
1

µDFL: A Secure Microchained Decentralized
Federated Learning Fabric atop IoT Networks

Ronghua Xu, Yu Chen
Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902, USA

{rxu22, ychen}@binghamton.edu

Abstract—Federated Learning (FL) has been recognized as
a privacy-preserving machine learning (ML) technology that
enables collaborative training and learning of a global ML
model based on the aggregation of distributed local model
updates. However, security and privacy guarantees could be
compromised due to malicious participants and the central-
ized aggregation manner. Possessing attractive features like
decentralization, immutability and auditability, Blockchain is
promising to enable a tamper-proof and trust-free framework
to enhance performance and security in IoT based FL systems.
However, directly integrating blockchains into the large scale
IoT-based FL scenarios still faces many limitations, such as high
computation and storage demands, low transactions throughput,
poor scalability and challenges in privacy preservation. This
paper proposes µDFL, a novel hierarchical IoT network fabric
for decentralized federated learning (DFL) atop of a lightweight
blockchain called microchain. Following the hierarchical in-
frastructure of FL, participants in µDFL are fragmented into
multiple small scale microchains. Each microchain network
relies on a hybrid Proof of Credit (PoC) block generation
and Voting-based Chain Finality (VCF) consensus protocol to
ensure efficiency and privacy-preservation at the network of
edge. Meanwhile, microchains are federated vie a high-level
inter-chain network, which adopts an efficient Byzantine Fault
Tolerance (BFT) consensus protocol to achieve scalability and
security. A proof-of-concept prototype is implemented, and the
experimental results verify the feasibility of the proposed µDFL
solution in cross-devices FL settings with efficiency, security and
privacy guarantees.

Index Terms—Internet of Things (IoT), Federated Learning,
Hierarchical Blockchain, Proof of Credit, Security, Privacy.

I. INTRODUCTION

The proliferation of the Internet of Things (IoT) and
advancements in machine learning (ML) promote the fusion
of Big Data and artificial intelligence (AI), which make the
concept of Smart Cities become realistic [38]. To build a safe
and sustainable urban environment for its residents, IoT based
smart applications highly depend on an efficient, secure, and
low-cost real-time data sharing mechanism among device
owners and third-party applications [26], [37]. However,
sharing sensitive data among geographically scattered de-
vice owners and service providers also brings increasingly
concerns on security and privacy. Motivated by privacy
preservation among data owners, Federated Learning (FL)
was recently proposed to build a distributed ML framework
that enables training on a large corpus of decentralized data
residing on devices like mobile phones [24]. Compared with
conventional centralized ML approaches, only model updates

that are computed on raw data of distributed clients are
aggregated on data centers in FL, so that communication
costs are reduced and network latency is decreased. More-
over, FL allows users to collaboratively train a shared model
while keeping data on their devices, thus alleviating their
privacy concerns [20]. FL provides a prospective solution
to enable collaborative deep learning for smart applications
that require scalable and privacy-preserving data and model
updates sharing among massively distributed data owners and
service providers.

While FL enables privacy preservation by sharing param-
eters of the trained model without directly exposing actual
data on devices, it also brings new architecture and security
concerns. The participants in conventional FL collaboratively
train their local models and aggregate a global model under
the orchestration of a central server. Such a centralized
framework can be a performance bottleneck and susceptible
to a single point of failure risk. In addition, dishonest partic-
ipants can conclude with each other to compromise security
and privacy of shared data and models, like poisoning and
evasion attacks [13]. An ideal FL framework should be able
to support decentralization, auditability and Byzantine Fault
Tolerance (BFT) [17] compatibility, to secure model learning
and inference process under a trustless and distributed IoT
network environment.

Blockchain [25] has demonstrated great potential to revo-
lutionize the fundamentals of information technology. It is a
natural candidate to secure the decentralized architecture for
FL, in which the data can be stored and verified distributively
under a peer-to-peer (P2P) network without relying on a
centralized authority. Such a decentralized architecture can
improve system performance and mitigate single point failure
issues existing in a centralized FL framework. Furthermore,
leveraging a distributed ledger secured by consensus proto-
cols, blockchain provides a verifiable, traceable, and append-
only chained data structure of transactions. Whereas, inte-
grating blockchain into a FL framework not only establishes
secure connections among participants to protect confiden-
tiality of data and privacy of model updates, it also guarantees
both auditability and traceability to ensure data availability,
correctness and provenance.

Existing research on decentralized federated learning
(DFL) mostly focuses on combination of cryptographic
schemes to ensure data confidentiality and privacy in dis-
tributed model training process [9], [21] or incentive mecha-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

2

nisms for fair rewards and verifiable FL models by the edge
computing [15], [32]. However, the problem of designing a
lightweight blockchain with FL-IoT scenarios remains open,
like efficient miner selection, consensus algorithm and chain
validation [12]. In this paper, we address aforementioned
issues from blockchain design aspects and propose µDFL,
a novel hierarchical microchained fabric for security and
privacy of DFL atop IoT networks. Unlike existing work [15],
[27], [32] that rely on a mono blockchain to provide prove-
nance and integrity in FL tasks, µDFL adopts a federated
networking framework [35] to balance trade-offs in terms of
performance, security and scalability under the large-scale
and hierarchical IoT-based cross-devices FL settings.

For each local training network, low-level aggregators
and FL clients leverage a private microchain [34] to ensure
efficiency and privacy-preservation of data sharing and local
model aggregation at the edge network. Meanwhile, a high-
level public inter-chain network inter-connects multiple frag-
mented private microchains to guarantee performance and
security in global model propagation and aggregation. In
summary, this paper makes the following contributions:

1) A complete µDFL architecture is presented along with
details of key components and work flows;

2) A lightweight blockchain, microchain is proposed to
achieve resource efficiency and privacy-preserving of
executing consensus protocol at the edge network;

3) The core design of the microchain is illustrated in detail,
which consists of Proof-of-Credit (PoC) block genera-
tion, Voting-based Chain Finality (VCF), and incentive
mechanism; and

4) A proof-of-concept prototype is implemented and tested
on a small-scale physical network. The experimental
results show that µDFL only incurs less than 2 seconds
latency in a FL cycle on a distributed MNIST dataset
among 12 Rasppery Pis, and it needs 3.4 MB/s band-
width as the system throughput is 1000 transactions per
second. Our comparative evaluation demonstrates that
microchain is lighter as running on IoT devices than
Ethereum adopted by current DFL solutions.

The remainder of this paper is organized as follows: Sec-
tion II discusses background knowledge of FLs and reviews
existing consensus protocols and state-of-the-art research
on blockchain-based distributed machine learning (DML).
Section III introduces the rationale and architecture of µDFL,
and microchain consensus protocol is described in Section
IV. Section V provides details of the PoC algorithm, and
Section VI-B explains the VCF mechanism. Incentive strate-
gies are brief discussed in Section VII. Section VIII presents
prototype implementation, numerical results and comparative
analysis. Finally, Section IX concludes this paper with a brief
discussion on our future directions.

II. BACKGROUND AND RELATED WORK

A. Federated Learning
Artificial Intelligence (AI) has become an essential part

of our lives today, following the recent successes and pro-
gression of Deep Learning (DL) in several domains, such

as Computer Vision (CV) and Natural Language Processing
(NLP) [20]. Conventional DL approaches adopt a central-
ized architecture in which raw data collection and model
training are performed in a powerful server or data center.
Thanks to the advancement in IoTs, the ubiquity of smart
devices that are equipped with increasingly advanced sensing,
computing and networking capabilities allow for migrating
intelligence from the cloud to the edge. To enable a scalable
collaborative training of complex models among distributed
devices and guarantee privacy preservation of data owners, a
decentralized approach of DL called Federated Learning (FL)
is proposed. FL learns a shared model by aggregating locally-
computing updates and leaves the training data distributed
on the mobile devices [24]. FL is one instance of the more
general approach of “bringing the code to the data, instead of
the data to the code” and addresses the fundamental problems
of privacy, ownership, and locality of data [5].

