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ABSTRACT

Rapid advances in the Internet of Video Things (IoVT) deployment
in modern smart cities has enabled secure infrastructures with min-
imal human intervention. However, attacks on audio-video inputs
affect the reliability of large-scale multimedia surveillance systems
as attackers are able to manipulate the perception of live events.
For example, Deepfake audio/video attacks and frame duplication
attacks can cause significant security breaches. This paper proposes
a Lightweight Environmental Fingerprint Consensus based detec-
tion of compromised smart cameras in edge surveillance systems
(LEFC). LEFC is a partial decentralized authentication mechanism
that leverages Electrical Network Frequency (ENF) as an environ-
mental fingerprint and distributed ledger technology (DLT). An
ENF signal carries randomly fluctuating spatio-temporal signatures,
which enable digital media authentication. With the proposed DLT
consensus mechanism named Proof-of-ENF (PoENF) as a backbone,
LEFC can estimate and authenticate the media recording and detect
byzantine nodes controlled by the perpetrator. The experimental
evaluation shows feasibility and effectiveness of proposed LEFC
scheme under a distributed byzantine network environment.
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1 INTRODUCTION

The growing smart city technological adaptation demands many
security and privacy practices put in place. With advancing large-
scale infrastructures, there is a constant demand to maintain a
secure channel for monitoring and decision-making. The exponen-
tial growth in the deployed number of intelligent Internet of Video
Things (IoVT) devices for smart surveillance makes online video
stream processing the most researched topic in Smart Cities. The
edge computers have allowed a more conventional way to process
the incoming audio-video streams for a broad spectrum of applica-
tions like behavioral recognition and suspicious event identification
[21]. Advanced applications in smart surveillance framework lead
to targeted networks, and visual layer attacks focus on compromis-
ing the device integrity. Visual layer attacks open new dimensions
for perpetrators to manipulate the real-time scene without trig-
gering alarms like replay attacks and frame modification attacks
[18]. Recently, with advanced machine learning models in edge
computers, DeepFakes [26] have become a common attack vector
with minimal computing resources.

Generative deep learning models have become an enabling tech-
nology for manipulating the event perception through manipulated
multimedia injections. Audio manipulations can be performed with
pre-existing source recordings of the targeted individual. A person’s
voice can be generated in real-time using text to speech software
with little training time [19]. Video manipulations involve real-time
face swapping or facial reenactment attacks, where a source facial
expressions can be projected over a targeted face to present a false
perception of an individual’s actions. Such attacks are quite pop-
ular for celebrities and politicians, and with the growth of edge
computing resources, similar attacks can be launched in the IoVT
environment and manipulate real-time streams framing an indi-
vidual for false actions. These visual layer attacks have become a
potent security risk for the IoVT environment, and detection of
such attacks with minimal downtime is a high priority. This work
proposes an environmental fingerprint-based detection and attack
localization technique for secure online authentication of audio and
video channels using a distributed consensus mechanism.

This paper proposes a Lightweight Environmental Fingerprint
Consensus (LEFC) based detection of compromised smart cam-
eras in edge surveillance systems. Electrical Network Frequency
(ENF) is adopted as an environmental fingerprint due to its pres-
ence in audio-video recordings in an indoor environment where
smart surveillance network devices are typically deployed. ENF
provides ground truth evidence on multimedia manipulations by
cross-referencing the source ENF signal, similar throughout the
power grid interconnect. Any irregularities can be used to identify
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potential manipulations. To enable a distributed approach to de-
tect false media injection attacks, we adopted a distributed ledger
technology (DLT). The DLT allows the network devices to provide
security and trust without relying on a centralized architecture and
third-party intervention. The DLT technology demonstrates a great
potential in revolutionizing the edge computing paradigm [25].
Equipped with Spatio-temporal sensitive ENF signal, we propose a
lightweight Proof-of-ENF (PoENF) consensus algorithm to provide
efficiency and security to the participating smart surveillance nodes.
In each PoENF consensus round, the participating nodes broadcast
the estimated ENF from the recorded media (audio/video). The con-
sensus round selects the ground truth ENF among the broadcasted
signals. Assuming no more than f nodes controlled by the perpe-
trator in a network with n > 2f + 3 nodes, all honest nodes can
make agreement on valid ENF and false ENF are identified using a
measure of similarity with correlation coefficient.

