
IEEE/ASME TRANSACTIONS ON MECHATRONICS 1

FLAW3D: A Trojan-Based Cyber Attack on the
Physical Outcomes of Additive Manufacturing
Hammond Pearce , Member, IEEE, Kaushik Yanamandra, Nikhil Gupta , Senior Member, IEEE,

and Ramesh Karri , Fellow, IEEE

Abstract—Additive manufacturing (AM) systems such as
3-D printers use inexpensive microcontrollers that rarely
feature cybersecurity defenses. This is a risk, especially
given the rising threat landscape within the larger digital
manufacturing domain. In this work, we demonstrate this
risk by presenting the design and study of a malicious
Trojan (the FLAW3D bootloader) for AVR-based Marlin-
compatible 3-D printers (>100 commercial models). We
show that the Trojan can hide from programming tools, and
even within tight design constraints (less than 1.7 KB in
size), it can compromise the quality of additively manufac-
tured prints and reduce tensile strengths by up to 50%.

Index Terms—Additive manufacturing (AM), bootloader
trojan, cybersecurity, cyber-physical systems (CPSs), 3D
printing, firmware trojan.

I. INTRODUCTION

ADDITIVE manufacturing (AM), also known as 3D print-
ing, is a technique whereby materials are deposited and

fused to produce volumetric parts. In recent years, there have
been considerable advances in the field, and AM is increasingly
being adopted across a range of industrial and mechatronic
domains (e.g., within construction [1], robotic components [2],
[3], aerospace [4], and others). The advantages are numerous:
Additive Manufacturing (AM) allows for the creation of com-
plex and bespoke products without complex tooling, allows for
pull-based manufacturing of products on demand rather than in
advance, and rapid prototyping to iterate over product designs.

With the increasing attention on AM cyber-physical systems
(CPSs), there has been an increased scrutiny on the cybersecurity

Manuscript received November 15, 2021; accepted May 20, 2022.
Recommended by Technical Editor Jiafu Wan and Senior Editor Hong
Qiao. This work was supported in part by National Science Foundation
SaTC-EDU under Grant DGE-1931724. (Corresponding author: Ham-
mond Pearce.)

Hammond Pearce and Ramesh Karri are with the Department of
Electrical and Computer Engineering and Center for Cybersecurity,
New York University, New York, NY 11201 USA (e-mail: hammond.
pearce@nyu.edu; rkarri@nyu.edu).

Kaushik Yanamandra is with the Department of Mechanical and
Aerospace Engineering, New York University, New York, NY 11201 USA
(e-mail: vsy212@nyu.edu).

Nikhil Gupta is with the Department of Mechanical and Aerospace
Engineering and Center for Cybersecurity, New York University, New
York, NY 11201 USA (e-mail: ngupta@nyu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TMECH.2022.3179713.

Digital Object Identifier 10.1109/TMECH.2022.3179713

of the production process. Potential vulnerabilities have been
highlighted at every step of the digital and physical supply
chains [5]–[8]. The impacts and implications of successful AM
cyber attacks have been explored, with demonstrations showing
that parts can be modified at print using malicious firmware [9].
Even subtle modifications can have insidious consequences [10]
(e.g., defects being introduced in drone propellers causing them
to fail prematurely in flight [11]). However, while these works
highlight the potential for exploitation, they do not examine the
actual pathways for doing so within an AM CPS—yet in order
to craft suitable defenses for attacks on AM CPS, we must have
an idea of how they might be performed. As such, in this article,
we examine how a malicious modification can be introduced in
a 3-D printer firmware so as to compromise print quality. This
is a realistic threat due to the hidden complexity of firmware
in printers from the “hobbyist” to the “commercial grade,” with
potentially malicious and/or insecure code already highlighted
as a likely attack vector [7], [9]. While initial work studied
common printer firmware (such as in Marlin and Repetier [6])
for vulnerabilities, these analyses overlook the elemental piece
of the firmware/software stack, the bootloader.

Within the AM context, bootloaders are small firmware com-
ponents fundamental to the operation of the printer software.
Typically, they are not replaced/updated during the product
lifecycle. Bootloaders do two tasks: 1) install the higher-level
firmware into the controller memory when requested. 2) launch
the installed firmware after a normal power up sequence. Cru-
cially, bootloaders are generic, and often used across differ-
ent products—especially within 3-D printer implementations,
which often share hardware and software designs (e.g., those
popularized via the open-source RepRap project [12]). This
means a single bootloader Trojan may be utilized to target a
large number of AM machines, making it an attractive attack
mechanism.

In this article, we consider the bootloaders installed into the
low-level controllers within commercial 3-D printers (where
they might be one part of the control system) and in hobby-
ist 3-D printers (where they can be the only controller). We
focus our study on the popular low-cost Arduino-compatible
8-bit AVR microcontrollers as these are extremely commonly
utilized within 3-D printer designs to execute the on-board
firmware/software (also likely due to their historical usage
within RepRap [12]). However, this class of attack is not re-
stricted to AVR-type devices, and though this article frames and
demonstrates an attack around low-end desktop 3-D printers,

1083-4435 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 14:25:34 UTC from IEEE Xplore. Restrictions apply.

2 IEEE/ASME TRANSACTIONS ON MECHATRONICS

TABLE I
SURVEY OF LITERATURE DISCUSSING ATTACKS ON AM PRINTERS

these mechanisms could be used to target any CPS with embed-
ded firmware running on insecure hardware (e.g., PCB printers,
IC fabrication, and test).

A. Contributions

This is the first comprehensive study of a bootloader-based
attack on AM CPS. Contributions are four-fold, and organized
in this article as follows: Section II presents a study of the related
work and attack surface for 3-D printers given their underlying
implementations. Section III presents a design space exploration
of a proof-of-concept firmware Trojan FLAW3D (pronounced
“flawed”), which targets Marlin-compatible AVR controllers in
3-D printers. Section IV performs a qualitative and quantitative
evaluation of the Trojan by examining two different mechanisms
that can compromise print quality, and in Section IV-E, we
provide a discussion and walkthrough of how the Trojan could
be detected and prevented. Finally, Section V concludes this
article.

