Session 4

PODC 22, July 25-29, 2022, Salerno, Italy

Blunting an Adversary Against Randomized Concurrent
Programs with Linearizable Implementations

Hagit Attiya
hagit@cs.technion.ac.il
Technion
Haifa, Israel

Constantin Enea
cenea@irif fr
LIX, Ecole Polytechnique, CNRS and
Institut Polytechnique de Paris

Jennifer L. Welch
welch@cse.tamu.edu
Texas A&M University
College Station, TX, USA

Palaiseau, France

ABSTRACT

Atomic shared objects, whose operations take place instantaneously,
are a powerful abstraction for designing complex concurrent pro-
grams. Since they are not always available, they are typically substi-
tuted with software implementations. A prominent condition relat-
ing these implementations to their atomic specifications is lineariz-
ability, which preserves safety properties of the programs using
them. However linearizability does not preserve hyper-properties,
which include probabilistic guarantees of randomized programs:
an adversary can greatly amplify the probability of a bad outcome,
such as nontermination, by manipulating the order of events inside
the implementations of the operations. This unwelcome behavior
prevents modular reasoning, which is the key benefit provided by
the use of linearizable object implementations. A more restrictive
property, strong linearizability, does preserve hyper-properties but
it is impossible to achieve in many situations.

This paper suggests a novel approach to blunting the adversary’s
additional power that works even in cases where strong lineariz-
ability is not achievable. We show that a wide class of linearizable
implementations, including well-known ones for registers and snap-
shots, can be modified to approach the probabilistic guarantees of
randomized programs when using atomic objects. The technical ap-
proach is to transform the algorithm of each operation of an existing
linearizable implementation by repeating a carefully chosen prefix
of the operation several times and then randomly choosing which
repetition to use subsequently. We prove that the probability of a
bad outcome decreases with the number of repetitions, approaching
the probability attained when using atomic objects. The class of
implementations to which our transformation applies includes the
ABD implementation of a shared register using message-passing,
the Afek et al. implementation of an atomic snapshot using single-
writer registers, the Vitanyi and Awerbuch implementation of a
multi-writer register using single-writer registers, and the Israeli
and Li implementation of a multi-reader register using single-reader
registers, all of which are widely used in asynchronous crash-prone
systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC °22, July 25-29, 2022, Salerno, Italy

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9262-4/22/07...$15.00
https://doi.org/10.1145/3519270.3538446

209

CCS CONCEPTS

« Theory of computation — Distributed computing models;
Concurrent algorithms; Distributed algorithms; « Comput-
ing methodologies — Distributed algorithms; Concurrent
algorithms.

KEYWORDS

Concurrent Objects; Strong Linearizability; Randomized Programs;
ABD Simulation; Atomic Snapshots; Shared registers

ACM Reference Format:

Hagit Attiya, Constantin Enea, and Jennifer L. Welch. 2022. Blunting an
Adversary Against Randomized Concurrent Programs with Linearizable
Implementations. In Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing (PODC °22), July 25-29, 2022, Salerno, Italy. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3519270.3538446

1 INTRODUCTION

Atomic shared objects, whose operations take place instantaneously,
are a powerful abstraction for designing complex concurrent pro-
grams, as they allow developers to reason about their programs in
terms of familiar data structures. Since they are not always available,
they are typically substituted with software implementations. A
prominent condition relating these implementations to their atomic
specifications is linearizability [20]. It provides the illusion that pro-
cesses communicate through shared objects on which operations
occur instantaneously in a sequential order, called the linearization
order, regardless of the actual communication mechanism. A key
benefit of linearizability is that it preserves any safety property
enjoyed by the program when it is executed with atomic objects.

Unfortunately, linearizability does not preserve hyper-
properties [11], which include probabilistic guarantees of
randomized programs. As demonstrated by examples in [5, 14, 17],
an adversary can greatly amplify the probability of a bad outcome,
such as nontermination, by manipulating the order of events
inside the implementations of the operations. Such behavior
invalidates the key benefit of using linearizable objects, which is
the modularity that they provide by hiding implementation details
behind an interface that mimics atomic behavior. To overcome
this drawback, Golab, Higham and Woelfel [14] proposed a
more restrictive property, strong linearizability, that preserves
hyper-properties, including probability distributions. However, not
many strongly-linearizable implementations are known and in fact
they are impossible in several important cases (cf. Section 6).