This paper makes the following contributions.

o A distributed secure-by-design visual layer attack detection
system is introduced with key components and workflow;

e An IoVT system is deployed with varying byzantine node
rates, and system resilience is evaluated with an ENF score;

o A distributed consensus mechanism with sliding windows
detects and localizes an attack; and

o Different attack vectors like false frame injection and Deep-
Fakes representing byzantine nodes are tested, and the pro-
posed LEFC system can detect with a high accuracy and
display tolerance to network delays.

The remainder of the paper is organized as follows. Section 2
discusses the key components of LEFC, including ENF fingerprint-
ing and blockchain consensus protocols. Section 3 introduces the
LEFC system design rationale and basis for attack detection and
localization. Section 4 presents the numerical analysis of LEFC sys-
tem with varying byzantine nodes and discusses attack detection
parameters and related discussions. Finally, a conclusive summary
is provided in Section 5.

2 BACKGROUND AND RELATED WORK

2.1 ENF as an Environmental Fingerprint

Electrical Network Frequency (ENF) is a power network frequency
provided in the form of infrastructure utility. The power supply
frequency is 60 Hz in the US and 50 Hz in other Asian and Euro-
pean countries. The fluctuations in the power supply frequency are
due to the power supply demand and the load balancing mecha-
nism, and these fluctuations are referred to as the ENF signal. ENF
fluctuations are similar throughout a power grid interconnect and
are random due to the unpredictability of the power requirements.
The frequency fluctuations in a power grid carry small latency due
to the distance propagation and can tag a recording with its geo-
graphical location [10]. To represent the randomness of the ENF
data, we used the correlation coefficient to measure the similarity
between two signals. ENF data is collected for approximately 200
hours, and the resulting heatmap of the correlation coefficient is
shown in Figure 1. The diagonal represents the highest correlation
as expected for signals with similar fluctuations, whereas similar
fluctuations are not repeated.
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2.2 ENF in Multimedia Recordings

In multimedia recordings like audio and video, the ENF is embedded
through multiple power-dependent sources. In the case of audio,
the ENF is embedded through electromagnetic induction when the
recorder is directly connected to the power grid [12]. For battery-
powered devices, the ENF is embedded through the background
hum [8]. The audio recordings consist of a higher sampling fre-
quency allowing for a robust estimation of the ENF signal.

The source of ENF in video recordings depends on the type of
imaging sensor used in the video recorders. The illumination fre-
quency, i.e., 120 Hz, which is twice the nominal frequency, projects
the ENF fluctuations in the power grid, and the recorded photons
by the imaging sensor capture the fluctuations. The two common
sensors used for general-purpose video applications are comple-
mentary metal-oxide-semiconductor (CMOS) and charge-coupled
device (CCD) sensors. For each sensor, the photon capturing mech-
anism varies with the shutter mechanism used. Video recorders
with CCD sensors deploy a global shutter mechanism. The sensor
is exposed to light for a time instant, resulting in capturing samples
equal to the number of frames per second (FPS) of the camera. With
the low sampling rate of the CCD sensor, the estimation of 120 Hz
illumination frequency from the samples captured is not possible.
It thus relies on aliasing frequency for ENF estimation [11].

For video recorders with CMOS sensors, the rolling shutter mech-
anism captures the photon sample in each row, allowing for a high
sampling rate compared to the CCD sensors. Depending on the
manufacturer, each camera model has its idle period where few
samples are not captured for each frame. Using the Filter-Bank
model, the idle period along with the ENF can be estimated [24].
CMOS is the most commonly deployed camera sensor among both
imaging sensors due to its cost efficiency and broad applicability.

