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Optimal Transmission Power and Controller Design for Networked
Control Systems Under State-Dependent Markovian Channels

Bin Hu

Abstract—This article considers a codesign problem for in-
dustrial networked control systems to ensure both stability and
efficiency properties of such systems. This problem is particu-
larly challenging due to the fact that wireless communications
in industrial environments are not only subject to shadow fad-
ing, but also stochastically correlated with their surrounding en-
vironments. This article first introduces a novel state-dependent
Markov channel (SD-MC) model that explicitly captures the state-
dependent features of industrial wireless communication systems
by defining the proposed model’s transition probabilities as a func-
tion of both environments’ states and transmission power. Under
the SD-MC model, sufficient conditions on Maximum Allowable
Transmission Interval are presented to ensure both asymptotic
stability in expectation and almost sure asymplotic stability prop-
erties of a nonlinear control system with state-dependent fading
channels. Based on these stability conditions, the codesign prob-
lem is then formulated as a constrained polynomial optimization
problem (CPOP), which can be efficiently solved using semidefinite
programming methods for the case of a two-state SD-MC model.
The solutions to such a CPOP represent optimal control and power
strategies that optimize the average expected joint costs in an
infinite time horizon while respecting the stability constraints. For
a general SD-MC model, this article further shows that suboptimal
solutions can be obtained from linear programming formulations
of the considered CPOP. Simulation results are given to illustrate
the efficacy of the proposed codesign scheme.

Index Terms—Almost sure asymptotic stability, constrained
polynomial optimization, maximum allowable transmission interval
(MATI), state-dependent Markovian channel.

|. INTRODUCTION
A. Background and Motivation

Over the past couple of decades, wireless communication technolo-
gies have evolved rapidly and became ubiquitous in modern society. For
instance, wireless communication protocols such as WirelessHart and
WiMAX [1], [2] are considered among the important components that
help improve modern industrial automation and build efficient, safe,
and reconfigurable industrial automation systems.

Building a safe and efficient industrial networked control system
(NCS) remains challenging because wireless communication channels
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in highly dynamic industrial environments are inherently unreliable and
often subject to shadow fading phenomenon.

Such a phenomenon may seriously compromise system stability and
performance as it causes significant degradation on the quality of com-
munication links. The shadow fading effect is also known to be corre-
lated to moving objects/machineries in industrial environments [2]-[5].
This thus gives rise to the needs for NCS channel modeling approach
as well as assuring the stability and long-term efficiency of industrial
automation systems. This article proposes a novel State-Dependent
Markov Channel (SD-MC) model that specifically incorporates the
impact of external environments (e.g., moving objects) on the channel
conditions, and then develops a codesign formalism that ensures both
stability and efficiency for the NCS.

B. Related Work

This section mainly reviews existing works related to 1) wireless
channel modeling in industrial environments and 2) codesign methods
for communication and control systems. For other related topics, in-
terested readers are encouraged to refer to excellent surveys in [6] and
[71.

Recent studies have shown that radio communication in industrial
environments often exhibits shadow fading effect that is statistically
dependent on the environment’s various states and dynamics (large
metal objects, moving machineries, and vehicles) [3], [5], [8]. Such
state-dependent features prevent the use of conventional channel mod-
els such as Markov chain [9] or identically distributed independent
process (i.i.d.) to capture communication channel dynamics [2], [4].

Several works have thus developed effective channel models that
correlate the temporal variations of the channel conditions with the
states of external environment in different industrial settings. In [5],
[8], [10], a network state process was modeled by a Markov chain to
characterize the shadow fading effects under a finite set of configura-
tions. The state-dependent feature of wireless channels was modeled
by the probability of packet losses as a function of the network state
process. Other channel models were focused on the correlation between
fading statistics and the movements of industrial objects/machines [3],
[4], [11]. Qin et al. [4] proposed an impulse response framework to
model the temporal fading effects in capturing nearby moving objects.
Channel models combining multiple probability distributions were used
in [2]-{4], [11]-[13] to capture sudden changes on fading statistics
that were observed during extensive channel measurements in various
industrial environments.

The SD-MC model proposed in this article is different from the
aforementioned models in two aspects. First, the works in [5] and [8]
model the external environment (i.e., a moving vehicle) as a (semi)-
Markov chain and assume that the moving vehicle cannot be controlled.
This article removes such uncontrollability assumptions and models the
external environment as a Markov Decision Process (MDP). Second,
the models adopted in [5], [8]. [ 10] are confined to packet-drop channels
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that ignore quantization effects. Here, we consider a generalized SD-
MC model that takes into account the presence of time varying data
rates.