In general, the FL training process includes three steps:
task initialization, local training and model update, and global
model aggregation and update. In task initialization, the
server specifies training configuration and initializes global
model w0

G, then broadcasts them to selected participants
called workers. Given received wtG in current iteration t, each
worker i utilizes its local data and computation resource to
perform specified training tasks on parameters wti . The goal
of the training process is to find optimal parameters wti that
minimize the loss function L(wti) represented as:

wt
∗

i = argmin
wt

i

L(wti).

The local model will be updated as wt+1
i = wt

∗

i and sent
to a server for aggregation. For model aggregation, there are
three approaches: max pooling (MP), average pooling (AP)
and Concatenation (CC) [31]. Since AP could reduce noisy
inputs effect on end devices, it is adopted by FederatedAv-
eraging (FedAvg) algorithm [24], which combines received
local stochastic gradient (SGD) update wt+1

i from each
worker on the server side and performs model averaging:

wt+1
G =

1

N

N∑
1

(wt+1
i).

Finally, the server updates global parameters wt+1
G and

sends them back to workers for next round of the FL task.

B. Related Wrok

1) Consensus Protocols in Blockchain: The Nakamoto
blockchain [25] uses a Proof-of-Work (PoW) consensus
protocol to ensure good scalability and probabilistic finality
at the cost of a low throughput and a high energy assumption.
To reduce energy consumption in PoW, Ouroboros [14] was
proposed in 2017, which is the first Proof-of-Stake (PoS)
based blockchain architecture for cryptocurrency Cardano.
PoS relies on the distribution of token ownership to simulate
a verifiable random function to solve a puzzle problem. Such
a process of efficient “virtual mining” manner makes PoS
miners only consume limited computational resources for

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

3

mining new blocks. Unlike PoW that requires high demand
of computation and PoS that needs monetary deposit stakes,
our PoC based block generation in microchain only depends
on credits of validators.

Compared to PoW and PoS blockchains, Practical Byzan-
tine Fault Tolerance (PBFT) [7] based blockchain networks
offer excellent performance and a deterministic finality but
demonstrate limited scalability. Therefore, adopting BFT
style chain finality to PoS style consensus protocols provides
a prospective solution to ensure data consistency and im-
mediate finality. Tendermint [16] uses a round-robin fashion
BFT consensus process to finalize a block. Decoupling stake
value from the BFT voting process was a novel scheme in
Tendermint to achieve the consensus goal given probabilistic
PoS style block generation. However, Tendermint requires a
pre-configured set of validators as the consensus committee,
so that it introduces committee security concerns.

To address the fixed set of validators in conventional BFT
based blockchain networks, Algorand [10] utilizes verifiable
random functions (VRFs) to randomly elect a committee in
a private and non-interactive way. However, randomness of
each VRF vocation can be biased by an adversary [39]. To
improve the scalability of random committee election in a
decentralized network, DFINITY [11] uses a random beacon
scheme to enable regularly active committee changes. The
decentralized random beacon acts as a VRF to put random
stream values for the leader selection and ranking. Our
microchain adopts a VRF-based sorting algorithm to achieve
random committee selection. However, randomness of VRFs
is guaranteed by a Publicly Verifiable Secret Sharing (PVSS)
based randomness mechanism [28], [30].

Similar to DFINITY, Casper [6] introduces a lightweight
chain finality layer on top of a block proposal mechanism,
like PoW and PoS. Given an ever-growing block tree gener-
ated by executing a block proposal protocol among a fixed
set of validators, Casper introduces an efficient voting-based
process to commit a direct ancestor block of the finalized
parent block as a checkpoint. As a result, only a unique
checkpoint block path is selected from checkpoint tree as
the finalized chain. Unlike Casper which is a PoS-based
finality system overlaying an existing PoW blockchain, our
microchain adopts a voting-based chain finality to resolve the
forks by probabilistic block generation.

2) Blockchain-based DML: DeepChain [32] relies on
blockchain-based incentive mechanism and cryptographic
primitives to ensure privacy-preserving distributed deep
learning at the edge networks. Similarly, BlockFL [15] uses
a decentralized PoW blockchain network to enable verifi-
able and rewardable exchanging the mobile devices’ local
learning model updates in FL networks. VFchain [27] pro-
vides a verifiable and auditable federated learning framework
based on the permissioned blockchain Hyperledger. However,
compute-intensive PoW algorithms are not affordable on IoT
devices, while PBFT protocol adopted by Hyperledger allows
for limited scalability with reduced security due to the pre-
defined set of validators.

FLchain [22] leverages the concept of private channels

for enhancing security of FL. The global model training in
FLchain is divided into separate private channels, and only
channel-associated peers are allowed to submit transactions
and execute consensus for maintaining a channel-specific
ledger. Each peer in a channel update its own Global Model
State Trie, which records local models of current round in
the form of Merkle Patricia tree. However, it incurs storage
overhead on edge devices and communication cost for block
propagation. Unlike FLchain, our microchain only records
hashed reference of models on distributed ledger to reduce
storage and communication cost by blockchain.

A hierarchical blockchain-enabled FL framework [8] is
proposed to guarantee the security and privacy of knowledge
sharing in the large scale vehicular networks. The hierarchical
blockchain framework consists of one Top Chain (TC) for
high-level further learning and multiple Ground Chains (GCs)
for low-level primary learning. The consensus process uses a
Proof-of-Knowledge (PoK) algorithm, such that a node with
the most accurate learning model can propose the candidate
block. However, using local data of each node instead of a
uniform test data for learning result evaluation cannot ensure
agreement in consensus. Compared to PoK, our microchain
decouples PoC block generation from FL process to improve
efficiency. Moreover, the high-level inter-chain in our µDFL
leverages an efficient BFT consensus protocol to guarantee a
low latency and a high throughput.

A decentralized, autonomous blockchain-based decentral-
ized FL framework (BFLC) with committee consensus [19]
is proposed to guarantee performance and security in model
exchange. BFLC leverages a committee consensus mecha-
nism to improve consensus efficiency, and it designs the
storage pattern on the chain to reduce storage consumption
on the blockchain. Compared to BFLC, our microchain
uses bias-resistant randomness generation and VRF based
cryptographic sortition to ensure unpredictable committee
election. In addition, we implement the prototype to verify
the proposed µDFL in a physical cross-devices FL test-bed.

Integrating blockchain into privacy-preserving multi-party
ML process, Biscotti [29] is proposed for private and secure
privacy-preserving P2P ML system. Biscotti uses a consistent
hashing protocol based on the current stakes distribution of
network to choose the consensus committee. However, detail
consensus algorithm is not explained, and blockchain fork
issues is not considered. Unlike Biscotti, our microchain
uses a voting based chain finality to solve fork issue in
probabilistic block generation. Moreover, µDFL adopts a
federated ledger framework [33] that inter-connects multiple
fragmented microchains to guarantee scalability in large scale
cross-devices FL settings.