II. BACKGROUND AND RELATED WORK

A. Attacker Motivation and Attack Taxonomies

The two major motivations for an attack on an AM CPS
are [5]: 1) IP theft via product reverse engineering and/or
counterfeiting, and 2) sabotage of either the printed part or the
3-D printer producing them. Both result in financial outcomes,
either in the attacker gaining proprietary (valuable) knowledge,
or in reducing the reputation or value of the attacked system.
Overall in the literature, a number of potential and realized
attack strategies have been published, with a summary of these
presented in Table I. Many of the works focus on the motivations,
taxonomy, and theoretical basis for attacks, rather than the spe-
cific technical steps required to achieve them. In addition, where
specific attack methodologies are detailed, attack implementa-
tion is either considered out of scope or implemented within
the higher-level cyber realm (such as within [11] and [13]).
Importantly, when considering attacks in this higher-level area,
many defenses already exist via standard information and cyber-
security best practices (e.g., ensuring trusted software updates,
firewalls, virus scanning, etc.). The state of the art is less detailed
when considering attacks on the low-level hardware of 3-D
printers. The two major works in this space come from [6], which
detailed an exploration of 3-D printer firmware vulnerabilities
(e.g., to denial of service and data corruption attacks), and in [9],

which augments 3-D printer firmware directly to add malicious
code. However, while effective, their implementation strategy
of their attacks on the 3-D printer firmware has several tech-
nical shortcomings—specifically, it relies on simply changing
firmware codes directly, recompiling, and redownloading. If a
program’s source code can be changed in your attack model (e.g.,
by a malafide insider), then any behavior change is possible. As
a result, it is a primary focus of designers to audit their firmware
(as in [6]) and detect these changes before deployment.

In this article, we wish to expand the vision for low-level
attack strategies and motivate the need for more defensive
mechanisms within 3-D printers. For this, we present an at-
tack strategy which does not rely on changing the 3-D printer
firmware directly. We present this through an examination of a
complete attack life-cycle, performing a deep dive into the tech-
nical details of how common 3-D printers function, and include
installation mechanisms, exploitation strategies and triggers, and
mechanisms to avoid detection and removal.

B. Software and Hardware Trojans

In the cybersecurity domain, “Trojan Horses” refer to delib-
erate fault-like modifications made to a design for malicious
aims, either to steal information or to cause system failure [19]
(aligning them closely with the aforementioned CPS attack
motivations!). Trojans, which may be created by malicious
actors working in a product’s design team or from compromised
CAD tools used during product creation, have three essential
characteristics: malicious intent, evasion detection, and acti-
vation rarity [20]. A Trojan may seek to leak cryptographic
information/design files, cause digital/real-world damage, re-
duce operational reliability/product life-time. While typically
software-based [21], there has been recent attention on hardware
Trojans embedded in systems, for instance within integrated
circuits [20] or encoded into PCBs [22]. Although out of scope
for this work, this does raise interesting recursive possibilities
within AM for PCBs (i.e., PCB printers [23]). Here, a firmware
Trojan in the printer could insert hardware Trojans into produced
PCBs.

C. 3-D Printer Attack Surface

Thanks largely to the quality and success of the open
source 3-D printer projects, many 3-D printer implementations
(hardware and software) are closely related. The RepRap 3-D

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 14:25:34 UTC from IEEE Xplore. Restrictions apply.

PEARCE et al.: FLAW3DAM: A TROJAN-BASED CYBER ATTACK 3

TABLE II
FEATURES OF SELECT COMMERCIAL/HOBBYIST 3-D PRINTERS

Fig. 1. Generic DM architecture for a 3-D printer.

printer project [12], itself based on early industrial fused depo-
sition modeling (FDM) printers, has inspired at least 81 models
of 3-D printers directly [24] (with the derivatives often going on
to inspire further designs). Table II summarizes some examples.
3-D printers are a mix of “open” (i.e., open schematics, hardware
layouts, and software) and “closed” (more likely the commercial
printers with trade secrets). The (listed) printers all have some
method for updating the installed firmware. In general, “open”
printers are often compatible with third-party firmware—the
most popular being the Arduino-based Marlin [25], which sup-
ports over 100 printer models [26]. While formerly a premium
feature, increasing numbers of 3-D printers are also beginning
to include native support for networking. Where this is not
included, 3-D printers may be networked by wiring connections
to external print servers, e.g., Octoprint [27]. A “networked”
3-D printer may just include an Octoprint server internally!
Overall, the networking of 3-D printers is becoming a concern,
especially when they are exposed to the wider internet (e.g., IoT
scanning website Censys estimates > 2500 Octoprint servers
exposed globally1).

All 3-D printers have their low-level hardware control
(e.g., control of the sensors and actuators) managed by time-
predictable microcontrollers. Computationally intensive func-
tionality such as GUIs and networking (if present) are managed
by more powerful embedded or general purpose devices (e.g., as
in the Ultimaker S5 Pro) or by external connected devices. An
example of this kind of hierarchy can be seen in a generalized
3-D printer architecture, detailed in Fig. 1. Here, the high-level
functionality (networking, slicing, etc) is provided by an external
general purpose computer—for example, a Raspberry Pi, which
could be running software such as Octoprint or Ultimaker Cura.
This is interfaced with the printer control firmware, which is

1Search using [Online]. Available: https://search.censys.io/search?resource=
hosts&q=octoprint

Fig. 2. Attack surface for FLAW3D.

