 66.7) (33.3, 33.3)
russian (65.1, 80.1) (59.6, 79.1) (64.9, 67.8) (67.8, 81.8) (47.2, 72.3) (76.8, 66.7)
telugu (63.7, 77.3) (45.9, 77.9) (83.3, 83.3) (34.5, 65.7) (100, 100) (66.7, 100)
finnish (73.4, 81) (86.2, 88.9) (81, 91.7) (75.9, 83) (67.7, 74.7) -

Table 4: Detailed Breakdown of area-based performance (f1 score) of two trained QA models (TyDi-QA, SQuAD).

Evaluation is performed on TyDi-QA development set (gold task).

annotations for NEL and one using our NER-

relaxed approach) are compared using Ranked

Biased Overlap (RBO; higher is better) (Webber

et al., 2010), a metric appropriate for computing

the weighted similarity of disjoint rankings. We

choose a “weighted" metric because we care more

about having similar results in the top-k countries

(the ones most represented) so that the metric is

not dominated by the long tail of countries that

may have minimal representation and thus similar

rank. We also need a metric that can handle disjoint

rankings, since there’s no guarantee that the top-k

countries produced by the processes using different

models will be different.18

The results for varying values for k (top-k coun-

tries) are presented in Table 6. We overall obtain

very high RBO values (> .75) for all language por-

tions and all settings.

F On the Cross-Lingual Consistency of

NER/EL Models

Definition Bianchi et al. (2021) in concurrent

work point out the need to focus on consis-

tency evaluation of language-invariant proper-

ties (LIP): properties which should not be changed

via language transformation models. They suggest

18Metrics like Kendall’s τ would suffer from both issues.
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Language k=1 k=2 k=3 Dataset

hin (4239, 761, 0.85) (6765, 2717, 0.71) (8377, 4436, 0.65)

WikiANN

cmn (9354, 10646, 0.47) (16015, 23899, 0.4) (21835, 37346, 0.37)
jpn (6739, 13259, 0.34) (12148, 27820, 0.3) (17220, 42463, 0.29)
rus (15325, 4675, 0.77) (24663, 13989, 0.64) (31520, 23051, 0.58)
est (16687, 3313, 0.83) (24413, 10536, 0.7) (28146, 16459, 0.63)
ben (9575, 425, 0.96) (15759, 2541, 0.86) (20106, 4930, 0.8)
que (82, 18, 0.82) (124, 48, 0.72) (159, 72, 0.69)
tur (14206, 5794, 0.71) (21165, 14999, 0.59) (25053, 23597, 0.51)
jav (78, 22, 0.78) (103, 67, 0.61) (113, 101, 0.53)

pcm (549, 994, 0.36) (955, 2033, 0.32) (1217, 3030, 0.29)

MasakhaNER

kin (593, 952, 0.38) (924, 1988, 0.32) (1112, 2853, 0.28)
wol (242, 534, 0.31) (350, 1158, 0.23) (435, 1692, 0.2)
hau (417, 1178, 0.26) (747, 2333, 0.24) (941, 3402, 0.22)
ibo (494, 1093, 0.31) (834, 2225, 0.27) (1056, 3257, 0.24)
amh (117, 1088, 0.1) (210, 2184, 0.09) (289, 3198, 0.08)
swa (499, 1175, 0.3) (819, 2445, 0.25) (1007, 3678, 0.21)
lug (283, 824, 0.26) (486, 1657, 0.23) (644, 2362, 0.21)
yor (430, 894, 0.32) (673, 1909, 0.26) (839, 2893, 0.22)
luo (122, 428, 0.22) (207, 844, 0.2) (264, 1184, 0.18)

Table 5: Breakdown of entity extraction count while using NER-informed model. Here for each top k extracted

entities, the triplet is the aggregated value of (count of common entities extracted by both ner-informed and ner-

relaxed models, count of entities only extracted by ner-relaxed models, ratio of common entity count and total

top-k extract by ner-relaxed model )

LIPs include meaning, topic, sentiment, speaker

demographics, and logical entailment We propose

a definition tailored to entity-related tasks: cross-

lingual consistency is the desirable property that

two parallel sentences in two languages, which

should in principle use the same named entities

(since they are translations of each other), are actu-

ally tagged with the same named entities.

F.1 NER Experiments

Models We study two models: SpaCy (Honnibal

and Montani, 2017): a state-of-art monolingual li-

brary that supports several core NLP tasks; and a

mBERT-based NER model trained on datasets from

WikiANN using the transformers library (Wolf

et al., 2020).

Training To task-tune the mBERT-based model

on the NER task we use the WikiANN dataset with

data from the four languages we study: Greek (el),

Italian (it), Chinese (zh), and English (en).

Evaluation To evaluate cross-lingual consis-

tency, ideally one would use parallel data where

both sides are annotated with named entities. What

we use instead, since such datasets do not exist to

the best of our knowledge, is ‘silver’ annotations

over parallel data. We start with unannotated par-

allel data from the WikiMatrix dataset (Schwenk

et al., 2021) and we perform NER on both the

English and the other language side, using the re-

spective language model for each side.