As an effective means to mitigate channel fading effects, power con-
trol has been well studied in wireless communication community [14].
From NCS design perspective, it is important to further ensure both
system stability and efficiency of the whole industrial system. These
thus suggest that a joint design of power and control strategies must be
considered. In regard of this, numerous codesign results were developed
to design optimal controller [15]-[20] or state estimator [8], [21]-[25]
for NCSs by incorporating impacts that fading channels have on the
design processes. Regarding the codesign of optimal state estimator
and transmission power, the works in [5], [8], [21]-[25] have shown
that optimal estimation can be achieved using Kalman filters whose
structural design is independent of the used wireless communication
channels, whereas the optimal power policies take the form of functions
of the channel states and the innovation error of the Kalman filter.
For the codesign of optimal controller, the main ideas in prior works
are basically that of applying the so-called separation principle, where
the optimal design of communication and control strategies can be
separated by assuming that the two are independent from each other.
Such an assumption, however, has limited applicability in complex
industrial environments, where the communication and control parts
of the NCS are tightly coupled with the presence of stare-dependent
fading channels. Compared with existing results, the unique feature
of the work presented in this article is the incorporation of mutual
interaction between the communication and control systems into the
codesign process via the proposed SD-MC model. By exploring such
state-dependent features, this article shows that the resulting optimal
codesign strategies are more robust and efficient against various levels
of shadow fading than conventional methods.

This article extends our preliminary results in [26] in three main
parts. First, this article includes a new stability result for a weaker
notion of asymptotic stability in expectation (ASE) by using a less
conservative Assumption 4.1. Second, a linear program-based approx-
imation method is proposed to provide tractable and computationally
efficient solutions for the codesign problem. Third, a nonlinear robotic
arm system with more simulation results is presented to further validate
and demonstrate advantages of the proposed codesign method.

C. Contributions

The main contributions of this article are summarized as follows:

1) A proposal of a novel SD-MC model that explicitly captures the
dependency between channel states, controlled external environ-
ments, and transmission power. In particular, the incorporation of
state-dependent features in the proposed SD-MC model general-
izes the conventional Markov chain and i.i.d. models.
Based on the proposed channel model, this article then derives
sufficient conditions on MATTI that assure ASE and almost sure
asymptotic stability (ASAS) of a nonlinear NCS. In particular,
this article shows that the derived sufficient conditions on MATI
generalize existing results in [27] through the incorporation of the
state-dependent properties in the conditions.

3) Using the derived MATI constraints, this article then proposes a
constrained polynomial optimization problem (CPOP) formulation
to solve the codesign problems. Under the proposed codesign
problem, system stability is assured by imposing the derived suf-
ficient conditions as hard constraints in the CPOP formulation.
The solutions to the CPOP thus represent optimal control and
transmission power policies that minimize an average joint costs
for both communication and control systems.

2

o’

Nonlinear | #(t)
Plant

Sensor/
Transmitter

Egey Pre
g

Controlled External
Environment

M={S,Pn,, A}

Receiver /| | ik State-dependent 1 7k
Controller [*==7%  Markov Channels
M. = {R' Pc'{é"p)}

Networked Control System Markov Decision Process

Fig. 1. Nonlinear NCS with SD-MC framework.

4) This article further shows that the formulated CPOP can be effi-
ciently solved using SDP methods if a two-state Markovian channel
model is considered. For a general Markovian channel model, the
formulated CPOP can be approximated as linear programing (LP)
problems whose solutions lead to suboptimal codesign strategies.

The rest of this article is organized as follows. The system frame-
work is described in Section II, followed by problem formulation in
Section III. The main results in terms of sufficient conditions on MATI
and optimal codesign strategies are provided in Section I'V. Simulation
results are shown in Section V. Finally, Section VI concludes this article.

Notations: Throughout this article, let R, Z denote the sets of real and
integer numbers, respectively, and R~p, Z-o denote their nonnegative
counterparts. Let R™ and R™*™ denote the n-dimensional real vector
space and matrix of dimension n x m, respectively. For a vector
z € R™, let |z| = max; |z;| denote its infinity norm, where z; is the
ith element of the vector and 1 <7 < n. For a matrix A € R™*™,
let |A] :== ||Alcc = MaXi<i<m E?zl |ai;| denote its infinity norm.
A real matrix A € R™*" is positive (semi)-definite, i.e., A = 0, if
T Az > 0,Yz € R™.

Il. SYSTEM FRAMEWORK

The NCS system framework considered in this article is shown in
Fig. 1, and consists of a nonlinear plant, a SD-MC M., a remote
controller, and external environment modeled by MDP M.

1) Nonlinear Plant: The nonlinear plant dynamics are modeled
by an ODE

&= f(z,u) D

where = € R™= is the plant/system state that is directly measurable
by the sensor and © € R™* is the system input that is generated by a
remote controller. The system vector fields are governed by a nonlinear
function f : R™= x R™* — R"™= that is locally Lipschitz with respect
to z. In this article, we assume that the system state = can not be
accessed directly by the controller, and thus must be transmitted through
a wireless communication channel.

2) Sensor and Transmitter: The system state x is first pre-
processed by a sensor/transmitter module before the transmission.
This article considers both the sampling and quantization effects on .
Specifically, let {¢; } 7=, be a sequence of sampling time instants with
tr < tk+1,and zx ;= x(¢z) be the sampled state value at time instant
t1,. The sampled state x(#;,) is then encoded by one of a finite number
of symbols that are constructed based on a dynamic quantization
scheme [28]. Such a dynamic quantization scheme maps the sampled
state z € R™= into the index of a finite number of symbols. Specifically,
let R € N denote the number of bits used to construct the symbol such
that the sequence of the symbols is labeled as S = {1, 2,..., 2%} with
a total number of 2%, The way of using such symbols to encode the
state information x(#;) is by constructing a dynamic quantizer that is
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able to track the evolution of z(#;) at each transmission instant. The
quantizer is defined as a tuple Q = (S, q(-), &), where g(-) : R™= — &
is a quantization function, which maps the system state into a symbol,
while £ € R is an auxiliary variable defining the size of quantization
regions.