This paper suggests a novel approach to blunting the adversary’s
additional power that works even in cases where strong lineariz-
ability is not achievable. To motivate our approach, consider the

https://doi.org/10.1145/3519270.3538446
https://doi.org/10.1145/3519270.3538446

Session 4

well-known ABD [3] linearizable implementation of a read-write
register in crash-prone message-passing systems and how it be-
haves in the context of the simple program given in Algorithm 1,
which we distill from the weakener program [17]. In the multi-
writer version of ABD [22], which we consider throughout and is
presented in Algorithm 2, both read and write operations start with
a “query” message-exchange phase in which the invoking process
obtains the timestamp associated with the most recent value. Then,
both operations execute an “update” message-exchange phase; the
reader announces the latest value and timestamp before returning
the value, while the writer announces the new value and assigns it
alarger timestamp. The linearization order of the operations is com-
pletely determined by the maximal timestamps that are obtained
during the query phases, and thus, their order is determined at the
end of the query phase.

Algorithm 1 Processes po, p1, and p, share two registers R, written by
po and py and read by pz, and C, written by p; and read by p,.

: Initially: R=1,C = -1

: Code for p;, i € {0,1}:

R:=i

. if (i = 1) then C := flip fair coin (0 or 1)

: Code for py:

uy:=R;up:=R;c:=C

. if (w1 = ¢) A (ug = 1 — ¢)) then loop forever

. else terminate

o T B NS B O N

Algorithm 1 has two processes, pg and p1, that write their ids to
register R, then p; flips a coin and writes the result to another reg-
ister C. A third process, po, reads R twice and C once; if it succeeds
in reading both ids from R and the first id that it reads equals the
result of the coin flip, then it loops forever, otherwise it terminates.
When the registers are atomic, p, terminates with probability at
least one-half, for any adversary. (See [8] for details.) Yet when
the registers are replaced with ABD implementations, a strong ad-
versary [2], which can observe processes’ random choices,! can
interleave the internal steps of the query phase and the steps of
the program so as to ensure that py never terminates. (See [8] for
details.)

Instead of attempting to find a strongly-linearizable replacement
for ABD, which is impossible [6, 10], we make the key observation
that the adversary can disrupt the workings of the program only
when the coin flip on Line 4 occurs during the query phase of a
read or write operation. The reason is that, after the query phase
has completed, the linearization order of the operation is fixed. We
also observe that the query phase is “effect-free” in the sense that it
can be repeated multiple times without the repetitions interfering
with each other or with the behavior of the other processes.

Our modification to ABD is for each operation to execute the
query phase several times, and then randomly choose which one of the
values obtained to use in the rest of the operation. In Algorithm 1,
the adversary can make only one of these values depend on the
result of the coin flip (by scheduling the coin flip during that it-
eration of the query phase), but that value is used in the rest of
the operation with some probability strictly smaller than 1, since
values from query phases are chosen uniformly at random. As a

! Throughout this paper we consider only strong adversaries and sometimes drop the
term “strong”.

210

PODC 22, July 25-29, 2022, Salerno, Italy

result, the program exhibits probabilistic behavior closer to that
seen with atomic objects. For example, repeating the query phase
twice when ABD is used in Algorithm 1 ensures that p, terminates
with probability at least 1/8, in contrast with the 0 termination
probability when using the original ABD implementation. (See [8]
for details.) Thus by carefully introducing additional randomization
inside the linearizable implementation itself, we blunt the power of
the adversary to disrupt the behavior of the randomized program
using the object, while keeping the implementation linearizable.