The nominal frequency ENF signal is estimated using spectro-
gram estimation techniques with the samples captured from the
multimedia recordings. ENF is computed from each harmonic and
combined using their respective signal to noise (SNR) ratio as the
weights for robust estimation. A detailed discussion of ENF estima-
tion techniques from audio and video recordings are presented in
our previous work [16, 17].
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2.3 Blockchain and Consensus Protocols

Blockchain initially was implemented as an enabling technology of
Bitcoin [20], which aims to provide a cryptocurrency by recording
and verifying commercial transactions among trustless entities in
a decentralized manner. Thanks to the decentralized Peer-to-Peer
(P2P) network architecture and cryptographic security mechanisms,
miners and validators in a blockchain network utilizes a consensus
protocol to guarantee auditability and integrity of data on the dis-
tributed ledger instead of relying on any third party trust authority
[29]. As one of the most important component in a blockchain sys-
tem, consensus states that the processes have to reach agreement on
of a value (called decision value) under fault-tolerant distributed net-
work environment. Given diverse consensus protocols, blockchains
can be categorized as permissionless or permissioned chains.

As the first practical BFT consensus, PBFT [7] uses the State Ma-
chine Replication (SMR) scheme to address the Byzantine General
Problem [14] in distributed networks. It has been widely adopted
as a basic consensus solution in the permissioned blockchains, like
Hyperledger Fabric [3]. Given assumption that at most L"T_IJ out
of total of n nodes in a blockchain network are Byzantine faults, the
PBFT algorithm can guarantee both liveness and safety in synchro-
nous permissioned network environments. PBFT consensus demon-
strates deterministic finality on distributed ledger with energy ef-
ficiency and high transactions throughput. However, it inevitably
incurs high latency and communication overhead to synchronously
execute a consensus protocol in large scale networks.

To jointly address the critical issues, such as pseudonymity and
scalability in a asynchronous open-access network environment,
the Nakamoto protocol is widely used cryptocurrency blockchains,
like Bitcoin [20] and Ethereum [6]. The Nakamoto protocol relies
on a Proof-of-Work consensus algorithm, which uses a computation
intensive cryptographic hash value searching game to reward the
winner of block generation. For a Proof of Work (PoW) consensus
network, the probability of mining valid blocks is proportion to
computing power percentage that a participant can have compared
with the whole network. Given assumption that an adversary can-
not control majority (51% attack) of computing resources of the
consensus network, Nakamoto protocol can guarantee security and
scalability in a permissionless blockchain network.

To improve the performance and resource efficiency in PoW,
a number of alternative Proof of X-concept (PoX) schemes have
been proposed. To reduce unnecessary wastage of computational
resources in PoW, Permacoin [15] adopts a Proofs of retrievability
(PoRs) [13], which requires miners to invest their storage capacity
rather than solo computational power. Like Permacoin, a Proof-of-
Useful-Work (PoUW) [31] consensus protocol relies on the partially
decentralized trust model inherent in Intel Software Guard Exten-
sions (SGX) to achieve security and resource efficiency. The above
mentioned consensus algorithms requires large storage or specific
hardware features, however, they are not suitable for heterogeneous
IoVT devices with limited computation and storage capability.

Unlike PoW and its variants, our POENF consensus neither re-
quires high demand of computation and storage resource for min-
ing, nor depends on security guarantees supported by a trusted
hardware platform [30]. Thus, using an ENF-based environmental
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Figure 2: LEFC system architecture consisting of a upper-
level IoVT service layer and a secure-by-design deepfake de-
tection service layer.

fingerprint consensus is a promising solution to detect compro-
mised smart cameras connected to the power grid.