III. µDFL: RATIONALE AND SYSTEM DESIGN

Aiming at a secure-by-design, self-adaptive and partial de-
centralized network architecture, µDFL enables an efficient,
privacy preserving and secure cooperative training under
distributed cross-device FL settings [13] in heterogeneous
Mobile Edge Computing (MEC) environments. Figure 1

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

4

Fig. 1. The µDFL system architecture.

shows the µDFL architecture that consists of a FL frame-
work that provides cooperative training on distributed data
and global model inference for smart applications, and a
Microchained fabric that provides decentralized security and
privacy-preserving properties for the FL system.

In µDFL, the interaction between FL and microchain can
be envisioned analogous to the TCP/IP protocols in the In-
ternet. Microchained fabric acts as the network infrastructure
to provide decentralization and security features for FL, like
IP functions as a connection-less, best-effort service network
layer protocol for the TCP. On the other hand, FL utilizes its
capability of model learning and inference to enable high-
level intelligent applications as well as the optimization for
the microchained network, like TCP provides a connection-
oriented, reliable, end-to-end transport layer service to tackle
the open issues that IP does not address and meet high quality
of service requirements for upper lever applications.

A. Hierarchical Federated Learning Framework

The left part of Fig. 1 demonstrates the hierarchy of FL
framework in µDFL, which consists of the cloud, fog and
edge computing layers. FL brings an enabling technology
for DML model training at MEC network with advantages
of highly efficient use of network bandwidth, low latency
and local user privacy preservation [20]. Given the life-cycle
of an FL-trained model in a FL system, the FL framework
is divided into two service layers: federated training service
layer and model inference service layer.

1) Federated Training Service: FL clients, the aggregator
and the FL server are key players in the model training cycle,
including global model propagation (down-stream) and local
model aggregation (up-stream). For a FL task, a FL server
firstly advertises task specifications including the global
model data and training program, among aggregators. The
aggregators are deployed on the fog layer as intermediates
to transfer task specifications to edge computing devices. All
FL clients are allocated at the edge layer to locally compute
a model update by executing the training program.

To mitigate model positioning attack in global model
propagation, the FL server also generates an authenticator of
training program and current global model and records it on
the microchain. Both aggregators and FL clients can verify

received global model and training program by querying
authenticator from the microchain. In model aggregation
process, each aggregator firstly collects local model updates
from its associated FL clients, then executes the predefined
secure MPC aggregation algorithm to generate aggregated
model updates. Finally, all aggregated model updates are sent
to the FL server where the global model is aggregated.

2) Model Inference Service: Given an analysis on the
trained global model, good candidates are selected and de-
ployed on smart applications, such as key board action pre-
diction and anomalous behavior detection based on multiple
cameras. However, an adversary can introduce a backdoor by
modifying the global model updates in the model deployment
process. To defend against model poisoning attacks in model
inference time, smart applications can audit the deployed
model by verifying its authenticator on microchain, then
perform detection tasks if the deployed model is valid.

Hierarchically distributed computing architecture not only
provides system scalability for large-scale deep learning tasks
based on geographically distributed IoT devices, it also sup-
ports flexible management and coordinated central and local
decisions among heterogeneous networks and application
domains. In addition, those FL players rely on permissioned
networks, hence, basic security primitives are provided, such
as identity authentication and access control, etc. Further-
more, by interconnecting the FL server, aggregators and FL
clients, decentralized and trust-free microchained fabric can
protect data and model updates and supports secure MPC
functions in FL services.

B. Hybrid Microchained Network Fabric

Following the hierarchical structure of FL, the mi-
crochained fabric integrates microchain [34] and a BFT com-
patible consensus protocol to build a federated blockchain
architecture [33]. The right part of Fig. 1 shows the hybrid
microchained network fabric, in which an inter-microchain
network acts as a hub to interconnect multiple independent
microchain consensus networks. The FL server and aggre-
gators could be participants of the inter-microchain network,
while FL clients and low-level aggregators are divided into
microchain networks, that are associated with training task
groups at the network of edge.

The system administrator selects a subset of the nodes
from the inter-microchain network as a validator committee.
The inter-microchain committee executes an efficient BFT
consensus protocol to maintain a public distributed ledger for
recording checkpoints of microchains and inter-microchain
transactions. The BFT consensus protocol can guarantee
liveness and safety by requiring that at most of f = bn−1

3 c
out of total of n participants are dishonest ones [17]. Thus,
the ultimate goal of the agreement is achieved if a committee
includes n ≥ 3f + 1 total validators.

Enforcing a BFT consensus on a small-scale inter-
microchain committee can reduce messages propagation de-
lay and communication cost, such that scalability and high
throughput are achieved during the high-level aggregation
over a large-scale FL network.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

5

During the process of a local model training, an aggregator
swarms several FL clients to form a microchain consensus
network. Given a random committee election mechanism,
only a small subset of the nodes are eligible to work as
validators in the microchain. In the synchronous network
environment, the validator committee executes a novel PoC
algorithm to generate new blocks, and uses a VCF strategy
to solve fork issue and solidify the private ledger history.
Thanks to a lightweight consensus protocol and a small group
of validators, microchain aims to guarantee computation
and communication efficiency for resource-constrained IoT
devices at the edge layer. Meanwhile, a random committee
rotation strategy ensures that the robustness and security are
not sacrificed because of the small consensus network.

IV. MICROCHAIN CONSENSUS PROTOCOL

A. System and Network Model

Table I describes relevant notations used in microchain
consensus protocol. Microchain assumes a synchronous net-
work environment, in which operations of processes are
coordinated in rounds with bounded delay constraints. Thus,
we define Epoch slE = {sl1, sl2, ..., slt..., slR} to model a
set of sequential time slot slt in consensus rounds, where
R value is epoch size. To ensure liveness of consensus,
the length of time window for a slt should be sufficient
to guarantee that message transmitted by a sender will be
received by its intended recipient within that time window
(accounting for local time discrepancies and network delays).
The upper bounded delay of system is defined as T∆ such
that any slt ≥ T∆.

Microchain relies on a permissioned network management,
and assumes that the system administrator is a trustworthy or-
acle to maintain global identity profiles. We adopt a standard
asymmetrical algorithm like Rivest–Shamir–Adleman (RSA)
for key generation (RSA.gen) and digital signature scheme
(RSA.sign, RSA.verify). A pre-defined collision-resistant
hash function denotes H(·) which generates a λ length of
hash string h ∈ {0, 1}λ. During the registration process,
a signing-verification keys pair (ski, pki) ← RSA.gen(i)
along with its account address ai = H(pki) is generated
by a trust Public Key Infrastructure (PKI) and assigned to
the authorized user ui. As security is guaranteed by the
permissioned system management, microchain is a partially
decentralized blockchain.

TABLE I
RELEVANT BASIC NOTATION.

Symbol Descriptions
N A local model training network including all FL clients

M An adversary network including malicious FL clients

slE Epoch including sequential time slot slt
T∆ Upper bounded delay for message propagation

D Dynasty represents current consensus committee

tx A transaction broadcasted by the node of network

B A block proposed by the validator in current Dynasty

C Distributed ledger maintained by the consensus network

We consider a small-scale local model training network
including ui ∈ N FL clients (workers) at an edge network.
All malicious workers are denoted by mi ∈ M and their
fraction is f = |M|/|N |. Microchain uses workers’ credit
stake 0 ≤ ci ≤ Cmax for PoC consensus, where Cmax is
the maximum value of credit stake defined by system. A
worker’s credit stake is calculated periodically according to
its contribution to training model and consensus protocol.
Each node has an initial credit stake Cinit=1 when it firstly
join network N . All registered workers can be represented
as ui = (ai, pki, ci), where 0 ≤ i ≤ n and n = |N |.