A typical approach to implement the quantizer Q is based on the
construction of a hybercubic box which evolves dynamically to contain
and track the state . To demonstrate the mechanism of such a box-based
dynamic quantizer, suppose a hypercubic box is constructed at time
instant t;,. Let (¢, ) and 2£(t;,), respectively, denote the center and the
size of such a box. Then, the box is divided equally into 2% smaller
sub-boxes with each sub-box being labeled as one of the symbols in
&. Among all the symbols, let g(z) € S denote the symbol (sub-box)
that contains the state =. The center of that sub-box, :ﬁ(t:], is then
used as an updated estimate of the state z at time instant ¢;. Thus, the
hyper-cubic box may then be updated with a new center of (¢;) and a
new size of £(t;7) = &(¢;)/2F. The symbol representing this updated
hybercubic is transmitted through the wireless communication channel.
The dynamics of such a quantizer are modeled by

#(tf) = h(k, q(=(tx)), 2(tx), £ (tx), Ri) (2a)
) = S ()

where R is the number of bits available at time instant £, that is
correlated with the wireless channel conditions. As discussed in prior
work [28], within each time interval [ty, x11), Vk € Zq, the size of
the hypercubic box needs to be propagated to ensure the containment
of the actual state = in the constructed box. Specifically, the following
differential equation is used to characterize the evolution of the box
size over time

E(t) = ge(£),Vt € [ty titr)- 3)

In this article, we assume that the encoder and decoder are synchronized
by a noiseless feedback channel so that both encoder and decoder can
use equations (2) and (3) to track the system state x.

3) Remote Controller: Using the dynamic quantizer Q, this
article considers a model-based remote controller that maintains a
“copy” of the plant dynamics in (1) defined as follows:

i = f(& u)
u = k(£),Vt € [tr, trs1) 4

with initial state 3(t;) = 4(¢;). The control function «(-) : R™= —
R™= is a “nominal” controller selected to stabilize the dynamics in (4)
without considering the network effect.

Based on system dynamics in (1), the dynamic quantizer in (2) and
(3), and the remote controller in (4), the closed-loop system can be
characterized as a stochastic hybrid system (SHS) defined as follows:

T = f(z,€) (52)
€= ge(z,€) (5b)
€= ge(£),Vt € (trr tiy1) (5¢)
and
e(ty) = Je(k, =(tx), e(tr), £(tx), Rx) (6a)
E(tF) = Je(€(tk), Ri), VK € Zxo (6b)

where e:=z — % denotes the estimation error and f(z,e) =
f(z,k(z —€)), ge(z,€) = f(z,k(z —€)) — f(z —€,k(z —¢)),
Je(k, o(t). e(te), E(te), Bx) = z(te) — h(k, q(z(tr)), z(te) —

e(tr),&(tr), R), and Je = &(tx)2 . Equation (5) models
continuous dynamics of the closed loop system while (6) captures

system’s stochastic jump behavior induced by the time varying data
rate of Ry.

4) Controlled External Environments and SD-MC Mod-
els: The industrial environment consisting of moving vehicles or
machines is modeled by a MDP Mo = {S, s0, A, Q} where S =
{s;}M is a finite set of environment states with initials s, A =
{a;}M= is a finite set of actions, and Q = {g(s|s, a)}.. scs.aca is
a transition matrix governing dynamics of the environment. Taking a
forklift vehicle operating in manufacturing factory as an example, the
state set S in MDP represents a partition of the factory floor on which
the forklift vehicle operates. With a selected action a € A, the vehicle
moves from one region s’ to another s following a transition proba-
bility q(s|s’,a). Under the MDP model, this article emphasizes the
state-dependent property of wireless communication channels, where
the quality of wireless links is affected by the state/region in which
the forklift vehicle is located. The link quality is measured by a time
varying data rate selected from a finite set R = {ry,72,...,7pp }-

Let a sequence Z = {t;}~_, denote transmission time instants and
Rj, denote the data rate at time instant ¢;. Then, {R;}3_, forms a
random process that characterizes stochastic variations on channel con-
ditions. At each time instant ¢, the communication system can adjust
its transmission power to send data through a wireless communication
channel. Let Q, = {1,2,..., M.} denote a finite set of transmission
power levels with ¢ € (), representing a power level z. The transmission
power set is sorted in an ascending order such that larger numbers
represent higher power levels. Let p;, := p(t:) € (2, denote the power
level selected at time instant £;.. With the external environment modeled
by a MDP, we define the SD-MC model below.

Definition 2.1: Givena power set £2,,,a MDP M., modeling the ex-
ternal environment, and a finite setof datarates R = {ry,ra,..., " }
that are arranged ascendingly, i.e., 7; < r;, V2 < j. Then, a wireless
communication channel is said to be a SD-MC if Vs € S, p € 2, and
Vri,r; € R

P{Ri+1 =ri|Re =7j,51 = s,pr =p} = Pij(s,p) (7
where P;; (s, p) is a transition probability from data rate r; to r; under
the transmission power p and environment state s.