3 LEFC SYSTEM ARCHITECTURE DESIGN

Our deepfake detection mechanism leverages ENF environmental
fingerprint and blockchain technology to achieve a partial decentral-
ized audio and video (A&V) authentication for smart surveillance
systems. We assume a small scale IoVT network including about
100 nodes, like cameras and edge servers, and all devices are con-
nected to the same regional power grid. Figure 2 represents the
LEFC system architecture consisting of: 1) IoVT service layer that
provides multimedia steams for smart surveillance systems; and 2)
ENF-based detection service layer that support a security-by-design
networking foundation for deepfake detection.

The IoVT service layer is deployed at the network of edge to
enable A&V analytic tasks and information visualization for upper-
level smart surveillance applications. All users and devices must
be registered to join the permissioned network. Therefore, basic
security primitives are guaranteed, such as public key infrastructure
(PKI), data integrity verification [22], identity authentication [28]
and access control [27]. Cameras send real-time A&V streams to
on-site/near-site edge devices for lower level analytic tasks, like
object-detection and situational contextual features extraction [9].
Then, edge devices transferred raw multimedia data along with
extracted contextual information to information visualization unit,
which provides on-line or off-line A&V recordings for authorized
users. The following sub-sections provide details of components
and workflow in ENF-based detection service.
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3.1 PoENF Consensus Mechanism

The PoENF mechanism is mainly responsible to provide verifiable
and traceable ENF data and select ground truth ENF benchmarks
for further deepfake detections.

3.1.1  ENF Data Recording. Our solution adopts EconLedger as a
“trust” and partial decentralized security infrastructure for cross-
devices networking IoVT systems at the edge [30]. In a EconLedger
network, a random PoENF consensus committee election strategy
chooses a subset of valid nodes as committee members (validators).
Then, validators of the current consensus committee collect ENF
proofs from each other, and the cooperatively execute a lightweight
PoENF consensus protocol to record all ENF data on a private dis-
tributed ledger that can be accessed by nodes within the network.
Thanks to PoENF consensus protocol and immutable distributed
ledger, deepfake detection can identify compromised cameras by
auditing historical ENF data of nodes without relying on a central-
ized third party trust authority, which provides ground truth ENF
benchmarks directly extracted from power grid [17].

3.1.2 ENF Scores Calculation. As ENF data from individual nodes
are stored on distributed ledger, a validator v; in committee D can
extracts ENF proofs submitted by other validators in a specific time
spot. Each ENF proof'is a vector E = {eq, €y, ..., €4}, where ¢; € R is
the ENF frequency sample and d is the vector size defined by the
sliding window of ENF estimation. Thus, each validator maintains
a global view of collected ENF proof vectors G = {Ey, E, ..., Ex },
and calculates ENF scores block as Fig. 2 shows. For a E; € G, an
ENF score S; can be calculated by using sum of its relative distances
between other ENF vectors, that is computed with the Euclidean
norm. Finally, a ENF vector that deviates the least from all ENF
vectors has the minimal ENF score, and it will be selected as a
benchmark E*.

However, an adversary can compromise validators, and a byzan-
tine node sends poisoned Ej, that is too far away from valid ENF
vectors. As a result, they can force the PoOENF algorithm to choose
any arbitrary ENF vector. Our ENF score calculation algorithm
adopts Krum aggregation rule [5] to guarantee an (¢, f)-Byzantine
resilience property, where 0 < a < 7/2 is any angular value and f
is a non-negative integer smaller than or equal to n. We require that
each honest validator only maintain a G = {Ey, Es, ..., E, } including
n > 2f + 3 observed ENF proof vectors from PoENF committee
members, and only at most f are sent by Byzantine nodes. For any
i # j,leti — j denote the fact the that E; belongs to the n — f — 2
closest vectors to E;. Then we define the ENF score for v;:

s(o) = ) B - Ej1%

i—j

1)

Therefore, each validator can use Eq. (1) to calculate ENF scores
(s(1),...,s(n)) associated with validators v1 to vy, respectively.

