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ABSTRACT 

Steady-state visual evoked potential (ssVEP) frequency tagging is an increasingly used method in 

electrophysiological studies of visual attention and perception. Frequency tagging is suitable for 

studies examining a wide range of populations, including infants and children. Frequency tagging 

involves the presentation of different elements of a visual array at different temporal rates, thus 

using stimulus timing to “tag” the brain response to a given element by means of a unique time 

signature. Leveraging the strength of the ssVEP frequency tagging method to isolate brain 

responses to concurrently presented and spatially overlapping visual objects requires specific 

signal processing methods. Here, we introduce the FreqTag suite of functions, an open source 

MATLAB toolbox. The purpose of the FreqTag toolbox is three-fold. First, it will equip users with 

a set of transparent and reproducible analytical tools for the analysis of ssVEP data. Second, the 

toolbox is designed to illustrate fundamental features of frequency domain and time-frequency 

domain approaches. Finally, decision criteria for the application of different functions and analyses 

are described. To promote reproducibility, raw algorithms are provided in a modular fashion, 

without additional hidden functions or transformations. This approach is intended to facilitate a 

fundamental understanding of the transformations and algorithmic steps in FreqTag, and to allow 

users to visualize and test each step in the toolbox.   

 

Keywords: steady-state visual evoked potential (ssVEP); frequency tagging; frequency domain; 
time-frequency domain; MATLAB; FreqTag   
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1-Introduction 1 
The electroencephalogram (EEG) relies on the non-invasive recording of brain electric 2 

activity through sensors that are placed on the scalp to provide a rich source of information about 3 

ongoing brain activity at a millisecond scale (Jackson & Bolger, 2014; Nunez et al., 2006). EEG 4 

signals have been used to study a wide range of neural processes, including spectral properties of 5 

resting EEG (Donoghue et al., 2020; Rogala et al., 2020), task-driven studies measuring event-6 

related potentials (ERP, for review see: Luck & Kappenman, 2013; Handy, 2004; Woodman, 7 

2013) and steady-state visual evoked potentials (ssVEPs, for review see: Norcia et al., 2015; 8 

Vialatte et al., 2010). EEG methods are also extensively used in developmental populations from 9 

early infancy through adolescence (for review see: Barry-Anwar et al., 2020; Bell & Cuevas, 2012; 10 

Riggins & Scott, 2020).  The present report focuses on one specific EEG-based method: frequency-11 

tagging with steady-state visual evoked potentials (Norcia et al., 2015; Wieser et al., 2016). Studies 12 

measuring ssVEPs in adults have substantially contributed to our understanding of visual processes 13 

including selective attention, figure-ground segregation, and adaptation (for review see Norcia et 14 

al., 2015).  15 

The ssVEP is a neurophysiological response to a periodic visual stimulus. It is evoked by 16 

stimuli that are periodically modulated in luminance (i.e., flickered) or contrast (e.g., pattern-17 

reversed) typically at temporal rates above 3 Hz (Odom et al., 2004). Both the luminance-evoked 18 

and contrast-evoked ssVEP possess high signal-to-noise ratio and are robust to noisy recording 19 

conditions, allowing researchers flexibility regarding dimensions of interest within stimuli 20 

(Appelbaum et al., 2006; Keil, 2013). Luminance-evoked ssVEPs reflect visuocortical activation 21 

based on input across the retina, whereas contrast-evoked ssVEPs at constant luminance tend to 22 

emphasize foveal inputs which are more circumscribed in the visual cortex (Di Russo et al., 2006). 23 
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Because they are defined by their temporal frequency, ssVEPs may be extracted from scalp-24 

recorded EEG signals in the frequency domain, by calculating the amplitude spectrum of the EEG 25 

segments of interest.  26 

The ssVEP response typically consists of robust oscillatory activity at the exact modulation 27 

frequency—driving frequency—as well as at its higher harmonics (integer multiples of the driving 28 

frequency). Thus, an LED light flickering at 12 Hz evokes ssVEPs at 12 Hz, but may also prompt 29 

responses at 24 Hz, 36 Hz, etc., depending on the composition of the stimulus array and the extent 30 

to which the visual response is linear or non-linear (Norcia et al., 2015). Source estimation of 31 

scalp-recorded ssVEPs (Di Russo et al., 2006) as well as combined ssVEP-fMRI work (Petro et 32 

al., 2017) have converged to show that ssVEPs appear to be generated primarily in the striate 33 

cortex (V1) with contributions from extrastriate regions (for review see; Vialatte et al., 2010).  34 

One key feature of the ssVEP outlined in the present report is its use in frequency tagging. 35 

This technique enables researchers to independently quantify the visuocortical response to multiple 36 

stimuli, even when these stimuli are presented at the same time and at overlapping screen locations 37 

(Tononi et al., 1998; Wang et al., 2007; Zhigalov et al., 2019). Thus, complex stimulus arrays may 38 

be used and a unique visuocortical response to each element of the complex array is evoked by 39 

periodically modulating each element at a different frequency. Frequency domain (spectral) 40 

analyses can then be used to independently quantify the response of each stimulus in the amplitude 41 

spectrum of the EEG data. For example, frequency tagging has been previously used for 42 

quantifying neural competition between concurrent visuocortical representations evoked by 43 

simultaneously present and overlapping stimuli (Appelbaum et al., 2006; Bach & Meigen, 1992), 44 

which is difficult to accomplish with other neuroscience methods.   45 
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In developmental samples, ssVEPs have been used to assess lower-level sensory processes 46 

in infants (Braddick et al., 1986; Gilmore et al., 2007; Hamer & Norcia, 1994), but also to 47 

investigate higher cognitive processes such as overt and covert visual attention (Christodoulou et 48 

al., 2018; Robertson et al., 2012), contour integration (Baker et al., 2011), face or object processing 49 

(Barry-Anwar et al., 2018; Buiatti et al., 2019; de Heering & Rossion, 2015; Farzin et al., 2012; 50 