The SD-MC model (7) extends the conventional finite state Markov
model in the sense that the transition probabilities are defined as
functions of transmission power and environment states [29], [30].
The intuition behind the SD-MC model is that a higher data rate is
more likely to select if a high transmission power is applied and the
environment state is controlled to ensure good channel conditions.

Different data rates are selected for each partitioned SNR to make
sure that the BER is sufficiently small for the given SNR. In that
regard, this article focuses on the aspect that the data rate is a more
dominant factor than the packet loss in determining system stability
and performance. Moreover, from information-theoretic perspective,
the packet loss model is a special case of the proposed SD-MC model
with one data rate » = 0 and the other r = oo [29].

lll. PROBLEM FORMULATION

Given the closed-loop NCS modeled in (5)—7), Definition 3.1 for-
mally states the stochastic stability notions considered in this article.

Definition 3.1 (Stochastic Stability [31]): Given the SD-MC model
in (7) and the closed-loop NCS model in (5)—(6).

E The system is said to be ASE if there exist a class KL function
B(-,-) and a bounded set Q2. = {z € R™ : |z| < r} such that for all
g € ., then

E(|z(?)]) < B(lzol,t —to),
and that lim;_,., E(|z(¢)|) = 0.

Vt € Rsg (®)
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P The system is said to be ASAS if Ve, ¢’ > 0, the following holds:

P { lim sup |z(t)| > e} =0. 9)
t'—oo t=>t'

Remark 3.2: The ASAS is a stronger stability notion than that of
the ASE in the sense that 1) the former implies the latter while 2) the
latter normally does not lead to the former. Specifically, a system is
ASAS if it is exponentially stable in expectation, i.e., there exists an
exponential function 8(|zgl|, t — to) = c1 exp(—ca(t — tg))|zo| with
¢; > 0,2 = 1, 2 such that inequality (8) holds [10], [32].

Problem 3.3 (Stability Problem): The first problem considered in
this article is to design a MATT under which the NCS modeled in (5)—
(6) under the proposed SD-MC model satisfies the stochastic stability
notions in Definition 3.1.

Problem 3.4 (Codesign Problem): After solving the Problem 3.3
and obtaining the MATT, the second problem is to find optimal control
and transmission power policies under which some predefined system
specifications are optimized. Specifically, let p., and p, denote the
control policy and transmission power policy, respectively. Then, for a
given joint cost function {¢(s, p, ) }scs pe, rer the codesign problem
is defined as that of finding an optimal policy p* := (u;,, ;) such
that the average expected costs in (10) below are minimized under the
obtained stability conditions

£

s 1 e s
lim _]EEO,R;? Z C(Sk, Pk, Rk]

min
)
k=0

Hm Hp
(10)

where sy and Ry denote the initial states of the MDP system and the
Markov channel, respectively.

s.t. Stability conditions ensuring (8) or (9)

IV. MAIN RESULTS

Assumption 4.1 below is used to derive the main results.

Assumption 4.1 (see[27]): Consider the SHS in (5) and (6). Let
€ := [e; €] denote an augmented vector of the error states e and the size
of the dynamic quantizer £. Suppose there exist

1) afunctionW : Nxq x RMetl R thatis locally Lipschitz with
respect to €

2) afunction V : R™® — R that is locally Lipschitz, positive defi-
nite, and radially unbounded

3) acontinuous function H : R™= — R..

Assume further that there exist a finite set of constants {1; }f’f{ ,some
real numbers L > 0, > 0, class K, functions (ayy, @w, ay,@v) €
K, acontinuous function H : R™* — R, and a continuous positive
definition function g such that

DVkeN,geR"™ M andr; e R={r,..., Ty}
aw ([€]) < W(k,2) <aw(fe) (11a)
W(k41,T(k,E, 1)) < AW(k,?) (11b)
where J(k, €, ;) = [Je; J¢] with J. and J; are as in (6).
2) Vk € N,z € R™= and for almost all € € R™=+1 then
<%3:’e),§(z,5)> < LW (k,e)+ H(z) (12)
where G(z, €) = [g.; g¢] with g. and g, are as in (5).
3) Ve R"=
ay(z) <V(z) <ay(z) (13)
and Vk € N, € R™=*! and for almost all z € R™=, then
(VV(2), f(z,e)) < el|z]) — o(W (k,?)) — H(z)
+CPW3(k, ). (14)

Remark4.2: Assumption 4.1 is similarto [33, Assumption 1], where
the inequalities (11) of part 1) are used to characterize the bounds
on the function of error states € as well as its growths for different
data rates at discrete time instants. It is assumed that, for any given
data rate r; € R, there exists a corresponding positive real A; that
bounds the growth of the error function from the above. The inequality
(12) of part 2) assumes a linear growth of the error function in the
continuous time domain. Inequalities (13) and (14) of part 3) are used
to characterize the growth rate of the Lyapunov function with respect
to the state = in the continuous time domain. The MATI bounds that
ensure stochastic stability will be derived based on the parameters given
in this assumption.

Under Assumption 4.1, sufficient conditions on the MATT that assure
the ASE and ASAS of the SHS in (5)—(6) with SD-MC model in (7)
are given in Theorems 4.3 and 4.5, respectively.