We generalize this idea to develop a transformation for the class
of linearizable implementations in which operations can be parti-
tioned, informally speaking, into an effect-free preamble followed by
a tail. Strong linearizability is only required for executions in which
no operation is in the middle of its preamble. The latter property
is made precise under the notion of tail strong linearizability (Sec-
tion 3). Our preamble-iterating transformation (Section 4.1) repeats
the preamble in the implementation of each operation some number
of times and then randomly chooses the results of one repetition to
use, producing a linearizable implementation of the same object.

Our main result is that the probability of the program reaching a
bad outcome with the transformed objects approaches the probability
of reaching the same bad outcome with atomic versions of the objects,
as the number of repetitions of the preamble increases relative to the
number of random choices made in the program. Specifically, we show
that the probability of the bad outcome using the transformed object
is at most the probability of the bad outcome using atomic objects,
which is the best case, plus a fraction of the difference between the
probabilities of the bad outcome when using the linearizable objects
and using the atomic objects. The fraction is the probability that
the adversary is able to manipulate the behavior to its advantage,
and it decreases as the number of repetitions increases.

Our transformation applies to a broad class of both shared-
memory and message-passing implementations that are widely
used, and includes ABD (both its original single-writer version [3]
and its multi-writer version [22]), the atomic snapshot algorithm [1],
the algorithm to construct a multi-writer register using single-
writer registers [24], and the algorithm to construct a multi-reader
register using single-reader registers [21]. To summarize:

e We introduce a new strengthening of linearizability called
tail strong linearizability which, roughly speaking, imposes
the requirements of strong linearizability only on execu-
tions in which each operation has passed its preamble. (See
Section 3 for the precise definition.) We show that this prop-
erty is satisfied by a wide range of objects that also have
effect-free preambles (Section 5).

e We define a transformation of tail-strongly-linearizable ob-
jects with effect-free preambles, which iterates the preamble
of each operation multiple times and then randomly chooses
an iteration whose results will be used in the rest of the
operation (Section 4.1).

e We characterize the blunting power of the “preamble iterated”
objects with a quantitative upper bound on the amount by
which the probability of reaching a bad outcome increases
when using the transformed objects instead of the atomic
objects, and relative to using the original linearizable objects
(Theorem 4.2 in Section 4.2).

Session 4

PODC 22, July 25-29, 2022, Salerno, Italy

Algorithm 2 ABD simulation of a multi-writer register in a message-passing system.

1: local variables:
2: sn, initially 0 {for readers and writers, sequence number used to identify messages}
3: val, initially vy {for servers, latest register value}
4: ts, initially (0, 0) {for servers, timestamp of current register value, (integer, process id) pair}
s5: function queryPhase(): 18: when ("update",v,u,s) is received from g:
6: Sn++ 19: if u > ts then (valts) := (vu)
7: broadcast ("query",sn) 20: send ("ack",s) to q
8: wait for > ”T“ reply msgs to this query msg
9: (vu) := pair in reply msg with largest timestamp
10: return (vu) 21: Read():
22: (wu) := queryPhase()
11: when ("query",s) is received from q: 23: updatePhase(v,u) {write-back}
12: send ("reply”,val ts,s) to q 24: return v
13 function updatePhase(v,u): 25: Write(v) for process with id i:
14 sn++ 26: (=, (t,—)) := queryPhase() {just need integer in timestamp}
15: broadcast ("update”,v, u, sn) 27: updatePhase(v,(t + 1, i)
16: wait for > ”T“ ack msgs for this update msg 98: return
17: return

2 PRELIMINARIES

Randomized programs consist of a number of processes that invoke
methods of some set of shared objects, perform local computation,
or sample values uniformly at random from a given set of values.
We are interested in reasoning about the probability that a strong
adversary [2] can cause a program to reach a certain set of program
outcomes, defined as sets of values returned by method invocations
i.e., operations.