Leleu et al., 2014; Lochy et al., 2019; Peykarjou et al., 2017; Vettori et al., 2020), number sense 51 

(Park, 2018), and event processing (Köster et al., 2019). Studying development using recordings 52 

of ssVEPs are particularly useful relative to other EEG measures for a variety of reasons. First, 53 

infant and child EEG data often include an increased amount of noise relative to adults. Because 54 

ssVEP analyses focus on a narrow set of frequency bands, the signal to noise ratio is very high 55 

because only the noise present in the driving frequency bins is relevant (Regan, 1989).  Second, 56 

the amount of time required to collect high quality ssVEP responses from infants is less than what 57 

is typically needed for ERPs. Furthermore, several conditions or tasks can be combined in a single 58 

session, reducing attrition and increasing statistical power. The shorter session duration 59 

requirement for ssVEP tasks compared to other EEG tasks is also important because it is often 60 

difficult for infants to complete tasks that take longer than about 15 minutes (including breaks).  61 

Studies using frequency tagging of multiple stimuli highlight the promise of using this 62 

technique for studying cognitive and perceptual development (Baker et al., 2011; Buiatti et al., 63 

2019; Vettori et al., 2020). The present report demonstrates key analytical procedures for analyzing 64 

frequency tagging data for both developmental and adult samples. The report is accompanied by 65 

example adult and infant data and a MATLAB toolbox (FreqTag, https://github.com/csea-66 

lab/freqTag) containing algorithms for performing analyses on frequency tagged data. Several 67 

methodological details not covered in this paper are explained in the documentation accompanying 68 
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the toolbox. Many existing EEG analysis tools may be used for the same purpose (e.g., see 69 

Mouraux & Iannetti, 2008 - Letswave, RRID:SCR_016414).  The aim of the present toolbox is to 70 

illustrate core analytical principles using barebones algorithms, with the intention to promote a 71 

deeper understanding of the method and increase user confidence. Specifically, this report 72 

illustrates spectral analysis based on discrete Fourier transform, and analysis in the time-frequency 73 

domain, where the neural time course at each tagging frequency is individually extracted using the 74 

Hilbert transformation. We also demonstrate the use of the sliding window averaging technique, 75 

suitable for studies with fewer trials, as is sometimes the case for developmental EEG work. The 76 

code (https://github.com/csea-lab/freqTag) and example datasets (https://osf.io/e5vuf/) are 77 

publicly available.  78 

 79 

2-Methods and Materials 80 
2.1- Hardware and software needed to implement a frequency tagging protocol  81 

 As discussed above, many different research questions may be pursued using frequency 82 

tagging. Thus, many different types of stimuli may be used, including stimuli in multiple 83 

modalities (Giabbiconi et al., 2016; Riels et al., 2021). Regardless of the stimulus type and 84 

modality used, it is crucial that researchers ensure accurate timing of each stimulus. For visual 85 

stimuli, the tagging frequencies available are primarily determined by the display device used. The 86 

refresh rate denotes the frequency (in Hz) at which the display can update its content. Not all visual 87 

displays are suitable for evoking ssVEPs, and some of the key properties needed for regular, 88 

accurate, periodic stimulation are more likely to be found in Cathode-ray tube (CRT) monitors, 89 

compared to light-emitting diode displays (LED), and liquid crystal displays (LCD), since both 90 

LCD and LED may present (a) response delays caused by digital processing time as well as (b) 91 
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temporal smearing due to slow and non-symmetric black to white and white to black response 92 

times, especially at high stimulation rates. Several companies offer non-CRT solutions that provide 93 

high refresh rates and rapid transition times from black to white and vice versa.  94 

Successful implementations of tagging protocols are also accomplished with hardware 95 

solutions where custom circuit boards drive individual light-emitting diodes controlled by a 96 

microcomputer (e.g., Gulbinaite et al., 2019). A comprehensive discussion of display systems is 97 

outside the scope of this report, and readers are referred to the extant discussions in the literature 98 

(e.g., Wang & Nikolic, 2011). Likewise, graphic processing demands are high when using 99 

frequency tagging, and researchers should consider state-of-the art graphics cards rather than on-100 

board graphics, which are often insufficient for ensuring accurate ssVEP stimulation.  101 

Not all software used to generate and control visual stimuli in the cognitive neuroscience 102 

laboratory is suitable for use with ssVEP frequency tagging given that the technique exerts high 103 

demands regarding graphic card control and timing accuracy (Jaganathan et al., 2005). It is 104 

therefore highly recommended to test and validate the intended timing before beginning data 105 

collection. Light sensitive diodes and similar devices are readily available to capture and store 106 

luminance changes directly from the display device, allowing researchers to examine the overlap 107 

between the control software’s specifications and the reality on the display. Suitable software 108 

packages for experimental control include psychtoolbox, psychopy, and presentation, in addition 109 

to low-level code written in various programming languages. We provide example code written in 110 

Psychtoolbox (taggingdemo.m) together with the FreqTaq toolbox.    111 

2.2-Implementing the stimulus array 112 

 There are several parameters to be considered when using frequency tagging tasks such as 113 

the monitor refresh rate, the duration of the stimulus presentation within each trial, and the EEG 114 
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sampling rate. When using on-off flicker, the frequencies available for tagging on a 60 Hz monitor 115 

are at the ratio of 60 and the integers from 2 to 20, i.e., at 60/2, 60/3, 60/4, … 60/20, resulting in 116 

potential frequencies at 30, 20, 15, 12, 10, 8.571, 7.5, 6.667, 6.0, 5.455, 5.0, 4.615, 4.286, 4.0, 117 

3.75, 3.529, 3.333, 3.158, and 3.0 Hz. This is equivalent to determining the tagging frequencies 118 

based on the wavelength of the refresh rate, also known as the refresh interval, which in the case 119 

of the 60 Hz monitor is 1000/60 = 16.66ms. Here, the available tagging frequencies can be 120 

computed by dividing 1000 by the product of the refresh interval and the integers between 2 and 121 

