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Abstract: Blockchain technology has been recognized as a promising solution to enhance the security
and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the Proof-
of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle, Blockchain
ensures the security of the system by establishing a digital ledger. However, the computation
intensive PoW favors members possessing more computing power. In the IoT paradigm, fairness in
the highly heterogeneous network edge environments must consider devices with various constraints
on computation power. Inspired by the advanced features of Digital Twins (DT), an emerging concept
that mirrors the lifespan and operational characteristics of physical objects, we propose a novel
Miner Twins (MinT) architecture to enable a fair PoW consensus mechanism for blockchains in IoT
environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of the blockchain are
deployed as microservices on distributed edge devices, while fog/cloud servers maintain digital
twins that periodically update miners’ running status. By timely monitoring of a miner’s footprint
that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA)-based detection achieves
the identification of individual misbehaved miners that violate fair mining. Moreover, we also design
a novel Proof-of-Behavior (PoB) consensus algorithm to detect dishonest miners that collude to
control a fair mining network. A preliminary study is conducted on a proof-of-concept prototype
implementation, and experimental evaluation shows the feasibility and effectiveness of the proposed
MinT scheme under a distributed byzantine network environment.

Keywords: digital twin; blockchain; Proof-of-Work; microservices; Singular Spectrum Analysis
(SSA); byzantine fault tolerance

1. Introduction

Advancement in Internet of Things (IoT), Edge Computing, Big Data (BD), and Arti-
ficial Intelligence (AI)/Machine Learning (ML) technologies makes the concept of Smart
Cities realistic. However, widely adopting loT-based applications and services in smart
cities also brings new security and privacy concerns. Thanks to multiple attractive fea-
tures including decentralization, auditability and traceability, blockchain has been widely
recognized as a great potential to revolutionize the fundamentals of information and
communication technology (ICT) [1]. Applying blockchain to smart cities is promising
to bring efficiency, scalability and security properties to loT-based applications, such as
smart surveillance [2], privacy preservation [3], decentralized data marketplaces [4], time
banking of community [5], identity authentication [6] and access control [7,8].

Digital Twins (DT) is being developed to optimize manufacturing and aviation pro-
cesses [9]. By monitoring, simulating and mirroring the status of a physical object (PO),
DT can build an intelligent and evolving system model based on the logic object (LO).
Leveraging data fusion and AI/ML algorithms, DT can be used to predict the behavior of
the PO given some specific situations or environments. Similar to DT, the Dynamic Data
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Driven Applications Systems (DDDAS) concept developed in the late 1990s seeks to use
modeling to support predictive expectations based on the coordination with models and
data [10]. Thus, DDDAS can determine optimized solutions or even failure preventive
actions on POs to enable an intelligent and resilient system.

Research has been conducted to apply blockchain to enable many attractive features
in DTs, including transparency, decentralization, data immutability and Peer-to-Peer (P2P)
communication [11]. However, directly integrating existing blockchain technologies into
the highly heterogeneous IoT environments presents critical challenges in terms of scalabil-
ity, performance, security and fairness [12]. Some permissioned blockchains use a Practical
Byzantine Fault Tolerance (PBFT) [13] protocol, which demonstrates high throughput
and low latency but only allows for a very limited network scalability in terms of the
number of validators. Most permissionless blockchain networks utilize a hashing-intensive
Proof-of-Work (PoW) consensus protocol to achieve security and scalability guarantees.
Due to the various computation capability of miners, mining centralization in a PoW
blockchain not only leads to inequity of rewarding among participants but also brings
about security issues, such as majority (51%) attacks [14].

Inspired by the essential features of DTs, mirroring and monitoring, this paper pro-
poses a novel edge-fog-cloud Miner Twins (MinT) architecture to enable a fair PoW
consensus mechanism for blockchains in IoT environments. In the MinT architecture,
the fog/cloud sever establishes and maintains digital twins for the miners of the blockchain,
which are deployed as microservices in edge devices that participate in the blockchain
network. Container technology is adopted to encapsulate PoW algorithm as microservices,
and each containerized miner is dedicated to mining tasks using pre-configured computa-
tion power. As each miner has the same constrained computation resources, it becomes
affordable to optimize resource limited IoT devices.

In summary, this paper makes the following contributions:

(1) A secure-by-design MinT architecture is introduced to allow for fair-mining-as-a-
service (FMaaS) in heterogeneous IoT environments;

(2) We propose a novel miner twin-enabled fair-mining mechanism, which can monitor
the computing resources usage at miners and can regularly apply anomaly detection
to deter misbehaved nodes from unfairly overwhelming honest peers using extra
computing power;

(3) A lightweight SSA Singular Spectrum Analysis (SSA)-based detection is designed
to identify individual misbehaved miners that violate fair mining policies, while
a Proof-of-Behavior consensus algorithm is designed to detect multiple Byzantine
miners that collude to compromise a fair mining network; and

(4) A proof-of-concept prototype is implemented and tested on a small-scale private
PoW mining network, and experimental results verified that the MinT is feasible and
effective to ensure a fair mining system.

