

1 **Plastics to fuel or plastics: life cycle assessment-based evaluation of different options for**
2 **pyrolysis at end-of-life**

3
4 Sabyasachi Das,¹ Chao Liang,² Jennifer B. Dunn, *^{1,3,4}

5
6 1. Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
7 2. Institute of Sustainability and Energy at Northwestern, Northwestern University, Evanston,
8 IL, USA
9 3. Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, IL,
10 USA
11 4. Northwestern-Argonne Institute of Science and Engineering, Northwestern University,
12 Evanston, IL, USA

13
14 *jennifer.dunn1@northwestern.edu

15
16 **Abstract**

17
18 Pyrolysis is a leading technology to convert non-recyclable plastic waste to fuels or chemicals.
19 As interest in the circular economy grows, the latter option has seemingly become more
20 attractive. Once waste plastic is pyrolyzed to, for example, naphtha, however, additional steps
21 are required to produce a polymer product. These steps consume additional energy and water
22 and emit greenhouse gases (GHG). It is unclear whether this more circular option of non-
23 recyclable plastics to virgin plastics offers environmental benefits, compared to their conversion
24 to fuels. We therefore examine whether it is possible to determine the best use of pyrolyzing
25 non-recyclable plastic – fuels or chemicals (low-density polyethylene (LDPE) as product) – from
26 a life cycle perspective. We use recently published life cycle assessments of non-recycled
27 plastics pyrolysis and consider two functional units: per unit mass of non-recyclable plastics and
28 per unit product - MJ of naphtha or kg of LDPE. In the U.S., on a cradle-to-gate, per unit mass
29 waste basis, producing fuel is lower-emitting than producing LDPE from pyrolysis . The
30 opposite is true in the EU. But expanding the system boundary to the grave results in LDPE as
31 the lower-emitting product in both regions. Naphtha and LDPE produced from non-recyclable
32 plastics are less GHG-intensive than conventional routes to these products. Fossil fuel and water

33 consumption and waste generation are all lower in the P2F case. Our results highlight that
34 prioritization of P2P and P2F may depend on regional characteristics such as conventional waste
35 management techniques and water scarcity.

36
37 **Keywords**
38

39 Waste plastic, pyrolysis, life cycle assessment
40

41
42 **1. Introduction**
43

44 Addressing ever-growing volumes of waste plastic that make their way to landfills, incinerators,
45 and the environment has reached a critical stage with societal, industrial,(Alliance to End Plastic
46 Waste, 2021) investor (Crowley, 2021) and international and federal agency interest (United
47 Nations Environment Programme, 2022) in reducing waste generation stronger than ever. While
48 some types of polymers (e.g., polyethylene terephthalate and high-density polyethylene) are
49 amenable to recycling, others are not because their properties deteriorate upon recycling,
50 technology to recycle them does not exist, or their recycling is not economically viable. These
51 factors underlie the very low plastics recycling rate (e.g., ~8% in the United States(US EPA,
52 2017a)).

53
54 There are numerous options for managing plastics at the end of life. The most common option,
55 landfilling, wastes the inherent energy in plastics and takes up land. Another option is incinerating
56 waste plastic to recover energy, which can result in toxic air emissions (e.g., dioxins) (Hou et al.,
57 2018) depending upon the composition of plastic waste and air pollution control measures.
58 Increasingly, mechanical and chemical (Chen et al., 2021) recycling methods are receiving
59 attention as paving the way towards a circular economy. It should be noted that various recycling

60 methods may be more or less beneficial for different plastic types as compared to more
61 conventional waste handling methods (landfill, energy recovery) depending on a number of factors
62 including energy content.(Meys et al., 2020)

63

64 Pyrolysis is one of the most prominent chemical recycling technologies that is in the early stages
65 of commercialization.(Luu, 2021; Solis and Silveira, 2020) Examples of pyrolysis entering
66 commercial-scale operations include Brightmark's 100,000 ton plastic waste per year facility
67 under construction in Indiana, United States and the partnership between Fuenix Ecogy and Dow
68 in the Netherlands.(Chemical and Engineering News, 2020; Luu, 2021) It can be used with
69 mixed plastic wastes that are not economically viable for recycling. Pyrolysis products include a
70 mix of energy products (e.g., naphtha, diesel, char, and fuel gas).(Benavides et al., 2017; Jeswani
71 et al., 2021) Naphtha can be used as a fuel or a raw material for chemicals production. The
72 latter option has been a focus of recent chemical recycling efforts that target circularity as a
73 primary objective. It is unclear, however, whether expending energy to convert naphtha to a
74 polymer such as low-density polyethylene (LDPE) to achieve circularity is better than stopping
75 at the production of naphtha. Combusting a fuel made from naphtha releases CO₂ to the air and
76 breaks any link to circularity for the plastic, but uses the energy the waste plastic contains –
77 potentially in place of energy in virgin fossil fuels - and does not contribute to solid waste
78 generation. On the other hand, converting the naphtha to a plastic consumes energy and emits
79 GHGs. The end-of-life fate of that plastic is most likely (in the U.S. and many countries that
80 contribute the most to plastic waste)(Law et al., 2020) either landfilling or release to the
81 environment. As a result, it is not immediately clear which option offers comparably more
82 environmental benefits. Importantly, regional differences may affect the relative merits of the

83 P2P and P2F pathways. Regions differ in their waste management methods, the energy- and
84 GHG-intensity of the production of virgin chemicals and fuels which may use different
85 feedstocks, technologies, energy sources, water availability, and the electricity grid mix. To
86 evaluate whether circularity is the better objective for end-of-life plastics that undergo pyrolysis
87 – and what data gaps and regional differences might exist that influence the relative merits of
88 fuels compared to plastics in chemical recycling - we carried out a simple life cycle assessment
89 (LCA) using existing data and high-level assumptions to compare plastics-to-plastics (P2P) and
90 plastics-to-fuels (P2F) routes for waste plastics with two different functional units (mass of waste
91 plastic managed and per unit product). Given the above-mentioned regional differences, we
92 carried out this evaluation in the context of the United States (U.S.) and the European Union
93 (EU).