In the process of running our experiments, we

identified some sources of noise in the WikiMatrix

dataset (e.g. mismatched sentences that are clearly

not translations of each other). Thus, we calculated

the average length ratio between two matched sen-

tences, and discarded data that diverged by more

than one standard deviation from the mean ratio,

in order to keep 95% of the original data that are

more likely to indeed be translations of each other.

We use the state-of-the-art AWESOME-align

tool (Dou and Neubig, 2021) as well fast-

align (Dyer et al., 2013) to create word-level links

between the words of each English sentence to their

corresponding translations. Using these alignment

links for cross-lingual projection (Padó and Lap-

ata, 2009; Tiedemann, 2014; Ni et al., 2017, inter

alia) allows us to calculate cross-lingual consis-

tency, measuring the portion of labels that agree

following projection. In particular, we use the

cross-lingual projections from the English side as

‘correct’ and measure precision, recall, and F-score

against them.

Results In preliminary experiments we found

that, consistently with the literature, AWESOME-

align performed generally better than fast-align,

hence for the remainder of our experiments we

only use AWESOME-align.

For the three languages we study, the cross-

lingual consistency of the monolingual SpaCy mod-

els is really low, with scores of 8.6% for Greek–
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further regularized towards cross-lingual consis-

tency will perform better than a NER-Informed

pipeline, unless the NER component also shows

improved cross-lingual consistency.

From Figure 7, it is clear that geopolitical enti-

ties (GPE) are the ones suffering the most from low

cross-lingual consistency, with an order of magni-

tude less entities linked on both the English and

the other language side. On the other hand, person

names (PER) seem to be easier to link. While the

most common types of entities are PERSON, ORG (i.e.

organization) and GPE (i.e. geopolitical entity), we

found that the NER model still failed to correctly

categorize entities like (Surat, Q4629, LOC), (Au-

rangzeb, Q485547, PER). However, these entities

were correctly linked by the NER-Relaxed pipeline,

indicating its usefulness. We hypothesize, and plan

to test in future work, that a NER-Relaxed entity

further regularized towards cross-lingual consis-

tency will perform better than a NER-Informed

pipeline, unless the NER component also shows

improved cross-lingual consistency.

G Additional Dataset Maps

We present all dataset maps for the datasets we

study:

• MasakhaNER languages are available in Fig-

ures 8 and 9.

• TydiQA languages are available in Figures 10

and 11.

• WikiANN (panx) languages are available in

Figures 12 through 16.

• SQuAD (English) in Figure 17.

H NER Dataset Socioeconomic Factors

Table 1 presents the same analysis as the one de-

scribed in Section 3.3 for the X-FACTR and the

NER datasets. The trends are similar to the QA

datasets, with GDP being the best predictor and in-

cluding population statistics hurting the explained

variance.

I Socioeconomic Correlates Breakdown

You can find the breakdown of the socioeconomic

correlates in Table 12 for TyDi-QA, Table 13 for

MasakhaNER, and Table 14 for WikiANN.

J NER Models Confusion Matrices

See Figure 18 for the confusion matrices of the

SpaCy and our WikiANN neural model.

K Greek-English NER Error Discussion

We find that the mistakes we identify vary sig-

nificantly by label. In about 75% of the 0-LOC

cases it was the Greek-side labels that were

wrong in tagging a span as a location. A com-

mon pattern we identified (about 35% of these

cases) was the Greek model tagging as location

what was actually a month. For instance, in the

sentence Ton Máio tu 1990 episkéftikan yia

tésseris iméres tin Ouggaria(In May 1990 ,

they visited Hungary for four days.) the model tags

the first two words (“in May") as a location, while

the English one correctly leaves them unlabelled.

In the case of LOC-0 cases, we found an even split

between the English- and the Greek-side labels be-

ing wrong (with about 40% of the sentences each).

Common patterns of mistakes in the English side

include tagging persons as locations (e.g. “Heath"

in “Heath asked the British to heat only one room

in their houses over the winter." where “Heath" cor-

responds to Ted Heath, a British politician), as well

as tagging adjectives, often locative, as locations,

such as “palaeotropical" in “Palaeotropical refers

to geographical occurrence." and “French" in “A

further link [..] by vast French investments and

loans [...]".

Last, in the case of 0-PER cases we studied, we

found that 62% of the errors were on the English

side. A common pattern was the English-side

model not tagging persons when they are the very

first token in a sentence, i.e. the first tokens in

“Olga and her husband were left at Ay-Todor.", in

“Friedman once said, ‘If you want to see capital-

ism in action, go to Hong Kong.’ ", and in “Evans

was a political activist before [...]" were all tagged

as 0. To a lesser extent, we observed a similar is-

sue when the person’s name followed punctuation,

e.g. “Yavlinsky" in the sentence “In March 2017 ,

Yavlinsky stated that he will [...]".