The remainder of this paper is organized as follows: Section 2 reviews the background
on blockchain and PoW consensus and then briefly discusses the state-of-the-art research
on DT. Section 3 introduces the rationale and architecture of MinT. The miner twin-enabled
fair-mining mechanism including SSA and PoB-based detection algorithms is explained
in Section 4.1. Section 5 presents the prototype implementation with numerical results.
Section 6 concludes the paper with future work.

2. Related Work

This section introduces blockchain and PoW consensus background knowledge. Fol-
lowing that, we describe digital twin technology and how DT can be used to guarantee the
fair mining scheme in blockchain.

2.1. Blockchain and Nakamoto Consensus Protocol

As a form of distributed ledger technology (DLT), Blockchain was initially implemented
as an enabling technology of Bitcoin [15], which aimed to provide a cryptocurrency to
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record and verify commercial transactions among trustless entities in a decentralized
manner. With the decentralized P2P network architecture and cryptographic mechanisms,
participants in a blockchain system maintain the immutability and auditability of data and
transactions recorded on the distributed ledger instead of relying on a centralized third
party trust authority.

As one of the most fundamental problems in a distributed /decentralized computing
environment, consensus in a blockchain network can be defined as a fault-tolerant state-
machine replication problem, which aims to maintain the globally distributed ledger state
across the P2P network. Bitcoin adopts the Nakamoto consensus based on a Proof-of-
Work (PoW) scheme to achieve pseudonymity, scalability and probabilistic finality in an
asynchronous and open-access network environment. The goal of Nakamoto consensus
is to ensure all participants agree on a common network transaction log as a serialized
blockchain [12].

PoW is essentially an incentive-based consensus algorithm, which requires all par-
ticipants to compete for rewards through a cryptographic block discovery racing game.
To be a winner in PoW block generation, every miner has to solve a computing-intensive
hash puzzle problem. In brief, a valid PoW solution requires exhaustively querying a
cryptographic hash function for a partial preimage generated from a candidate block [16].
Finally, the hash code of a candidate block must satisfy a predefined difficulty condition
parameter /1, such as having a fixed length of bits as zeros.

Given current block_data, which consists of a block header and ordered transactions
by time stamps, a miner continually calculates a hash value nonce until it satisfies the PoW
puzzle problem. The PoW puzzle problem can be formally defined as follows:

hash_block = H (block_data|nonce) < D(h), 1)

where for some fixed length of bits L and difficulty condition, D(h) = 2L 7(.) is
a predefined collision-resistant cryptographic hash function that outputs a hash string
L € {0,1}*, and A is the length of a hash string.

The PoW process defined by Equation (1) is essentially a verifiable process of a
weighted random coin-tossing [12]. Thus, the probability of generating a valid block is
in proportion to miners” computation resources. Higher computation power leads to
higher hash string rate in PoW, which means more rewards and benefits. Such a mining
centralization may discourage participants who have limited computation resources, such
as IoT devices; but it also lead to majority (51%) attacks if an adversary controls more than
50% of the computation resources of the whole network.

To reduce energy consumption in PoW consensus, Peercoin [17] proposed Proof-
of-Stake (PoS), which requires a miner to use its coin stake to solve the puzzle solution.
Unlike PoW protocols that relies on a brute-force hash calculation, PoS miners use a
process of “virtual mining” manner that only consumes limited computational resources.
However, PoS still has a mining centralization issue because an attacker can amplify its
power by simply accumulating the credit stake. As the first practical Byzantine Fault
Tolerant (BFT) consensus, Practical BFT (PBFT) [13] guarantees both liveness and safety in
synchronous network environments given the assumption that at most of [ 23 | out of total
of n participants in consensus protocol are Byzantine faults. As PBFT requires that all nodes
communicate synchronously to achieve consensus purposes, it has poor scalability due to
high latency and communication overhead as more nodes join the consensus network.

2.2. Digital Twins

The concept of DT was proposed in 2002 and archived in a NASA white paper in
2014 [18]. Essentially, a DT is a digital representation of the components and dynamics of
a physical system [19]. Based on the functionalities, DTs can be roughly categorized into
three kinds: monitoring DTs, simulational DTs and operational DTs [20]. As suggested by
the names, monitoring twins allow system operators to monitor the status of a physical
system; simulation twins can predict the future status of the physical system in different
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scenarios using various simulation tools and ML algorithms; and operational twins is a
complex sensing and control system that enabled human operators to interact with a cyber-
physical system and to perform different actions in addition to monitoring, analysis and
prediction [21], which is similar to human-machine teaming [22].