distributed across a network of microcontrollers. Crucially, un-
like in the Raspberry Pi (and other general purpose computers),
where mechanisms such as “Verified Boot” [28] or “Secure
Boot” [29]) can be used to ensure the security of the low-level
firmware, there is no specific functionality to perform this in
low-end microcontrollers. Security instead becomes the respon-
sibility of the installed bootloader (if deemed necessary)—
which may include features for cryptographically checking the
firmware updates before installation [30]. Of course, if the boot-
loader itself is replaced (either via external hardware circuitry
or via the network-connected high-end embedded systems),
nothing may verify that the replacement bootloader is free of
malice. Further, as the bootloader is not part of the firmware (e.g.,
Marlin), even if the firmware is audited for security risks, the
bootloader may be excluded from this analysis. This is especially
a concern in desktop/hobbyist AM, where bootloaders are often
provided in binary form (preventing adequate auditing of their
source codes) and reused across many compatible devices. We
note that bootloader exploits have previously been examined for
other devices (e.g., voting machines [31]). However, although
bootloaders have also been highlighted as an area of concern
within digital manufacturing [7], no exploit built upon them has
previously been demonstrated. If an adversary has (or has had)
physical access to a printer-under-attack, or is otherwise able to
trick someone with physical access into installing the malicious
bootloader, then four attack vectors are possible, as depicted in
Fig. 2: 1) the original manufacturer of the printer or a malicious
insider, 2) a malicious user with access to the printer, 3) a
third-party (e.g., a website) provides a precompiled malicious
bootloader or 4) a third-party provides malicious bootloader
source code and a naïve user installs it without adequate auditing.

This risk is expanded by the presence of the network of
microcontrollers. As can be seen in Fig. 1, which represents
a common architecture used within 3-D printers, there are two
different microcontrollers which could each individually inter-
fere with the correct operation of the device. This only becomes
more challenging given commercial and industrial-grade addi-
tive manufacturing machines, which can feature tens to hundreds
of microcontrollers all running different code.

III. FLAW3D BOOTLOADER

A. Goals

In this section, we discuss the design space exploration for the
creation of a new firmware Trojan called FLAW3D. It will target

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 14:25:34 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ASME TRANSACTIONS ON MECHATRONICS

AVR-based desktop 3-D printers which run the Marlin printer
firmware. We note that the attack will not target any specific
feature of any printer, rather, it aims to misuse features from
the underlying AVR microcontrollers and the operating Marlin
firmware. Though we specifically target AVRs, we also note that
the general methodology in this section can be used to target
other printers using other microcontrollers, including at the
“commercial grade” by malafide insiders—the only requirement
being the usage of unsecured bootloaders within their designs.

Overall, we will consider an adversary that aims to sabotage a
design firm by reducing the quality of printed designs. In order
to achieve this, we seek to give the Trojan the ability to both
relocate and remove printed material.

We must also work within constraints: specifically, the Trojan
must not increase the compiled size of the bootloader beyond
the boot flash size limit. For example, in the ATmega2560,
a microcontroller commonly used in 3-D printers, this is just
8192 Bytes, of which 5786 B are already taken by the existing
bootloader code, leaving approx. 2406 B for the Trojan).

B. Arduino-Compatible Bootloaders for AVR

Marlin is installed on AVR-based 3-D printers via compatible
software (e.g., the Arduino IDE, the Ultimaker Cura slicer)
running on a secondary machine (e.g., a Raspberrry Pi, or a gen-
eral purpose Windows or Linux computer). The gatekeeper for
this process is the AVR-based bootloader, which resides on the
target microcontroller. Upon power-up it executes a simple state
machine, which initializes a UART communication peripheral
and awaits valid bootloader commands. If no commands arrive
before a timeout, the existing main firmware is initialized if
available. If a command does arrive, the bootloader will execute
it. These commands, which are based on a subset of the STK500
standard [32], include instructions to read and write flash and
EEPROM memory. Three observations are important.

Observation One: though both bootloaders and applications
are installed into the microcontroller flash memory, they do not
run simultaneously. Bootloaders run first, eventually loading the
main firmware. When this happens, bootloaders are entirely un-
loaded, with the stack and global memory reset and reconfigured
for the main application.

Observation Two: for bootloaders to install the main firmware,
all memory values for the binary must pass through them both
during upload (installation) and download (verification). A se-
cure bootloader could perform cryptographic and data integrity
checks, but regular Arduino-compatible bootloaders do not.
Instead, data verification is managed by the off-chip toolchain
reading all memory addresses after installation and ensuring they
match the expected.

Observation Three: though Arduino-compatible bootloaders
do not tend to utilize interrupts, the underlying hardware sup-
ports this. Interrupts function by preempting control flow to
specific locations in memory (known as interrupt vector tables).
As the bootloader and the main firmware are distinct applica-
tions, they must have different vector tables. Hence, the AVR
architecture supports changing the address of the vector table
using a special control register IVSEL.

Listing 1. Structuring an AVR bootloader ISR to ‘inject’ code.

Listing 2. Two-step process changes IVSEL in main().

C. Design of a Generic Arduino-Compatible Trojan for
AVR

Using the bootloader source code provided by Arduino at [33]
as a start point, we now craft a Trojan for an ATmega2560,
noting that the steps for other common AVR microcontrollers
are largely the same. First, in order for the Trojan to function it
needs to be able to inject instructions into the program executed
by the main firmware. Based on Observation Three, this is
achieved via the interrupt vector table select register IVSEL.
By default this register is configured to make interrupts jump to
the vector table associated with the main firmware. If changed,
the machine will instead jump to bootloader program space upon
an interrupt occurring. Crucially, the startup code (i.e., the code
that runs “before main()”) generated by the AVR compiler
avr-gcc does not check or set the IVSEL register — nor does
the firmware we are interested in hijacking (Marlin). This means
that if we define our own bootloader interrupt service routines
(ISRs), and set IVSEL before booting the main application, the
bootloader ISRs will replace the main application’s.

However, if the main application defines ISRs, and those ISRs
are never called (because the hardware is calling the wrong
interrupt vectors) then the presence of the Trojan will be easily
noticed. Thus, the Trojan must embed within its ISRs calls to the
main application ISRs (using the addresses of the original vector
table). In this way, it wraps the application ISRs—allowing
injection of both prologue and epilogue instructions to each
routine. Code to perform these injections, using the avr-gcc
compiler, is presented in Listings 1 and 2.