Each ui can record byte strings data ∈ {0, 1}∗
on the distributed ledger by broadcasting time stamped
transaction tx = {tx hash, ai, Tstamp, data, σi}, where
tx hash = H(ai, Tstamp, data) and σi is a digital signa-
ture RSA.signski(tx hash, pki, Tstamp, data). Microchain
elects a subset of N as validator vi ∈ D ⊆ N to
work as a consensus committee called Dynasty D, and
committee size K = |D|. In current consensus round
slt, a validators vj is allowed to generate a time stamped
Block with digital signature, which is represented by
B = (pre hash, h,mt root, tx list, Tstamp, aj , σj), where
mt root is a root hash of Merkle tree of valid transactions
tx list and h is the height of current block in Distributed
Ledger (Blockchain) C. At the end of consensus round, valid
B is append on distributed ledger C = B0 → B1 → ... →
Bn−1 → Bn, which is a partial order of blocks indexed by
strictly sequential increasing h.

B. Consensus Protocol Overview

The distributed ledger structure in microchain is illustrated
as the upper part of Fig. 2. The blue nodes represent con-
firmed blocks while red ones indicate finalized blocks. The
genesis block is the root node of blockchain, and each block
uses its pre hash to point to the parent block and extend the
chain. The chain height follows a strictly increasing sequence
of the finalized blocks (path through red nodes). The head
of blockchain (distributed ledger) is a last confirmed block
whose parent is finalized and has largest height.

In a microchain network, all nodes use Kademlia DHT
(Distributed Hash Table) protocol [23] to synchronize peers
in a P2P manner. Thus, a node can connect other nodes
by its peering neighbours based on UDP communication.
At the initialization stage, a special dynasty, which includes
a group of validators specified by the system administrator,
acts as an initial committee Dinit to initialize a blockchain.
Each validator creates a genesis block B0 and sets the local
blockchain C = B0 and head = B0. The initial committee
will work as the first dynasty of the system until the election
of the next dynasty. The lower part of Fig. 2 demonstrates
consensus protocol executed by a validator committee. The
key components and work flows are described as follows:

1. Committee Selection: At the beginning of each dynasty’s
lifetime, an epoch randomness string is used as the seed
for committee selection process. The committee formation
protocol exploits a Verifiable Random Function (VRF) based
cryptographic sortition scheme [10] to randomly choose a

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

6

Fig. 2. Illustration of microchain consensus protocol.

subset of validators as a new committee according to their
credit weights. The selected committee members D will be
added to the current block, which is marked as a beginning
block of a new dynasty epoch. The lifetime of a dynasty
epoch begins from committee selection and ends after the
dynasty is changed by committee change process. The new
committee members can reach out each others by their peers
to construct a new committee, which executes consensus
protocol and randomness string change on a small-scale fully
connected P2P network based on TCP communication.

2. Block Proposal: The block proposal mechanism lever-
ages a computationally efficient PoC to generate new blocks
in each block proposal run. Only validators in the cur-
rent dynasty are allowed to propose a new block. The
probability of proposing a candidate block is associated
with the validator’s credit distribution in current dynasty. If
validator vj could solve a PoC puzzle difficulty problem
defined in Section V, it generates a new block Bi+1 =
(H(Bi), h + 1, tx data, Tstamp, aj , σj) and broadcasts it
to current committee members. Each committee member
accepts all valid blocks in the current slot, and verifies if
blocks meet confirmation requirements. The verified block
will be added to local chain C with head = Bi+1.

3. Chain Finality: At the end of an epoch, the head
with epoch height becomes a checkpoint to resolve forks
and finalize chain history. A voting-based algorithm commits
checkpoint blocks and finalizes those already committed
blocks on the main chain. The chain finality ensures that
only one path including finalized blocks becomes a main
chain, as Fig. 2 highlights. Therefore, the blocks generated
in new epoch are only extended on such unique main chain.
The chain fork problem is prevent by resolving conflicting
checkpoints and finalizing the history of blockchain.

4. Committee Change: At the end of the lifetime of
a dynasty, all members in the current committee rely on
a RandShare mechanism to cooperatively generate a new
global randomness string. RandShare is a randomness pro-
tocol that is based on Publicly Verifiable Secret Sharing
(PVSS) [30], and it ensures unbiasability, unpredictability,
and availability in public randomness sharing. The proposed
unbiasable and unpredictable public randomness string will

be used as seed for the new committee selection process.
Finally, the new global randomness string is propagated to
other nodes by peers of validators in current committee.

C. Hybrid On-chain and off-chain Storage

Existing blockchain based FL solutions [15], [22], [32]
directly record training models or test data on blockchain
network, it will greatly increase cost associated with block
propagation and chain data storage by edge devices. To
mitigate extra overheads incurred by directly saving large raw
data into distributed ledger, microchain utilizes a lightweight
hybrid on-chain and off-chain storage solution [36]. As lower
right part of Fig. 2 shows, block is the basic unit of on-chain
storage, which includes header information and the orderly
transactions list. Each transaction only saves references in
data field swarm hash that point to raw data, while original
data themselves are stored on the decentralized database
(DDB). Because a reference is simply a hash value with
fixed length like 32 or 64 bytes, all transactions have almost
the same data size even if linked raw data are large training
models or test data required different data formats.

Off-chain storage leverages Swarm [4] to build a DDB
system, and a site refers to a fog or edge server. The basic
unit of storage and retrieval in the Swarm network is chunks,
which can be accessed at a unique address which is calculated
by its hashed content. Swarm implements a Distributed Pre-
image Archive (DPA) to manage chunks across distributed
sites. All Swarm sites have their own base addresses with
the same size as the chunk hash, and the site(s) closest
to the address of a chunk do not only serve information
about the content but actually host the data [4]. All sites
in the Swarm network use Kademlia DHT protocol [23],
which synchronizes chunks in a P2P manner, to ensure data
persistence and redundancy.

V. POC-BASED BLOCK PROPOSAL MECHANISM

Given a certain period of sliding window for local model
training, each validator in committee collects transactions
sent by workers. Then, all valid transactions are buffered
into a local transactions pool TX . Essentially, the PoC-
based block proposal mechanism follows principles of chain
based PoS and simulates virtual mining by pseudorandomly
assigning block proposal rights to validators. The block
generation relies on a slot leader selection process which is
associated with credit distribution D of the current dynasty.
The credit distribution is defined as following:

Definition 1: Credit Distribution - is represented as D =
{p1, p2, ..., pK}, where pi = ci∑K

j=1 cj
.

For each consensus round slt ∈ e, a random slot leader
selection procedure determines if a validator vi is allowed
to propose a new block given the probability pi which is
proportional to its weight of credit ci in current dynasty.

A. Block Generation Algorithm

To become a slot leader who is qualified to generate a new
block, a validator must show its proof by solving a puzzle

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

7

problem. Unlike PoW that utilizes a brute-force manner to
find a nonce to meet the uniform target difficulty, each
validator vi simply computes proof based on the chain head
block and its credit ci. The target difficulty that is associated
with its credit weight pi determines if proof is valid or not.
The PoC puzzle problem can be formally defined as follows:

Definition 2: Proof-of-Credit - Given an adjustable dif-
ficulty condition parameter ξ, the process of PoC puz-
zle solution aims to verify a solution string hc =
H(pre hash||mt root||TX||aj ||cj) where pre hash =
H(head(C)), such that the value calculated by taking ξ length
lower bits of the hc is smaller than a target value generated
by the difficulty condition dcond(ξ, pj):

T B(hc, ξ) ≤ dcond(ξ, pj) (1)

where T B(hc, ξ) function outputs lower ξ bits of the hash-
code hc; and the difficulty condition function dcond(·, ·) is
denoted as:

dcond(ξ, pj) = (2ξ − 1) · pj (2)

where dcond(ξ, pj) ∈ {0, 1}ξ.
Given the above definitions, the PoC-enabled block gen-

eration procedures are presented in Algorithm 1. Dur-
ing the current round slot slt, each validator vi executes
generate block() function to probably get a candidate block
based on its credit stake. If the proof work of new block
is smaller than target value dcond, then a new block is
generated and broadcasted to the network. The higher credit
weight vi.c, the higher probability that vi can propose a
new block. In block verification process, each validator
calls generate block() function to determine if the received
new block is valid in the current round slot slt with correct
proof work. If all conditions are validated, new block is
accepted as confirmed status, and validator updates head of
local chain as head(C) = Bi+1 accordingly.