Earlier studies on DT mainly focused on the area of manufacturing covering differ-
ent key factors for smart manufacturing including simulation, optimization and the use
of Al For instance, an event-driven simulation for manufacturing and assembly tasks
based on Digital Twin and human-robot collaboration was presented [23]. A DT-based
framework was proposed to achieve high precision and multidisciplinary coupling during
the assembly process, which mainly focused on High precision products (HPPs) work-
shops [24]. HPP also establishes a predict and optimization model as well as a case study
to verify the effectiveness and feasibility. A case study presented an ice cream machine as
an application example of DT in food industry [25], which focused on the visualization
and interaction based on virtual reality (VR) and augmented reality (AR) technologies.
Secure data transmission was also highlighted in the framework by employing a secure
gate between machine and cloud.

Recently, efforts are reported in variant aspects of smart cities including Smart Driving,
Smart Grid and Smart Healthcare. For instance, the optimization issue in the electric
propulsion drive systems (EPDS) of self-driving electric vehicles were discussed [26].
In the proposed DT-based framework, the connection between a logical twin in the control
software with the propulsion motor drive system enables EPDS performance estimation.
However, there were no experimental results presented after giving the concepts of the
platform. A behaviors-based algorithm was proposed to help the drivers avoid potential
risk [27]. Combining the ML techniques and DT relies on the connectivity of the system
and faces challenges in optimization and accuracy [28]. A case study has been reported
that tackles the management of wind farm using DT and cloud technologies combined
with big data analysis to build remote control station [29].

Recently, some healthcare applications redefined DT by including living objects [30].
A DT-based healthcare framework was proposed for monitoring and predicting the health
condition of an individual using wearable devices [31]. A DT-based remote surgery
prototype was introduced consisting of VR, 4G and Al to create a digital twin of a patient
and to realize real-time surgery over mobile network [32]. Due to the fast development of
telecommunication technologies, 5G and beyond networks are very complicated as they
are expected to support more emerging applications with more diverse requirements [33].
The community is considering DT as an efficient, cost-effective approach to accelerate the
design, test and implementation of 5G/6G networks [34].

Due to the foreseeable importance and popularity of DT in IoT, 5G/6G and edge
computing, blockchain is adopted to enhance the security, trust and reliability of DTs [11,35].
The work reported in this paper, however, is the first in this area that leverages DT to
tackle the unfair mining problem in the PoW consensus protocol. Using digital twins,
MinT monitors the computing resource utility of the miners and quickly detects abusers
using Singular Spectrum Analysis (SSA) [36], one of the fastest change point detection
algorithms [37]. Our MinT also uses a Proof-of-Behavior (PoB) consensus algorithm to
guarantee byzantine tolerant anomaly detection.

3. MinT: Rationale and Architecture

Aiming at a secure-by-design fair PoW mining network in heterogeneous IoT environ-
ments, our MinT scheme leverages DT technology to continuously monitor the usage of
containerized miners and discourages misbehaving nodes from unfairly overwhelming
the peers by using extra computing power. Figure 1 illustrates the high-level system archi-
tecture of MinT, which adopts a hierarchical cloud-fog-edge computing paradigm. Such a
hierarchical framework not only provides system scalability for large-scale fair mining tasks
based on geographically distributed IoT devices but also supports flexible management
and coordinated central and decentralized local decisions given heterogeneous networks
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and application domains. Moreover, MinT relies on a permissioned network that provides
basic security guarantees, such as the public key infrastructure (PKI) and digital signature,
data integrity [2], identity authentication [6] and access control [38], etc. In essential, MinT
is a partial decentralized PoW mining network. Furthermore, DTs in MinT are mainly
used to monitor their associated miners and to support misbehavior detection, and they do
not directly participate in the PoOW mining task or impose interference on the consensus
protocol. Therefore, our Mint is promising in enabling a fair mining network without
sacrificing distribution and decentralization. The rationale behind the MinT is described
as follows:

Logical ( Prediction Module ]
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NT=== === ===
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Figure 1. Illustration of MinT system architecture.

1. Containerized PoW Miner: The edge layer in MinT consists of various types of
IoT devices, such as smart cameras in a surveillance system or smart meters connected
to a power grid. To follow an ideal “one cup-one vote” Nakamoto consensus protocol,
the Pow algorithm is encapsulated into containers as physical miners that are deployed on
edge devices to participate in the blockchain network, and all containers are assigned the
same computation resource for PoW mining process. Each miner has the same probability
of generating blocks and being rewarded accordingly due to the uniform computation
distribution of the network. Thus, these containerized PoW miners construct a fair mining
blockchain network disregarding devices’ capability.