Theorem 4.3 (seef26]): Consider the SHS in (5)—(6), the SD-MC
model in (7), and the controlled external environment M.,,. Suppose
Assumption 4.1 holds, and let Tya1; denote the MATI. For a given joint
policy i = (pm, pp), the SHS is ASE if

L arctan (—-—’?-(1—_1)—) (>L

Ln 21—11_({;—1)+1+I
Tausm < T ¢=L (3
ﬁarctanh (72%:]%1__:;1_&) (<L
withp = 4/|( %]2 — 1| and % is a constant, which satisfies
x> /| diag(A3)P(n)|| (16)
where P(p) = [Py (p)]1<ijemp with Pii(p) =

Zpeﬂp,se.ﬁ' P(T?','TJ" S!p)P(S!p|Tj)'

Remark 4.4: The MATI bounds shown in (15) are functions of
parameters £ and L defined in Assumption 4.1, and % that depends on
the SD-MC model in (7). The proposed MATTI bounds differ from the
existing results in [10], [27], [32] in two aspects. First, the MATI bounds
in (15) generalize the results in [27] as they take into account the impacts
that the SD-MC channel has on the MATI. Such an impact is captured by
the choice of parameter A that must satisfies inequality (16). Existing
results may thus be recovered from our MATI bounds by setting the
parameter A to be independent of the channel conditions. Second, the
MATT results in this article extend our prior works in [10], [32] by
considering a less conservative assumption on the system structure and
a more general channel model.

Theorem 4.5 (see[26]): Suppose conditions (15) and (16) hold for
the SHS in (5)(6), and there exist positive constants cvyy-, 6w , @y, Oy,
and p > Osuch that the conditions in (11), (13), and (14) in Assumption
4.1 hold with

aw el < W (k,?) < awlel (17a)
g‘v|z:|2 <V(z) <ay|z| (17b)
(W), f(z.€)) < elz*— oW (k.?)
— H%(z)+ C*W2(k,®). (17¢)
Then, the SHS in (5)—(6) is ASAS. (]

Proof: Please refer to [26] for the details of the proof.

With the stability results in Theorem 4.3, the codesign Problem 3.4
is formulated as a constrained optimization program with the stability
condition in (16) as hard constraints.
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Theorem 4.6 below shows that, if stationary policies are considered,
the codesign Problem 3.4 can be reformulated as a polynomial con-
strained program with a linear objective.

Theorem 4.6 (see{26]): Given the sets of MDP states .S, transmis-
sion power (), and data rate R, Vi,1 <i < Mg, let X(s,7,p) >
0, Vs, r, p denote the decision variables of the following CPOP:

>

s€S,pefly, reR

s.t. Z X(s,74,p)
5.p

e(r,s,p) X (s,1,p) (18a)

min
{X(s,r.p)}

- Z Pij(s,p)X(s,75,p) =0, Vr; € R

p.s,Tj

Z X(s,m,p)=1

£.0,7

(18b)

(18c)

Mg
22 Piulsp)X(s,p) [[X(ro)
i=1 s.p ££5
Mg
-2 [[x@y) <o
j=1
where X (s,p) = Y318 X (s,r,p), 'X(r) = T, , X (s,7,p), 0 =
/1, and P;;(s, p) is the transition probability of the SD-MC model in
(7). Then, the optimal stationary power policy 3 = {P(p|r)}peq, .rer
and optimal probability distribution 7* = {P(s)}scs for the MDP
states can be represented as

P(plr) =

(18d)

Y ses X'(s,mp)
Zpenp,ses X*(s,7,p)

> X'(s,mp)
pefly, reR
with { X*(s, 7, p)}ses.rer, peq, is the solution of CPOP (18).
Remark 4.7: The inequality (18d) is equivalent to the stability
condition in (16) if stationary policies are considered in the system.
For all 2 with 1 <z < Mg, let the following function h; be those that
form the inequality in (18d)

19)

P(s) = 0)

Mg Mp
hi(X) =D Py(s,p)X(s,p) [ [ X(re) — 02 [[ X ()
j=1 s.p 7 j=1

It is clear that functions {h; }1<i<ns,, are polynomial functions whose
orders are determined by the number of data rates, M p. The solu-
tions to the CPOP (18) thus represent the occupation measures of
the data rates, MDP states, and transmission power. These measures
are used to construct the optimal power policy that is conditioned on
the data rate r. One can refine the power policy using the optimal
occupation measures {X *(s,r, p)} by defining it to be conditional on
both data rate r and the environment state s. Specifically, P(p|r,s) =
X*(s,7,p)/ Zpegp‘seg X*(s,r,p) where the power policy needs to
use both data rate and MDP state to determine the probability of
choosing a power level. In cases where environment state s may not
be available to the communication system, the power policy P(p | ) is
practically more feasible to implement than P(p |, s).

Note that it is in general computationally hard (NP hard) to even
decide whether a polynomial with degree equal to or greater than three
is convex over a compact region [35]. Such a negative result on CPOP

1X (A) denote the occupation (probability) measure [34] that assigns a
probability to the event A

decidability suggests that the structure of the polynomial constraints in
(18) must be investigated to have efficient solutions. In Section IV-Al,
we show that the CPOP formulated in (18) can be reduced to a quadratic
constraint programming problem (QCPP) for the case of two-state SD-
MC. The two-state SD-MC can be considered as a generalization of the
well known bursty erasure channel [29]. For the general case of SD-MC
channels, we propose a LP method in Section IV-A2 to approximate
the solutions of the CPOP (18).