B. Chain Extension Rules

The blockchain generation process allows that the proba-
bility of block generated by validator vj is proportional to its
credit weight pj , however, it’s hard to achieve conditions that
only one block is proposed in the current slot round. Thus,
the candidate block number is denoted as b ∈ [0,K], and the
chain extension rules are described as follows:

i) b = 1: if there is only one proposed candidate block
Bi+1, then the block is accepted as confirmed status and
updates the chain head as head(C) = Bi+1.

ii) b > 1: if more than one candidate blocks are proposed,
then all blocks are accepted as confirmed status. The head(C)
update follows two sub rules:

a) chain head points to a block whose sender has the
highest credit c than other blocks’ senders; and

b) for the candidate blocks generated by miners who have
the same highest credit, the block which has the smallest
PoC condition value T B(hc, ξ) becomes the chain head.

iii) b = 0: if no block is proposed at the end of current slot
round, block generation follows a spin manner. As validators

Algorithm 1 The PoC-based block generation procedures.
1: procedure: generate block(vi)
2: hc← H(head(C))
3: height← head(C).height+ 1
4: mt root←MTree(vi.TX)
5: new block ← (hc||mt root||vi.TX||vi.a||vi.c||height)
6: C ←

∑K
i=1 vi.c

7: dcond ← (2ξ − 1) vi.c
C

8: new proof ← T B(H(new block), ξ)
9: if new proof < dcond then

10: σ ← Sign(new block, vi.a)
11: return (new block, σ)
12: end if
13: procedure: verify block(new block, σ)
14: if Verify Sign(new block, σ) 6= True OR
15: Verify TX(new block) 6= True then
16: return False
17: end if
18: hc ← H(head(C))
19: if new block.height 6= head(C).height+ 1 OR
20: new block.hc 6= hc then
21: return False
22: end if
23: C ←

∑K
i=1 vi.c

24: dcond ← (2ξ − 1)new block.v.c
C

25: new proof ← T B(H(new block), ξ)
26: if new proof ≥ dcond then
27: return False
28: end if
29: return True

of current committee can be sorted by account address, we
can calculate ind = height (mod K). Thus, validator at rank
ind can also propose a candidate block in current round. The
chain head update process follows the rule i) b = 1.

The rule i) covers a basic scenario to ensure that all blocks
are extended on chain head. The rule ii) could handle con-
flicting chain head update scenario when multiple validators
propose their valid blocks during current slot round. The rule
iii) ensures the liveness, so that there is at least one block
is generated for chain extension even if none of validators is
able to propose a new block given PoC algorithm.

VI. VOTING-BASED CHAIN FINALITY MECHANISM

Owing to the network latency or deliberate attacks by
byzantine nodes, it inevitably produces fork issue caused by
multiple conflicting blocks with the same ancestor block in a
block generation round. Therefore, a chain finality protocol
is developed such that committee members can vote for a
unique chain path on the block tree, as Fig. 3 shows. We
introduce key definitions before explaining workflows and
rules in the proposed VCF protocol.

During the R th round of block generation which is
also the last round of an epoch, all validators make
agreement on a Checkpoint, which is the current head
block with (height mod R) = 0. Thus, we define Epoch
Height He(Bi) = bBi.height

R c for a block Bi, so that
all blocks generated by an epoch have the same He. A

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

8

Fig. 3. a) Chain finality protocol based on checkpoint tree; b) Illustration
of chain fork resolving rules.

Vote sent by validator vj at time Tstamp is represented
as V otej = (vote hash, hsource, htarget, He(source),
He(target), Tstamp, aj , σj), where source is a committed
block and target is a checkpoint. Given the voting result,
the checkpoint block has following proprieties:
• Committed-majority Link: Given an ordered pair of

checkpoint blocks (Bs, Bt) denoted as Bs → Bt, if
more than 2/3 of validators propose vote for it, then
relationship Bs → Bt is called a committed-majority
link. Figure 3a shows that both B0 → B3 and B3 → B6

are committed-majority link.
• Committed Block: A checkpoint block Bt is called as a

committed block if 1) Bt is a genesis block, or 2) there
exists a committed-majority link Bs → Bt where Bs is
a committed block.

• Finalized Block: A checkpoint block Bs is called as a
finalized block if 1) Bs is a genesis block, or 2) Bs is a
committed block, and there exists a committed-majority
link Bs → Bt, where Bs is parent of Bt in checkpoint
tree (He(Bt) = He(Bs) + 1).

A. Checkpoint Finality Protocol

Figure 3a illustrates a checkpoint tree with a finalized
chain along commit-majority links B0 → B3 → B6. The
gray nodes represent all confirmed blocks generated by the
block proposal mechanism, while all checkpoint blocks are
presented as squire boxes. Assuming that epoch size R = 3,
all blocks with (height mod 3) = 0 are considered as
checkpoint blocks, such as B0, B3, B

′

3 and B6. The B0 and
B3 are finalized blocks. While B

′

3 and B6 are committed
blocks. The chain finality workflow is described as follows:

1. Sending Votes: During current time slot slt for chain
finality process, a validator vj checks if He(head(C)) =
He(Bc) + 1, where Bc is the last committed block of local
chain C. If yes, it prepares V otej which votes for a new
committed-majority link Bc → head(C), and broadcasts
signed vote message V otej to committee members.

2. Counting Votes: After receiving a vote V otej , a val-
idator vi checks if V otej is sent by a valid validator vj
(j ∈ K) and σj is correctly signed by sender’s pkj . Then,
vi will verify whether received vote violates the chain fork
resolving rules, which is defined in section VI-B. If no

violation behavior is founded, vi updates its votes count
vote count[hsource, htarget] value by adding 1. Each val-
idator maintains its local votes counting table until current
time slot slt is expired.

3. Finalizing Checkpoint: A committed-majority link
Bs → Bt) is only accepted when vote count is more than
a certain threshold T · K, where T is a fraction of the
committee size K. The chain finality process requires that
no less than 2f + 1 validators are honest given there is no
more than f dishonest nodes among N current committee
members. Thus, we get T ≥ 2f+1

N , where N = 3f + 1.
Given T = 2

3 , if vote count > 2K
3 , the checkpoint block

Bt is accepted as a committed block, whereas the committed
block Bs is changed to a finalized block.

Given synchronous assumptions that time slot slt ≥ ∆, all
validators receive broadcasted votes from each other by the
end of bounded delay. If no more than 1

3 of the validators
violate the chain fork resolving rule, only a committed block
will be finalized even if there are conflicting checkpoint
blocks with the same epoch height.