20, resulting in the same potential tagging frequencies for on-off flicker. Note that periodic 122 

presentations with other stimulation (e.g., sinusoidal, rather than on-off, modulation of luminance) 123 

may result in additional frequencies becoming available, as discussed for example by Andersen & 124 

Müller (2015).  125 

For some applications, researchers may prefer that the two components of the ssVEP duty 126 

cycle (e.g., the on and off periods of the stimulus in a flicker-ssVEP) be of equal duration. This 127 

reduces the available tagging frequencies by 50%. In the example above, frequencies resulting 128 

from multiplying odd numbers with the refresh interval will be unavailable if on and off-periods 129 

(in luminance ssVEPs) or pattern one versus pattern two (in pattern reversal ssVEP) are to be of 130 

the same duration. Furthermore, when using multiple frequencies for many visual objects 131 

simultaneously, researchers will want to ensure that the tagging frequencies do not exhibit 132 

harmonic relations (in which one tagging frequency is an integer multiple of another; 6 Hz and 12 133 

Hz for example), because this prevents the independent analysis of the two spectral responses (in 134 

the example, the second harmonic of the 6 Hz stimulus is located at the fundamental driving 135 

frequency of the other stimulus, i.e., at 12 Hz).  136 
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The epoch duration, the duration of the EEG data segment used for frequency analysis, 137 

determines the spectral resolution used to quantify the ssVEP at each frequency. If the epoch is 138 

too short in duration, frequency resolution may not suffice for discriminating between the two or 139 

more frequencies used for tagging. In these cases, many researchers use padding with zeros or 140 

other suitable values, which increases the number of the bins on the x-axis of the spectrum and 141 

thus facilitates the separation of the tagging frequencies in the spectrum. It is important to note, 142 

however, that increasing the number of bins does not increase the true underlying spectral 143 

resolution because zero-padding only interpolates the information already contained in the data. It 144 

is also advisable to use epoch durations that hold integer numbers of cycles for a given tagging 145 

frequency, based on integer numbers of sample points. For example, 60 full cycles of flicker 146 

ssVEPs evoked for 6000 ms at a frequency of 10 Hz, on a 60 Hz monitor, are captured by the 6000 147 

ms window when sampling at 500 or 1000 Hz, but not when sampling at 512 Hz. Ensuring that 148 

the data segment of interest contains integer numbers of cycles and sample points will result in 149 

frequency spectra that contain bins at the exact stimulation frequency, without additional 150 

preprocessing steps such as up-sampling and padding (for an extensive discussion of these points, 151 

see Bach & Meigen, 1999).  152 

Planning the epoch duration and selecting the tagging frequencies such that integer cycles 153 

are available in the epoch of interest, at the sample rate used, also minimizes distortions related to 154 

so-called "spectral leaking." This term refers to the smearing of oscillatory responses across two 155 

or more bins of the spectrum, which may occur for example when there is no bin available at the 156 

exact tagging frequency. Such leaking may lead to misinterpretation of condition differences, 157 

especially when the mapping of tagging frequencies to stimuli and experimental condition is not 158 

counterbalanced across the experiment. The reader is directed to reviews and guidelines regarding 159 
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the technical aspects of ssVEP procedures (Bach & Meigen, 1999; Keil et al., 2014; Norcia et al., 160 

2015; Vialatte et al., 2010; Wieser et al., 2016). 161 

3-Analyzing frequency tagging data: a step-by-step demonstration 162 
3.1-The example data sets   163 

Example data from one adult (Silva et al., 2021) and one infant (Barry-Anwar et al., in 164 

preparation) are provided on the Open Science Framework companion site of this paper. Both data 165 

sets have undergone initial segmenting, filtering, and artifact control. The functions provided in 166 

the FreqTag toolbox expect a 3-dimensional MATLAB array with dimensions of sensors, time 167 

points, and trials, as produced by widely used preprocessing tools including EEGLAB  (Delorme 168 

& Makeig, 2004), ERPLAB (Lopez-Calderon & Luck, 2014) as well as other preprocessing 169 

pipelines used for infant data including  HAPPE (Gabard-Durnam et al., 2018); MADE (Debnath 170 

et al., 2020), PREP (Bigdely-Shamlo et al., 2015), and ADJUST (Leach et al., 2020)  and readily 171 

exported from environments such as BrainVision Analyzer (BrainVision Analyzer, Brain Products 172 

GmbH, Gilching, Germany), fieldtrip (Oostenveld et al., 2011), MNEPython (Gramfort et al., 173 

2013).  174 

3.1.1- Adult data set 175 

 The first example data set data comes from a study with adult observers (Silva et al., 2021). 176 

The full data set for this study can be found at:       177 

https://osf.io/a53s9/?view_only=1966f70fac954bac886381f908c7a275. For the sample data 178 

provided here, EEG was recorded from 129 channel geodesic EEG recording net (Philips EGI, 179 

OR, USA) while faces and novel objects (Sheinbugs, see Jones et al., 2018) were concurrently 180 

presented, fully spatially overlapping with each other, and rapidly contrast-modulated. Two 181 

different temporal rates, 5 Hz and 6 Hz, one used for faces and one for objects (counterbalanced 182 
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across participants). The experimental design is depicted in Figure 1. Both stimuli periodically 183 

emerged at their tagging frequency from a Brownian noise (spatial noise with a 1/f2 characteristic) 184 

patch with the same mean luminance and contrast as the experimental stimuli for a duration of 185 

6000 ms for 70 trials.  186 

    [Insert Figure 1 here] 187 

3.1.2- Infant data set 188 

 The second example data set is taken from a recently completed infant investigation using 189 

frequency tagging. The entire data set, and stimuli are available at: Barry-Anwar et al., in 190 

preparation; OPEN NEURO- BIDS format. Parents of all participants gave informed consent prior 191 

to testing. EEG data were collected using a 129-channel Electrical Geodesic system (Net Amps 192 

