Volume 13, Issue 1

Journal of Computational Science Education

Tailored Computing Instruction for Economics Majors

Richard Lawrence*
HPRCT
Texas A&M University
College Station, TX

rarensu@tamu.edu

Ridham Patoliya
HPRCT
Texas A&M University
College Station, TX

ridhampatoliya@hprc.tamu.edu

ABSTRACT

Responding to the growing need for discipline-specific computing
curricula in academic programs, we offer a template to help bridge
the gap between informal and formal curricular support. Here, we
report on a twenty-contact-hour computing course developed for
economics majors at Texas A&M University. The course is built
around thematic laboratories that each include learning objectives,
learning outcomes, assignments, and assessments and is geared
toward students with a high-school level knowledge of
mathematics and statistics. Offered in an informal format, the
course leverages the wide applicability of the Python programming
language and scaffolding offered by discipline-specific, hands-on
activities to introduce a curriculum that covers introductory topics
in programming while prioritizing approaches that are more
relevant to the discipline. The design leverages technology to offer
classes in an interactive, Web-based format for both in-person and
remote learners, ensuring easy access and scalability to other
institutions as needed. To ensure easier adoption among faculty and
offer differentiated learning opportunities for students, lectures are
modularized to 10-minute segments that are mapped to other
concepts covered during the entire course. Class notes, lectures, and
exercises are pre-staged and leverage aspects of flipped classroom
methods. The course concludes with a group project and follow-on
engagements with instructors. In future iterations, curriculum can
be extended with a capstone in a Web-based asynchronous
certification process.

Keywords
Python, Cybertraining, Google Colab, Economics, Cyber
infrastructure (CI)

* Both authors contributed equally
U High Performance Research Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©JOCSE, a supported publication of the
Shodor Education Foundation Inc.

© 2022 Journal of Computational Science Education
DOI: https://doi.org/10.22369/issn.2153-4136/13/1/6

32 ISSN 2153-4136

Zhenhua He*
HPRCT
Texas A&M University
College Station, TX

happidence1@tamu.edu

Honggao Liu
HPRCT
Texas A&M University
College Station, TX

honggao@tamu.edu

Wesley Brashear
HPRCT
Texas A&M University
College Station, TX

wbrashear@tamu.edu

Dhruva K. Chakravorty
HPRCT
Texas A&M University
College Station, TX

chakravorty@tamu.edu

1. INTRODUCTION

The success of broadening participation in computing efforts relies
on effectively developing a continuum of informal and formal
learning environments for computing instruction. Simultaneously,
we have to offer programming education that should be tailored to
the needs of the students based on their discipline and level of
commitment, rather than apply a one-size-fits-all approach. Indeed,
recruitment and engagement can be improved by offering
computing training in which examples and exercises are tailored to
the academic and professional interests of the student body.
Scaffolding can be achieved by adopting a tailored approach that
focuses on a subset of topics that lead to a discipline-relevant final
project that offers a feeling of accomplishment. The programming
language, learning platform, and technologies should be coupled
with continuing activities to encourage the interested learner to
continue the process well beyond the duration of the activity.
Simultaneously, we have to teach in incremental modules that let
students solve small problems that are tied to real-world examples.
To benefit the larger community, we should incorporate Web-based
interactive computing avenues that ensure scalability and
reproducibility at the core. Finally, the approach should be
grounded in best practices in cyberinfrastructure technologies and
reviewed pedagogical approaches. Such an approach should ideally
not be limited by the computing technologies that are available to
the students, but rather focus on making the current generation of
technologies accessible to the students.