B. Chain Fork Resolving Rule

If two checkpoint blocks have the same He and hsource,
but they are neither ancestors nor descendants of each other.
Then, these sibling blocks are conflicting checkpoint. As Fig.
3a shows, B3 and B

′

3 are conflicting checkpoint blocks as
He = 1. Figure 3b illustrates vote violation scenarios, and a
set of chain fork resolving rules are defined as follows:

Rule 1: Given a vote V otej = (vote hash, hs, ht,
He(s), He(t), Tstamp, pkj , σj), if He(t) 6= He(head(C) or
He(t) 6= He(s) + 1, the voter j violates rule and V otej
will be rejected. This rule ensures that vote for committed-
majority s→ t is accepted only if t is the same epoch height
as local chain head and s is parent of t in checkpoint tree.

Rule 2: Given two votes (vote hash, hs1, ht1,
He(s1), He(t1), Tstamp, pkj , σj) and (vote hash, hs2, ht2,
He(s2), He(t2), Tstamp, pkj , σj) sent by the same voter j,
if t1 6= t2 and He(t1) = He(t2), the voter j violates rule
and all votes from voter will be rejected. This rule prevents
one voter from voting for distinct checkpoint blocks with
the same epoch height.

Rule 3: Given scenario that vote split at the checkpoint
owing to chain finality failure, like no checkpoint can gain
more than 2/3 votes, we introduce a trust arbitrator, like the
system administrator, who finally decides a checkpoint and
ensures liveness of protocol.

VII. INCENTIVES AND PUNISHMENT STRATEGIES

This section briefly discusses incentives design while leav-
ing further analysis for future work. A honest worker can
either receive rewards from local model training process or
gain transaction fees from microchain consensus. At the end
of a local model training round, aggregator also records a
unique test data on the distributed ledger. By querying trained
models stored on microchain, each worker ui has a FL score
si by using its trained model accuracy based on the test data

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

9

of current round. Let S = {s1, s2, ..., sn} denote FL scores,
rewards obtained by a worker ui denotes as γi = si∑n

i si
R,

where R is total rewarding fees during current round. At the
end of a Dynasty in microchain, transactions fees committed
by blocks construct a rewarding fees pool that can be fairly
shared with all validators in current consensus committee.

In addition to financial benefits, a honest worker vi can
also deposit one point into its credit stake ci as the reputation
reward. The higher credit stake c, the higher probability that
a worker is selected as a microchain committee member.
In microchain, credits are neither directly associated with
any type of currency nor transferable in any format of
transactions. Therefore, all workers are encouraged to behave
honestly to gain more benefits by increasing their reputation
credits. Moreover, credit stake c of a worker cannot excel
a upper-bounded limitation Cmax. Therefore, an adversary
cannot simply accumulate its credit stake to achieve mining
centralization in PoS.

We develop punishment strategies to discourage misbehav-
ior, like poisoning models or violating consensus protocol. To
increase financial cost for attackers who create Sybil nodes
or uses compromised workers to disturb consensus process,
each vi ∈ D is required to deposit a fix amount of fees to
its security stake sci after committee selection finished. The
balance of sci will be slashed as punishment if vi has been
found any misbehaving actions in consensus. In addition, a
dishonest worker or validator will also loss credit points.
As reducing credit stake will decrease the probability of
being committee members, it is promising to constraint an
adversary’s capability.

VIII. PROTOTYPE IMPLEMENTATION AND EVALUATION

A proof-of-concept prototype of µDFL is implemented
and tested in a physical network environment. The federated
training services are developed using PySyft [41], which
is a Python library to develop a secure and private deep
learning framework. Microchain is implemented in Python
with Flask [2] as web-service framework. We use RSA for
asymmetry cryptography and SHA-256 for hash function,
which are developed using standard python lib: cryptography
[3]. To compare µDFL with PoW based solution [15], we use
Ethereum [1] to setup a private PoW blockchain network.

A. Experimental Setup

The prototype of FL part simulates a digital image recogni-
tion task by training a CNN model based on MNIST dataset
[18]. The 60,000 training samples are randomly split into four
equi-sized subsets that are assigned to 12 workers, and 10,000
test samples are held by the server. Table II describes devices
used for the experimental study. All workers are deployed on
edge devices (Raspberry Pi 4 Model B) and the aggregator
is deployed on a fog server (Redbarn HPC). For a private
Ethereum network setup, six miners are deployed on six
separate desktops that each has Intel(R) Core(TM) 2 Duo
CPU E8400 @ 3 GHz and 4 GB of RAM. A test swarm
network includes 6 desktops as service sites. Microchain

Fig. 4. Latency for an epoch cycle of microchain consensus protocol.

network includes 20 nodes, and each node is hosted on a
Raspberry Pi (RPi). All desktops and RPis are connected
through a local area network (LAN).

TABLE II
CONFIGURATION OF EXPERIMENTAL DEVICES.

Device Redbarn HPC Raspberry Pi 4 Model B

CPU 3.4GHz, Core (TM)
i7-2600K (8 cores)

1.5GHz, Quad core Cortex-
A72 (ARM v8)

Memory 16GB DDR3 4GB SDRAM

Storage 500GB HHD 64GB (microSD card)

OS Ubuntu 18.04 Raspbian GNU/Linux (Jessie)

In FL simulation test, an aggregator swarms remote work-
ers to train a model on MNIST dataset. The target model
is a small neural network with two 5×5 convolutional layers
(the first with 20 channels, the second with 50 channels, each
followed with a 2×2 max pooling) and two fully connected
layers (the first with 500 units, the second with ten units),
ReLU activations, and a final softmax output layer (431,080
total parameters). Each worker regularly executes a training
epoch with batch size of 64, and the aggregator performs Fe-
dAvg model aggregation every 50 training epochs. Therefore,
a trained model in our test scenarios is about 1.7 MB.

B. Performance Evaluation

During model aggregation stage, each worker stores its
trained model into DDB then launches a transaction to record
hash of trained model on microchain. Given multiple com-
plete epoch cycles of consensus protocol within a dynasty,
we evaluate performance of running microchain on our FL
simulation setting, like consensus latency, data throughput
and comparative results. We conducted 100 Monte Carlo test
runs and used the average of results for evaluation.

1) Processing Latency: We let system transaction
throughput ThS=100 Transaction Per Second (TPS). Figure
4 presents the network latency for microchain to complete
an entire round of consensus protocol given the number
of validators varying from 4 to 20. The latency includes
the round trip time (RTT) and service processing time on
the remote host. As committing a transaction needs O(K)
communication complexity for broadcasting and verification,
the latency of commit transaction Tct is linear scale to
committee size K, and it varies from 76 ms to 913 ms.
Like commit transaction, the latency of chain finality Tcf ,
requires verification on received K votes from final com-
mittee members with complexity O(K). Thus, Tcf is almost

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

10

TABLE III
LATENCY SUMMARY FOR µDFL IN A TRAINING CYCLE.

Operation Stage 1 2 3 4 5
Processing Time (sec) 30 1.5 1.6 1.4 0.05

Fig. 5. Comparison of network usage as scaling: a) validators; b) TPS.

scale to K, and it varies from 36 ms to 218 ms. The PoC
based block generation algorithm is proportion to validator’s
credit distribution D with expectation E(D), therefore, Tbp
is scale to complexity O(K2

E(D)). Given uniform distribution
D in our test with E(D) = K, the Tbp is almost linear scale
to the O(K) with vary from 137 ms to 511 ms.