L Comparing X-FACTR to mLAMA

These two similar projects aim at testing the

memorization abilities of large language models

(X-FACTR and multi-LAMA (mLAMA; Kassner

et al., 2021)) – see corresponding Figures in Ta-

ble ??. Both of these build on top of Wikidata

and the mTREx dataset. Hence, their English por-

tions are equally representative of English speak-

ers, sufferring from under-representation of En-

glish speakers of the Global South. For the other

language, however, mLAMA translates English
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X-FACTR (11) MasakhaNER (10) WikiANN (48)
Explained Explained Explained

Factors φ Variance MAE Variance MAE Variance MAE

pop 0.356 0.457 0.300 0.295 0.387 0.470
gdp 0.516 0.407 0.341 0.295 0.575 0.382
geo 0.022 0.585 0.100 0.359 0.069 0.586

pop+gdp 0.495 0.403 0.348 0.285 0.553 0.388
pop+geo 0.356 0.455 0.369 0.290 0.399 0.467
geo+gdp 0.521 0.398 0.443 0.284 0.591 0.376

pop+gdp+geo 0.504 0.398 0.440 0.285 0.572 0.380

Table 10: Empirical comparison of factors on NER datasets, averaging over their respective languages (number

in parentheses). We report the five-fold cross-validation explained variance and mean absolute error of a linear

model.

geo+gdp

Language Country Expl. Var. Mean Error

Greek GRC 0.586 0.343

Yoruba NGA 0.575 0.219

Bengali BGD 0.552 0.349

Marathi IND 0.587 0.29

French FRA 0.569 0.452

Hebrew ISR 0.604 0.369

Hungarian HUN 0.621 0.375

Russian RUS 0.601 0.406

Spanish ESP 0.552 0.457

Turkish TUR 0.613 0.36

Vietnamese VNM 0.521 0.398

Average 0.504 0.398

Table 11: Language breakdown of the most predictive

factors (φgeo and φgdp) on X-FACTR dataset.

prompts and uses entity-relation triples mined from

the English portion of Wikidata, unlike X-FACTR

which uses different data for each language, mined

from their respective portion of Wikidata. Both are

still western-biased, since they rely on Wikipedia,

but one (X-FACTR) is better at giving an indication

of potential downstream utility to users.

geo+gdp

Language Country Expl. Var. Mean Error

Arabic SAU 0.501 0.415

Bengali BGD 0.498 0.385

English USA 0.562 0.335

Finnish FIN 0.566 0.376

Indonesian IDN 0.515 0.387

Japanese JPN 0.558 0.388

Korean KOR 0.546 0.336

Russian RUS 0.522 0.400

Swahili KEN 0.428 0.469

Telugu IND 0.534 0.294

Thai THA 0.550 0.333

Average 0.550 0.333

Table 12: Language breakdown of the most predictive

factors (φgeo and φgdp) on the TyDi-QA dataset.

geo+gdp

Language Country Expl. Var. Mean Error

Amharic ETH 0.131 0.220

Yoruba NGA 0.338 0.258

Hausa NGA 0.321 0.317

Igbo NGA 0.326 0.207

Kinyarwanda RWA 0.198 0.229

Luganda UGA 0.302 0.195

Luo ETH 0.000 0.110

Nigerian English NGA 0.493 0.231

Wolof CMR 0.378 0.160

Swahili KEN 0.443 -0.285

Average 0.378 0.160

Table 13: Language breakdown of the most predictive

factors (φgeo and φgdp) on MasakhaNER dataset.
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geo+gdp

Language Country Expl. Var. Mean Error

af ZAF 0.497 0.338

ar SAU 0.570 0.454

az AZE 0.566 0.395

bg BGR 0.511 0.475

bn BGD 0.442 0.502

de DEU 0.613 0.402

el GRC 0.484 0.456

es ESP 0.497 0.462

et EST 0.565 0.398

eu ESP 0.565 0.387

fa IRN 0.589 0.426

fi FIN 0.590 0.411

fr FRA 0.597 0.408

gu IND 0.068 0.030

he ISR 0.551 0.456

hi IND 0.529 0.279

hu HUN 0.563 0.451

id IDN 0.488 0.442

it ITA 0.569 0.436

ja IDN 0.591 0.343

jv JPN 0.062 0.069

ka GEO 0.474 0.435

kk KAZ 0.411 0.205

ko KOR 0.519 0.423

lt LTU 0.533 0.395

ml IND 0.495 0.367

mr IND 0.530 0.320

ms MYS 0.496 0.463

my MMR 0.105 0.038

nl NLD 0.582 0.435

pa IND 0.052 0.064

pl POL 0.584 0.436

pt PRT 0.567 0.432

qu PER 0.301 0.090

ro ROU 0.581 0.436

ru RUS 0.576 0.435

sw KEN 0.402 0.223

ta LKA 0.524 0.367

te IND 0.351 0.107

th THA 0.567 0.215

tl PHL 0.473 0.399

tr TUR 0.619 0.409

uk UKR 0.576 0.447

ur PAK 0.512 0.463

vi VNM 0.557 0.440

yo NGA 0.079 0.086

zh CHN 0.591 0.376

Average 0.591 0.376

Table 14: Language breakdown of the most predictive

factors (φgeo and φgdp) on the WikiANN dataset.
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