94

95 **2. Methods**

96 Both P2P and P2F pathways comprise a pyrolysis step to convert waste plastic feedstock into
97 naphtha. In the P2F process, naphtha is the main product and is used as a fuel. In the P2P process,
98 the naphtha is converted to ethylene, which is then polymerized to low-density polyethylene
99 (LDPE). The parameters used in our analysis are documented in Table 1 including feedstock
100 composition, product yields, electricity grid, and conventional waste management parameters. We
101 determined the GHG emissions and fossil energy consumption for both pathways. We considered
102 two functional units: mass of waste plastic and unit product (MJ naphtha in the case of P2F and
103 kg LDPE in the case of P2P). In the former case, we consider how results are affected by recycling,
104 landfilling, and incineration rate differences between the U.S. and the EU. When adopting a
105 product perspective, we considered that the plastic produced via chemical recycling could be

106 recycled at the rate specific to the region of study. This may be a best case assumption in terms of
107 retaining the inherent value (e.g., avoiding downcycling) of the end-of-life plastic because
108 mechanical recycling, which may entail downcycling, is the dominant recycling method operating
109 commercially.(U. S. Government Accountability Office, 2021) We note that the methodology of
110 evaluating plastics circularity in LCA remains under debate and that other analysis approaches to
111 addressing circularity or that use other recycling methods for the waste-plastic derived polymers
112 would be possible.(Huysveld et al., 2019) It is beyond the scope of this analysis to explore the
113 sensitivity of results to the method of evaluating circularity's effects.

114

115 INSERT TABLE 1

116

117 One previous study(Benavides et al., 2017) that supports our analysis considered conversion of
118 non-recycled plastic (NRP) waste (25 wt% HDPE, 33 wt% LDPE and 42 wt% PP) to diesel fuel.
119 No chlorine or oxygen entered the pyrolysis reactor based on the feedstock composition;
120 accordingly, no post-pyrolysis purification was required. This is consistent with another analysis
121 of plastics pyrolysis(Jeswani et al., 2021) which also relied on industry data and observed that less
122 than 0.5% of the pyrolysis reactor feed contained chlorine. Jeswani et al. assumed a feedstock
123 composition of 90 wt% PE, PP and PS and 10 wt% impurities. Based on surveys of P2F
124 companies, Benavides et al. determined that the liquid pyrolysis product was 80% (by vol.) diesel
125 and 20% naphtha. In our analysis, however, we changed the liquid product composition to 100%
126 naphtha and 0% diesel. While energy consumption of the process would likely change with this
127 shift of product slate, we envision the pyrolysis process much like a petroleum refinery that can
128 shift its product slate through changes in temperature, pressure, and other parameters without

129 extraordinary differences in carbon intensity that would greatly change LCA results. It has been
130 shown(Elgowainy et al., 2014) that a range of a few g CO₂e/MJ for refinery products exists over
131 43 different refineries and among different refinery products. We take this assumption in this
132 perspectives piece as sufficient to explore the big-picture question we are asking regarding best
133 use of pyrolysis for end-of-life plastics. A detailed analysis, however, would require a close look
134 at the implications of changing the product slate and, depending on the feed composition, consider
135 post-pyrolysis refining steps. Benavides et al. explored different uses of the fuel gas and char co-
136 products. In our calculations, we assumed that fuel gas would be used for internal heat. Excess
137 fuel gas would be sold as an energy product. We used the system expansion co-product handling
138 approach. In this approach, the main product (naphtha or LDPE) is assigned all emissions from
139 the process. Subsequently, emissions associated with conventional manufacturing of the amount
140 of co-products produced along with the main product (e.g., from virgin fossil fuels) are subtracted
141 from this GHG intensity. System expansion is also applied to the electricity produced from waste
142 incineration in scenarios that incorporate conventional waste management. Section 6 of the
143 Supplementary Information provides the equations and parameters we used in these calculations.
144 Benavides et al. observed that LCA results for the P2F pathway were relatively insensitive to co-
145 product handling choice. The Supplementary Information contains a life cycle inventory data table
146 and schematic depicting data sources.

147
148 For the U.S. context, we modified the existing P2F pathway in the Greenhouse gases, Regulated
149 Emissions and Energy use in Technologies (GREET) model (Argonne National Laboratory, 2020)
150 to characterize the P2P pathway. The produced naphtha was assumed to undergo cracking to
151 produce ethylene(Yang and You, 2017). The ethylene needs to be separated from other cracking

152 products like propylene, hydrogen, and C₄ and C₅ hydrocarbons. We used mass allocation to
153 spread the energy and emissions burdens and credits for this among cracking process co-products.
154 Subsequently, ethylene undergoes polymerization to produce polyethylene. Material and energy
155 consumption data from the GREET Bioproducts module (Dunn et al., 2015) were used to
156 characterize the polymerization process.

157

158 For the EU context, data for the production of ethylene from waste plastic feed were extracted for
159 European conditions.(Jeswani et al., 2021) Data for polymerization of ethylene to LDPE was also
160 derived for European conditions.(Vanderreydt et al., 2021)

161 We adopted two functional units in this analysis. Figure 1 depicts the system boundary when the
162 functional unit is 1 kg of waste plastic. Figure 2 reflects a product-based functional unit: 1 MJ of
163 naphtha fuel (P2F) or 1 kg LDPE (P2P).

164

165 The baselines depend on the choice of functional unit. For the waste-based perspective (Figure 1),
166 the baseline for non-recycled plastic is the current conventional waste-handling in the U.S. (20%
167 incineration, 80% landfill). It is important to note that in the EU, on average, 63% and 37% of
168 waste is incinerated and landfilled, respectively. (Benavides et al., 2017) 33% of plastic waste
169 (Centro De Documentacion Europea, 2021) is recycled in the EU whereas in the US only 8% is.

170 We assume that emissions from landfilling operations are negligible in this analysis, which aligns
171 with previously published results(Demetrious and Crossin, 2019) that report negligible landfilling
172 emissions associated with mixed plastic waste. In the U.S. context, for the product perspective
173 (Figure 2) the baseline for the P2F pathway is the production of naphtha in the GREET Petroleum
174 module. For the P2P pathway, the baseline is the conventional LDPE production as modeled in

175 GREET. For the EU context, we also use similar values for conventional production of
176 naphtha(Boustead, 2005) and LDPE(Vanderreydt et al., 2021).

177

178 INSERT FIGURES 1 and 2

179
180 **3. Results**
181

182 Figure 3 illustrates life-cycle GHG emissions results for the P2P and P2F cases when the
183 functional unit is 1 kg NRP. The results in Figure 3 and all subsequent figures are tabulated in
184 the supplementary information.