While this structure allows for the injection of instructions,
declaring state (variables) that will persist outside of the ISRs
is a separate, more difficult issue, as the processor memory is
reinitialized by the main application (Observation One). In other

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 14:25:34 UTC from IEEE Xplore. Restrictions apply.

PEARCE et al.: FLAW3DAM: A TROJAN-BASED CYBER ATTACK 5

Listing 3. Disassembled Marlin ATmega2560 startup code.

words, the Trojan has no safe way of storing global or static
variables outside of ISR invocations.

To resolve this, we consider the implementation of the AVR’s
Harvard-style memory architecture. The data memory, which
is separated from the instruction memory, is partitioned into
register space (in the first 256 Bytes) and general RAM. In the
general RAM, static objects and global variables are placed in
the low addresses by the C compiler, and the stack (which stores
local variables and function return addresses) grows from the
highest address downwards.

To keep track of the stack’s position, two registers are
provided—SPH and SPL (for the high and low byte of the
16-bit address, respectively). During the startup code of an
AVR application one of the first tasks that is performed is
reinitialization of these two registers. An example which sets
SPH/SPL to 0x21/0xFF can be seen in the ATmega2560
startup disassembly in Listing 3. Note that, given the stack
grows downwards, if the values loaded into SPH and SPL are
decreased, then the addresses above their new value are excluded
from the stack. This would free them for the Trojan.

Now, recall Observation Two: all instructions making up the
main application are passed through the bootloader during in-
stallation. That is, the bootloader is responsible for receiving the
compiled application binary over UART and saving it into flash
memory. In addition, though the startup code, which initializes
SPH and SPL may be located unpredictably within the binary,
the specific instructions that make it up do not change from appli-
cation to application, and further, are usually located at the first
jump from the vector at program address0000 (the reset vector).
This means that during the installation loop, the bootloader can
scan for the pattern of 8 Bytes, which sets SPH/SPL (Lines
10–13 in Listing 3) and then alter those bytes that represent
the data address before saving the program into application
flash. To minimize detection, the Trojan should change the value
only slightly (otherwise the application has a higher chance of
running out of memory unexpectedly during operation). While
the exact amount is adjustable, in this work, we choose to exclude
15 Bytes from the stack, reserving two bytes for use as canary
values (to ensure that if the running application overwrites the
memory it can be detected), and presenting 13 Bytes to the Trojan
payload for use in storing global state. The bootloader thus
alters the instruction ldi r28, 0xFF to ldi r28, 0xF0
(subtracting 15) prior to saving it to the flash memory.

While the edit to the program binary can be detected in the
normal case, now recall again Observation Two: specifically

Fig. 3. Ring Buffer implementation in Marlin.

that the verification of the binary is also done via reading out
the saved binary using the same bootloader. This means that
by simply performing the edit step in reverse, the bootloader
can change the binary values back to the expected when the
programming tool attempts to ensure that the program has been
uploaded correctly. This means that based on the described
Trojan design, programming tools which rely on the bootloader
to upload, download, and verify the installed program cannot
detect the malicious modifications.

D. Design of FLAW3D

Returning to the original goal of subverting printing quality,
consider now the flow of information in a 3-D printer. Print com-
mands, which detail control sequences for the motors, extruders,
and heaters of the printer, are specified in textual g-code
language. These originate from a computer running a slicer
program that converts 3-D computer aided design models into
the g-code. From the point of view of the controller running
the printer, the commands arrive character-by-character via the
UART peripheral.

It is thus the goal of FLAW3D to edit this incoming g-code,
using the Trojan framework from Section III-C as the starting
point. Using the ISR code injection mechanism, the reception of
valid g-code can be compromised and intercepted “in-flight.”
The Trojan can then edit received commands before they are
processed by the main application.

While it might appear that this can be done by interfering
with the UART peripheral, (e.g., editing the received character
during the injection), two hardware constraints prevent this:
1) the UART RX register is read-only, and 2) reading from
the UART RX register has side effects; once read, it unlocks
the hardware for further reception. We thus instead consider
how the bootloader can interfere with the higher level firmware
(Marlin). Marlin, prior to processing the received g-codewith
the main process loop, uses its UART RX ISR to store received
characters in a ring buffer (depicted in Fig. 3).

As the AVR has no memory protection, the Trojan can access
the entire memory space from the compromised ISRs. If the
location of the ring buffer can be deduced, the Trojan can read
and edit the g-code commands prior to their processing by
the main application. To accomplish this, consider Observation
Two. As the Trojan can access the flash memory of the micro-
controller, it can scan the UART ISR of Marlin, revealing two
distinctive lds commands near the start (Listing 4).

The addresses in these two instructions correspond to the
location in memory of the head and tail pointers of the ring
buffer. By default the compiled Marlin firmware’s data structure
layout will place these pointers 128 Bytes after the ring buffer

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 14:25:34 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Listing 4. Disassembly of UART RX ISR in Marlin on AVR.

itself. This means that the smaller of the two addresses (e.g.
0x0323) minus 128 gives the root address in memory of the ring
buffer, where the incoming g-code is stored. FLAW3D thus
encodes this behavior as a function find_ring_buffer() to
do this task automatically prior to launching the main application
firmware. The function performs this by traversing the binary of
the main application, starting from the (constant) UART RX
ISR vector location, and following the program jumps and the
linear path of execution until it finds these back-to-back lds
commands. If it does not identify them within 256 instructions,
it aborts, and the Trojan is rendered dormant. If it succeeds,
it stores the head pointer, tail pointer, and root address in the
global state variables that we established earlier (in the top 15
B of the AVR memory). FLAW3D can then use these pointers
with string manipulation code injected as an epilogue of the main
application UART RX ISR: and now, incoming g-code can be
edited.