2.1 Objects

An object is defined by a set of method names and an implemen-
tation that defines the behavior of each method. Methods can be
invoked in parallel at different processes. In message-passing im-
plementations, processes communicate by sending and receiving
messages, while in shared-memory implementations, they commu-
nicate by invoking methods of a set of shared objects (e.g., some
class of registers) that execute instantaneously (in a single indivisi-
ble step), called base objects. The pseudo-code we will use to define
such implementations can be translated in a straightforward man-
ner to executions seen as sequences of labeled transitions between
global states that track the local states of all the participating pro-
cesses, the states of the shared base objects or the set of messages
in transit, depending on the communication model, and the control
point of each method invocation in a process. Certain transitions
of an execution correspond to initiating a new method invocation,
called call transitions, or returning from an invocation, called return
transitions. Such transitions are labeled by call and return actions,
respectively. A call action call M(x); labels a transition correspond-
ing to invoking a method M with argument x; i is an identifier of
this invocation. A return action ret y; labels a transition correspond-
ing to invocation i returning value y. For simplicity, we assume that
each method has at most one parameter and at most one return
value. We assume that each label of a transition corresponding to a

211

step of an invocation i includes the invocation identifier i and the
control point (line number) ¢ of that step. In particular, each call
transition includes an initial control point #. Such a transition is
called a step of i at ¢.

The set of executions of an object O is denoted by E(O). An
execution of an object O satisfies standard well-formedness con-
ditions, e.g., each transition corresponding to returning from an
invocation i (labeled by ret y; for some y) is preceded by a transition
corresponding to invoking i (labeled by call M(x);, for some M and
x), and for every i there is at most one transition labeled by a call
action containing i, and at most one transition labeled by a return
action containing i.

An object where every invocation returns immediately is called
atomic. Formally, we say that an object O is atomic when every
transition labeled by call M(x);, for some M and x, in an execution
(from E(O)) is immediately followed by a transition labeled by ret y;
for some y.

Correctness criteria like linearizability characterize sequences of
call and return actions in an execution, called histories. The history
of an execution e, denoted by hist(e), is defined as the projection of
e on the call and return actions labeling its transitions. The set of
histories of all the executions of an object O is denoted by H(O). Call
and return actions call M(x); and ret y; are called matching when
they contain the same invocation identifier i. A call action is called
unmatched in a history h when h does not contain the matching
return. A history h is called sequential if every call call M(x); is
immediately followed by the matching return ret y;. Otherwise, it
is called concurrent. Note that every history of an atomic object is
sequential.

2.2 (Strong) Linearizability

Linearizability [20] defines a relationship between histories of an
object and a given set of sequential histories, called a sequential

Session 4

specification. The sequential specification can also be interpreted as
an atomic object. Therefore, given two histories h1 and hy, we use
h1 T hy to denote the fact that there exists a history h'1 obtained
from hy by appending return actions that correspond to some of the
unmatched call actions in h; (completing some pending invocations)
and deleting the remaining unmatched call actions in h; (removing
some pending invocations), such that h; is a permutation of h] that
preserves the order between return and call actions, i.e., if a given
return action occurs before a given call action in 4] then the same
holds in hy. We say that h; is a linearization of hy. A history h; is
called linearizable w.r.t. a sequential specification Seq iff there exists
a sequential history hy € Seq such that h; T hy. An execution e is
linearizable w.r.t. Seq if hist(e) is linearizable w.r.t. Seq. An object
O is linearizable w.r.t. Seq iff each history h; € H(O) is linearizable
w.r.t. Seq.

Two objects O; and Oy are called equivalent when they are
linearizable w.r.t. the same sequential specification Seq and for
every history h € Seq, H(O1) contains a history linearizable w.r.t.
h iff H(Oz) contains a history linearizable w.r.t. h.

Strong linearizability [14] is a strengthening of linearizability
that enables preservation of probability distributions in random-
ized programs using a certain object O instead of an atomic object
equivalent to O. It also enables preservation of more generic hyper-
safety properties [5]. A set of executions E C E(O) of an object O
is called strongly linearizable when it admits linearizations that are
consistent with linearizations of prefixes that belong to E as well.
Formally, E is strongly linearizable w.r.t. a sequential specification
Seq iff there exists a function f : E — Seq such that:

e for any execution e € E, hist(e) C f(e), and
o f is prefix-preserving, i.e., for any two executions ej, e € E
such that e; is a prefix of ez, f(e1) is a prefix of f(ez).
An object is called strongly linearizable when its entire set of exe-
cutions E(O) is strongly linearizable.