185

186 INSERT FIGURE 3

187

188 In Figure 3, contributors to emissions with solid outlines are activities that occur when the
189 system boundary ends at the (solid lines in Figure 1) pyrolysis factory gate. Contributors with
190 dashed lines reflect emissions from activities between the gate and the grave. In the P2P case,
191 we assume that the regionally-specific plastic recycling, incineration, and landfilling rates apply
192 to the kg of waste. That is, (in the US) 1 kg of NRP that undergoes pyrolysis and subsequent
193 processing to produce LDPE yields 0.25 kg of LDPE. When that mass of plastic reaches its end
194 of life, 18% of it is incinerated, 74% of it is landfilled, and 8% of it is recycled (we assume
195 chemically to produce LDPE). In our high-level analysis, we assume that the pyrolysis process
196 has the same yield when the feed is only LDPE as opposed to having the pyrolysis feed
197 composition in Table 1.

198

199 In Figure 3, P2F *cradle-to-gate* emissions are lower than in the P2P case for US context.

200 Compared to the P2F pathway, P2P requires additional processing that raises emissions over

201 those of the P2F pathway when the system boundary ends at the gate. This is not true for the EU

202 context because of the much higher LDPE yield (~2X), which results in greater credits for

203 system expansion for the P2P case. When the system boundary extends to the grave, however,

204 GHG emissions from naphtha combustion drive up P2F emissions and they exceed those of the

205 P2P case for both U.S. and EU contexts. As illustrated in Figure 1, the P2P pathway in the U.S.

206 includes processing the 0.25 kg LDPE produced from the original 1 kg of NRP through the

207 “average” system for dealing with plastic waste. In the US, this means that only 8% (or 0.02 kg)

208 of it is recycled. Accordingly, the second cycle emissions in Figure 3 are effectively negligible.

209 We therefore only account for one recycling process in the U.S. context as subsequent cycles

210 deal with vanishingly small masses. When the system boundary extends to the end-of-life of the

211 fuel or plastic, the P2F cases have higher emissions than conventional waste handling. We note

212 that if waste were only landfilled, (and none were incinerated) emissions from conventional

213 waste handling would be effectively zero, but there would be no circularity at all in the

214 management of waste. In the P2F case, there is no waste at the end-of-life. Assuming the

215 0.25 kg of LDPE produced in the U.S. P2P case experiences average end-of-life conditions, 0.74

216 kg of waste will be generated (Figure 4). No waste is generated in the P2F scenario (in the US or

217 the EU).

218

219 INSERT Figure 4

220

221 In the EU, conventional waste management of non-recycled plastics entails 37% landfilling and
222 63% incineration. As a result, baseline waste management emissions are higher in the EU than
223 in the US. In the EU, P2P GHG emissions are lower than P2F. In the P2P pathway, the effects
224 of recycling are more evident than in the U.S. because 33% versus 8% of plastic waste is
225 recycled. Second cycle emissions (e.g., chemical recycling of the LDPE (0.54 kg from 1 kg of
226 NRP)) are higher because the higher recycling rate translates to an appreciable amount of mass
227 that is chemically recycled. Whereas in the US analysis we could only achieve one pass of the
228 pyrolysis-derived LDPE through chemical recycling, we can evaluate two such passes in the EU
229 context – extending to three cycles.

230

231 When interpreting Figure 3, it is also important to note the differences in the electricity grid mix
232 between the U.S. (33% renewable) and the EU (48% renewable) based on our underlying data
233 sources (Table 1). The greater share of renewable electricity in the European context lessens the
234 systems expansion-based emissions benefit from accounting for using electricity from waste
235 incineration in place of conventional grid electricity. But in the EU context the LDPE yield is
236 higher so, overall, P2P emissions are lower than in the U.S. context. P2F GHG emissions in the
237 EU-based analysis are lower than in the U.S. context because Benavides et al. reported a higher
238 yield than Jeswani et al. (Table 1). With more naphtha produced, naphtha combustion
239 emissions are higher per kg of waste processed.

240

241 INSERT Figure 5

242

243

244 From a product perspective, both the P2P and P2F routes from waste plastic are environmentally
245 more favorable than their baseline scenarios (Figure 5). This result holds in both the U.S. and EU
246 contexts. The baseline for the P2F route is conventional naphtha production from petroleum; the
247 baseline for the P2P route is conventional LDPE production. In the U.S., the life-cycle GHG
248 emissions are 12% lower for naphtha when it is produced via NRP pyrolysis compared to
249 conventional routes. This GHG emissions reduction is driven mostly by the lower GHG
250 emissions within the cradle-to-gate system boundary because combustion emissions per unit
251 mass of naphtha are the same for pyrolysis- and conventionally-derived naphtha. On the other
252 hand, in the U.S. context, the process to produce LDPE from NRP is lower-emitting than the
253 baseline LDPE process by 18%. From a product perspective, the P2P route offers a greater
254 reduction in GHG emissions than the P2F route when compared to their respective baselines.
255 The same overall conclusion holds true in the EU, with a 7% reduction for the P2F route
256 compared to conventional naphtha production and a 37% reduction when LDPE is prepared via
257 chemical recycling instead of from virgin fossil fuels (Boustead, 2005; Vanderreydt et al., 2021).

258

259 **4. Discussion**

260

261 The results of our analysis indicate that, when the system boundary extends beyond the pyrolysis
262 plant gate, the P2P route consistently offers GHG emissions benefits regardless of region or
263 functional unit, although the extent of these reductions does depend on the viewpoint that the
264 functional unit defines. The benefit is greater from the perspective of unit of mass waste
265 managed compared to per mass of plastic product produced from pyrolysis. Notably, emissions
266 are higher in the EU context because of the higher share of incineration in waste management.

267

268 Beyond GHG emissions reductions, a circular plastics economy has the potential to reduce fossil
269 fuel consumption. Figures S4 and S5 in the supplementary information contain life-cycle fossil
270 fuel energy consumption with a per mass or energy functional unit (product perspective). For
271 both products (naphtha and LDPE), fossil fuel consumption is significantly lower for the
272 products derived from waste plastics rather than virgin fossil fuels. It is also lower for the P2F
273 route than for the P2P route (99% v 56%). We also evaluated life-cycle water consumption from
274 the product perspective. Figure S3 illustrates that this metric is favorable in the P2F route but
275 not in the P2P case because of water consumed in converting naphtha to LDPE. This may be a
276 notable distinction with a strong regional influence given projected water scarcity in the
277 future(He et al., 2021). Solid waste and associated terrestrial ecotoxicity are other important
278 metrics that would favor the P2P and P2F pathways over conventional waste management,
279 especially in the U.S given its high rate of landfilling(Saling et al., 2020). The P2F route holds
280 an advantage in this regard because it will not generate any solid waste. These results show the
281 importance of considering metrics beyond GHG emissions reductions alone.