As standard string manipulation in C (performed by functions
such as sscanf to read out variables and sprintf to rewrite
them) are too large to use within the context of a bootloader,
FLAW3D relies on a simple embedded state machine. This
examines incoming g-code strings character by character, and
can internally convert received ASCII-encoded floating point
values into integer-type fixed-point notation. If the bootloader
detects that a target value to edit is arriving, it suppresses the
Marlin firmware’s normal behavior by editing the ring buffer
head pointer addresses to hide the incoming characters. Then,
once the target value has been entirely received, the bootloader
can process and edit it before restoring the correct pointer value
and allowing Marlin to detect and process the command.

IV. INDUCING DEFECTS WITH FLAW3D

A. Overview

FLAW3D scans and alters incomingg-code before process-
ing by Marlin. Given the restricted space for Trojan code (e.g.,
∼2406 Bytes on ATmega2560), the edits need to be simple.
Complex edits may also cause noticeable delays. Given these
constraints, we present two Trojan methodologies, with code
compiled using avr-gcc version 5.4.0 with optimization -Os.
To measure the impact of the Trojans on print quality, strength
tests were performed using the tensile test specimen design E8
from ASTM A370-20 [34] (see Fig. 4). This is performed de-
structively using an Instron 4467 universal test system. Samples
were printed in PLA with two different sets of common slic-
ing parameters using two different anonymized commercially
available AVR-based 3-D printers, which use Marlin internally

Fig. 4. Example control group test specimen.

TABLE III
PRINTERS AND PRINT SETTINGS

Fig. 5. Example 50% material reduction.

(see Table III). Design E8 was chosen for two reasons: 1) it is
relatively small (minimizing the change for random deviations
within the prints that effect print quality [35]), and 2) given
the geometry and PLA print material the specimens do not slip
within the tensile test machine grips.

While it is customary to report strength in the form of max-
imum load sustained divided by the cross-section area, as the
Trojan modifies the printer g-code the exact cross-sectional
area may vary from test to test. Hence, in this article, the normal-
ized maximum load sustained by the specimens before failure is
compared, as all specimens have the same origin test geometry.
Though, it is deterministic, to minimize printer “noise” each
sample is printed five times and test results averaged.

B. Trojan Attack 1: Material Reduction

This Trojan attack reduces the amount of printed material.
FLAW3D uniformly scans for the G1 commands (linear move)
in the incomingg-code, which include the extrusion command
(character E). Then, the extrusion value is decreased by some
percentage. For instance, a command G1 X2 Y3 E4, which
moves to (X,Y) (2,3) and extrudes 4 mm of filament can be
edited to G1 X2 Y3 E2 to reduce the material by 50%. While
this reduces the maximum tensile strength of the specimen, the
attack is easily detectable, both by weight tests and by visual
inspection in severe cases (see Fig. 5).

The normalized test results are given in Figs. 6 and 7 for
extrusion reduction between 0 and 50% (step size 10%). As
can be seen, material reduction reduces the mass and maximum
tensile load fairly linearly, i.e., as you increase the effect of
the Trojan by reducing the amount of extruded filament, the
mass and the supported maximum load of each specimen both
decrease. The attack increases the bootloader size from 5786 to
7422 B, an increase of 1636 B.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 14:25:34 UTC from IEEE Xplore. Restrictions apply.

PEARCE et al.: FLAW3DAM: A TROJAN-BASED CYBER ATTACK 7

Fig. 6. Printer A - Max. tensile load versus material reduction.

Fig. 7. Printer B - Max. tensile load versus material reduction.

Fig. 8. Simulation of (L) original and (R) 1-in-2 relocation.

C. Trojan Attack 2: Material Relocation

In the g-code, the extrusion values are presented within an
absolute frame of reference. This means that if one extrusion
is removed, the next extrusion will deposit extra material to
keep the values consistent. Consider three back-to-back com-
mands (G1 X1 Y2 E3), (G1 X2 Y3 E4), and (G1 X3
Y4 E5). The total extruded material is 3 mm after the first
command, 4 mm after the second (it deposits 1 mm), and 5 mm
after the third. If the Trojan alters the second command to (G0
X2 Y3), no material is extruded during its execution, although
the head continues along the same route. Crucially, the third
command now deposits 2 mm and the total material used remains
5 mm.

This is the basis of the second attack, which scans for G1
linear movement commands with extrusions, and converts a
subset (either 1-in-4, 1-in-3, or 1-in-2) into G0 linear movement
commands with no extrusions. To further reduce the visibility
of the attack, we also add a new activation trigger: we preclude
the Trojan from activating until 25% of the part is printed, and
deactivate it after 75% is printed. For this, we track the M73
commands which are used to update the percentage remaining
on printer displays. Fig. 8 shows the consequences on a specimen
cross section.

The results of this attack are depicted in Fig. 9. All printed
objects remain within 1–2% of the control masses, and despite

Fig. 9. Material relocation Trojan.

Fig. 10. Example 1-in-2 material relocation. No obvious changes are
visible w.r.t. specimen quality.

the edits, the parts are visually similar (example: Fig. 10). Here,
we observe that as we increase the frequency of the compromised
lines, the strength of the printed parts reduce. While all edits
weakened the parts, the attack on Printer B was more effective
than the attack on Printer A, which is likely due to the different
slicing infill strategies (10% compared to 18%). This attack in-
creases the bootloader size to 6986 B, a 1200 B increase, smaller
than the previous attack due to the simpler string manipulations
even with M73 tracking.