2.3 Randomized Programs

A program P(O) is composed of a number of processes that invoke
methods on a set of shared objects O. Besides shared object invoca-
tions, a process can also perform some local computation (on some
set of local variables), and use an instruction random(V'), where
V is a subset of a domain of values V, to sample a value from V
uniformly at random. This value can be used, for instance, as an in-
put to a method invocation. The syntax used for local computation
instructions is not important, and we omit a precise formalization.
An execution of a program P(O) is an interleaving of steps taken
by the processes it contains. A step can correspond to either
e aninteraction with a shared objectin O, i.e., a method invoca-
tion, internal step of an object implementation, or returning
from a method, or
e a local computation in the program, e.g., an execution of
random(V), for some V.
As expected, the sequence of steps in an execution follows the
control-flow in each process and the internal behavior of the shared
objects in O (whether they be implemented on top of a message-
passing or shared-memory system).

212

PODC 22, July 25-29, 2022, Salerno, Italy

The outcome of a program execution is a mapping from shared
object method invocations to the values they return in that execu-
tion. In order to relate outcomes in different executions of the same
program P(O), we assume that shared object method invocations
in executions of P(O) have unique identifiers that relate to the
syntax of P(O). These identifiers can be defined, for instance, as
a triple of a process id, the control point (line number) at which
that invocation occurs, and the number of times this control point
occurred in the past (in order to deal with looping constructs). Then,
an outcome maps these identifiers to return values. An outcome of
a program P(O) is the outcome of an execution of P(O).

Consider two sets of objects O; and O, for which there exists a
bijection A that maps each object O € O; to an equivalent object
O’ € 0,. Given a program P(O), the program P(O,) is obtained
by substituting every object O € O; with the corresponding object
AMO) € 0.

ProposITION 2.1. P(O1) and P(O3) have the same set of out-
comes.

2.4 Adversaries

We say that a program execution observes a sequence of random
values ¥ if the i-th occurrence of a step that samples a random
value (by executing a random(V) instruction) returns 9[i], where
d[i] is the i-th position in a vector d. A schedule is a sequence of
process ids. An execution follows a schedule s when the i-th step of
the execution is executed by the process 5[i]. In the following, we
assume complete schedules that make the program terminate. We
denote by e[P(0),3,5] the unique execution of a program P(O)
that observes ¢ and follows §.

For a program P(QO), a (strong) adversary A against P(O) is a
mapping from sequences of values in V to complete schedules.
We assume that for every two sequences 01,02 € V* that have a
common prefix of length m, the executions e[P(O0), 01, A(91)] and
e[P(0), v, A(03)] are the same until the (m + 1)-th occurrence of
a step that samples a random value, or the end of the execution
if no such steps remain. This assumption captures the constraint
that the scheduling decisions of a strong adversary do not depend
on future randomized choices. A strong adversary A defines a set
of executions E(A), each of which observes a sequence of values ¥
and follows the schedule A(3).

An adversary A against P(O) defines a probability distribu-
tion over program outcomes (of executions in E(A)), denoted by
OutDist(P(0), A). Given a set of outcomes B, Prob[P(O)||A — B]
is the probability defined by OutDist(P(O),A) of an outcome
being contained in B. The probability of P(O) reaching B, de-
noted by Prob|P(O) — 8], is defined as the maximal probability
Prob[P(O)||A — B] over all possible adversaries A. In the context
of our results, the set of outcomes 3 is interpreted as some set of
“bad” states, and the goal is to minimize the probability of a program
reaching them.

The following result shows that a program using atomic objects
minimizes the probability of reaching a set of outcomes, among
programs where the atomic objects can be replaced with equivalent
ones. This follows from the fact that an adversary can restrict itself
to schedules where each method invocation is executed in isolation
(a method can be called only when there is no other pending call),

Session 4

and the outcomes obtained in executions following such schedules
can also be obtained with executions of atomic objects. For a set of
objects O, Qg is the set of atomic objects O that are equivalent to
objects O € O.

PROPOSITION 2.2. For any program P(O) and set of outcomes B,
Prob[P(O) — B] = Prob[P(O,) — B].