282

283 It is worth considering the total emissions reductions that could result if waste plastics were used
284 at a large scale as a source of fuels or chemicals. Annual production of naphtha between 2018
285 and 2020 in the United States ranged from 320-400 billion MJ.(Energy Information
286 Administration (EIA), 2021) We could conceivably produce about 825 billion MJ(US EPA,
287 2017b) naphtha from waste plastics, exceeding this demand. If we entirely replaced naphtha
288 production from petroleum with naphtha production from waste plastic, emissions reductions
289 would be 3.9 million tonnes of CO₂e. On the other hand, approximately 3.5 million metric tons
290 of LDPE are produced annually in the U.S.(American Chemistry Council, 2020) From waste

291 plastic, it would be possible to produce 1.8 times this amount. If all LDPE were produced from
292 pyrolysis of NRP, emissions reductions would be 1,940 tonnes of CO₂e. This reduction is
293 orders of magnitude lower than the reduction associated with displacing conventional naphtha
294 with fuels from waste plastic. Clearly, viewing plastic at its end-of-life as a resource to be
295 converted to either fuels or plastics could generate significant GHG savings although P2F routes
296 may offer greater savings.

297

298 **5. Conclusion**

299

300 Based on this analysis, we can be fairly certain that P2P pathways enable plastic waste
301 management that is lower-emitting than current waste management practices and would produce
302 plastics that are lower-emitting than conventional production routes. However, when taking into
303 account a larger environmental picture that includes solid waste generation and the largely
304 uncertain fate of plastic waste (even the U.S. with its strong waste management system is the
305 third largest contributor of mismanaged plastic waste to the coastal environment world's plastic
306 waste globally), (Law et al., 2020) it is important to keep P2F on the table as a waste
307 management option, especially in regions that incinerate a large share of plastic waste and/or
308 have very low recycling rates. Furthermore, P2F pathways are less water-intensive than P2P
309 pathways, which may be a critical factor in water-scarce regions.

310

311 To improve decision making regarding the best direction for pyrolysis of waste plastic, we need
312 to first evaluate the different data sources for the pyrolysis process. We need to account for the
313 use of early TRL data in this analysis and perhaps set targets for yields and other parameters in
314 the pyrolysis and subsequent processing steps to help us design and implement recycling
315 processes that offer environmental advantages across multiple categories (e.g, GHG emissions,

316 solid waste generation, water consumption). Moreover, in this study, we used literature-based
317 data for the cracking step, which would benefit from the use of real-world data. We also need to
318 better understand how regional differences might influence the “best” options for managing
319 plastic wastes, by performing such analyses for different geographic regions and varying starting
320 waste plastics. Three salient examples of regional differences could include varying leakage rates
321 in upstream production of methane (would influence baseline LCA results for plastics),
322 electricity grid mix differences, and baseline waste management practices. It also would be
323 helpful to have sound regional projections of anticipated changes in waste management
324 practices. As the United Nations negotiate the Treaty on Plastic Pollution (United Nations
325 Environment Programme, 2022) policies that will lend themselves to such projections may
326 become clearer. Furthermore, if baseline products are produced differently in different parts of
327 the world, we may need to adjust approaches to dealing with waste plastics accordingly so using
328 them to produce new fuels and chemicals, at a minimum, does no harm compared to what we do
329 today.

330
331 We also note that the approach we took in evaluating recycling in the P2P pathway is just one of
332 many methods that are possible (Demets et al., 2021; Schaubroeck et al., 2021; Tian et al., 2022).
333 Results will differ depending on the methodology employed. Furthermore, in many regions,
334 recycling is not common at all. In this case, it is best to assume the waste is either landfilled or
335 released to the environment. In the latter case, it is important to ask whether the reduction of
336 waste through combusting pyrolysis-derived fuel where fuel might already be used is a better
337 outcome than further pollution of waterways and oceans with plastic waste. If so, P2F may be
338 the better option. In addition, this study only considers pyrolysis as a recycling technology. Other
339 recycling technologies could potentially make the P2P process less energy-, GHG-, and water-

340 intensive. Similarly, the P2F pathway assumes naphtha as the only fuel produced. Scenarios
341 could be explored to produce other fuels like diesel to see the effect of this choice on the GHG
342 intensity of the P2F process. Finally, environmental impact categories other than GHG emissions
343 that encapsulate the toxicity and land use aspects of waste plastics should also be explored to
344 provide a more well-rounded analysis of the environmental benefits of plastics recycling.

345 As society grapples with how best to manage plastic waste, addressing data gaps, and continuing
346 to discuss how best to manage circularity in LCA will be important ways LCA can contribute to
347 decision making in communities, at companies, and within policy making. Furthermore,
348 incorporating LCA metrics that account for plastics effects on the environment beyond GHG
349 emissions is essential. For example, incorporating emissions of air pollutants, including air
350 toxics, is a necessary step given the ongoing policy debate regarding whether pyrolysis-based
351 plastics recycling constitutes incineration and should be regulated accordingly (Hogue, 2022).
352 Finally, LCAs should robustly account for the effect of recycling technology to reduce the
353 effects of plastic waste on aquatic and other ecosystems (Maga et al., 2022; Saling et al., 2020)

354

355 **Acknowledgements**

356 Sabyasachi Das acknowledges support from the Center for Sustainable Polymers at the
357 University of Minnesota, which is a National Science Foundation supported Center for Chemical
358 Innovation (CHE-1413862). Jennifer Dunn and Chloe Liang acknowledge support from the
359 Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy (DOE)
360 under contracts DE-EE0008928. Any opinions, findings, and conclusions or recommendations
361 expressed in this material are those of the authors and do not necessarily reflect the views of the
362 National Science Foundation or the Department of Energy.