D. Discussion

Different attacks can change the strength profiles of printed
parts in different ways. Reducing the printed material is simple
and reliable, but noticeable (e.g., via weight). Material relo-
cation is harder to detect, but less consistent, as evident from
the differing effectiveness on Printer A compared to Printer
B. Given its small size, (<1.4KB) the attack surface for such
Trojans within AM CPS is enormous, since a large number
of microcontrollers are present in complex “commercial-grade”
systems, which have large feature sets. In addition, the Trojan
could be made elusive by altering its trigger. While in this
study the attack activated in every print, it would be insidious
to activate rarely, with the intent of lowering the average quality
of service/institutional reputation. Parts that are unpredictably
faulty can get through certain quality controls, and if targeted
at critical products could have catastrophic consequences (for
instance consider a Trojan within 3-D printers for aerospace
components [4] or bespoke medical parts [36]). Finally, while
in this work, we limited the scope to only Printer A and Printer
B, other Marlin-compatible AVR-based printers may also be
vulnerable. As previously noted in Section II-C, this is over 100
known models of printer [26]. To further generalize the study,
work could also be performed examining further possible defect
mechanisms (i.e., different g-code edit strategies), including
an examination of how different geometries react to different

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 14:25:34 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Fig. 11. Debugger observing code injection ISR.

edits. Though, we focused on AM (3-D printers), attacks could
also be studied on devices in other manufacturing domains, e.g.,
CNC devices (which also utilize g-code) or machines for IC
fabrication and test, as many of these will also utilize low-cost
and vulnerable microcontrollers in their designs.

E. Detecting FLAW3D

Since this is a bootloader Trojan, it is difficult to detect at
the software level—especially since it has the ability to alter
high-level firmware prior to its installation. In other words, even
if the defenses are encoded within user applications, they could
be detected and disabled prior to activation.

However, as FLAW3D alters the printer’s behavior, it is not
impossible to detect. Side channels can be monitored with
external devices such as cameras and microphones from an
arms length—though this would be intricate as the Trojan effects
extrusions and not the head movement. Careful measurement of
the ISR delays could reveal the presence of injected instructions.
External programming tools could be utilised—if monitored
with a debugger, the alternate ISR jumps can be noticed. An
example of this is presented in Fig. 11, which shows how
the Atmel Studio debugger for an ATmega328P can be used
to deduce a bootloader performing a code injection using the
methodology in Section III-C. Here, the Trojan is designed to
flip the fifth bit of PORTB whenever the target interrupt occurs.
Within the debugger, we can observe that the assembly at (a) is
the interrupt target, which then jumps to the injection exploit at
(b), flipping a bit in PORTB before the correct ISR is jumped to
at (c).

That said, in order to perform this test the embedded system
must be designed to allow access to the AVR’s debugging (JTAG)
port, and toolchains must be utilized that support first-class
debugging (e.g., not the original Arduino IDE, which offers no
live debugging facilities). This access is not guaranteed, espe-
cially given the design constraints of the chosen AVR device and
embedded system. For instance, on the ATmega2560, the JTAG
pins are multiplexed with four of the ADC inputs. This means
that when the ADCs are in use then the JTAG port is rendered
unavailable. This is the case in Printer A. An alternative that
does not require the debugging port is to export the bootloader
itself from the flash memory of the AVR. As this is performed

using the programming hardware of the AVR chip itself, there is
no way for the bootloader to edit itself before download. Then,
the bootloader may be disassembled/decompiled and audited for
malicious behavior, though this will require specialist tools and
knowledge.

As low-end microcontrollers do not support features such
as secure boot, further prevention within the hardware can
come if they are exchanged for something with more features.
Policies surrounding firmware installation/inspection (including
bootloaders) could be introduced to mitigate the attack vec-
tors in Section II-C. A simple low-cost solution, although it
would limit product flexibility, would be to embed bootloaders
as nonreprogrammble ROMs, or to utilize fuse bits to disable
reprogramming the bootloader code, such that the bootloader
could not be replaced after product creation. Overall, we believe
that this work motivates the inclusion of a trusted execution
environment [37] within AM printers.

V. CONCLUSION

The cybersecurity of AM CPS is important. We examine a
case study in detail, presenting the design space exploration of a
bootloader Trojan, including (a) methodology for inclusion, (b)
evasion of detection, (c) trigger customization, and (d) malicious
payload. Even within tight constraints (both attacks less than
1.7 KB in size!), we were able to craft attacks, which lowered
the strength of printed parts by up to 50%. Though, we frame the
issue around desktop AM devices, we stress that the issues we
highlight in this article are not restricted to these models. Indeed,
the more complex an AM CPS is, the greater the attack sur-
face for embedded Trojans, and “commercial grade”/“industrial
scale” 3-D printers have complex internal networks of microcon-
trollers and embedded systems. This work serves as a reminder
that these components can hide malicious surprises, especially
when they support complex and powerful configuration options
that can be misused. It takes only one component to be infected
by a malafide insider or malicious third party with access to
cause insidious and catastrophic consequences. We believe that
procedures for bootloader and firmware verification should be
introduced across the AM CPS space, alongside potential au-
tomatic monitoring (e.g., via side channels) which could be
developed to detect and flag anomalous behavior.

ACKNOWLEDGMENT

The authors would like to thank G. Mac for his help with the
CAD modeling.

Open Source Access: A simplified version of FLAW3D (to
preserve the anonymity of the target devices) is available online
at [38].

REFERENCES

[1] O. Lakhal, T. Chettibi, A. Belarouci, G. Dherbomez, and R. Merzouki,
“Robotized additive manufacturing of funicular architectural geometries
based on building materials,” IEEE/ASME Mechatronics, vol. 25, no. 5,
pp. 2387–2397, Oct. 2020.

[2] Y. Wei, Y. Chen, Y. Yang, and Y. Li, “Novel design and 3-D printing of
nonassembly controllable pneumatic robots,” IEEE/ASME Mechatronics,
vol. 21, no. 2, pp. 649–659, Apr. 2016.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 14:25:34 UTC from IEEE Xplore. Restrictions apply.

PEARCE et al.: FLAW3DAM: A TROJAN-BASED CYBER ATTACK 9

[3] C. Tawk, H. Zhou, E. Sariyildiz, M. in het Panhuis, G. M. Spinks, and
G. Alici, “Design, modeling, and control of a 3D printed monolithic soft
robotic finger with embedded pneumatic sensing chambers,” IEEE/ASME
Mechatronics, vol. 26, no. 2, pp. 876–887, Apr. 2021.