Algorithm 1 is an example of a program P where
Prob[P(O) — B] is strictly greater than Prob[P(O,) — 8],
as discussed in the introduction. In this case, O consists of two
instances of the ABD register, one for R and one for C, and 8 is the
set of outcomes where the return values of p,’s invocations satisfy
u1 = c and uy = 1 — c. These values make p, not terminate.

The two probabilities in Proposition 2.2 are equal when O is a
set of strongly linearizable objects:

THEOREM 2.3 ([14]). For any program P(O) using a set of strongly
linearizable objects O, and set of outcomes B, Prob[P(O) — B] =
Prob[P(O,) — B].

3 TAIL STRONG LINEARIZABILITY

We define a generalization of strong linearizability, called tail strong
linearizability, which requires that executions be mapped to prefix-
preserving linearizations only when each method invocation has
executed a minimal number of steps called a preamble. The rela-
tionship between linearizations of different executions where some
invocation has not executed its preamble fully is unconstrained.
When the preamble of every invocation is “empty” (i.e., it includes
only the call transition), this becomes the standard notion of strong
linearizability. When the preamble of every invocation is “full”
(i.e., it includes all the steps of the invocation), this is equivalent
to standard linearizability (since linearizability requires anyway
that any invocation i is linearized before any other invocation i’
that starts after i returns). Section 4 defines a preamble-iterating
transformation of tail strongly linearizable objects that limits the
increase in the probability of a bad outcome when a program uses
the transformed objects instead of equivalent atomic objects.

Let O be an object with a set of methods M. A preamble mapping
IT of O is a mapping that associates each method M € M with
a control point ¢ representing the last step of its preamble. We
assume that every control-flow path of M should pass through ¢
and that ¢ can be reached only once (it is not inside the body of a
loop). The trivial preamble mapping that associates each method
to the initial control point ¢ is denoted by Ily. For instance, for the
multi-writer version of ABD (listed in Algorithm 2 and described
in the introduction), we are interested in a preamble mapping that
associates the Read and Write methods with the control points
where the value with the largest timestamp received from responses
to query messages is assigned (Lines 22 and 26, respectively, in
Algorithm 2).

Given an execution e and a method invocation i, we say that i
passed a control point £ when e contains a step of i at £. An execution
e is complete w.r.t. a preamble mapping II if each invocation of a
method M in e passed the control point IT(M). The set of executions
of O complete w.r.t. IT is denoted by E(O, IT).

An object O is called tail strongly linearizable w.r.t. a preamble
mapping IT and a sequential specification Seq when it is linearizable

213

PODC 22, July 25-29, 2022, Salerno, Italy

w.r.t. Seq and the set of executions E(O,II) is strongly linearizable
w.r.t. Seq. Note that strong linearizability is equivalent to tail strong
linearizability w.r.t. ITy.

When reasoning about programs that use more than one object,
we rely on the fact that tail strong linearizability is local in the
sense that it holds for the union of a set of objects that are each tail
strongly linearizable. Locality holds for tail strong linearizability
as a straightforward consequence of the fact that standard strong
linearizability is local [14].

THEOREM 3.1. A set of histories H of executions with multiple
objects O1,. . .,Op, is tail strongly linearizable w.r.t. some preamble
mapping 111 U ... UIl,,, wherell; is a preamble mapping of Oj, iff
forall j,1 < j < m, the set Hj = {h|Oj : h € H}, where h|Oj is
the projection of h on call and return actions of O}, is tail strongly
linearizable w.r.t. I1;.