Texas A&M High Performance Research Computing has a legacy
of offering informal courses geared toward adoption of CI practices
in the regional researcher community [1, 4, 6, 7]. These have
extended from our “short courses” that cover several
cyberinfrastructure topics using hands-on exercises. In previous
works, we have studied means to promote programming at the early
undergraduate level [2], relied on visualization to study
cybersecurity, and have explored opportunities to expand
computing to the middle and high school levels [3]. With a view
toward improving student learning in remote learning
environments, we have explored pedagogical approaches such as
our peer-moderated and peer-taught “Primers” [5]. We have built
software platforms to facilitate the use of CI technologies to
improve reproducibility in the sciences and coupled them with
technology enabling “Tech labs” to improve CI adoption in
research [7]. These efforts have been tied into asynchronous
approaches that leverage interactive computing and social media to
further CI technology adoption at Texas A&M University.

April 2022

Journal of Computational Science Education

As computing becomes more prevalent, programming is
increasingly viewed as a critical career skill. Academic programs
have moved to offer their graduates opportunities to develop skills
in languages such as Python, R, MATLAB, or C++. Academic
programs that do not have courses that directly tie into computing
have relied on informal or certificate-based programs to help their
students gain these skills. Here, we use our experience in offering
Cl-based training to develop a structured approach to teach “Python
Programming” to graduate students in the Economics program at
Texas A&M University. A template for adoption at institutions at
other sizes is included here.

2. METHODS

The course was designed to be taught live in a mixed in-person and
virtual hybrid modality and was structured to use active-learning
methods. Curricular materials could be accessed via a Google
Classroom (via Google Drive) for easy sharing. A course template
was developed with unique branding and thematic elements to
ensure that the course has a unique identity and to develop a sense
of familiarity among students as we revisited old concepts. To
ensure continuity during the classes, slide decks for the course were
structured with learning objectives, concepts visited theory, hands-
on exercises, and take-home assignments. To facilitate hands-on
exercises while ensuring portability and equitable access to all
students, Python examples and exercises were delivered in the form
of Jupyter Notebooks as shown in Table 1, hosted in a Google Drive
(students got a copy), and edited and run in Google Colab. The
Notebooks contained a mix of informative lecture elements,
interactive examples, and exercises. With a view toward student
engagement, exercises used current real-world examples and relied
on visualization approaches. Scaffolding was achieved by
including a detailed description of topics covered in each coding
block along with pointers to previously covered concepts.
Assessments and assignments were offered using the notebooks.
Curricular materials including presentation slides were offered
before the class, allowing students to work on the exercises
asynchronously. To facilitate a review of the previous thematic
section, a video covering the major topics was offered before the
lesson. Google Classroom allowed for seamless integration of all
these technologies, with automatic distribution of the Jupyter
Notebook files containing the course materials as well as recording
student progress. From the students’ perspective, this solution
allowed the use of only a few clicks to both navigate the course and
launch the Colab editor to do their coursework.

An initial list of course topics were identified via polling, informed
discussions, and the general format used in Python education.
Topics were developed in consultation with the Economics
program at Texas A&M. Learning objectives, learning outcomes,
and assignments were developed for each section. At its core, the
format was modularized to enable easy adoption in teaching
scenarios. Toward achieving this goal, the identified course topics

Volume 13, Issue 1

could choose to work on the take-home exercises or see the
solutions by double-clicking on a cell. Participation was tracked at
multiple points throughout each day, which determined course
pass/fail for students. To facilitate student retention and
participation, office hours were offered by the instructors during
the week. To facilitate continued engagement on the conclusion of
the course, HPRC leveraged its “Bring Your Own Science,” a one-
on-one researcher engagement service to work with student groups
on their group projects. Several measures were considered to ensure
that students participating using the remote option had an enriching
experience. Adopting the best practices developed in our “Primers”
and “Technology Laboratories” approaches, we maintained live
chat via a peer moderator, online help offered via breakout rooms
on Zoom, and the option to participate in remote office hours.

An important aspect of the development of this course was that it
was not the sole work of any individual, but rather a collaborative
effort of several instructors. This allowed for a diverse offering of
teaching styles and helpd to ensure that relevant examples would
be included at all stages of the course.

Table 1a. Concepts covered during the course. Each thematic
section includes three 50-minute lectures that have
accompanying, in-class, hands-on exercises and take-home
assignments.