363
364 *Citations*
365
366 Alliance to End Plastic Waste, 2021. The plastic waste problem explained [WWW Document].
367 URL <https://endplasticwaste.org/en/our-stories/the-plastic-waste-problem-explained>
368 American Chemistry Council, 2020. U.S. Resin Production and Sales 2019 vs. 2018.
369 Argonne National Laboratory, 2020. The Greenhouse gases, Regulated Emissions, and Energy
370 use in Technologies (GREET) Model.
371 Benavides, P.T., Sun, P., Han, J., Dunn, J.B., Wang, M., 2017. Life-cycle analysis of fuels from
372 post-use non-recycled plastics. *Fuel* 203, 11–22.
373 <https://doi.org/10.1016/j.fuel.2017.04.070>
374 Boustead, I., 2005. Eco-profiles of the European Plastics Industry. *PlasticsEurope*.
375 Centro De Documentacion Europea, 2021. Plastic waste and recycling in the EU: facts and
376 figures [WWW Document]. URL <https://www.cde.ual.es/en/plastic-waste-and-recycling-in-the-eu-facts-and-figures/>
377
378 Chemical and Engineering News, 2020. The Future of Plastic.
379 Chen, H., Wan, K., Zhang, Y., Wang, Y., 2021. Waste to Wealth: Chemical Recycling and
380 Chemical Upcycling of Waste Plastics for a Great Future. *ChemSusChem*
381 cssc.202100652. <https://doi.org/10.1002/cssc.202100652>
382 Crowley, K., 2021. DuPont Loses Plastic Pollution Vote With Record 81% Rebellion -
383 Bloomberg [WWW Document]. URL <https://www.bloomberg.com/news/articles/2021-05-03/dupont-loses-plastic-pollution-vote-with-record-81-rebellion> (accessed 2.7.22).
384
385 Demetrious, A., Crossin, E., 2019. Life cycle assessment of paper and plastic packaging waste in
386 landfill, incineration, and gasification-pyrolysis. *J. Mater. Cycles Waste Manag.* 21, 850–
387 860. <https://doi.org/10.1007/s10163-019-00842-4>
388 Demets, R., Van Kets, K., Huysveld, S., Dewulf, J., De Meester, S., Ragaert, K., 2021.
389 Addressing the complex challenge of understanding and quantifying substitutability for
390 recycled plastics. *Resour. Conserv. Recycl.* 174, 105826.
391 <https://doi.org/10.1016/j.resconrec.2021.105826>
392 Dunn, J., Adom, F., Sather, N., Han, J., Snyder, S., 2015. Life-cycle Analysis of Bioproducts and
393 Their Conventional Counterparts in GREET (No. ANL/ESD-14/9 Rev.). Argonne
394 National Laboratory.
395 Elgowainy, A., Han, J., Cai, H., Wang, M., Forman, G.S., DiVita, V.B., 2014. Energy Efficiency
396 and Greenhouse Gas Emission Intensity of Petroleum Products at U.S. Refineries.
397 *Environ. Sci. Technol.* 48, 7612–7624. <https://doi.org/10.1021/es5010347>
398 Energy Information Administration (EIA), 2021. U.S. Refinery Net Production of Naphtha for
399 Petrochemical Feedstock Use.
400 He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., Bryan, B.A., 2021. Future global urban water
401 scarcity and potential solutions. *Nat. Commun.* 12, 4667. <https://doi.org/10.1038/s41467-021-25026-3>
402
403 Hogue, C., 2022. Chemical recycling of plastic gets a boost in 18 US states—but
404 environmentalists question whether it really is recycling. *Chem. Eng. News* 100.
405 Hou, P., Xu, Y., Taiebat, M., Lastoskie, C., Miller, S.A., Xu, M., 2018. Life cycle assessment of
406 end-of-life treatments for plastic film waste. *J. Clean. Prod.* 201, 1052–1060.
407 <https://doi.org/10.1016/j.jclepro.2018.07.278>

408 Huysveld, S., Hubo, S., Ragaert, K., Dewulf, J., 2019. Advancing circular economy benefit
409 indicators and application on open-loop recycling of mixed and contaminated plastic
410 waste fractions. *J. Clean. Prod.* 211, 1–13. <https://doi.org/10.1016/j.jclepro.2018.11.110>

411 Jeswani, H., Krüger, C., Russ, M., Horlacher, M., Antony, F., Hann, S., Azapagic, A., 2021. Life
412 cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste
413 in comparison with mechanical recycling and energy recovery. *Sci. Total Environ.* 769,
414 144483. <https://doi.org/10.1016/j.scitotenv.2020.144483>

415 Law, K.L., Starr, N., Siegler, T.R., Jambeck, J.R., Mallos, N.J., Leonard, G.H., 2020. The United
416 States' contribution of plastic waste to land and ocean. *Sci. Adv.* 6.
417 <https://doi.org/10.1126/sciadv.abd0288>

418 Luu, P., 2021. Transitioning to a Circular System for Plastics: Assessing Molecular Recycling
419 Technologies in the United States and Canada. Closed Loop Partners.

420 Maga, D., Galafont, C., Blömer, J., Thonemann, N., Özdamar, A., Bertling, J., 2022.
421 Methodology to address potential impacts of plastic emissions in life cycle assessment.
422 *Int. J. Life Cycle Assess.* 27, 469–491. <https://doi.org/10.1007/s11367-022-02040-1>

423 Meys, R., Frick, F., Westhues, S., Sternberg, A., Klankermayer, J., Bardow, A., 2020. Towards a
424 circular economy for plastic packaging wastes - the environmental potential of chemical
425 recycling. *Resour. Conserv. Recycl.* 162. <https://doi.org/10.1016/j.resconrec.2020.105010>

426 Saling, P., Gyuzeleva, L., Wittstock, K., Wessolowski, V., Griesshammer, R., 2020. Life cycle
427 impact assessment of microplastics as one component of marine plastic debris. *Int. J. Life
428 Cycle Assess.* 25, 2008–2026. <https://doi.org/10.1007/s11367-020-01802-z>

429 Schaubroeck, T., Gibon, T., Igos, E., Benetto, E., 2021. Sustainability assessment of circular
430 economy over time: Modelling of finite and variable loops & impact distribution among
431 related products. *Resour. Conserv. Recycl.* 168, 105319.
432 <https://doi.org/10.1016/j.resconrec.2020.105319>

433 Solis, M., Silveira, S., 2020. Technologies for chemical recycling of household plastics – A
434 technical review and TRL assessment. *Waste Manag.* 105, 128–138.
435 <https://doi.org/10.1016/j.wasman.2020.01.038>

436 Tian, X., Xie, J., Xu, M., Wang, Y., Liu, Y., 2022. An infinite life cycle assessment model to re-
437 evaluate resource efficiency and environmental impacts of circular economy systems.
438 *Waste Manag.* 145, 72–82. <https://doi.org/10.1016/j.wasman.2022.04.035>

439 U. S. Government Accountability Office, 2021. Science & Tech Spotlight: Advanced Plastic
440 Recycling. U.S. Government Accountability Office.