Table III provides a summary on latency incurred by µDFL
when committee size K = 20 and ThS=100. Stage 1 refers
to a model training cycle in conventional FL scenario which
includes: i) a worker completes 50 local training epochs; ii)
network latency by sending local model to the aggregator;
and iii) FedAvg model aggregation. In stage 2, the worker
encrypts trained model (1.3 s) and then saves encrypted data
into DDB (0.16 s). In stage 3, a worker commits swarm hash
of a trained model on microchain. It takes 0.08 s to download
model data from DDB and 1.3 s to decrypt data in stage 4.
For verification in stage 5, a user queries swarm hash from
microchain and compares with the trained model. It only
introduces about 15% extra latency by stage 2-5 as integrating
µDFL into a conventional FL scenario.

2) Data Throughput: We evaluated the communication
cost of running microchain in µDFL in terms of network
usage by message propagation and data throughput. Given
ThS = 100 (TPS), Figure 5-a demonstrates data transmission
for individual stages of a consensus round as scaling up
committee size. Each microchain transaction has fixed size
dtx=430 Bytes, and a vote message has fixed size dvt=589
Bytes. Total data transmission of commit transaction denotes
as Dct=dtx×ThS×K, and it linearly scales to K with fixed
ThS . While a chain finality round requires broadcasting vote
messages with total data transmission Dcf=dvt×K2, which
scales to K2. As a block has the fixed header dhead=613
Bytes, and we can calculate block size dB=dhead+dtx×ThS .
Assuming an ideal case that only one valid block is generated
during an epoch cycle, data transmission of block proposal
can be calculated as Dbp=dB×K=dhead×K+dtx×ThS×K,
which is almost scale to K when ThS is fixed.

Figure 5-b shows network usage by microchain consen-
sus with different system throughput ThS given a fixed
committee size K = 20. Scaling up ThS has no effect
on chain finality as Dcf only depends on K. However,
both Dct and Dbp are linearly scale to ThS . By setting
K = 20, Table IV provides block size and data throughput
with variant ThS . Given observed results microchain process

TABLE IV
DATA THROUGHPUT VS. TRANSACTIONS.

ThS (TPS) 100 200 500 1000 2400

dB (KB) 42.6 84.6 210.6 420.5 1008.4

TM (s) 1.4 1.8 2.5 4.9 14.7

ThD (MB/s) 1.2 1.9 3.3 3.4 2.7

TABLE V
COMPARATIVE EVALUATION OF RECORDING HASHED MODEL ON

DIFFERENT BLOCKCHAIN NETWORKS.

Ethereum Microchain

tx committed time (s) 4.6 4.4

tx rate (tx/s) 124 227

CPU usage (%) 103 6.9

Memory usage (MB) 1,232 28

latency TM=Tct+Tbp+Tcf , we can calculate data throughput
ThD =

Dct+Dbp+Dcf

TM (MB/s). Compared to existing FLchain
solutions [15], [32] that directly record trained models on
blockchain, µDFL only encapsulates a small length hash
value of raw data into a transaction. Therefore, it’s markedly
reduce the network bandwidth requirements of transaction
and block propagation in blockchain. Given the maximum
block size of 1MB in microchain, increasing ThS can
improve efficiency of consensus protocol, and it implies
a theoretical maximum data throughput of 3.4 MB/s as
ThS=1000 (TPS).

C. Comparative Evaluation

We let ThS=1 (TPS) and evaluate key performance ma-
trices in terms of transaction tx committed time, tx rate
and resource usage on validator(miner). Table V provides a
comprehensive performance of committing 1 TPS on bench-
mark blockchain networks. As tx committed time indicates
how long a transaction can be finalized in a block, and
it can be used to evaluate block confirmation time of a
blockchain network. Microchain and Ethereum have almost
the same tx committed latency. To evaluate throughput of a
blockchain network, we calculate tx rate which indicates how
many tx can be recorded per second on distributed ledger
given tx committed time. Ethereum block size is confined
by gas limitation per block such that each block can store
about 571 transactions [36]. tx rate in our private Ethereum
network can achieve (571.4/4.6)≈124 tx/s. Given observed
maximum data throughput in Table IV, a microchain block
can store a maximum of 1000 transactions, thus, tx rate is
about (1000/4.4)≈227 tx/s. Unlike Ehtereum that relies on a
computation intensive PoW algorithm, our microchain uses a
lightweight consensus protocol to achieve efficiency in CPU
and memory usage, and it’s affordable for training workers
deployed on edge platforms.

Table VI presents the comparison between our µDFL and
previous works. Unlike existing solutions that lack details on
blockchain design or investigations on the impact of integrat-
ing blockchain into FL, we illustrate µDFL system architec-
ture along with a lightweight microchain design, and evaluate
computation and communication cost, blockchain latency

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

11

TABLE VI
COMPARISON AMONG EXISTING SOLUTIONS.

Consensus Computation Communication Storage Latency Incentives Scalability Privacy
BlockFL [15] PoW High × × × × × ×
VFChain [27] PBFT LoW × × ×

√
× ×

Vehicular BC-FL [8] Proof-of-Knowledge × × × × ×
√ √

FLchain [22] × × × × × × ×
√

BFLC [19] × × × × × × × ×
µDFL PoC+VCF Low

√ √ √ √ √ √

and throughput in training process. In µDFL system, each
private microchain aims to achieve efficiency and privacy
preserving for local training at the edge network, while the
inter-microchain guarantees global security and scalability for
global model aggregation. Such a hierarchical framework is
promising to handle trilemma in mono-blockchain solutions
that decentralization, security and scalability cannot perfectly
co-exist [40]. Furthermore, hybrid on-chain & off-chain de-
sign can reduce communication and storage cost by avoiding
directly saving models into transactions, and it also protects
sensitive information by only exposing model’s references on
transparent distributed ledgers.

D. Security Analysis

1) Consensus Security: Assume an adversary is subject
to the usual cryptographic hardness assumptions, he/she is
aware of neither the private keys of the honest nodes nor
the input string x to the VRF function. Therefore, the unpre-
dictability property of the VRF-based randomness string gen-
eration allows members of committee be completely random.
In PoC process, the probability of a leader being selected
is proportional to its credit stake. Hence, the probability of
an adversary controlling a block generation round can be
represented by:

PM =

K∑
i= K

2 +1

(
K
i

)
si(1− s)K−i

where s is the fraction of credit stake controlled by the
adversary. The chain finality requires n ≥ 3f + 1 to
make agreement on checkpoints, and we let upper bound
PM = 0.25. Thus, a committee size of 20 can protect
against an adversary controlling 40% of credit stakes in the
committee. In this case, we can let Cmax=1.5 to ensure that
the adversary can not control consensus committee. For chain
finality stage, the adversary has at most m = 1/4 chance per
round to control the checkpoint voting process. As a result,
the probability of the adversary controlling n consecutive
checkpoint is upper-bounded by P [X ≥ n] = 1

4n < 10−λ.
For threshold λ = 6, the adversary will control at most 10
consecutive chain finality runs.

2) Possible Attacks: In training cycle, workers can record
encrypted local models into the DDB and commit references
of models as correctness proofs on the distributed ledger. As
microchain guarantees auditability, immutability and integrity
of data on such a hybrid on-chain & off-chain storage, the

aggregators can verify trained models before aggregating
them into a global model. It is promising to prevent against
potential model poisoning attacks. In reference time, FL
servers can save references of global models into the dis-
tributed ledger, and then any users can check if the deployed
models are altered to prevent against evasion attacks.

As a permissioned network, microchain relies on access
control and encryption technology to provide a certain degree
of privacy protection for data stored on DDB network. It
can prevent against dishonest workers violating privileges to
inspect sensitive information in model aggregation. However,
our solution cannot guarantee protect against data breach
by honest but curious users, like dishonest aggregators or
server. Using differential privacy is promising to guarantee
data privacy and we leave it for future work.