Thematic Section Topics Covered

Google Colaboratory, Variables

Introduction Files, Data Types
Dates and Times, how to use Functions, User
Input
Operations

Algorithms Blocks, Control Structures

Control Structures, Errors

Lists and Strings

Data Structures | Lists, Loops, Dictionaries, Classes

Arrays

Python libraries, Scatter plot, Line plot,
Subplot, Candlestick plot

were divided into thematic sections as described in Table 1. Each Data Tools Series, Index, Values, DataFrame Creation
thematic section included three 50-minute lectures with hands-on
exercises. Each lecture was divided into ten-minute modules that DataFrame Entry Retrieval, Filtering, Sorting
were mapped to other modules in the course, helping revisit topics
later in the course. The last two thematic sections covered several DataFrame histogram, Missing and duplicate
topics introduced during the course. A detailed registry of each data handling
module’s dependency on previous modules was developed. As
such, a future instructor could mix and match these modules to Data Analysis | Merge DataFrame (left, right, outer, inner)
create a new course or grab all the modules that lead to an advanced
topic. The course included mandatory and optional assignments for Linear regression, Train data, Test data,
each minute lecture. Assignments gradually built up in difficulty Predict, Accuracy
level, offering opportunities for differentiated learning. Students

April 2022 ISSN 2153-4136 33

Volume 13, Issue 1

Table 1b (continuation of Table 1a).

Thematic Section Topics Covered

Web-scraping, HTML, Tags, Browser Inspect

Requests library, FRED API (short for

Data Scavenging Application Programming Interface)

Beautiful Soup

3. RESULTS

The course was offered in Fall 2021 to the first-year graduate
students enrolled in the Economics program at Texas A&M
University. Enrollment was limited to 70, with the majority of
students preferring to attend the sessions in-class. 69 students
attended the first day of classes, with 47 students completing the
course. The course was evenly structured in two learning
components. In the first half of the course, we offered three
thematic sections that covered the Python programming basics over
ten contact hours. The second half covered different applications of
Python for students of Economics over another ten hours. This
format lent the course to two continued education credits. Details
of each section are described in Table 1, and the course syllabus is
included as supporting information. The course culminated with
capstone exercises that used the Beautiful Soup library to “Web
scrape” a website with economic data and used finance and plotting
libraries to generate candlestick charts. These exercises offered an
opportunity to reinforce concepts that the participating students had
learned during the thematic sections.

3.1 Learning Outcomes

3.1.1 Orientation and Introduction
o Motivate the use of Python for Economics
e Familiarity with Jupyter IDE via Google Colab
e Understand general programming concepts
o Know what Python is, where it comes from, how to use

3.1.2 Programming Skills

2

e Import from external libraries (e.g. numpy)

o Use the assignment operator

o Inspect variables with print()

e Read and write a simple file

e Handle common types of data

e Inspect variables with type()

e Using functions with arguments

e Handle dates and times with numpy.datetime

e Get user input

e Apply mathematical rules (order of operations)

e Apply logical rules (comparisons)

o Define control structures with whitespace

e Use functions, loops, and conditionals to implement
algorithms

e Handle errors

e Organize data into simple data structures (string, list,
array)

o Interact with data structures (index, slice, mask)

e Integrate data structures into program control (loops,
array operations)

e Organize data into advanced data structures (dictionary,
class)

e Read HTML to locate data in web page code

Journal of Computational Science Education

3.1.3 Data Skills

e Visualize data with Matplotlib

Handle missing data

match

Create scatter plot, color map, best-fit-line
Organize data with Pandas data structures
Manipulate data with Pandas data methods

Analyze data with Pandas data methods

Create linear regression models with Scikit-Learn
Retrieve data from the Web

Parse HTML format to extract data

Organize Web-scavenged data into data structures
Make observations about data and adapt algorithms to

Table 2a. In-class exercises and take-home assignments for
additional learning. * indicates a take-home exercise.