441 United Nations Environment Programme, 2022. What you need to know about the plastic
442 pollution resolution [WWW Document]. URL [https://www.unep.org/news-and-
stories/story/what-you-need-know-about-plastic-pollution-resolution](https://www.unep.org/news-and-
443 stories/story/what-you-need-know-about-plastic-pollution-resolution)

444 US EPA, O., 2017a. National Overview: Facts and Figures on Materials, Wastes and Recycling
445 [WWW Document]. URL [https://www.epa.gov/facts-and-figures-about-materials-waste-
and-recycling/national-overview-facts-and-figures-materials](https://www.epa.gov/facts-and-figures-about-materials-waste-
446 and-recycling/national-overview-facts-and-figures-materials) (accessed 2.7.22).

447 US EPA, O., 2017b. Plastics: Material-Specific Data [WWW Document]. US EPA. URL
448 [https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-
material-specific-data](https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-
449 material-specific-data) (accessed 6.19.21).

450 Vanderreydt, I., Rommens, T., Tenhunen, A., 2021. Greenhouse gas emissions and natural
451 capital implications of plastics (including biobased plastics). European Environment
452 Agency European Topic Centre on Waste and Materials in a Green Economy.

453 Yang, M., You, F., 2017. Comparative Techno-Economic and Environmental Analysis of
454 Ethylene and Propylene Manufacturing from Wet Shale Gas and Naphtha. *Ind. Eng.*
455 *Chem. Res.* 56, 4038–4051. <https://doi.org/10.1021/acs.iecr.7b00354>