2. Microservice-oriented Service: MinT utilizes an intermediate fog layer to provide
middle-ware services for devices at edge and cloud level. To address heterogeneity of
IoT systems, a lightweight Microservice-oriented architecture (MoA) is adopted as a fun-
damental service infrastructure to support functionality, such as data aggregation and
microservice management, and security mechanisms, such as encryption/decryption; to
identity verification; to access control, etc. Each microservice unit exposes a set of RESTful
web-service APIs for interaction. The fine-granularity and loose-coupling features of the
MoA framework allow for fast development and easy deployment among heterogeneous
platforms using non-standard development.

3. DT-enabled Fair Mining Intelligence: As dishonest containerized miners could
use extra computing power than they are permitted, MinT relies on DT technology and
intelligent services on a fog/cloud server to maintain a fair mining network at the edge
layer. By aggregating data flows from distributed physical miners, mirroring miners (logic
objects) that are associated with their physical counterparts are created and managed by the
fog or cloud server. These miner twins monitor the usage of containerized miners running
on devices. By analyzing the real-time status of miner twins and historical statistics, abusers
can be detected and preventive actions can be triggered to deter identified misbehaving
miners such that the MinT ensures a fair mining blockchain network.
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4. Miner Twin-Enabled Fair-Mining Mechanism

This section provides a comprehensive overview of the MinT-based fair mining mech-
anism such that readers can understand the key components and workflow. Then, we
describe the miner twin process including key parameter selection. Following that, we
offer details on lightweight SSA-based anomaly detection and the byzantine tolerant PoB
consensus algorithm.

4.1. MinT Workflow for Fair Mining

Figure 2 illustrates the workflow of the fair-mining mechanism in the MinT system.
The upstream data flow starts from the containerized miners and aggregates the fog servers
installed with different modules. The fog server first normalize the data from all physical
miners, which reports to it under its jurisdiction. The fog server can either construct
logical miners that mirror these new physical miners or update the status of existing logical
miners. The fog server further encrypts its local logical twining miners and forwards them
to the cloud.

Logical Twining —»{ Fa&g’gz:ng @
Key F’arameterST T Violation |Detected
Data Processing —»{ H:s’g)tl(?zlggata

—

Crypto Module

-

: Microservice Control
Data Aggregation odile
—_——— Fog

A

Physical Miner

Figure 2. Miner twin-based fair-mining flowchart.

Upon receiving the encrypted data from multiple fog servers, the cloud server aggre-
gates the information into a logical miners pool to represent a system level twinning PoW
network. Using the live feed from the logical twin and the historical data, MinT uses an
intelligent model for fair mining strategy. Given a fair mining algorithm, the upstream
data flow starts from the predication. The predicted status is compared with the actual
footprint, using anomaly detection algorithm MinT; identifies dishonest miners who violate
the fair POW consensus; and sends orders to the Microservice Control Module on a fog
layer accordingly, which takes further actions on the “outlaws”.

4.2. Miner Twin Process

The notations used in this paper are listed in Table 1. To mirror the physical miner,
several parameters are extracted for the logical miner, including central CPU usage (C),
global GPU usage (G), memory usage (M) and I/O bandwidth (B). Since PoW depends on
computation intensive algorithms, the CPU usage and GPU usage are chosen as the key
parameters according to the selection of calculation module, while memory, I/O bandwidth
and other metrics are considered as contributing parameters. To avoid falling behind other
miners, the physical miner normally uses all of the allocated CPU/GPU resources.

As the system resource allocated to each miner is restricted but identical, the data
can be normalized in the form of percentages, for example ¢ = é x 100%, where Cg,;
is the preset CPU limit and c is the normalized value. Given an assumption that a con-
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tainerized miner can only use its CPU to perform the PoW algorithm, then for a miner &,
the parameter vector of its Physical Object (physical miner) with timestamp i would be
POy; = (cyi, §kis Mii, byi), and the Key Parameter is cy;. The vector for the Logical Object
= (Cki, §ki» Mki, bxi), and the Key Parameter is cy;.

(logic miner) can be represented as LOy;

Table 1. Relevant basic notations.