400, Phillips EGI, Eugene, OR). A subset of 109 sensors were kept for analysis. Infants viewed up 193 

to 20 6-second trials (sample data are from a 9-month-old). Frequency tagging parameters, stimuli, 194 

and trial duration were the same as in the adult sample.  195 

 196 

3.2 Using this document and planning the analyses 197 

 The following step-by-step instructions reflect operations that are part of prototypical 198 

pipelines for visualizing and analyzing data from a frequency-tagging study. Readers are 199 

encouraged to follow along with the example pipeline code supplied on the github companion site 200 

in the matlab live script (.mlx) format (freqtag_pipeline_example1.mlx, and 201 

freqtag_pipeline_example2.mlx), or the corresponding .m file scripts. Live scripts allow users to 202 

read background documentation and execute the code stepwise, while examining inputs and 203 

outputs along with visualizations of each step. Thus, these live scripts and their accompanying 204 

documentation detail many technical aspects and usage of the functions employed in the pipeline. 205 
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The description of these steps in the present paper focuses on conceptual issues. It is thus not 206 

sufficient as a user’s manual for the toolbox.  207 

Importantly, when planning an analysis pipeline, the use of the analyses described in this 208 

report depends on 1) the duration of the stimulation epoch, or how many seconds the stimuli array 209 

was presented, and 2) the number of trials (how many times the stimulus array was repeated) by 210 

experimental condition (see Figure 2).  As a rule of thumb, analyses of time-varying changes in 211 

the envelope of the ssVEP at each tagging frequency require durations of several seconds and 212 

numbers of trials per condition that are comparable with studies of late event-related potentials 213 

such as the P3, which have commensurate signal-to-noise ratio. By contrast, if time information is 214 

discarded, within-trial averaging across several seconds of ssVEP may be applied using sliding 215 

window procedures, substantially boosting the signal-to-noise ratio and allowing spectral analyses 216 

at the level of single trials in many cases (see Figure 2). The present report illustrates typical 217 

pipelines applied at the single participant level and includes quality checks and suggestions for 218 

establishing the robustness of the spectral estimates.  219 

[Insert Figure 2 here] 220 

  221 

3.3-Example 1: Determining the ssVEP spectrum and measuring the envelope time course  222 

In this first example, we describe a pipeline for quantifying the ssVEP in the frequency and 223 

time-frequency domains, applicable for studies in which substantial numbers of trials are available 224 

for averaging. The pipeline “freqtag_pipeline_example1.mlx” involves planning considerations, 225 

and the usage of three toolbox functions, freqtag_FFT,  freqtag_FFT3D, and freqtag_HILB.  226 

 227 
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3.3.1 Assessing data quality and preparing a barebones spectral analysis 228 

The first step towards quantifying the ssVEP amplitude for the tagging frequencies is the 229 

computation of the amplitude spectrum using the Discrete Fourier Transform (DFT). This 230 

transform produces an amplitude spectrum, in which frequency is shown on the x-axis and 231 

amplitude at each frequency is plotted on the y-axis. In a spectral analysis not all frequencies are 232 

available and their distribution along the x-axis is determined by the Fourier uncertainty principle 233 

(for detailed discussion see: Bach & Meigen, 1999; Keil, 2013). According to this principle, the 234 

frequency resolution is determined by the duration of the EEG data segment used for the frequency 235 

analysis. Specifically, the smallest possible step-width on the x-axis of a spectrum is given as the 236 

inverse of the duration of the data segment entering the analysis, in cycles per second, measured 237 

in Hertz (Hz). Thus, transforming a time segment of 2 seconds from the time into the frequency 238 

(spectral) domain results in a spectrum with ½ = 0.5 Hz frequency resolution and a frequency axis, 239 

drawn on the x, which contains the frequency from 0 to half of the sampling rate in steps of .5 Hz. 240 

By the same token, transforming a time segment with a duration of 5 seconds will result in a 241 

spectrum spaced at ⅕ = 0.2 Hz.  242 

After establishing these cornerstones of the planned analysis, we apply them to the example 243 

data files. The first dataset (exampledata_1.mat) was recorded with a sample rate of 500 Hz and 244 

has already been filtered by means of a 30-Hz low-pass (18th order Butterworth) and a 1-Hz high-245 

pass (4th order Butterworth). The epochs were extracted from continuous EEG data, containing 246 

400ms pre- and 7400ms post-stimulus onset (see Silva et al., 2021 for detailed description). Thus, 247 

if researchers were to transform the entire segment, including the pre-stimulus data, into the 248 

frequency domain, the frequency resolution would be 0.1282 (frequency resolution = 1/7.802, i.e., 249 

one divided by the segment’s duration in seconds). However, in studies with frequency tagging it 250 
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is likely that researchers are interested in determining the spectrum selectively for the period of 251 

time during which ssVEP stimulation was present. In addition, it is often preferred to exclude the 252 

early portion of the stimulation epoch. This practice eliminates confounds of the ssVEP signal with 253 

potential transient ERPs evoked by the onset of the frequency tagging array and assists in focusing 254 

the analysis on the segment during which the ssVEP has reached a steady, stationary state.  255 

 In the example adult data, we select a segment starting 1 second after the onset of the 256 

frequency tagging array and ending at 7 seconds after the onset of the Brownian noise. In the 257 

pipeline this segment is called “data_ssvep”. Considering the Nyquist Theorem and the sampling 258 

rate (500 Hz), we know that the highest frequency to be analyzed for the dataset is 250 Hz. 259 