1) Two-State SD-MC: Quadratic Constraint Programs:
This section considers a two-state SD-MC that has only two data rates.

For this model, Lemma 4.8 shows that the polynomial constraints
in (18d) are reduced to quadratic constraints. The CPOP (18) thus is
a QCPP which can be solved by semidefinite programming (SDP)
methods if the matrices associated with the corresponding quadratic
constraints are positive semidefinite.

Lemma 4.8: Consider a two-state SD-MC with data rates of r; and
ra. Given the MDP state set S and transmission power set €2, the
polynomial constraints in (18d) are quadratic constraints, which can be
formulated as

xXTQ,x <o (21)

XTQ,x <0 (22)

where X = [X(r1,s1,p1), X (1, 51,p2),..., X(r1,52,p1),...,
X (ra, 8., PM, )J¥ is an augmented vector whose elements are
arranged in the order of transmission power p, MDP state s, and data
rate 7. Matrices Q;, Q5 € R2M=Mpx2M:Mp ape of the forms

Q =AT L + AL, — 01 1
Qy=ALL + AL, — 621714

where  A;; = [Py, Pylixom.m, With Py = Vec(Py;),Vi,j €
{1,2},0; =%/a; withi = 1,2, I; = [0, e], and I = [e, 0], in which
0 and e are row vectors of M and M, of zeros and ones, respectively.

Proof: The proof is provided in Appendix VIL |

Based on Lemma 4.8, Theorem 4.9 below shows that the resulting
QCPP can be solved via SDP.

Theorem IV.9: Consider a two-state SD-MC and suppose @, @ =
0 hold for the matrices in the quadratic constraints (21) and (22). Then,
the CPOP in (18) can be solved using SDP methods.

Proof: The proof is straightforward from the fact that constraints
in (21) and (22) are convex if matrices Q;, Q. are positive semidefi-
nite (i.e., @, @y = 0) [ |

2) Linear Programming Relaxations: This section presents
a LP relaxation of the CPOP (18) by applying the 1-norm form on
the stability condition derived in (16). Specifically, Theorem 4.10
below shows that both the ASE and ASAS properties can be attained
under a conservative Tyarr that is induced by a 1-norm condition.
Proposition 4.12 subsequently proves that such a condition leads to
linear constraints in the formulated optimization problem.

Theorem 4.10: Consider the SHS (5)-(6), the SD-MC model (7),
and the controlled external environment M_,,,. Suppose the Tyt is
defined by condition (15) for some constant % € R that satisfies

X > \/ Mgl disg(32)P(u)]]1. @3)
Then the SHS (5)(6) is ASE if Assumption 4.1 holds. Furthermore,
system (5)—(6) is ASAS if condition (17) holds.

Proof: The proof is straightforward by the condition be-
tween oo-norm and 1-norm. Specifically, || diag(A2)P(u)| <
MEg|| diag(A2)P(u)]||; dueto ||A|| < n||A||1, VA € R™*", thenVA >
0 we have

%> /Mgl diag(0:2)P(u) 1 > 1/ || diag(:2)P(w)].
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The above inequalities imply that the satisfaction of the 1-norm condi-
tion in (23) leads to stability conditions in (16) that are shown to ensure
ASE as proven in Theorem 4.3 and ASAS in Theorem 4.5. Thus, the
proof is complete. |

Remark 4.11: The use of stability constraints (23) in the codesign
problem essentially trades the optimality with computational efficiency.
Regarding the system optimality, the constrained optimization problem
with constraints (23) leads to suboptimal solutions because stability
constraints in (23) are more conservative than polynomial constraints
in (16). Specifically, the size of the sets formed by constraints in (23) is
inversely proportional to the number of data rates M p. Nevertheless,
the use of constraints (23) reduces the original NP-hard CPOP to more
computationally tractable LP problems as stated in Proposition 4.12
below.

Proposition 4.12: Fora given % € R, let H u denote a set of joint
policies pt = (fm, pp) satisfying the co-norm stability condition in
(16), and let H; denote a set of joint policies i = (fim, fip) that satisfy
the 1-norm stability condition in (23). Then

1) Ha C Hp.

2) with the 1-norm stability condition (23), the inequalities in (18d)
of the CPOP (18) are linear inequalities.

3) let p* and J* denote the optimal joint policy and cost, respec-
tively, of the optimization problem (10) with the co-norm stability
condition. Let 2* and J* denote the optimal joint policy and cost,
respectively, under the 1-norm stability condition. Then J* < J*.

Proof: The proof is in included in Appendix VII. |

After the optimal power policy p} = {P(p|r)}peq, rer and sta-
tionary distribution for MDP states n* = {IP(s)}scs are obtained
from Theorem 4.6, the next step is to find a control policy p,, =
{P(a|s)}aca(s).ses that achieves the optimal stationary distribution
7*. Let {c;,(s, a)}ses.aca denote the cost function for each state-
action pair of the MDP process. Then, the optimal control policy p7,
can be obtained by solving the optimization in Problem 4.13 below.