Symbol  Descriptions Symbol  Descriptions
POy; parameter vector of miner LOy; parameter vector of twin
Cri cpu usage Ski gpu usage
My memory usage by 1/0 bandwidth
X target time series X trajectory matrix
N target series length L SSA window length
X; lagged vectors K numbers of lagged vectors
AL eigenvalues u left singular matrix
14 right singular matrix I subset indices
X1 reconstructed matrix X1 reconstructed time series
Xiest test matrix X]' vectors of test matrix
[4 starting point of test matrix q ending point of test matrix
Q window length of test matrix Dy,1,pq  sum of the squared distances
Sy normalized sum W, CUSUM of squared distances
M1 estimator K constant of W,
h threshold for W, to quantile of the standard normal distribution
N mining network n; miners
m; dishonest miners f fraction of dishonest
B; behavior vector G global view of B;
B* benchmark of B; s(i) consensus score
s* ground truth of s(i) d POB window length

4.3. Fast Anomaly Detection for Fair Mining

Fast and accurate identification of the misbehaved miners is an essential step to
ensuring fair mining, where MinT adopts the Singular Spectrum Analysis (SSA) algorithm
to achieve this goal. SSA is recognized as one of the quickest sequential change-point
detection approaches for processing time series problems [39]. By decomposing and
reconstructing the interested time series, SSA extracts certain components of the origin
series such as periodic pattern, noises, trends, etc. SSA is widely used in solving problems
such as smoothing, extraction of seasonality components, as well as study the structure in
some minor time series and change-point detection [36].

Unlike traditional methods, SSA is non-parametric and does not require prior knowl-
edge of the parametric model of the considered time series data. Although SSA uses some
statistical concepts, it does not need any statistical assumptions about the target series.
Moreover, SSA algorithm can be used for processing time series with relatively small size,
which make this method more suitable for edge-fog scenarios [40]. The SSA algorithm can
be divided into four steps as (see Moskvina et al. at 2003) [41]:

1. Embedding: The target of SSA is a one-dimensional time series X = [x1,...,xy],
where N is the series length. By choosing proper window length L, one can transfer the
times series into multi-dimensional series of vectors X}. Combine these vectors results in
the trajectory matrix X = [)?1, X, ..., )f}(], where K = N — L + 1. The multi-dimensional
vectors X; = (xj,..,xpvi1),i=1,...,K, are also called lagged vectors.

2. Singular Value Decomposition (SVD) [42]: After singular value decomposing
the trajectory matrix X, the eigenvalues are denoted by A4,...,Ar in decreasing order
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of magnitude and the corresponding eigenvectors U, ..., U; where the matrix U =
(U3, Up. .., Ur] and ||U;|| = 1 is orthogonal. Then, the eigentriples are (1/A;, U;, V;), by de-
noting V; = X'U;/+/A;. Supposing that the rank of X is d, then the trajectory matrix is
XIX1+...+Xd.

3. Grouping and Reconstructing: The next step is to group the matrices X; into certain
groups and to calculate the sum within these groups. Therefore, we denote a subset indices
I =1iy,ip,...,ij, where | < L. Therefore, the corresponding matrix is X; = X;, + ...+ Xj,.

4. Diagonal Averaging: Using diagonal averaging, we can transfer X; into time
series Xj.

Y X for 1<i<L
. 1 «L .
Xi(f) = 1 Lic Xji-j+ for L<i<K @)
1 N—K+1 _ . . .
N=it1 Zj:'—KJrl Xji—j+1 for K<i<N.

By selecting certain subset indices I = iy, iy, .. ., ij, one can reconstruct the time series.
By observing the distance between the [-dimensional matrix and the test time series matrix,
we can detect the anomaly by identifying a significant increase in the distance. The
SSA-based Change-Point detection utilized in the paper can be described in following
stages [41]:

Stage 1: Construct Base Matrix First, construct the base matrix (or target matrix)
according to the four steps of the SSA algorithm. Given the target time series X =
(X441, - XutN], embed it into the trajectory matrix X = [fl,iz, . XK], where K =
N — L + 1. Then, the columns of the trajectory matrix are the vectors:

—

Xi = (xn+l-, [ xn+L+l~_1)’,i = 1,. . .,K. (3)

Then, conduct the SVD and get L eigenvectors which can be grouped into certain
subset I = iy,1y,...,i,] < L.

Stage 2: Construct Test Matrix Similarly, we select integers p, gand Q where Q = g — p > 0.
Then, we construct the test matrix of size L x Q:

Xtest = [X;+1/ X;+2/ ey XF:‘,»Q]/ (4)

and the columns of the matrix are the vectors:

—

Xj= (xn+j/ Y xn+L+j71)//]‘ =p+1l..,p+0Q ()

Stage 3: Compute the Detection Statistics In this stage, we first compute Dy, 1 4,
the sum of the squared Euclidean distances between the I-dimensional subspace from the
base matrix and the vectors X;(j = p +1,..., p + Q)from the test matrix.

q
Duipg = ). 1((X]'>TX]' —(XpTuu'x;)). (6)
j=p+

Then, we give the normalized sum of squared distances

1 -
S, =—D , 7
n ™ nl,p,q ( )

where D, Lpg = iDn, Lpgand py 1 = D,y 10,k is the estimator and we make the hypothesis
that no change of time series structure occurs at the time intervals where m is the largest
value of m < n.