3.1.3  Ground Truth ENF Selection. By executing ENF score calcula-
tion defined in Eq.1 for each E; € G, each validator can get a global
ENF score list S = {s(1), s(2),...S(n) }. Then, each validator can sort
S to select the minimum ENF score as follows:

2

U e fn, B0
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Finally, POENF consensus requires that a honest validator always
uses s™ as the ground truth ENF benchmark in current round. Thus,
all honest validators can make an agreement on s* if an adversary
can control at most f nodes in POENF committee. The ENF vector E;
that satisfies the condition s(i) < s* will be selected as a benchmark
ENF E* for deepfake detection.

3.2 ENF-based Multimedia Attack Detection

Each node generates a local ENF signal and the consensus commit-
tee agrees on a ground truth ENF for the current round. To measure
the similarity between the ground truth ENF and the locally gen-
erated ENF in each node, we utilize cross-correlation coefficient
(p). The correlation varies in the range [—1, 1], where 1 represents
highest measure of similarity. Based on the experimental evalua-
tions, a threshold of 0.8 is used to detect the drop in correlation
and to allow each consensus around to tolerate a few seconds delay
in ENF braodcast. Equation 3 represents the correlation coefficient
used to detect ENF signal variations in each node (E;).

S E(t) = pp, 1B (¢ = 1) — pge]
var(Ej) = var(E*)

p(l) = )
where [ is the lag between the two signals, d is the vector size, u is
the mean of the signal, and var is the variance of the signal.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

A proof-of-concept prototype is implemented in Python to verify
feasibility of the proposed solution. The LEFC prototype emulates a
small scale video surveillance system based on a local area network
(LAN). A Dell Optiplex 7010 simulates a monitor server that man-
ages permissioned network and aggregates audio/video streams
from cameras installed at different location. While 20 Raspberry
Pi-4 (Rpi) devices act as validators to collect ENF proofs and execute
PoENF consensus algorithm.

To generate compromised multimedia recordings, Descript plat-
form [1] is used to synthesize text-to-speak audio deepfakes, and
DeepFaceLive is used [23] to create video deepfakes based on target
users’ faces along with frame replay forgeries [18]. We adopt a
light micro-framework called Flask [2] to develop networking and
web service Application Programming Interface (API) for deepfake
detection services. All cryptographic functions, like hash functions
and digital signature, are developed on the foundation of the stan-
dard python lib cryptography [4].

4.2 Numerical Results

To evaluate the performance of the running prototype under an
IoVT-based edge network environment, a set of experiments is con-
ducted by executing multiple complete round of PoOENF consensus
among committee members. We calculate an average of results for
PoENF latency and use statistical analysis for POENF effectiveness.
The computation cost by message encryption and decryption are
not considered during the test.

4.2.1 ENF Sliding Window Size. Each consensus round consists of
generating ENF signal data from a certain period of multimedia
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Table 1: PoENF latency with varying committee size.

No. of Validators
Latency (sec)

20
0.08

50
0.5

100
1.9

200
7.7

10
0.02

recording time. We adopt the sliding window technique to com-
pensate for the signal capture and estimation to enable real-time
detection. Each sliding window is treated as a single ENF consensus
round, and the shift in the window can reduce the computational
resources required for ENF signal estimation. Figure 3 represents
the comparison of two ENF signals using different sliding window
sizes and shift sizes, where the signal similarity is represented us-
ing a correlation coefficient. With a smaller window size like 10
seconds in (3a) and 30 seconds in (3b), the signal length is smaller,
and the fluctuations in correlation are higher. Whereas, with 60 sec-
onds sliding window in (3c), the correlation follows the bell curve
where the peak represents the highest signal similarity and no lag.
A sliding window size of 60 seconds is used to reduce the false
positives in consensus rounds, and a shift size of 5 seconds is used
to compensate for ENF estimation times. The sliding window can
tolerate +6 seconds of delay as shown in (3d) to account for signal
broadcast delay caused by network congestion. The threshold of
0.8 detects the drop in correlation and reduces the false positives.