Topics and exercises covered

Topics and exercises covered

Example Assignment

National Economics Data*

Hello World

Classes demo*

Your First Variables

Talking Cats*

Variables Quiz*

Array Basics

Text Files (preview)

Array Operations*

Common Variable Types Scatter Plot

How to use Functions Line Plot

Datetime Subplots

The Droid* Color Plots

Data Type Quiz* Series

User Input* Creating a DataFrame method

Story Generator*

Retrieve and Drop Rows

User Input Quiz* Select, Filter, and Sort Rows
Arithmetic and Comparisons |Read/Write files
Units of Time* Group data

Operations Quiz*

DataFrame plots and histogram

Functions

Missing and duplicate data*

Conditionals

Merge data*

More Conditionals

Pandas DataFrame*

Compute Pi*

Matplotlib Pandas*

Control Structures Quiz*

Candlestick Plot*

Errors and Files*

Linear Regression

Calculator HTML

String Index Pandas HTML

List Properties Requests

List Logic FRED API

List Loops Regular Expression

Capstone for Lists and Strings

Beautiful Soup and Pandas for
web-scraping

34 ISSN 2153-4136

April 2022

Journal of Computational Science Education

Table 2b. (Continuation of Table 2a).

Topics and exercises covered | Topics and exercises covered

Capstone with Dictionaries
and Libraries

Candlestickplots

3.2 Description of Course Content by
Thematic Section

3.2.1 Introduction

Students were first introduced to Python using the Jupyter
Notebook provided by Google Colaboratory. These exercises built
up their understanding of programming concepts and Python
language syntax. The most important topics were covered in class,
while a few were provided as take-home assignments. All of the
exercises were directly related to future assignments that depended
on these fundamentals. Particular emphasis was placed on the
Numpy datetime64 data type as an example to support the future
lessons on time series data. The use of files was introduced early
because they would be critical for data analysis exercises later.
Modules were introduced early despite not being traditionally
considered a fundamental topic because of their massive
importance in future lessons. Students were shown how modules
could be imported (i.e., import <module name>) and incorporated
within their own code. In this course, the Numpy (the
module/library introduced earlier) arrays were extensively used to
generate data in Pandas and the Matplotlib exercises.

3.2.2 Algorithms

Students practiced with several topics that share a dependence on
the Python language syntax element called indentation. These are
the control structures: functions, conditionals, and loops. In
practice, control structures are primarily used for the
implementation of algorithms, which is not a primary focus of
Economics research. Thus, these topics were less connected to
future exercises. However, we still made use of them, when
possible, to reinforce that learning. The take-home exercises for this
session reinforced the use of files and built upon one another to
form a sort of mini-lesson in themselves.

3.2.3 Data Structures

The most relevant topic for Economics research is the Data
Structure, which is a strategy for keeping large amounts of data
organized for effective processing. In Python, these structures are
the List, Dictionary, and Array (with NumPy). These exercises
depended on existing knowledge of Python fundamentals, most
especially data typing and interacting with files. The exercises here
were in the next session to build a useful network of tools that can
handle time series data.

3.2.4 Data Tools

Students were introduced to two commonly used data handling
libraries: Matplotlib [10] for visualization and Pandas [9] for data
structure. Matplotlib was introduced first, leaning heavily on the
Arrays lesson previously covered in order to handle the data that
was to be visualized. The example data to be visualized was
selected from publicly available Housing market data for relevance
to Economics. This same data would be revisited in a future session
featuring linear regression tools. Pandas includes two data
structures, the simpler of which is the Series, a one-dimensional
labeled array, and multiple Series together form a DataFrame,
which is the most used structure. These data structures directly
combined the elements taught in the previous session, especially

April 2022

Volume 13, Issue 1

the lessons on Dictionaries and Arrays. The primary kind of data in
Economics research is a time series, so an emphasis was placed on
those by including them as examples in many lessons. This built
upon the Numpy [8] datetime64 introduced in the first session. This
data type integrates with the Pandas [9] dataframe custom index
feature, which is a staple method of handling time series data. The
time series concept was revisited in an advanced exercise, the
candlestick plot, a time series finance data visualization from the
popular mplfinance [11, 12] library that builds upon the Pandas
time series data structure.