We also compute the Cumulative Sum (CUSUM) W;, of the normalized sum of squared
distances as the final score for the anomaly detection.

Wl = Sl/Wn+1 = ma'x{or WTZ + S?’lJrl - Si’l - K/ V LQ}/n 2 ]-/ (8)
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where « is a constant, and in this paper, we set k = 1/(3v/LQ) [43].

Stage 4: Set threshold and make decisions To detect the change of the time series,
we could check the values of Dy, 1 4, Sn and W),. Basicallys the large value of the three
detection statistics indicates the change or the anomaly. In this paper, we choose the
Wy,-based detection algorithm as it gives greater sensitivity compared with the former two
detection statistics [41]. The algorithm announces a structural change if we observe W,, > h
for some n where & is the threshold given by

2t
h=22
LQ

and t, is the 1 — a-quantile of the standard normal distribution [41].

/3e6Lo- ), ©

4.4. Proof-of-Behavior Consensus Algorithm for Fair Mining Enforcement

The abovementioned SSA-based detection can identify a single misbehaved miner
based on its own footprint; however, it cannot handle byzantine scenarios that multiple
compromised miners by an adversary collude to violate fair mining policies. By observing a
miner’s running operations, the calculated cumulative sum (CUSUM)-type W can indicate
a miner’s behavior. Inspired by deepfake detection in video surveillance systems [44,45],
our MinT relies on a novel Proof-of-Behavior consensus algorithm that leverages CUSUM-
type W calculated in SSA algorithm to detect multiple dishonest miners in distributed
byzantine tolerant scenarios.

We consider a mining network N including n; miners, where i € {1,k} and k = ||.
All dishonest miners are denoted by m; € M and their fractionis f = |M|/|N|. We use
observed CUSUM-type W; of miner 1; to demote a behavior vector B; = {by,by,...,bs},
where by = w;, € W; and d is the SSA detection time window. Finally, each twin can
maintain a global view of collected behavior vectors, which is a matrix G = {By, By, ..., B¢}
The PoB firstly generates a behavior score s(i) for each miner 7;, which is a sum of relative
Euclidean distances between other miners’ behavior vector. Then, a B; € G with minimal
behavior score is selected as a benchmark B*.

The PoB consensus algorithm aims to chooses a behavior vector B, which deviates at
least from the distribution of G. However, an adversary can compromise multiple miners
that generate large vectors to force “honest” miners to choose a byzantine behavior vector
as the ground truth one. Thus, our PoB algorithm adopts a Krum aggregation rule to
guarantee byzantine tolerance. We assume that honest miners within network N store G
including n > 2f + 3 vectors in which at most f vectors are generated by byzantine nodes
in M. For B; belongs to the n — f — 2 closest vectors to B;, where i # j, we denote i — j.
Therefore, we could define the consensus score:

s(i) = Y_ ||B: — Bjl|[*. (10)

i—j

Then, each node can compute behavior scores s(1), ..., s(k) that are associated with
miners ny, ..., i separately. By calculating the minimum behavior score

st = ie?f,l..r.‘,k}(s(l))’ (11)

all honest miners choose a behavior vector B; that satisfies s(i) = s* as the ground truth B*.
Given assumption that an adversary controls no more than f miners, all honest miners can
reach an agreement on the unique B*.

5. Experimental Study

In this section, a proof-of-concept prototype implementation and experimental con-
figuration are described. Following that, we evaluate effectiveness of the proposed MinT
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solution based on numerical results. Finally, we discuss performance and security proper-
ties provided by MinT.

5.1. Experimental Setup

A proof-of-concept test platform is created, in which 16 Raspberry Pis (RPi) are
adopted as the edge devices. Each RPi is empowered with quad-core Cortex-A72 CPU
@1.5GHz and an installed RAM with 4GB memory running Raspbian OS based on Debian.
The single-board computer (SBC) is capable of carrying containerized PoW module to
participate the blockchain network. A desktop functions as a fog server, which has Intel
Core i7-7700K CPU and a RAM of 16 GB memory. All of the RPis are connected to a fog
server via local area network (LAN).

As the GPU is not available on the RPi, we select a CPU-based PoW algorithm for
container construction. For fast deployment, Docker [46] is adopted as the microservice
container that is affordable to RPis and transmits the data from the physical miner to a
fog server through RESTfull APIs. Each of the miner containers is configured with and
restricted to one CPU core, 500 MB memory and 10 percent of system 1/O bandwidth.
The collected data are stored in forms of vector as described in Section 4.2.