[4] L. Nickels, “AM and aerospace: An ideal combination,” Metal Powder,
vol. 70, no. 6, pp. 300–303, Nov. 2015. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0026065715003446

[5] N. Gupta, A. Tiwari, S. T. S. Bukkapatnam, and R. Karri, “Additive
manufacturing cyber-physical system: Supply chain cybersecurity and
risks,” IEEE Access, vol. 8, pp. 47322–47333, 2020.

[6] S. Moore, P. Armstrong, T. McDonald, and M. Yampolskiy, “Vulnerability
analysis of desktop 3D printer software,” in Proc. Resilience Week, 2016,
pp. 46–51.

[7] D. Wu et al., “Cybersecurity for digital manufacturing,” J. Manuf. Syst.,
vol. 48, pp. 3–12, Jul. 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0278612518300396

[8] P. Mahesh et al., “A survey of cybersecurity of digital manufacturing,”
Proc. IEEE, vol. 109, no. 4, pp. 495–516, Apr. 2021.

[9] S. B. Moore, W. B. Glisson, and M. Yampolskiy, “Implications of mali-
cious 3D printer firmware,” in Proc. Hawaii Int. Conf. Syst. Sci. (HICSS-
50), pp. 6089–6098, Jan. 2017. [Online]. Available: https://aisel.aisnet.
org/hicss-50/st/digital_forensics/5

[10] S. E. Zeltmann, N. Gupta, N. G. Tsoutsos, M. Maniatakos, J. Rajendran,
and R. Karri, “Manufacturing and security challenges in 3D printing,”
JOM, vol. 68, no. 7, pp. 1872–1881, Jul. 2016. [Online]. Available: https:
//doi.org/10.1007/s11837-016-1937-7

[11] S. Belikovetsky, M. Yampolskiy, J. Toh, J. Gatlin, and Y. Elovici, “dr0wned
cyber-physical attack with additive manufacturing,” in Proc. 11th USENIX
Workshop Offensive, 2017. [Online]. Available: https://www.usenix.org/
conference/woot17/workshop-program/presentation/belikovetsky

[12] R. Jones et al., “RepRap the replicating rapid prototyper,” Robotica,
vol. 29, no. 1, pp. 177–191, Jan. 2011.

[13] ESET, “ACAD/Medre.A,” Jun. 2012. [Online]. Available: https:
//www.welivesecurity.com/wp-content/uploads/200x/white-papers/
ESET_ACAD_Medre_A_whitepaper.pdf

[14] A. Slaughter, M. Yampolskiy, M. Matthews, W. E. King, G. Guss, and
Y. Elovici, “How to ensure bad quality in metal additive manufacturing:
In-situ infrared thermography from the security perspective,” in Proc. 12th
Int. Conf. Availability, Rel. Secur., New York, NY, USA: Association for
Computing Machinery, Aug. 2017, pp. 1–10. [Online]. Available: https:
//doi.org/10.1145/3098954.3107011

[15] J. Prinsloo, S. Sinha, and B. von Solms, “A review of industry 4.0
manufacturing process security risks,” Appl. Sci., vol. 9, no. 23, Jan. 2019,
Art. no. 5105, number: 23 Publisher: Multidisciplinary Digital Publish-
ing Institute. [Online]. Available: https://www.mdpi.com/2076-3417/9/
23/5105

[16] L. M. G. Graves, J. Lubell, W. King, and M. Yampolskiy, “Character-
istic aspects of additive manufacturing security from security awareness
perspectives,” IEEE Access, vol. 7, pp. 103833–103853, 2019.

[17] M. Yampolskiy, A. Skjellum, M. Kretzschmar, R. A. Overfelt, K. R. Sloan,
and A. Yasinsac, “Using 3D printers as weapons,” Int. J. Crit. Infrastruct.
Protection, vol. 14, pp. 58–71, Sep. 2016. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S1874548215300330

[18] M. Yampolskiy, P. Horváth, X. D. Koutsoukos, Y. Xue, and J. Sztipanovits,
“A language for describing attacks on cyber-physical systems,” Int. J. Crit.
Infrastruct. Protection, vol. 8, pp. 40–52, Jan. 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1874548214000602

[19] J. Vosatka, “Introduction to hardware trojans,” in The Hardware Trojan
War: Attacks, Myths, and Defenses, S. Bhunia and M. M. Tehranipoor,
Eds. Cham:Springer International Publishing, 2018, pp. 15–51. [Online].
Available: https://doi.org/10.1007/978-3-319-68511-3_2

[20] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan
attacks: Threat analysis and countermeasures,” Proc. IEEE, vol. 102, no. 8,
pp. 1229–1247, Aug. 2014.

[21] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi, “A
taxonomy of computer program security flaws,” ACM Comput. Surv.,
vol. 26, no. 3, pp. 211–254, Sep. 1994. [Online]. Available: https://doi.
org/10.1145/185403.185412

[22] S. Ghosh, A. Basak, and S. Bhunia, “How secure are printed circuit boards
against trojan attacks?,” IEEE Des. Test, vol. 32, no. 2, pp. 7–16, Apr. 2015.