Therefore, between 0 Hz and 250 Hz, in steps of 0.2 Hz (1/5 seconds), the spectrum contains 1251 260 

frequencies.  261 

Highest (Nyquist) Frequency = !"#$%&'(	*"+,
-

 ; 262 
 263 

Frequency Resolution = .
/$012	345"+&0'	&'	6,16

; 264 
 265 

 266 

To implement ssVEP frequency-tagging in this task, Silva and colleagues (2021) used two 267 

different rates, 5 Hz and 6 Hz, one used for faces and one for objects. An initial manipulation 268 

check includes making sure that the dataset’s frequency resolution can discriminate between the 269 

frequencies used for tagging and that the x-axis of the spectrum contains a bin at the exact 270 

stimulation frequencies. It is common practice to remove frequencies unrelated to the focus of 271 

your analysis and frequencies that are not related to brain activity. In this case, the frequencies 272 

kept for further analysis are those between 0 and 32.33Hz, called faxis in 273 

freqtag_pipeline_example1.mlx.   274 
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In general, it is good practice to visualize the data after each step of the analysis. Using the 275 

plot command, readers can plot the data in the time domain as an event-related potential (see Figure 276 

3). In Figure 3, the x-axis represents time, and the y-axis represents the amplitude. Examples for 277 

plotting the data are provided throughout the freqtag_pipeline_example1.m script. 278 

 279 

[Insert Figure 3 here] 280 

 281 

3.3.2 – Conducting a barebones Fourier Transform: the freqtag_FFT function 282 

The Fourier Theorem states that any given time domain signal can be represented in the 283 

frequency domain by a sum of sine and cosine waves with different frequencies, amplitudes, and 284 

phases. Several excellent tutorials on the foundations of Fourier analysis in EEG research are 285 

available for readers interested in learning more about its mathematical principles (Cohen, 2011; 286 

Keil, 2013). Many implementations of spectral analyses for EEG data exist, most of which involve 287 

application of so-called taper windows, within-segment averaging, zero-padding, or differential 288 

weighting of time points entering spectral analysis. However, for ssVEP analyses, a Fourier 289 

transform with no or minimal modifications (i.e., a barebones implementation) may yield the most 290 

unbiased estimate of ssVEP amplitude and phase (for a discussion, see Bach & Meigen, 1999). 291 

At this stage of the pipeline, researchers make a key conceptual decision regarding the 292 

nature of the ssVEP signal: Traditionally, the ssVEP has been regarded an “evoked” response, 293 

which means that it is defined by being exactly time and phase-locked to the tagging stimulus, and 294 

thus analyzed analogous to event-related potentials. Specifically, a sufficient number of trials, with 295 

the same driving stimulus array, are collected and averaged in the time domain to suppress activity 296 

that is not locked to the timing of the periodically modulated stimulus. In the present case, this is 297 
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accomplished by averaging across the third dimension of the data array (trials). The resulting 2-298 

dimensional time-domain average (sensors by time points) is then submitted to a spectral analysis. 299 

This is accomplished by the function freqtag_FFT.m, which uses the MATLAB built-in Discrete 300 

Fourier Transform algorithm (FFT.mat) without windowing or padding. This function outputs the 301 

amplitude spectrum, the phase spectrum, the complex spectrum of Fourier components, and a 302 

vector (list) of the frequency bins available in the spectrum.  303 

3.3.3 – Conducting a Fourier Transform on single trials: the freqtag_FFT3D function 304 

A second approach to conceptualizing the ssVEP is to emphasize the flexible entrainment 305 

of ongoing brain oscillations by the driving stimulus array. Under this assumption, not all of the 306 

ssVEP signal is exactly time- and phase-locked across trials and trial averaging may thus cause 307 

information loss (Gulbinaite et al., 2019).  Researchers adopting this view have often analyzed the 308 

ssVEP by transforming each individual trial into the spectral domain followed by averaging the 309 

resulting single-trial amplitude spectra, thus avoiding cancellation of activity at the driving 310 

frequency that is not exactly time-locked across trials. In the present pipeline, this is accomplished 311 

by the function freqtag_FFT3D.m, which uses the initial 3-D data array (data_ssvep) containing 312 

electrodes, time points, and trials (for the third dimension). This function applies the Fourier 313 

Transform on each trial and averages the resulting spectra.  314 

This latter approach is suggested for researchers who are interested in quantifying ssVEP 315 

activity while assuming that the phase may vary from trial to trial. For more experienced users, 316 

freqtag_FFT3D also outputs the complex spectrum for each trial, which can be used to calculate 317 

measures of variability and consistency of the ssVEP response, such as the circular T2 statistic 318 

proposed by Victor and Mast (1991), or the Rayleigh statistic. The present paper cannot provide 319 

an in-depth discussion of these metrics, but readers are encouraged to consider metrics based on 320 
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complex representations, including when planning a study, as discussed in Baker et al. (2021). The 321 

toolbox also includes a version of the circular T2 statistic, for application with the output of 322 

freqtag_FTT3D, or freqtag_slidewin, discussed below.  323 

The typical way of illustrating the results of the Fourier Transform is a 2-D plot with 324 

frequency on the x-axis and amplitude on the y-axis. For visualization purposes, readers may wish 325 

to select a subset of the available frequencies. In the present example, both the evoked spectrum 326 

(after averaging in the time domain; Figure 4 – top panel) and the single-trial based spectrum 327 

(averaging the single trial spectra; Figure 4 – bottom panel) show not only the activity at the 328 

stimulus tagging frequency (5 Hz and 6 Hz peaks) but also at other frequencies. These frequencies 329 

include multiples of each tagging frequency (harmonics, e.g., at 10 and 12 Hz) but also some linear 330 

combinations of the two driving frequencies (intermodulation frequencies, e.g., at 4 Hz). There is 331 

a growing literature on how these additional responses may be used to test hypotheses regarding 332 

neural function (Appelbaum et al., 2006; Kim et al., 2005; Kim & Verghese, 2012). In a typical 333 

application, the amplitude at occipital sensors will serve as the dependent variable for statistical 334 

analysis, potentially after being converted to a signal-to-noise ratio (see 3.4.3 for an 335 

implementation of this step).  336 

[Insert Figure 4 here] 337 

   338 

3.3.4 – Using the Hilbert Transform to extract time-varying ssVEP amplitude envelopes: 339 

the freqtag_HILB function 340 

  Research questions addressed in frequency tagging studies often involve the time course 341 

of visuocortical activity assessed separately for stimuli in the tagging array. One method for 342 

extracting the time course of a narrow-band oscillatory waveform is the Filter-Hilbert method. 343 
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This method involves the Hilbert transform, a mathematical approach to generate a 90° phase-344 

shifted version of the empirical time series, which then directly translates into a time-varying 345 

envelope measure. A core requirement for accurately determining and shifting the phase of the 346 

empirical signal is that the data used to perform the Hilbert transform are narrowly bandpass 347 

filtered. Although the Hilbert method can be readily applied to broadband signals containing 348 

activity at multiple frequencies, its results will range from difficult to interpret to meaningless 349 

because it uses phase-shifting, and the phase of a signal is only defined for a specific frequency.  350 