4.2.2  PoENF Consensus Latency. Given the above mentioned anal-
ysis on sliding windows used in ENF signal extraction, the size of
an ENF vector d used by following test results is 60. Then LEFC
evaluates time latency for POENF when committee size K changes.
Table 1 presents the cumulative time taken for a round of POENF
consensus including ENF proof collection, ENF score calculation
and ground truth ENF selection. Time latency is dominated by the
ENF score calculation, which has the complexity of O(K?d). Thus,
processing time dramatically increases as the number of validators
in committee scales up. Assuming a small IoVT network including
less than 100 nodes, the time latency of POENF consensus proce-
dures in LEFC is no more than 2 seconds. Therefore, it can satisfy
required sliding window and margin in ENF extraction.
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4.2.3 ENF-based Detection Effectiveness. We also verify how effec-
tive ENF-based detection can identify compromised cameras under
deepfake attack scenarios. Figure 4 shows ENF scores distribution
based on a synchronous ENF recording period (60 minutes). There
are total 10 nodes that participant POENF consensus. Two byzantine
nodes start deekfake attacks at the 15 minute mark, and such a at-
tack ends at 45 minute mark. In a certain sliding window period of
attack points, ENF proof vectors from malicious nodes have distinct
trends compared with these generated by honest nodes, as Fig. 4a
shows. As a result, ENF scores associated with BFT nodes are much
larger than ENF scores of BFT nodes given an attack range, as Fig.
4b shows points between blue lines. Because a ground truth E* has
the minimal ENF score at a time spot, it can be used to classify
malicious nodes according to ENF scores distribution.

To evaluate how malicious nodes’ ratio influences detection
results, we make comparative experiments on ENF scores when
BFT rate changes given a fixed committee size. Figure 5 shows ENF
score statistics between honest nodes and BFT nodes as BFT rate
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increases from 10% to 50%. Each bar indicates standard deviation
(std) with a mean represented by a blue dot. The difference of means
by honest and BFT nodes decreases as more nodes are compromised.
Given assumption that n > 2f +3 in PoOENF consensus, a committee
with size n = 20 can tolerate up to 8 BFT nodes, which means that
BFT rate can be no more than 0.4. As Fig. 5 shows, both mean
and std by BFT nodes are smaller than honest nodes when BFT
rate is 0.5. Thus, ENF-based deepfake detection will fail owing to
fact that an adversary has controlled committee to disturb POENF
consensus process. However, our ENF-based detection can still
identify deepfake attack nodes if honest nodes are no less than 60%.

4.3 Discussions

ENF can be embedded in audio/video in both power grid-connected
and battery-powered devices in indoor environments. But for out-
door environments which lack artificially powered light with illumi-
nation frequency, ENF in video recordings is absent. However, most
smart cameras are deployed in an indoor environment with power
grid-connected, our LEFC is suitable to detect compromised devices
based on embedded ENF recordings. Moreover, POENF consensus
relies on a small committee to improve efficiency but at the cost
of partial decentralization. A scalable random committee strategy
is promising to enhance security and scalability. We leave above
open questions in future work.

5 CONCLUSIONS

By integrating ENF as environmental fingerprint with DLT, this
paper proposes LEFC to detect compromised or malfunctioned
smart cameras deployed in edge surveillance systems. Thanks to the
unique spatio-temporal fluctuation property of ENF signals, experi-
mental study based on a proof-of-concept prototype demonstrates
that proposed LEFC is effective to identify deepfake attack un-
der a distributed byzantine network environment. However, there
are still open issues to solve before bringing LEFC into practice.
Our ongoing efforts include validating LEFC in a real-world smart
surveillance system and evaluating overall performance, robustness
and security given different attack scenarios.
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