3.2.5 Data Analysis

In addition to the data structure provided by the Pandas library,
students were taught how to perform several basic data analysis
operations using the same library. This included manipulation of a
dataset to collect data into groups, add and remove elements, and
filter to search for elements meeting certain logical criteria. This
built upon concepts introduced in the second session where the
operations that were previously used with conditional control
structures were recycled for this new purpose. To tie in with
economic research, the example data for manipulation practice in
this session were chosen to be a sample of National Economic Data,
which reprised the data set previously introduced in a Dictionary-
focused take-home assignment.

Linear regression is one of the primary techniques economists use
to determine correlations between different variables. We
introduced students to linear regression using visualizations and a
practical example. Students were also introduced to a machine
learning package (Scikit-learn) and its functions. Apart from Scikit-
learn, the rest of the code was built upon the modules that students
learned during preceding sessions (Pandas, NumPy, and
Matplotlib). A Housing Price dataset example was used to give
participants a feel for visualizing, cleaning, and manipulating real-
world economic data using Pandas.

3.2.6 Data Scavenging

Nowadays, most data, for example economics data, live online.
Web scraping is an efficient method to collect data for research,
sales, and marketing, popularity comparison, etc. Students were
introduced to common Web data concepts including HTML basics,
HTTP requests, and the JSON data structure. These naturally built
upon previously taught skills, especially functions and data
structures, including Pandas.

Federal Reserve Economic Data (FRED) [13] is a public resource
hosted by the St. Louis Federal Reserve bank. This is commonly
used by economics researchers as a free source of economics data.
This specific API was also requested by faculty in the department.
FRED API is a traditional Web API which can be handled easily in
Python. Data is downloaded in the JSON format, which integrates
easily into the Python dictionary data structure. This example was
used as an advanced exercise building upon previous Python
concepts while also priming students for their future studies using
the same data source.

While APIs offer a straightforward means to retrieve data, we note
that most websites do not have APIs for data extraction. For more
general Web-data extraction, we covered the Beautiful Soup [11]
library. Beautiful Soup is a Python library to pull data out of HTML
files. The example use case for this lesson was salary statistics of a
given job position in one or more cities.

ISSN 2153-4136 35

Volume 13, Issue 1

3.3 Feedback from Economics Graduate
Students

Surveys released each week collected student impressions of the
material covered that day. Student impressions were generally
positive about the relevance of the materials, interest in the topics,
and opportunities offered by the course. There was a significant
interest in converting this learning opportunity into a certificate that
could be digitally displayed on professional social media sites such
as LinkedIn. The students were able to follow along and use the
Google Classroom platform effectively. From the survey
responses, the most requested change was to slow down, because
the syllabus was too ambitious in its pacing. Incorporating this
request into the course plan resulted in omission of the capstone
project and a few other exercises scattered throughout. We were
pleasantly surprised to receive no comments criticizing the
relatively advanced nature of the API data retrieval and Web-
scraping exercises.

For the learning outcomes, 100% of the students who participated
in the survey agreed that they were able to learn what they expected.
Take-home assignments for continued learning were read but not
graded. We observed that assignments were largely attempted the
night before the previous session. Given the opportunity, we
learned that offering solutions on the Web platform may dissuade
students from working on the problems. To encourage more
discussion, this feature was removed in later weeks. Students were
now asked to attend office hours to get the solutions to the advanced
problems. As such, student activity with regard to take-home
assignments for continued learning was found to be unenthusiastic.
Many students did not attempt the at-home exercises, citing that
their other courses kept them too busy. This is an unfortunate but
predictable result of the choice to do participation-only grading.
This in turn had a negative impact on attendance at our hours, too,
since the harder take-home assignments were designed to foster a
discussion during office hours. In the future, homework should not
represent a significant part of the curriculum unless true grading
can be offered.