Given the importance of digital bandpass filtering in the context of the Hilbert transform, 351 

readers may wish to peruse suitable tutorials and reviews of digital filtering as used in human 352 

electrophysiology (Luck, 2005; Nitschke et al., 1998; Rousselet, 2012; Widmann et al., 2015). The 353 

present paper uses simple and straightforward Butterworth filters. In brief, bandpass filtering is 354 

achieved by the construction of a kernel that is convolved with the EEG data to both preserve the 355 

frequencies of interest and attenuate the undesired frequencies. To create such kernel, it is 356 

necessary to define the filter shape and the frequency characteristics that define that shape. 357 

Designing a Butterworth filter in Matlab involves two input arguments: the filter order and the 358 

cutoff frequency. The filter order determines the precision of the filter’s frequency response. 359 

Sharper roll-offs produced by higher filter order may increase the edge artifact expected to arise 360 

from filtering segmented data, and they heighten the delay of the filter onset response. Therefore, 361 

readers should carefully select the filter and visualize the data in order to control these artifacts. 362 

Once the kernels are built, the data can be filtered by means of the “filtfilt” function which is a 363 

zero-phased forward and reverse digital infinite-impulse filtering procedure. The function 364 

freqtag_HILB contains all of these steps such that the filtered version of the data is computed 365 

within the function and passed into the built-in MATLAB function “Hilbert”.  366 
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The results of the Hilbert Transform are the outputs “hilbamp,” “phase,” and “complex.”  367 

The variables “hilbamp” and “phase” contain the information of how amplitude and phase of the 368 

tagging frequency change over time. The variable “complex” contains both the empirical (real 369 

part) and phase-shifted (imaginary part) of the ssVEP, combined into one complex number for 370 

each time point. To visualize how the ssVEP amplitude at the frequency of interest changes over 371 

time, readers may plot the time-varying amplitude (“hilbamp”;  see Figure 5).  372 

 373 

[Insert Figure 5 here] 374 

 375 

3.4 – Example 2. Using the sliding window approach to estimate the ssVEP in single trials 376 

Not all research questions are readily addressed using information that is pooled across 377 

trials. Experimenters may wish to quantify the trial-by-trial change of visuocortical processing 378 

across only one experimental session or may wish to apply trial-based modeling of learning, 379 

habituation, adaptation, or other concepts that are at odds with trial averaging. Furthermore, 380 

limitations specific to the design or the population may prevent researchers from obtaining enough 381 

trials to enable the approach discussed in 3.3 above. Figure 6 represents the amplitude spectra 382 

obtained after the Fourier Transform, the expected driving frequencies and harmonic peaks are not 383 

as clear as the adult amplitude spectra shown in Figure 4. In many of these cases, it is possible to 384 

quantify the ssVEP amplitude evoked by a specific tagging stimulus at the level of single trials, 385 

using a simple sliding window method (Morgan et al., 1996; Wieser et al., 2016). Here, we use an 386 

example data set obtained from infants to illustrate this method, which may be particularly helpful 387 
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in developmental studies with few available trials. The procedures are illustrated in the 388 

accompanying live script freqtag_pipeline_example2.mlx.   389 

[Insert Figure 6 here] 390 

3.4.1. Implementing the sliding window analysis: the freqtag_slidewin function 391 

 Sliding window analyses capitalize on the regularity of the driving stimulus and its evoked 392 

brain electric response, at a known frequency. The rationale is simple: given sufficient trial 393 

durations, a sliding average window that contains a suitable number of integer cycles of the driving 394 

frequency (in our example, 4 cycles) can be shifted across the ssVEP segment of interest, in steps 395 

that correspond to a full cycle of the oscillation (e.g., Morgan et al., 1996). Continuous averaging 396 

of the contents of these sliding windows amplifies any oscillation that is time and phase-locked to 397 

the driving stimulus and attenuates oscillations that vary in terms of their phase or frequency.  398 

The example infant data set (exempledata_2.mat) has a 3-dimensional MATLAB array 399 

with channels (109), time points (2500), and trials (after artifact detection 15 out of 20). During 400 

preprocessing and segmenting, the time points that were not of interest have been removed and the 401 

remaining 2500 sample points represent the duration of the frequency tagging array containing 402 

faces and objects, tagged at 5 and 6 Hz. To implement the sliding window analysis, we use the 403 

function freqtag_slidewin.m, which executes all steps needed for this analysis, including the 404 

sliding window averaging and subsequent spectral analysis. This function applies a sliding window 405 

analysis as described in Wieser et al., 2016 to each trial, at a given frequency. 406 

The freqtag_slidewin function requires as input arguments: the data in a 3-D format 407 

(sensor-by-time points-by-trials), a flag to determine whether or not to plot the sliding window 408 

process (plotfag), a vector containing the sample points to be used for baseline subtraction (bslvec), 409 
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a vector containing the sample points to be used in the sliding window procedure (ssvepvc), the 410 

driving frequency (foi = 5 or 6), a new sample rate if needed (fsampnew, see below), the sampling 411 

rate (fsamp = 500Hz), and an out name. The baseline correction is necessary to remove drift, which 412 

may induce spectral leaking. In the present example, exampledata_2 only contains the data 413 

segment during which the stimuli were flickering. If users are working with epochs containing 414 

other stimuli, they may assign only the time window of interest using the ssvepvec argument. 415 