Regarding blockchain system, the adversary may launch
double spending attacks to revert committed transactions on
distributed ledger. The chain finality ensures total order and
persistence of data, therefore, all honest nodes will work on
finalized chain and disregard the double spending transac-
tions. In addition, the adversary can perform selfish-mining
attack by withholding blocks until release them strategically
to gain extra benefits. Microchain requires that all honest
validators only accept blocks generated in current round.
As delaying block proposal is also considered as a type of
misbehavior such that selfish-mining is unprofitable.

IX. CONCLUSIONS

This paper presents µDFL, a hierarchical and secure-by-
design microchained fabric for cross-devices DFL at the edge
network. Each fragmented microchain allows for efficient,
auditable, and privacy-preserving data sharing in local model
training time. A high-level inter-chain network federates
microchains to ensure scalability and global security. The
experimental results based on a prototype implementation are
encouraging. However, several open issues need to be solved
before bring µDFL into practical FL scenarios.

Although federated microchains is promising improve per-
formance and scalability, more investigation and test are
necessary to evaluate impacts by inter-chain transactions.
Thus, our on-going efforts includes validating the proposed
µDFL in real-world FL applications and evaluating overall
performance and security based on various attack scenarios.
Moreover, there are unanswered questions on incentives
mechanism that motivates devices to devote their resources
(e.g., computation and storage) to model training and con-
sensus running for extra profits. Our future work will use

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

12

game theory to model incentive design and evaluate its
effectiveness and robustness.

ACKNOWLEDGEMENT

This work is supported by the U.S. National Science
Foundation (NSF) via grant CNS-2141468 and the U.S.
Air Force Office of Scientific Research (AFOSR) Dynamic
Data and Information Processing Program (DDIP) via grant
FA9550-21-1-0229. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the U. S. Air Force.

REFERENCES

[1] “Ethereum Homestead Documentation,”
http://www.ethdocs.org/en/latest/index.html.

[2] “Flask: A Pyhon Microframework,” http://flask.pocoo.org/.
[3] “pyca/cryptography documentation,” https://cryptography.io/.
[4] “Swarm,” https://swarm-guide.readthedocs.io/en/latest/index.html.
[5] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,

V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan et al.,
“Towards federated learning at scale: System design,” Proceedings of
Machine Learning and Systems, vol. 1, pp. 374–388, 2019.

[6] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[7] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, 1999, pp. 173–186.

[8] H. Chai, S. Leng, Y. Chen, and K. Zhang, “A hierarchical blockchain-
enabled federated learning algorithm for knowledge sharing in internet
of vehicles,” IEEE Transactions on Intelligent Transportation Systems,
2020.

[9] D. Froelicher, J. R. Troncoso-Pastoriza, J. S. Sousa, and J.-P. Hubaux,
“Drynx: Decentralized, secure, verifiable system for statistical queries
and machine learning on distributed datasets,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3035–3050, 2020.

[10] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algo-
rand: Scaling byzantine agreements for cryptocurrencies,” in Proceed-
ings of the 26th Symposium on Operating Systems Principles. ACM,
2017, pp. 51–68.

[11] T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology
overview series, consensus system,” arXiv preprint arXiv:1805.04548,
2018.

[12] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey on
federated learning for resource-constrained iot devices,” IEEE Internet
of Things Journal, 2021.

[13] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[14] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in Annual
International Cryptology Conference. Springer, 2017, pp. 357–388.

[15] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device
federated learning,” IEEE Communications Letters, vol. 24, no. 6, pp.
1279–1283, 2019.

[16] J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, fall,
vol. 1, p. 11, 2014.

[17] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[18] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of
handwritten digits, 1998,” URL http://yann. lecun. com/exdb/mnist,
vol. 10, p. 34, 1998.

[19] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A
blockchain-based decentralized federated learning framework with
committee consensus,” IEEE Network, 2020.

[20] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
2020.

[21] L. Lyu, J. Yu, K. Nandakumar, Y. Li, X. Ma, J. Jin, H. Yu, and K. S. Ng,
“Towards fair and privacy-preserving federated deep models,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 11, pp.
2524–2541, 2020.

[22] U. Majeed and C. S. Hong, “Flchain: Federated learning via mec-
enabled blockchain network,” in 2019 20th Asia-Pacific Network
Operations and Management Symposium (APNOMS). IEEE, 2019,
pp. 1–4.

[23] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[24] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–
1282.

[25] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

[26] S. Y. Nikouei, R. Xu, Y. Chen, A. Aved, and E. Blasch, “Decentralized
smart surveillance through microservices platform,” in Sensors and
Systems for Space Applications XII, vol. 11017. International Society
for Optics and Photonics, 2019, p. 110170K.

[27] Z. Peng, J. Xu, X. Chu, S. Gao, Y. Yao, R. Gu, and Y. Tang, “Vfchain:
enabling verifiable and auditable federated learning via blockchain
systems,” IEEE Transactions on Network Science and Engineering,
vol. 9, no. 1, pp. 173–186, 2021.

[28] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic voting,” in Annual International
Cryptology Conference. Springer, 1999, pp. 148–164.

[29] M. Shayan, C. Fung, C. J. Yoon, and I. Beschastnikh, “Biscotti: A
ledger for private and secure peer-to-peer machine learning,” arXiv
preprint arXiv:1811.09904, 2018.

[30] M. Stadler, “Publicly verifiable secret sharing,” in International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 1996, pp. 190–199.

[31] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 328–339.

[32] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “Deepchain:
Auditable and privacy-preserving deep learning with blockchain-based
incentive,” IEEE Transactions on Dependable and Secure Computing,
2019.

[33] R. Xu and Y. Chen, “Fed-ddm: A federated ledgers based framework
for hierarchical decentralized data marketplaces,” in 2021 International
Conference on Computer Communications and Networks (ICCCN).
IEEE, 2021, pp. 1–8.

[34] R. Xu, Y. Chen, and E. Blasch, “Microchain: a light hierarchical
consensus protocol for iot system,” Blockchain Applications in IoT:
Principles and Practices, 2021.

[35] R. Xu., Y. Chen, E. Blasch, and G. Chen, “A federated capability-based
access control mechanism for internet of things (iots),” in Sensors and
Systems for Space Applications XI, vol. 10641. International Society
for Optics and Photonics, 2018, p. 106410U.

[36] R. Xu, D. Nagothu, and Y. Chen, “Econledger: A proof-of-enf con-
sensus based lightweight distributed ledger for iovt networks,” Future
Internet, vol. 13, no. 10, p. 248, 2021.

[37] R. Xu, S. Y. Nikouei, Y. Chen, E. Blasch, and A. Aved, “Blend-
mas: A blockchain-enabled decentralized microservices architecture
for smart public safety,” in The 2019 IEEE International Conference
on Blockchain (Blockchain-2019). IEEE, 2019, pp. 1–8.

[38] R. Xu, S. Y. Nikouei, D. Nagothu, A. Fitwi, and Y. Chen, “Blendsps:
A blockchain-enabled decentralized smart public safety system,” Smart
Cities, vol. 3, no. 3, pp. 928–951, 2020.

[39] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 931–948.

[40] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” IEEE Access, vol. 8, pp. 16 440–16 455, 2020.

[41] A. Ziller, A. Trask, A. Lopardo, B. Szymkow, B. Wagner, E. Bluemke,
J.-M. Nounahon, J. Passerat-Palmbach, K. Prakash, N. Rose et al.,
“Pysyft: A library for easy federated learning,” in Federated Learning
Systems. Springer, 2021, pp. 111–139.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3179892

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