4 BLUNTING AN ADVERSARY AGAINST TAIL
STRONGLY LINEARIZABLE OBJECTS

We define a methodology for transforming tail strongly linearizable
objects whose preambles have a certain property we call “effect-
free” into equivalent objects. The use of the transformed objects can
reduce the probability that a program using the objects reaches a
set of (bad) outcomes. Intuitively, the transformed objects can blunt
the power of any adversary against a program using them and in
the limit restrict its power to what it has when the program uses
atomic objects (which is a lower bound by Proposition 2.2). As we
show in Section 5, the class of objects to which the transformation
applies includes a broad set of widely-used objects, including the
ABD register (both its original single-writer version [3] as well
as the multi-writer version [22]), the atomic snapshot algorithm
using single-writer registers of Afek et al. [1], the Vitanyi and
Awerbuch algorithm to construct a multi-writer register from single-
writer registers [24], and the Israeli and Li algorithm to construct
a multi-reader register from single-reader registers [21]. None of
these implementations is strongly linearizable and in fact strongly-
linearizable implementations are known to be impossible in most
of these cases (see Section 6).

4.1 The Preamble-Iterating Transformation for
Tail Strongly Linearizable Objects

The preamble-iterating transformation is defined in Algorithm 3.
For a given integer k > 1, object O, and preamble mapping IT, we
define an object Olk] (we may omit the preamble mapping II from
the notation when it is understood from the context) where each
method M is replaced with a method M k that iterates the preamble
of M (see the for loop in Algorithm 3) k times and uses the values of
a randomly chosen iteration for the rest of the code (corresponding
to index j selected in Line 8). To simplify the notations, we assume
that the code of each preamble of a method M (the code up to and
including the control point IT(M)) is encapsulated in a function
called PREAMBLE that takes the same input as M and returns the
values of M’s local variables after executing that preamble. These
values are stored in the array locals. The rest of the code, which uses
the values in locals, is left unchanged. The results of the preamble

Session 4

iterations are stored in a two dimensional array MQ where each
row has the same size as locals.

This transformation leads to an equivalent object provided that
the preamble contains only effect-free computation, which, infor-
mally speaking, does not affect the behavior of the other processes
running concurrently (effect-free computation can affect the state
of the process that executes it). For instance, the preamble of ABD’s
Read and Write methods consists in sending “query” messages to
the other processes, waiting for replies, and computing the largest
timestamp value from the replies (the queryPhase function in Algo-
rithm 2). Sending a reply to a query message from another concur-
rently running process does not affect the behavior of the sender,
as its local variables remain unchanged (cf. Algorithm 2).

Algorithm 3 Transforming a tail strongly linearizable object O to ok,
k > 1. Each method M of O is transformed to a method M* of O.

1: method M(v):

2: locals := PREAMBLE(V)

3: // rest of the code . ..

. method MK (v):
: fori:=1tok do

—
locals[i] := PREAMBLE(0)
: end for
. j = random([1..k])

>

9: locals := locals| j]
10: // rest of the code ...

® N U

In general, a computation step of an object implementation is
either

e an invocation to a method of a base object, e.g., a register,
which is assumed to be atomic, or

o a send/receive step in the context of a message-passing sys-
tem, or

e alocal computation step on some set of local variables (which
cannot be accessed by other processes).

A computation step is called effect-free if it is a local computation
step, or, if in the first case, the invoked method itself is effect-free,
e.g., a Read method of an atomic register, or if in the second case,
it is a receive or a send of a message that does not modify the local
state of the receiving process, e.g., sending a “query” message in
the ABD register. For a preamble mapping II, we say that a method
M has an effect-free preamble if all the computation steps up to and
including ITI(M) are effect-free. An object is said to have effect-free
preambles iff all its methods have effect-free preambles.

It can be easily proved that ok is equivalent to O, provided that
O has effect-free preambles. We also assume that the original tail
strongly linearizable objects are deterministic, i.e., they do not rely
on randomization. Indeed, by definition, repeating the effect-free
preamble has no effect on local states of other processes. Each ex-
ecution of OF can be transformed to an execution of O where all
the preamble repetitions that are not “used” in an invocation (i.e.,
the value they compute is not selected to continue the computa-
tion) can be simply removed. Since the original OF execution has
exactly the same history as the one of O, its linearizability w.r.t. the
specification of O follows from the linearizability of the execution
of O. Conversely, every execution of O can be transformed to an

214

PODC 22, July 25-29, 2022, Salerno, Italy

execution of Ok by “appending” sufficiently many repetitions of
the preamble and restricting the random choice to select the first
repetition.