 The function computes the duration, the onset times, and the number of sliding windows. 416 

These windows contain 4 cycles of the driving frequency of interest and are stepped across the 417 

ssVEP segment in steps of one cycle. For example, when extracting the 5 Hz ssVEP, the sliding 418 

window contains 4 cycles of 200 ms (the wavelength at 5 Hz), thus being 800 ms long. Second, 419 

the window is then moved across the EEG segment of interest in each trial, in steps of 200 ms, 420 

corresponding to one full cycle of the driving frequency at 5 Hz.  421 

At a driving rate of 6 Hz, the corresponding window length is 666.667 ms, to be moved 422 

over the EEG segment in steps of 166.667 ms. Thus, at a sampling rate of 500 Hz, there will be no 423 

integer numbers of sample points that accommodates the step-width or window length. As 424 

explained above (section 2.2), this will lead to spectral leaking due to including incomplete cycles 425 

entering the analysis. It is thus necessary to upsample the data to a rate that allows representation 426 

of integer cycles of the driving frequency. As discussed in Bach & Meigen, 1999, an integer 427 

relation between monitor retrace and sample rate is required to ensure the capture of each available 428 

driving frequency by an integer number of sample points. In our example, this can be accomplished 429 

by upsampling the data to 600 Hz, implemented by setting the “sampnew” input argument 430 

accordingly. Setting the plotting flag to 1 produces a time-varying representation of each new 431 
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sliding window and the running average. Default outputs of the function are the trial-by-trial 432 

spectral amplitude at the frequency of interest, at each electrode (trialamp), and a 3-dimensional 433 

array that contains the sliding average in the time domain, for each trial and sensor (winmat).  434 

One potential concern when using short segments of data is the cross-contamination of one 435 

tagging frequency by the other frequency, which is present in the signal, but not centered at another 436 

frequency bin. This concern may be particularly relevant when tagging frequencies occupy nearby 437 

spectral bins, as is the case in the example data sets used here: When applying the sliding window 438 

method to extract 6 Hz ssVEP responses from single trials, there is no bin at 5 Hz in the spectrum 439 

used to measure the 6 Hz response, which has bins at steps of 1/0.666 = 1.5 Hz. In most practical 440 

situations, the sliding window average technique however suppresses responses outside the target 441 

frequency. To illustrate this, the toolbox contains a simulation (simulsidebands.m) of how varying 442 

the amplitude of one tagging frequency affects the ssVEP amplitude measurement at the other 443 

(target) frequency and vice versa, when using the sliding window approach. Across a range of 444 

signal and noise levels, this simulation (See Appendix C and accompanying code) shows that, 445 

given typical trial lengths and stimulation rates, cross-talk between tags does not significantly 446 

affect amplitude estimation with the sliding window average method.  As is also shown in appendix 447 

C, crosstalk does affect certain measures of signal-to-noise ratio, especially in cases where the tags 448 

are nearby and when the signal-to-noise ratio of the frequency of interest is low. Thus, users are 449 
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encouraged to use caution when using signal-to-noise ratios in combination with the sliding 450 

window method.   451 

 452 

3.4.2. Computing variables of interest: amplitude and phase-stability 453 

The default outputs of the sliding window function may not always be suitable for testing 454 

the hypothesis of interest in a given study. For example, if researchers are not interested in the 455 

trial-wise variation of the ssVEP they may wish to combine spectral information across trials, or 456 

to calculate amplitude after pooling the time-domain sliding window averages for each trial. For 457 

example, in studies with few trials in which the analyses described in 3.3 are unavailable. Like the 458 

rationale explained in 3.3 for time-domain averaging prior to spectral analysis, researchers may 459 

combine the single trial averaged windows into a cross-trial average, emphasizing the portion of 460 

the oscillation that is time and phase locked to the driving stimulus across repeated trials.  461 

This can be accomplished by averaging the time-domain information contained in the 462 

winmat (winmat3d5Hz or winmat3d6Hz) in the third dimension (trials). The new time series 463 

(meanwinmat, electrode-by-time-points) can, then, be used as the input argument for the 464 

freqtag_FFT function. The frequency spectrum of the sliding windows can be plotted using the 465 

bar built-in MATLAB function (Figure 7, left panel), where the y-axis is the amplitude at each 466 

time-point (variable “amp”) and the x-axis is the frequency axis (variable “freq”).  Alternatively, 467 

the spectral amplitude extracted from each trial may be averaged across trials, allowing 468 
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contributions to the trial averaged amplitude independent of the within-trial phase, using the 469 

function freqtag_FFT3D.  470 

 471 

     [Insert Figure 7 here] 472 

As discussed in Wieser et al., 2016 researchers may also wish to test hypotheses regarding 473 

the stability of the tagged oscillation within each trial, measured as the phase similarity between 474 

all of the sliding windows. If the phase or latency of the ssVEP changes within a trial, relative to 475 

the periodic driving stimulus, then the phase similarity will be lower. If the phase relationship 476 

between the ssVEP and the driving stimulus remains stable across the duration of the trial, then 477 

the phase at the driving frequency should be similar across all sliding windows. Phase similarity 478 

is readily quantified using the phase-locking index, in which normalized complex phase values 479 

(real and imaginary part of the Fourier transform) are averaged and the absolute value (vector 480 

length or the Euclidean norm) of the average is the phase similarity index. The freqtag_slidewin 481 

function computes the phase stability index for each trial and outputs a value for each electrodes 482 

and trial as 2-dimensional matrix (electrodes by trials), which can then be statistically analyzed 483 

and plotted using EEGLAB/ERPLAB.  484 

3.4.3 – Computing the signal-to-noise ratio: freqtag_simpleSNR 485 

Finally, as was visible from the amplitude spectra shown in 3.3.2 (see Figure 4), spectral 486 

peaks located at the ssVEP amplitude often sit on top of other spectral phenomena which may 487 

include ongoing oscillatory activity or non-periodic activity. Thus, a comparison of raw amplitude 488 

often is difficult, as the amplitude estimate may confound ssVEP with non-ssVEP amplitude at the 489 

frequency of interest. Researchers have addressed this problem by computing signal-to-noise ratios 490 
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or similar measures (e.g., baseline corrected amplitude) for determining the distance between the 491 

ssVEP amplitude peak of interest from spectral noise in the same region of the spectrum (see e.g. 492 