As the PoW algorithm is executed on CPU, samples of the key parameter C are
collected and the historical data vector cj; is used to obtain the statistic profile, where
h=1,...,16andi=0,1,.... For SSA based change-point detection, as the standard SSA
recommendation in the book [47], we define N = 24 according to the size of the data sets,
L =12 to the half size of N, p = 12, 4 = 24 and d = 1s. We deliberately set p > K so that
the base and test matrices would not coincide. After visual inspection of the components
of the decomposition of the whole time series, we choose certain ! to represent ignoring the
noise components. To guarantee the accuracy and reliability, we repeat each experiment
scenario for at least five times and over two hours each time to avoid contingency.

5.2. Experimental Results

All 16 miners, by default, run at 100% of the assigned system resources under the ju-
risdiction of the fog server. Four different test scenarios are considered in our experimental
study. To verify SSA-based detection on a single misbehaved miner, we first conduct test
cases that only one dishonest miner uses double-assigned computation power on mining
given a different parameter combination. Then, we consider a more stealthy single miner
violation, which incrementally increases the computing power from 20% up to 50%. To val-
idate effectiveness of PoB-based detection, we simulate a byzantine network, in which two
miners act as byzantine nodes while 14 miners are honest members. Finally, we evaluate
the false-positive rates at the network level with different threshold settings.

5.2.1. SSA-Based Detection on Static Single Miner Violation

In this scenario, one dishonest miner uses twice as much CPU power as the assigned
amount at t = 200 s. Figure 3a presents the network level observation at the fog server.
The blue line is the average CPU usage for all 16 miners in this blockchain network, and the
red line is the w; value calculated using SSA algorithm as the score. The green line is
the threshold /1 = 0.607, which is computed with t, = 1.2815. As shown by Figure 3a,
the fluctuation in the average CPU utility incurs a low peak in the distance score. However,
applying the SSA algorithm on each miner twin individually avoids the false negative.
Figure 3b shows that a significant peak is observed at ¢t = 200 s.

We also studied the impacts of different selections of the SSA parameters varying !
and g — p combination. Figure 3c shows the consequence of increasing the value of [ from
4 to 8 but with the same matrix size. The larger / leads to a more noise part with the signal;
therefore, it would be more difficult to find a change in the signal time series. If the [ is
too small, which would cause underfitting, we might miss some part of the signal. Due to
limited space, the figure is not included here.
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Meanwhile, the matrix size g — p also has significant impact on the detection distance
score. Figure 3d shows that, by increasing the value of g4 — p to 24 while [ = 4, the distance

(red) line is smoother than in Figure 3b.
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Figure 3. SSA detection on single miner violation with different parameter combinations. (a) Network
level observation at the fog server; (b) Observation on a single miner; (c) Impacts of increasing ! from
4 to 8 with the same matrix size; (d) Impacts of increasing the matrix size to 24 while maintain | = 4.

5.2.2. SSA Detection on Adaptive Single Miner Violation

The second scenario considers more stealthy behavior of a violator, which increases the
computing power slowly, from 20% to 50%, taking multiple steps at time point f = 125 s,
t = 175s,t = 225 sand t = 275 s. Figure 4a shows the detection results in which a
miner increases 20% CPU usage at each time point. Figures 4b—d show similar results of
cases when the CPU usage increases by 30%, 40% and 50% respectively. Obviously, the SSA-
based anomaly detection is able to detect the changes in the structure of the time series
data and to identify the corresponding violation on mining power. However, the critical
issue is how to select a threshold to ensure a high detection accuracy and to minimize the
false-positive/negative rates.

5.2.3. PoB-Based Fair Mining Detection Effectiveness

We take an observation of 20 min on the 16 miners running at 100% of the assigned
system resource. Two of the miners act as the byzantine (dishonest) workers, which would
gain extra 10% at the 9th and 10th min. As shown in Figure 5a, the behavior vector B
from dishonest workers varies from honest ones when the byzantine workers gain more
computing power. During the two minutes where violation occurs, the resulting consensus
scores associated with the byzantine nodes are much larger, as shown in Figure 5b.
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Figure 4. SSA detection on single miner violation with additive CPU usage. (a) One single miner
increases 20% CPU usage at each time point; (b) One single miner increases 30% CPU usage at each
time point; (c) One single miner increases 40% CPU usage at each time point; (d) One single miner
increases 50% CPU usage at each time point.
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Figure 5. Behavior score distribution with sequential time spots. (a) The behavior vector from
dishonest workers (red) varies from honest ones (green) when the byzantine workers gain more
computing power; (b) Comparison between consensus scores associated with the byzantine nodes
(red) and the honest nodes (green).