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

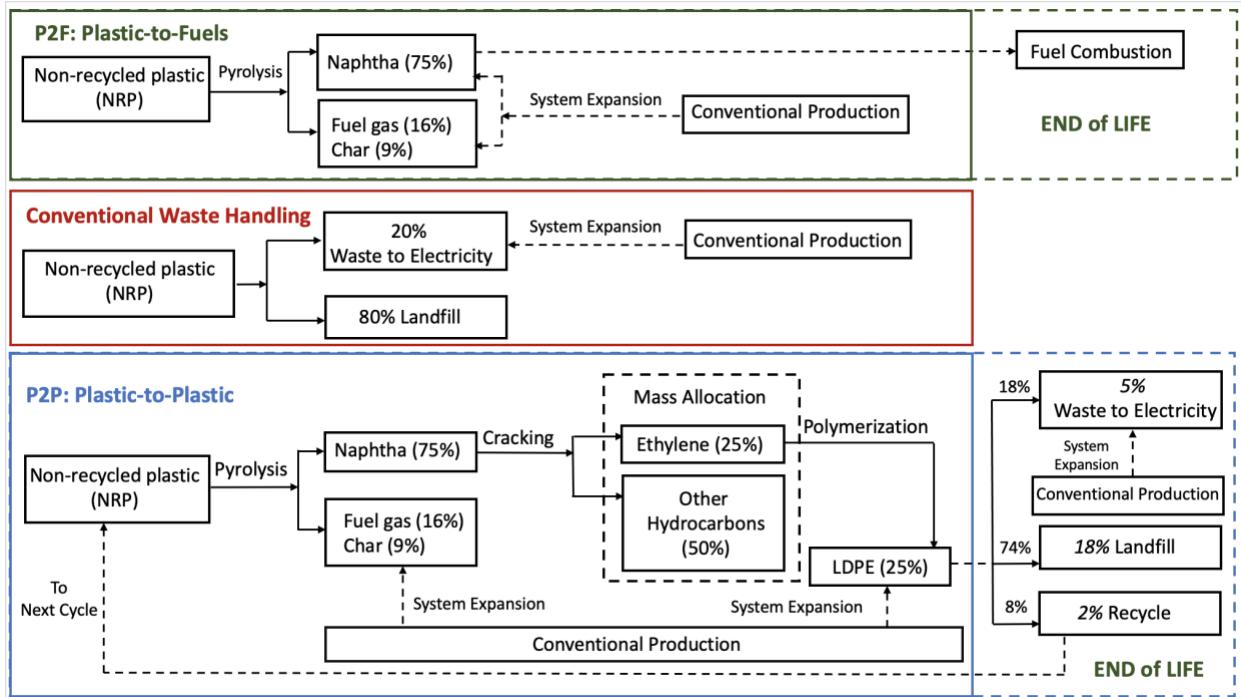
494

495

496

497

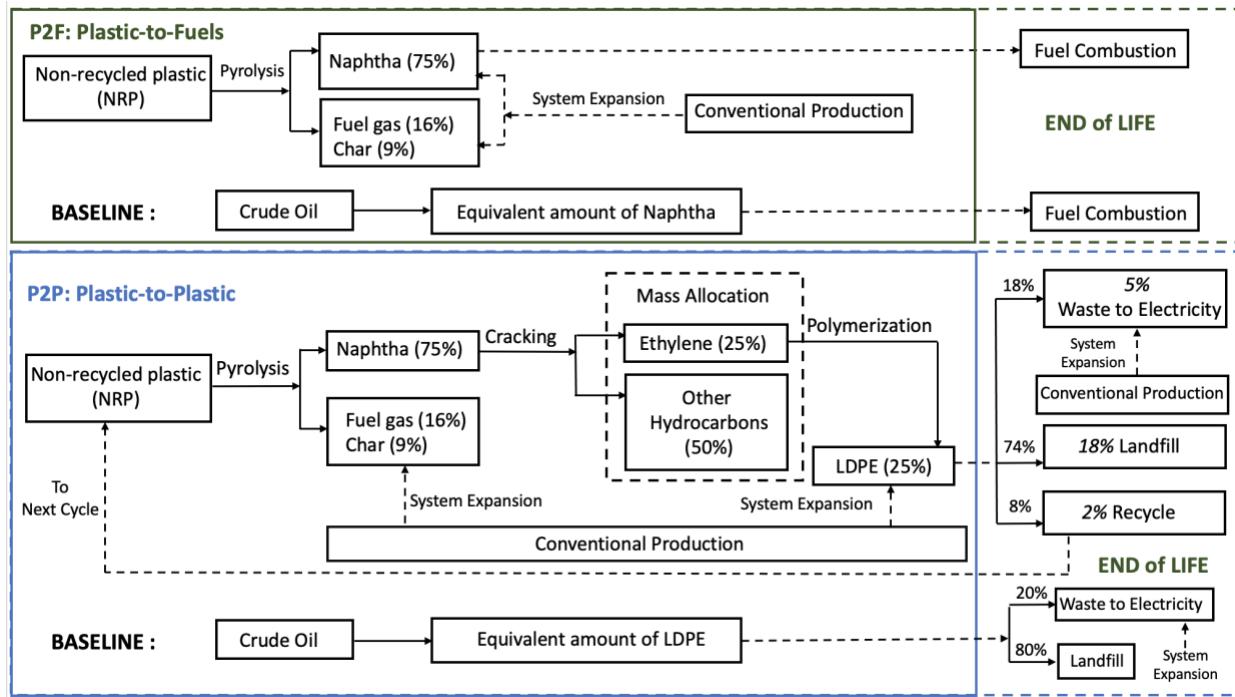
498


499
500
501
502
503

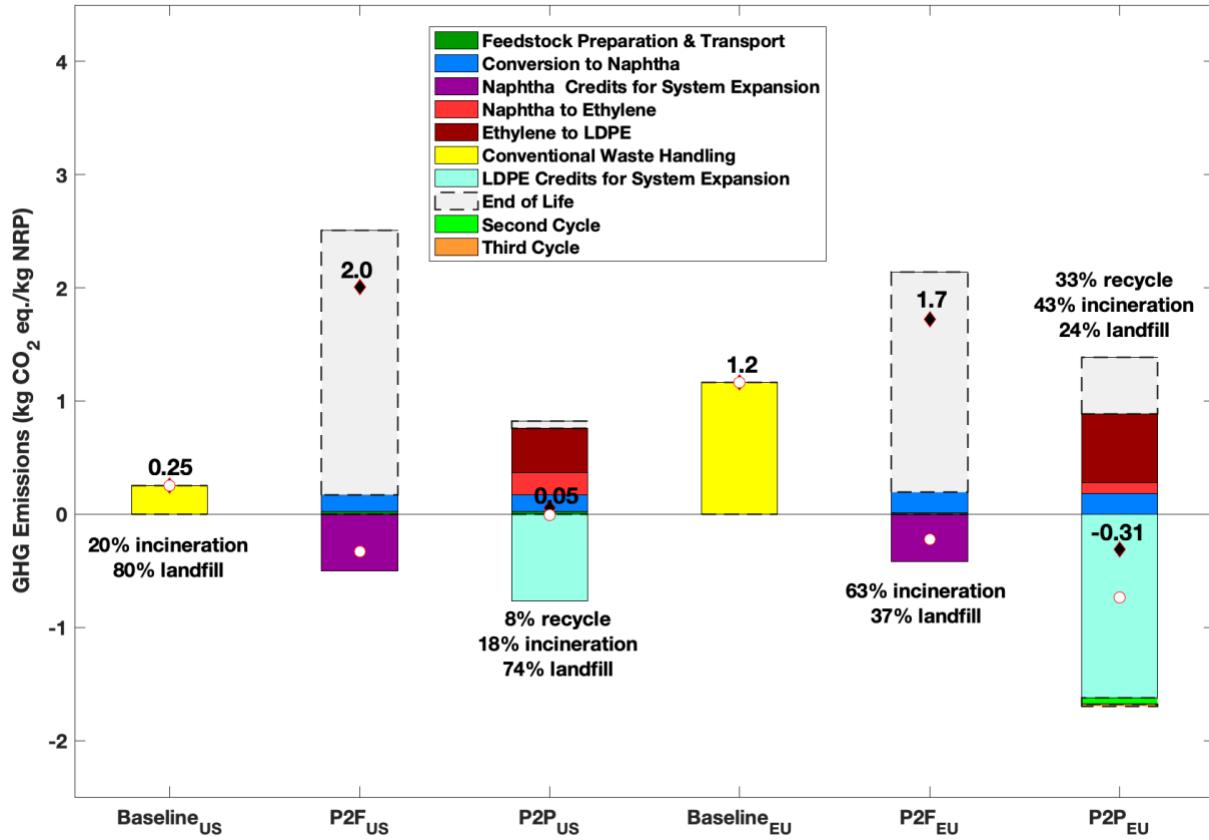
Tables and Figures

Table 1: Key parameters in Benavides et al. and Jeswani et al.

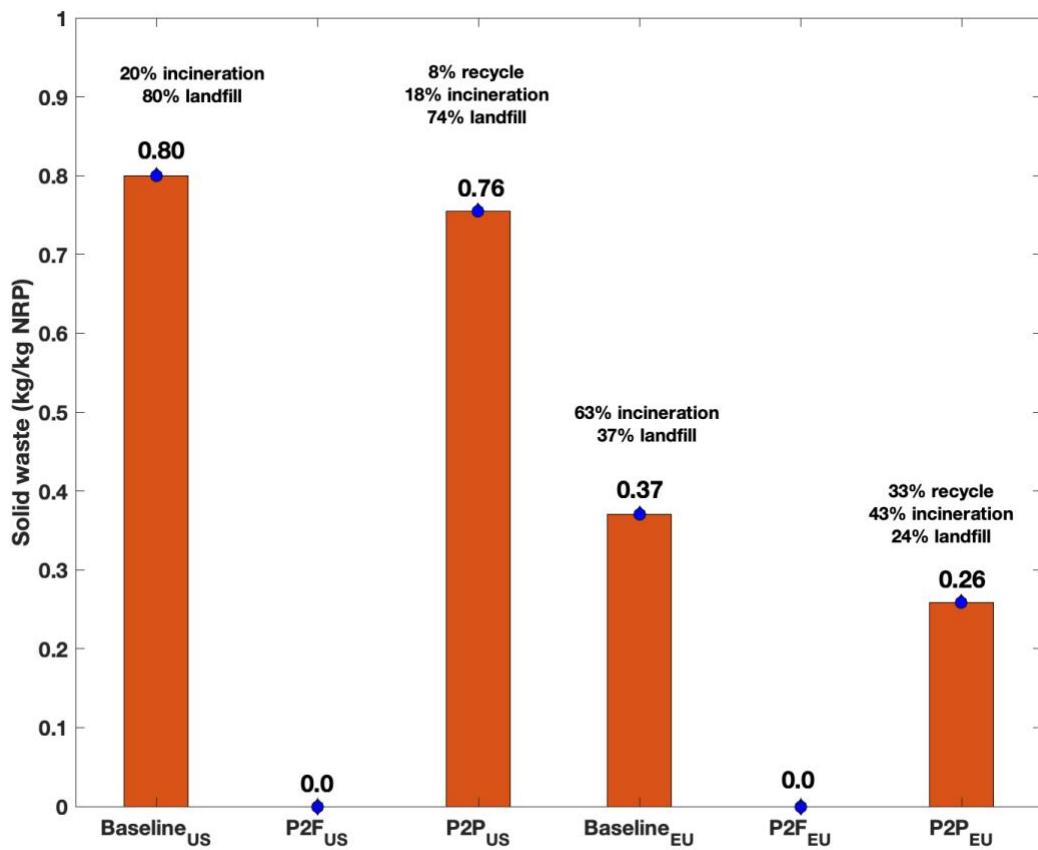
Parameter	Benavides et al.(Benavides et al., 2017)	Jeswani et al.(Jeswani et al., 2021)
Geographic Region	United States of America	Europe
Waste plastic feed	(25 wt % HDPE, 33 wt% LDPE, 42 wt% PP)	(Mix of PE, PP and PS (~90% by wt.) and 10% impurities)
Conventional Waste Handling method	80% landfill, 20% incineration	37% landfill, 63% incineration
Yield of naphtha from pyrolysis	75%	63%
Co-products	Fuel gas (16%), Char (9%)	Fuel gas (19%), Char (7%), Heavy vacuum residue (1%)
Electricity Grid	U.S. Electricity Mix in 2016 (33% renewable)	EU Electricity Mix in 2013 (48% renewable)
Plastic Recycling Rate	8%	33%
Yield of LDPE	25%	54%