4. CONCLUSION

During this course, students were introduced to fundamental
competencies and subject-specific applications in Python
programming. This 20-contact-hour course built on an easy-to-use
Web-based platform and represented a scalable opportunity for
programming language instruction targeted at students of specific
disciplines. Here, we showed that as we work to broaden
participation in computing, tailoring examples and exercises to the
interests of the student body increases student-engagement and
facilitates student learning. The format gave us opportunities to
include modules that increased awareness of cyberinfrastructure
practices such as code optimization and parallel programming that
are common in research computing. This will dovetail into our
current series of HPRC courses that cover topics in Artificial
Intelligence and Machine Learning. A tailored approach can focus
on a subset of topics that lead to a discipline-relevant final project,
which offers a feeling of accomplishment while serving as a
capstone exercise in a certification-styled effort. An asynchronous
version of the course is under development, which will include
videos that accompany class slides and the Google Colab
notebooks. This version will be made available to the community
for wider adoption. A version with mandatory assignments and a
capstone will be offered for certification.

36 ISSN 2153-4136

Journal of Computational Science Education

5. SUPPORTING INFORMATION

The slide decks and some of the training materials used in this study
are available to the community via the Texas A&M HPRC website
[14]. The course syllabus is included as supporting information.
Please send us feedback about your adoption experience via an
email to help@hpre.tamu.edu.

6. ACKNOWLEDGEMENTS

This work was supported by the Department of Economics at Texas
A&M University, the National Science Foundation (NSF) award
number 1925764, “CC* Cyberteam SWEETER”, NSF award
number 2019129, “MRI:FASTER”, NSF award number 1730695,
“CyberTraining: CIP: CiSE-ProS: Cyberinfrastructure Security
Education for Professionals and Students,” NSF award number
1818253, “Frontera: Computing for the Endless Frontier,” and NSF
award number 2019136, “CC* BRICCs: Building Research
Innovation at Community Colleges.”

7. REFERENCES

[1] Chakravorty, D. K., Pennings, M., Liu, H., Rodriguez, D. M.,
Jordan, L. T., Ghaffari, N., and Le, S. D. 2019. Effectively
Extending Computational Training Using Informal Means at
Larger Institutions. Journal of Computational Science
Education 10, 7 (Jan. 2019), 40-47. DOI:
https://doi.org/10.22369/issn.2153-4136/10/1/7

[2] Chakravorty, D. K., Pennings, M., Liu, H., Wei, Z.,
Rodriguez, D. M., Jordan, L. T., McMullen D.F., Ghaffari,
N., and Le, S. D. 2019. Evaluating Active Learning
Approaches for Teaching Intermediate Programming at an
Early Undergraduate Level. Journal of Computational
Science Education 10, 7 (Jan. 2019), 61-66. DOI:
https://doi.org/10.22369/issn.2153-4136/10/1/10

[3] Chakravorty, D. K., Pennings, M., Liu, H., Thomas, X.,
Rodriguez, and Perez, L. M. 2020. Incorporating Complexity
in Computing Camps for High School Students - A Report
on the Summer Computing Academy Program at Texas
A&M University. Journal of Computational Science
Education 11, 1 (Jan. 2020), 12-20. DOI:
https://doi.org/10.22369/issn.2153-4136/11/1/3

[4] Chakravorty, D. K., and Pham, M.T. 2020. Evaluating the
Effectiveness of an Online Learning Platform in
Transitioning Users from a High Performance Computing to
a Commercial Cloud Computing Environment. Journal of
Computational Science Education 11, 1 (Jan. 2020), 26-28.
DOI: https://doi.org/10.22369/issn.2153-4136/11/1/5