Problem 4.13: Let My, = {S, sy, A, @} be an ergodic MDP with
a desired stationary distribution 7* that is obtained by solving the
optimization problem (18). The objective is to find an optimal control
policy p7, that solves the following optimization while attaining the
desired stationary distribution 7*:

T
1
min lim —~Ef; [;Cm(skuak)] (24a)
st Q(pum)m* =a* (24b)

where Q(prm ) is the transition matrix of the Markov chain induced by
the control policy p.

Theorem 4.14 below shows that Problem 4.13 can be formulated and
efficiently solved using LP methods.

Theorem 4.14 (see[26]): For a given T =
[7*(51),-- -, 7" (sam.)]T with 7*(s) being the probability distribution
of the state s € S, let {Y (s, a) }ses,aca denote the decision variables
of LP problem as follows:

{Yr?sig)} SGSZ@:EA em(s,a)Y (s, a) (252)
s.t. Y Y(s,a) = > qlsls/a)Y(s/a)=0,Ys €S (25b)
Y Y(s,a)=1, Y(s,a)>0,Vsa (25¢)
seS,acA
D Y(s,a) =7*(s),Vs € S. (25d)
acA

Then, the corresponding optimal control policy p}, for Problem (24)
can be obtained by

Y*(s,a)
ZaEA Yt(s’ ﬁ'.) ,
where {Y (s, a)} is the solution to the LP problem in (25).

P(als) = VseS,ac A (26)

V. SIMULATION RESULTS

This section presents an industrial example of a nonlinear robotic
arm and a forklift vehicle to verify the given results on stochastic
stability (see Theorem 4.5) and optimal codesign policy proposed in
Theorems 4.9 and 4.10.

The dynamics of a nonlinear single link robotic arm is modeled
as T; = T9,T3 = —4.905sin(z;) + 2u, where x; and z; are the
arm’s angle and rotational velocities, respectively, and » is the in-
put torque. The objective of the robotic arm is to track a prede-
fined trajectory generated by a reference system as ©; 4 = T34, Tog =
—4.905sin(z 4) + 2uyss, where ;4,2 = 1,2 are the reference an-
gle and rotational velocities, respectively, and uy; = 10sin(50¢) is
the input signal to the reference system. We assume that the states
of the reference system x;4,2 = 1,2 as well as the input signal
uys are available to the remote controller. Following the design
policy in (4), the model-based controller can thus be constructed
as &y = &9, &9 = —4.905sin(%1) + 2w, u = 27 1(4.905(sin(3 ) —
Sil’l(:}[.‘ld)) — (i}] — I d) — (:i.‘g — Igd)) + ug. Llet T=x— Ig with
x = [z1,z5]7 and x4 = [x) 4, 224])7 denote the tracking error, and
define the error states e = T — T = = — & with £ = # — z4. Then, the
dynamics of e and £ can be written as € = [e3; —4 cos 2—112_—“31- sin 3]
and £ = 2¢.

The dynamics of a forklift vehicle is abstracted as a two-state
MDP with a state set of {s;,sp} with s; representing the
shadow fading region and s; the nonshadow fading region. The
vehicle is able to take an action from the set {Go, Stay} to make
transitions between regions. The transition probabilities of the states
under each action are P{s;|s;,Stay} = P{sq|sq, Stay} =0.9
and P{sy|s;,Go} = P{sp|sp,Go} =0.1. Their associated
costs are c,(s1,Stay) = cp(s1,Go) = 0.4 and ¢, (s, Stay) =
cm(s2,Go) = 0.6. The costs are selected to simulate scenarios
where the interests of moving vehicle are in conflict with the robotic
networked arm system (i.e., the shadow-fading state s; is assigned
a lower cost than the nonshadow fading state s;). Such scenarios
represent challenging situations that are commonly encountered in
complex industrial environments where cooperative and adaptive
strategies are needed the most. Under the two-state MDP, a two-state
SD-MC model is constructed to simulate the state-dependent fading
channel for the robotic arm. The data rates of the two-state SD-MC
are 71 =0 and ro = 2, and a two-level transmission power set
{H,L} is selected with H and L representing the high and low
level, respectively. The state-dependent transition probabilities under
different MDP states and transmission power are Pii(s1,L) =
Poi(s1,L) = 0.8, P11(s1, H) = Pa1(s1, H) = 0.6, P11 (s2, L) =
0.4, P11(32, H) = P21(32, H) = 0.1, P21(52, L) = 0.5. The power
costs are cp(H) = 0.6,¢,(L) = 0.4 and the costs for the data rates
are c,p(r1) = 0.6,c.(r2) = 0.4.

Let W(e) = |e|, and the parameters L = 4.905,( = /2,40 =
1,41 = 0.5 are selected to satisfy Assumption 4.1. From (15) in
Theorem 4.5, the MATI can be determined as Tyam = 0.072 s for

x> 1/ || diag(A2)P(u)| = 0.6325 with P(u) = [0.2,0.2;0.8,0.8],
and T" = 0.07 s < MATL. Fig. 2 shows that the maximum (blue dashed

lines) and minimum (red dash-dot lines) trajectories evaluated over
1000 runs under T" = 0.07 s, asymptotically converge to the origin,
which implies ASAS (see Theorem 4.5). Fig. 3 shows the comparison
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Fig. 2. Maximum and minimum values for the state trajectories of a
networked robotic arm with T = 0.07 s.
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Fig. 3. Comparison of sufficient and necessary bounds on
MATI under different channel conditions P{r' =0|r=0}=
0.2,0.3,0.4,0.5,0.6,0.7.
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Fig. 4. Performance comparison of the proposed codesign method
against the separation method under a wide range of channel conditions
ranging from 0 to 0.55.