Rossion et al., 2012). This issue has also been discussed for non-ssVEP spectral signals, which are 493 

often difficult to distinguish from non-periodic activity: Several advanced methods have been 494 

developed to separate oscillatory activity from other contributions to the spectrum (Donoghue et 495 

al., 2020). These methods often rely on estimating the overall shape of the amplitude spectrum 496 

which tends to take the shape of an exponential (1/f) function.  497 

In the case of ssVEP spectra after trial averaging however, or with shorter segments as used 498 

in sliding window analyses, the spectrum tends to be overall flat, with the ssVEP tagging frequency 499 

visible as a signal. In the present report, we provide a widely used and simple approach for 500 

addressing this issue and measure the ratio of the amplitude at a given driving frequency over the 501 

mean amplitude measured at suitable neighboring (non-ssVEP) frequencies, by means of the 502 

freqtag_simpleSNR function.  503 

 As shown in the example, the selection of adjacent frequencies for the noise estimation 504 

aims to avoid other tagging frequencies, harmonics, and intermodulation frequencies (linear 505 

combinations of the tagging frequencies). The resulting ratios can be exported for hypothesis 506 

testing as unitless ratios, but also converted into decibels. One way to plot the result as decibels, 507 

using the bar built-in MATLAB function, is using the SNRdb output of this function (SNRdb5Hz 508 

or SNRdb6Hz) as the y-axis and the “freq” as the x-axis (Figure 8). “freq” is a variable originated 509 

through the freqtag_FFT and contains all the available frequencies as a vector.  510 

To fully take advantage of the barebones functions provided in this toolbox, readers are 511 

invited to consult extant review papers on ssVEPs and the frequency tagging approach (Norcia et 512 
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al., 2015; Wieser et al., 2016). Furthermore, the functions provided here are readily combined with 513 

functions from other MATLAB-based analysis environments, which may add additional 514 

functionality. Finally, the code provided is intended to be tailored to specific research questions 515 

and populations. Many of the intermediate results computed in this pipeline may be used in ways 516 

that suit researchers interested in concepts like connectivity, neural competition, source 517 

distribution, and inter-trial variability of visuocortical signals (e.g., see Barry-Anwar et al., under 518 

review; Silva et al., 2021) 519 

4- Summary and outlook  520 

The goal of this article was to provide readers with conceptual and practical building blocks 521 

for ssVEP analysis for data collected using frequency tagging. The ability to individually quantify 522 

the individual visuocortical responses evoked by multiple concurrent and overlapping stimuli is a 523 

unique strength of this approach. Thus, frequency tagging allows testing hypotheses not typically 524 

addressable with other methods, including hypotheses regarding interactions between multiple 525 

items. Given its robust underlying signal, the method is highly suited for investigating populations 526 

that may be unable to sit through lengthy experimental sessions including infants, young children, 527 

and clinical populations.  528 
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 788 

 789 

Figure 1: Experimental design modified from Silva et al., 2020. Segments used for Frequency and Time-790 
Frequency analysis were 6 seconds long. The stimuli (faces and objects, flickering in 5hz and 6Hz) 791 
concurrently emerged from a Brownian noise background.  792 

 793 

 794 
Figure 2: A decision tree for the choice of analysis purposes showing how the number of trials lead to two 795 
sets of different analyses. 796 
 797 

 798 

 799 

 800 
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 801 

Figure 3: Adult dataset plotted in the time domain as an event-related potential by averaging the trials in 802 
the third dimension. On the left, all 129 sensors are plotted. On the right, only the Oz sensor is plotted. The 803 
two vertical bars indicate the 6-second analysis time-window.  804 

 805 

 806 

Figure 4: Two ways of applying the Fourier Transform: On the top panel, trials are averaged in the time 807 
domain followed by the execution of the freqtag_FFT.m function. In this case, the averaging procedure 808 
aims at suppressing the activity that is not time-locked to the driving frequency. On the bottom panel, a 809 
Fourier Transform is applied in each trial and the resulting spectra is averaged, this is accomplished by the 810 
freqtag3D_FFT.m. If the phase varies across trials, researchers can benefit from the later approach. Plots 811 
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on the left column contain the amplitude information for each frequency; each sensor is a line. Plots on the 812 
right column, contain the information from the Oz sensor. 813 

 814 

Figure 5: The time-varying ssVEP amplitude envelopes of the 5Hz (on the left) and 6Hz (on the left) tagging 815 
frequencies. This plot can be drawn using the results from the freqtag_HILB.m function. 816 

 817 

Figure 6: Amplitude spectra from the Fourier Transform applied to the infant data. The vertical bars indicate 818 
the tagging frequencies (5 and 6Hz). Although the spectra look as expected, it is not possible to obtain 819 
robust ssVEP response given the insufficient number of trials (less than 20). The evoked amplitude 820 
spectrum can be seen in the top panel, on the left, each electrode is a line and on the right the line represents 821 
the ssVEP amplitude at Oz. The mean amplitude of the single trial spectra is plotted on the bottom panel. 822 
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 823 

Figure 7: Moving window estimates. On the left panel, each line is a sensor that combines the single trials 824 
time-domain information of the evoked ssVEP at 5Hz (top) and 6Hz (bottom). The time series 825 
(meanwinmat) obtained from the freqtag_slidewin.m can be projected in the frequency domain by means 826 
of Fourier Transform (freqtag_FFT.m). The right panel shows the amplitude spectra of the sliding-window 827 
at 5Hz (top) and 6hz (bottom). 828 
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