[5] Chakravorty, D. K., Perez, L. M., Liu, H., Yosko, B.,
Jackson, K., Rodriguez, D.M., Trivedi, S.H., Jordan, L.T.,
and Le, S.D. 2021. Exploring Remote Learning Methods for
User Training in Research Computing. Journal of
Computational Science Education 12, 2 (Feb. 2021), 11-17.
DOI: https://doi.org/10.22369/issn.2153-4136/12/2/2

[6] Lawrence, R.M., Pham, T. M., Au, P. T., Yang, X., Hsu, K.,
Trivedi, S.H., Perez, L.M., and Chakravorty, D. K. In press.
Expanding Interactive Computing to Facilitate Informal
Instruction in Research Computing. Journal of
Computational Science Education.

[71 He, Z., Tao, J., Perez, L.M., and Chakravorty, D. K. In press.
Technology Laboratories: Facilitating Informal Instruction
for Cyberinfrastructure infused Data Sciences in Virtual
Settings. Journal of Computational Science Education.

April 2022

Journal of Computational Science Education

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., ... and Oliphant, T. E.
2020. Array programming with NumPy. Nature 585, (Sept.
2020), 357-362. https://doi.org/10.1038/s41586-020-2649-2

McKinney, W. 2010. Data Structures for Statistical
Computing in Python. In Proceedings of the 9th Python in
Science Conference 445, 51-56. DOLI:
https://doi.org/10.25080/Majora-92bf1922-00a

[10] Hunter, J. D. 2007. Matplotlib: A 2D Graphics Environment.

Computing in Science & Engineering 9, 3 (May—June 2007),
90-95. DOLI: https://doi.org/10.1109/MCSE.2007.55

APPENDIX: REPRODUCIBILITY

Volume 13, Issue 1

[11] Richardson, L. 2007. Beautiful Soup Documentation.
[12] Goldfarb, D. 2019. Mplfinance Documentation.

[13] 1997. FRED, Federal Reserve Economic Data. St. Louis,
MO: Federal Reserve Bank of St. Louis. Software, E-
Resource. Retrieved from the Library of Congress,
https://Iccn.loc.gov/98802805.

[14] Texas A&M High Performance Research Computing. Python

for Economics Graduate Students. Retrieved from
https://hpre.tamu.edu/events/workshops/2021-09-10-
PyEcon.html

Figure 1. “Hello world” notebook in Google Colab, first few cells.

cO & 112b Hello world.ipynb By comment 2% Share 43 @
File Edit View Insert Runtime Tools Help Allchangss saved
— + Code + Text Connect - & Editing Fay
O\ 3
Python for Economics
<)
High Performance Research Computing, Texas A & M University
0O
Please cite: Richard Lawrence*, Zhenhua He*, Wesley Brashear, Ridham Patoliya, Honggao Liu, and Dhruva K.
Chakravorty 2021. Tailored Computing Instruction for Economics Majors. Journal of Computer Science and
Education, USA, November 2021 (SC21), submitted for review.
Lesson 1, Assignment 2
"Hello World"
Lecture and exercise
Learn how to use Google Colab, execute your first Python program
rvoBRs0E
This is a Text cell
Click on it. You will see a box appear around the cell, so you can see its boundaries.
Exercise 1.
Create a text cell.
To create a text cell, click + Text . It will appear after the currently selected cell.
=
To edit a text cell, double-click on it. Type some words. Double-click on the preview to stop editing.
® X
April 2022 ISSN 2153-4136 37

	1. INTRODUCTION
	2. METHODS
	3. RESULTS
	3.1 Learning Outcomes
	3.1.1 Orientation and Introduction
	3.1.2 Programming Skills
	3.1.3 Data Skills

	3.2 Description of Course Content by Thematic Section
	3.2.1 Introduction
	3.2.2 Algorithms
	3.2.3 Data Structures
	3.2.4 Data Tools
	3.2.5 Data Analysis
	3.2.6 Data Scavenging

	3.3 Feedback from Economics Graduate Students

	4. CONCLUSION
	5. SUPPORTING INFORMATION
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