of sufficient bounds (marked by red squares) on MATI derived in
(15) against the necessary bounds (marked by blue stars) generated
by Monte Carlo simulations that gradually increase the transmission
interval T until the system is almost surely asymptotically unstable.
The comparison results show that the sufficient bounds are around 2—8
times smaller than the necessary bounds over a wide range of channel
conditions (a variety of conditions are simulated by selecting different
transition probabilities P(0|0)). The gap is reasonably close given
the fact that similar conservativeness were also reported in [36] for
deterministic systems.

This article also compares the optimal co-design strategies proposed
in Theorems 4.6-4.10 against traditional separation design methods
(e.g., [21]), where the design of optimal power policies is independent
of the control policy design. Fig. 4 shows the comparison results of
optimal joint costs generated by the separation design method (marked
by a black solid-dotted line) and the codesign strategy (the QCPP result

is marked by a red dotted line, while the LP result is marked by a
blue dash line) over a wide range of shadow fading levels. As shown
in the plots, the QCPP-based codesign method leads to lowest costs
across the whole range of the shadow fading among all three strategies.
Interestingly, codesign strategies under both quadratic and LM are more
robust in the high shadow fading regime (i.e., the region between 0.3 and
0.55) than that of the separation design, in the sense that the optimal
cost curves under the former two are relatively flat regardless of the
fading levels, while that based on the separation design method linearly
increases as the fading level is increased.

VI. CONCLUSION

This article presented a codesign paradigm to ensure both stochas-
tic stability and optimal performance of industrial NCSs under
state-dependent fading channels. A novel SD-MC model was proposed
to characterize the correlation between channel conditions and external
environments. The proposed channel model was used to derive suffi-
cient conditions on MATT that ensure ASE and ASAS properties of
the industrial NCS. With the derived stability conditions as constraints,
the codesign problem was reformulated as CPOP that can be either
solved by semidefinite programs under a two-state Markov channel,
or approximated by LP with suboptimal solutions under the general
Markov channel. Simulation results of a nonlinear robotic arm and a
forklift vehicle in industrial settings were provided to verify the efficacy
of proposed approaches.

APPENDIX

Proof of Lemma 4.8: Consider the polynomial constraint in (18d)
with a two-state SD-MC (i.e., M g = 2). Then, the polynomial inequal-
ity (18d) is reduced to

2 2
Zzp\ij(s!p)X(‘g\p)HX(Tf) < BEHX(TJ)|V1 = 1a2

j=1 s.p 7 j=1
— Z Pil(slp]X(sap)X(T2) + Z Pﬂ(sap)X(sap)X(TI]
5,p s.p
<O7X(r1)X(r2),¥i=1,2. @7
The order of the polynomial terms in (27) is 2, which

makes it a quadratic constraint. Let X = [X(rq,s1,p1),---
X (r2,51,p1),--., X(r2,sMm,,pum,)]T denote a column vector with
M, =S| and M, = |Q,| being the sizes of the MDP state set
and transmission power set, respectively. Let I; = [e, 0], I =
[0,e] with Oj.pr,nr, and ej.ar,n, denote the row vectors
of M M, zeros and ones, respectively. Let 13” = Vee(Py;) =
[Pij(‘gl!pl)! PU(SZapl)a LR} Pij(s_n,f_,,pl), REE} PU(S-M.S !p-Mp)] de-
note the vectorization of the matrix FP;;,V:,7 = 1,2. Then, with
X(ry) = I X and X (r3) = I X, the constraint in (27) becomes

il

X7 IEE LX + 27
B, i2

)
sr| X —OILXDX <0Vi=1,2

P% P%
=S XT| |G L+ 22| L -0 | X <0,Vi=1,2.
P P
T
The proof is then complete. |

Proof of Proposition 4.12: Properties 1) and 3) hold due to the fact
that for any joint-policies p satisfying the 1-norm constraint in (23)
guarantee that the oco-norm stability condition (16) is satisfied. This
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implies that the feasible set of the joint policies H; induced by the
I-norm stability constraint in (23) is strictly smaller than the one H,
generated by the oc-norm condition in (16). Therefore, the optimal
costs .J* under the set #,, are clearly smaller than the optimal costs
under the set H;. To prove property 2), consider the 1-norm condition
as follows:

%> /M| disgB2)P ()|

- 2
. - A
= [1aing0 PGl < (77 )
R
Mg T \2
= YRS PPl < (37) Vi
i=1 s.p

 X(s,p,75) T\
— a2 Pii(s,p) =m——————— ( ) V7. (28)
Z 2 Pule p)z XGopr) 4
s,p,r;) on both sides of the inequality in (28)

Multiplying > X (
implies for all 7 that

Mg I .
;l?sZ‘;P:‘j(s,P)%:X(S,P,Tj) < gX(s‘p’Tj)(E) _

The above inequality shows that the 1-norm stability conditions in (23)
are linear constraints. Hence, the optimization problem in (10) is a LP
under the relaxed 1-norm stability conditions. |
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