504
505
506
507
508
509
510
511
512
513
514

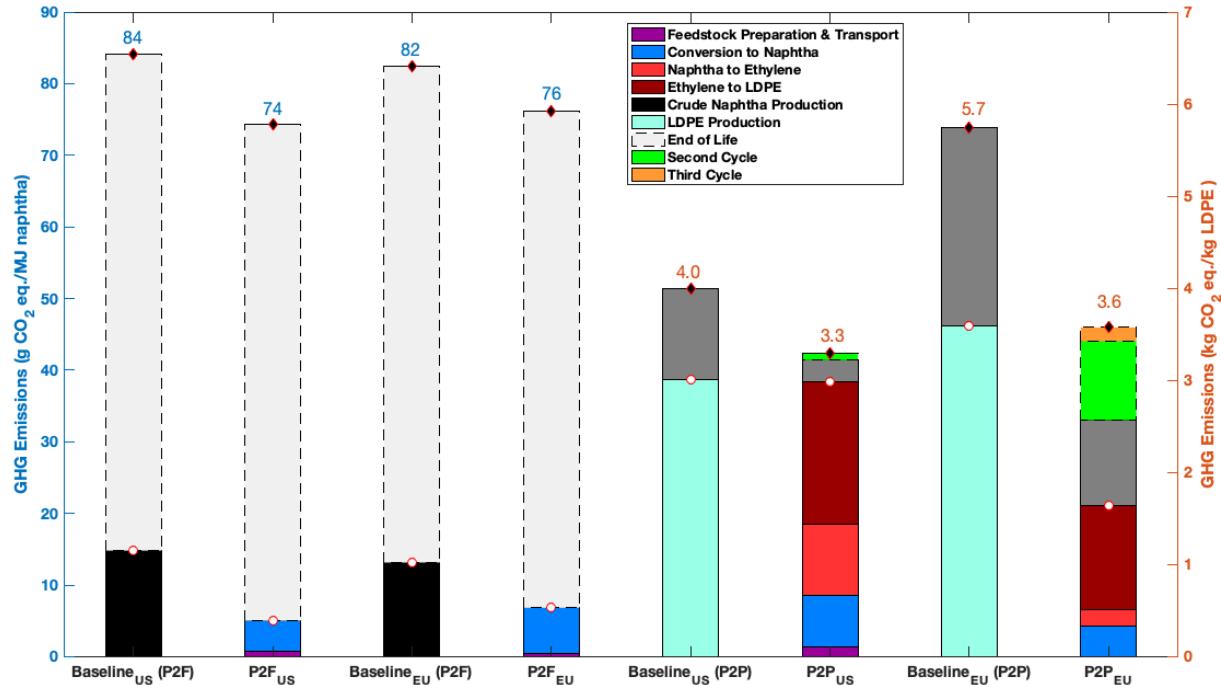
515
516


517 Figure 1: System boundary diagram for a functional unit of mass of waste plastic. The mass shares
518 reported in this figure reflect the US context. Percentages in italics within the end of life portion
519 of the system boundary reflect the percent of mass of the original kg of NRP that advances to this
520 stage. Shares relevant to the EU context are reported in Table 1. The feedstock to the pyrolysis
521 process in the US context is 25 wt% HDPE, 33 wt% LDPE and 42 wt% PP. The feedstock to the
522 pyrolysis process in the EU context is 90 wt% PE, PP and PS and 10 wt% impurities.

523
524
525
526
527


528
529

530 Figure 2. System boundary diagram for a functional unit of per product (MJ naphtha or kg
 531 LDPE). The mass shares reported in this figure reflect the US context. Percentages in italics
 532 within the end of life portion of the system boundary reflect the percent of mass of the original
 533 kg of NRP that advances to this stage. Shares relevant to the EU context are reported in Table 1.
 534 The feedstock to the pyrolysis process in the US context is 25 wt% HDPE, 33 wt% LDPE and 42
 535 wt% PP. The feedstock to the pyrolysis process in the EU context is 90 wt% PE, PP and PS and
 536 10 wt% impurities
 537



538
539
540
541
542
543
544
545

Figure 3. Life-cycle GHG emissions per kg NRP. Diamonds and circles reflect the sum of positive and negative GHG emissions in the system boundary in cradle-to-grave and -gate system boundaries, respectively. The feedstock to the pyrolysis process in the US context is 25 wt% HDPE, 33 wt% LDPE and 42 wt% PP. The feedstock to the pyrolysis process in the EU context is 90 wt% PE, PP and PS and 10 wt% impurities.

546
 547
 548
 549 Figure 4: Solid waste generation per kg NRP. There is no solid waste generation for the P2F
 550 case.
 551

552
553
554
555
556 Figure 5. Life-cycle GHG emissions using a product-based functional unit (per MJ for naphtha,
557 per kg for LDPE). Diamonds and circles reflect the sum of positive and negative GHG
558 emissions in the system boundary in cradle-to-grave and -gate system boundaries, respectively.
559 The feedstock to the pyrolysis process in the US context is 25 wt% HDPE, 33 wt% LDPE and 42
560 wt% PP. The feedstock to the pyrolysis process in the EU context is 90 wt% PE, PP and PS and
561 10 wt% impurities
562
563