5.2.4. Fair Mining Violation Detection Performance Analysis

The fourth scenario is designed to mainly test the false positive rate from the network
level observation at the fog server with different threshold settings. Figure 6 shows the
false alarm rates when two of the sixteen miners gain extra system resources from 10% to
80%. The false alarm rate is calculated by comparing the averaged the W value with the
threshold #. When we decrease / from 0.6 to 0.03, the false alarm rate increases rapidly
at the beginning and then slowly approaches one. With the increasing percentage of the
computing power the dishonest miner gains, the false alarm rate grows.
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5.3. Discussions

The experimental results presented in this section are merely a preliminary study on
top of a proof-of-concept platform. Our MinT relies on a permissioned network to provide
basic security primitives, such as identity registration, authentication and access control, etc.
Given the assumption that the adversary cannot control microservice control the module to
send false parameters, we verify that SSA-based detection can identify a single dishonest
miner that uses either static or adaptive mining violation strategies. Regarding byzantine
scenarios that multiple dishonest miners collude to disturb fair mining mechanism, the
PoB consensus algorithm adopts Krum rule in behavior score calculation, which only
chooses n — f — 2 closet behavior vectors and precludes those f — 1 malicious vectors
that are far away from the center of distribution. Given the assumption that an adversary
cannot control more than f nodes of a mining network A that satisfies n > 2f + 3, all
honest participants can still make agreements and output the unique benchmark behavior
vector B*.

Our MinT architecture envisions large-scale IoT networks based on a hierarchy of
edge-fog-cloud paradigm. However, there are open questions that need to be addressed
before bringing the proposed framework into real-world applications. We leave them for
our future work.

¢ Although experimental results verify feasibility of SSA-based fair-mining violation
detection, there still need investigation on SSA performance and accuracy given the
impact of parameters, such as optimal/sub-optimal threshold selection and detection
latency as scaling up miners.

e  The PoB consensus is promising to guarantee byzantine fault tolerance in mining
violation detection; however, the threat model based on attack scenarios in SSA de-
tection needs more investigation, such as communication security between miner
and twin and container’s robustness given failed or compromised conditions. There-
fore, the security mechanisms for communication between PO and LO, and container
management are among the tasks of top priority.

e Itis inevitable that extra overheads are incurred by security enforcement and data
synchronization in fair-mining mechanism. Therefore, a comprehensive performance
evaluation of the twinning process is necessary, such as computation and communica-
tion cost, network latency and storage requirement, etc.

e  Furthermore, we also need to tackle scalability and heterogeneity issues such as as
applying MinT into large-scale IoT networks. A hierarchical federated network frame-
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work is promising to handle the trilemma in blockchain solutions that decentralization,
security and scalability cannot perfectly co-exist [4].

6. Conclusions and Future Work

In this paper, we proposed MinT, an edge-fog-cloud architecture to enable a fair PoW
consensus mechanism by leveraging miner twins. Experimentally, the paper validated
the feasibility of the concept of using DT to monitor the miners’ behaviors and to deter
selfish nodes who violate the fair-mining rule. The reported preliminary results verify
the effectiveness of using quick change point detection and the PoB consensus algorithm
to catch fair mining violators; however, more intelligent solutions are needed to support
dynamicity and optimization in fair mining network. Moreover, the above mentioned open
questions need to be addressed in IoT-based mining networks. Our future work includes
the following.

¢ We will conduct a comprehensive evaluation on SSA method in anomaly detection,
especially for detection accuracy and performance, and the impact of parameter selec-
tion. Moreover, AI/ML-based algorithms will be investigated to improve anomaly
detection accuracy and to support efficient dynamic resources management in the fair
mining network.

e To apply MinT in a large-scale application scenario such as a smart surveillance
system [48], we will implement a fully function prototype based on edge-fog-cloud
architecture, in which physical containerized miners are on edge devices while digital
twins are in the fog or cloud. Then, we will make a comprehensive performance
analysis and assessment of security features.

¢  Furthermore, MinT relies on microservices that encapsulate a fair PoW mining al-
gorithm into independent containers running on host machines. Thus, the security
and privacy of containers and data reliability are among the top concerns. We will
investigate the security of the container running environment, and data audition and
integrity in microservice-to-microservice communication.
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The following abbreviations are used in this manuscript:

Al Artificial Intelligence
AR Augmented Reality
BFT Byzantine Fault Tolerant

CUSUM  Cumulative Sum
DDDAS  Dynamic Data-Driven Applications Systems
DLT Distributed Ledger Technology
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DT Digital Twins

FMaa$S Fair Mining as a Service

EPDS Electric Propulsion Drive Systems
ICT Information and Communication Technology
IoT Internet of Things

LAN Local Area Network

LO Logical Object

MinT Miner Twins

ML Machine Learning

MoA Microservice-Oriented Architecture
P2P Peer-to-Peer

PBFT Practical Byzantine Fault Tolerance
PO Physical Object

PoB Proof-of-Behavior

PoS Proof-of-Stake

PoW Proof-of-Work

SBC Single Board Computer

SSA Singular Spectrum Analysis

VR Virtual Reality
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