[23] BotFactory Inc., “BotFactory SV2 PCB printer,” 2021. [Online]. Avail-
able: https://www.botfactory.co/page/botfactory-sv2-pcb-printer

[24] RepRap, “RepRap options - RepRap,” 2021. [Online]. Available: https:
//reprap.org/wiki/RepRap_Options

[25] S. Lahteine, R. Neufeld, C. Pepper, B. Kuhn, and E. V. D. Zalm, “Home |
Marlin Firmware,” 2021. [Online]. Available: https://marlinfw.org/

[26] MarlinFirmware, “Release 2.0.5.3 MarlinFirmware/Configurations,”
Mar. 2020. [Online]. Available: https://github.com/MarlinFirmware/
Configurations/releases/tag/2.0.5.3

[27] G. Häußge, “OctoPrint.org,” 2021. [Online]. Available: https://octoprint.
org/

[28] T. Rigas, “Enabling verified boot on raspberry Pi 3,” Apr. 2019.
[Online]. Available: https://blog.nviso.eu/2019/04/01/enabling-verified-
boot-on-raspberry-pi-3/

[29] R. Wilkins and B. Richardson, “UEFI secure boot in modern com-
puter security solutions,” UEFI Forum, Tech. Rep., Sep. 2013. [On-
line]. Available: https://www.uefi.org/sites/default/files/resources/UEFI_
Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf

[30] D. Lau, “Secure bootloader implementation,” Freescale Semicond., Tech.
Rep. AN4605, Oct. 2012. [Online]. Available: https://www.nxp.com/docs/
en/application-note/AN4605.pdf

[31] A. J. Feldman, J. A. Halderman, and E. W. Felten, “Security anal-
ysis of the diebold AccuVote-TS voting machine,” in Proc. 2006
USENIX/ACCURATE Electron. Voting Technol. Workshop, Vancouver,
B.C., Canada, Aug. 2006. [Online]. Available: https://www.usenix.org/
legacy/event/evt07/tech/full_papers/feldman/feldman_html/

[32] “STK500 communication protocol,” Atmel (Microchip), Tech. Rep.
AN2591 / AVR068, Jun. 2006. [Online]. Available: http://ww1.microchip.
com/downloads/en/Appnotes/doc2591.pdf

[33] Arduino, “arduino/Arduino-stk500v2-bootloader,” Apr. 2021. [Online].
Available: https://github.com/arduino/Arduino-stk500v2-bootloader

[34] ASTM A370-20, Standard Test Methods and Definitions for Mechanical
Testing of Steel Products, ASTM Int., West Conshohocken, PA, Tech.
Rep.ASTM A370-20, 2020.

[35] G. Mac, H. Pearce, R. Karri, and N. Gupta, “Uncertainty quantification in
dimensions dataset of additive manufactured NIST standard test artifact,”
Data Brief, vol. 38, Oct. 2021, Art. no. 107286. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2352340921005709

[36] J. K. Placone and A. J. Engler, “Recent advances in extrusion-based 3D
printing for biomedical applications,” Adv. Healthcare Mater., vol. 7, no. 8,
2018, Art. no. 1701161.

[37] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution en-
vironment: What it is, and what it is not,” in Proc. IEEE Trust-
com/BigDataSE/ISPA, Aug. 2015, vol. 1, pp. 57–64.

[38] H. Pearce, “kiwih/328p-flaw3d-bootloader,” Apr. 2021. [Online]. Avail-
able: https://github.com/kiwih/328p-flaw3d-bootloader

Hammond Pearce (Member, IEEE) received
the B.E. (Hons.) degree in computer systems
engineering and the Ph.D. degree in computer
systems engineering both from the University of
Auckland, Auckland, New Zealand.

From 2020, he has worked as a Post-doctoral
Research Associate with New York University,
Brooklyn, NY, USA, with the Department of
Electrical and Computer Engineering and with
the NYU Center for Cybersecurity. His research
focus is in industrial cybersecurity, including in

additive manufacturing and in industrial informatics. In 2019, he took
part in the NASA International Internship Programme and worked at
NASA Ames in California. Other research interests include IoT, CPS,
compilers, and AI/ML.

Kaushik Yanamandra received the master’s
degree in mechanical engineering specializing
in mechanics and structural systems with New
York University, Brooklyn, NY, USA, in 2018. He
is currently toward the Ph.D. degree in mechan-
ical engineering with New York University.

His research work is focused on development
of lightweight advanced composites of metals
for dynamic loading conditions. His research
work is trying address shortcoming of lead acid
battery through developing novel lead electrode

for use in lead acid battery. Also, through his research, he is implement-
ing machine learning models for material characterization.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 14:25:34 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Nikhil Gupta (Senior Member, IEEE) received
the Ph.D. degree in engineering science from
Louisiana State University, Baton Rouge, LA,
USA, in 2003, specializing in lightweight ad-
vanced composite materials.

He is currently a Professor with the Depart-
ment of Mechanical and Aerospace Engineer-
ing, New York University, Brooklyn, NY, USA,
where he is also affiliated with the Center for
Cybersecurity and the Department of Civil and
Urban Engineering. He has four issued and six

pending patents. He has authored or coauthored more than 195 journal
articles and book chapters. His current research projects are focused
on cybersecurity in additive manufacturing and additive manufacturing
security education and use of machine learning methods in materials
characterization. As a materials scientist, he has been interested in
developing lightweight advanced composites of metals and polymers for
dynamic loading conditions. His research has been supported by the
National Science Foundation, the Office of Naval Research, the Army
Research Laboratory, and industry.

Prof. Gupta has served as a Membership Secretary of the American
Society for Composites and the Chair of the TMS Composite Materials
Committee.

Ramesh Karri (Fellow, IEEE) received the B.E.
degree in ECE from Andhra University, Visakha-
patnam, India, in 1985, and the Ph.D. degree
in computer science and engineering from the
University of California at San Diego, San Diego,
CA, USA. in 1993.

He is currently a Professor of electrical and
computer engineering with New York Univer-
sity, Brooklyn, NY, USA. He also co-directs the
NYU Center for Cybersecurity. He also leads the
Cyber Security thrust of the NY State Center

for Advanced Telecommunications Technologies, NYU. He co-founded
Trust-Hub. His research and education interests include hardware cyber-
security including trustworthy ICs, processors and cyber-physical sys-
tems; security-aware computer-aided design, test, verification, valida-
tion, and reliability, nano meets security, hardware security competitions,
benchmarks, and metrics, biochip security, and additive manufacturing
security.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 14:25:34 UTC from IEEE Xplore. Restrictions apply.