THEOREM 4.1. For every object O with effect-free preambles and
k>1,0%is equivalent to O.

4.2 Quantifying the Blunting Power

We characterize the power of OF objects in lowering the probability
that a program P using them reaches some set 8 of outcomes, com-
pared to P using the original objects O instead. Since we interpret
B as “bad” outcomes, lowering this probability is desirable.

For a set of objects O, OF is the set of objects O% with O € O.
While stating the result below, the program P and the set of out-
comes B are fixed (but arbitrary), and to simplify the notation, we
write Prob[O] instead of Prob[P(O) — B], for any set of objects
0. Also, we say that a program P(O) has at most r random steps
if every execution of P contains at most r steps corresponding
to executing a random instruction. This definition applies to pro-
grams using objects O and not the transformed objects O% which
introduce additional random steps.

We show that Prob[OF] decreases with respect to Prob[O] as
the number of preamble iterations k increases and exceeds the
maximum number r of random steps in the program. This provides
a trade-off between time complexity, which grows with k, and
the probability of reaching bad outcomes, which decreases with
k. This result is based on a worst-case analysis which makes no
assumptions about the structure of the program.

THEOREM 4.2. For every program P(O) withn > 1 processes and
at most r > 1 random steps, where O is a set of deterministic tail
strongly linearizable objects with effect-free preambles, for every set
of outcomes B, and for every positive integer k,

Prob[OF] <Prob[O4]

- (max{O,k - r})n_1

* k

- (Prob[O] — Prob|O,]) .

Theorem 4.2 states that the probability of a bad outcome when
using objects in which the preamble is iterated k times is at most
the probability when using atomic objects plus a fraction of the
difference between the probabilities when using atomic objects and
when using the original linearizable objects. The fraction is, roughly
speaking, the probability that the adversary is able to manipulate
the behavior to its advantage, and it goes to 0 as k increases. Thus
the probability with the preamble-iterated objects approaches the
probability with atomic objects.

4.3 Proof Outline for Theorem 4.2

We start by introducing some terminology. The program P(OF) has
two types of random instructions: the random instructions com-
ing from the original program P(QO), which are outside of object
implementations, and the random instructions added in the O%
implementations (see Algorithm 3). The former are called program
random instructions, and the latter object random instructions.
Steps in an execution corresponding to program (object) random
instructions are called program (object) random steps. Each method

Session 4

invocation in an execution of P(O¥) performs k iterations of a pre-
amble (of some method of an object in O). A preamble iteration is
called randomization-free when it does not overlap with a program
random step, i.e., every program random step occurs either before
or after all the steps of that preamble iteration.

Let A be an adversary against P(OX) defining a probability distri-
bution over executions/outcomes. Let X be the event that all the ob-
ject random steps return indices that correspond to randomization-
free preamble iterations. We decompose the probability of A reach-
ing a set of outcomes B by conditioning on X:

Prob[P(O%)||A — B] = Prob[(P(O¥)||A — B) | X] - Prob[X]
+ Prob[(P(OF)||A — B) | =X] - (1 - Prob[X]) (1)
Lemma 4.3 (proved below) shows that the probability of A
reaching 8 conditioned on X is upper bounded by the probabil-
ity of any adversary reaching $ in the same program but with
atomic objects instead of OF. That s, Prob[(P(()k) |1A— B)|X] <
Prob[P(Og4) — B]. Lemma 4.4 (proved below) shows that the
probability of reaching 8 with OF conditioned on —X can-
not be larger than the probability of reaching 8 with O, i.e.,
Prob[(P(O%)||A = B) | =X] < Prob[P(O) — B]. Substituting
into (1), we get that

Prob[P(O)||A — B] <Prob[P(O,) — B] - Prob[X]
+ Prob[P(O) — B] - (1 — Prob[X]) (2)

=Prob[P(O,) — B]
+ (1 = Prob[X]) - (Prob[P(O) — B] — Prob[P(0O,) — B])
L max{0,k—r} n-1
emma 4.5 (proved below) shows that Prob[X] > (T) ,

which concludes the proof of the theorem.

4.4 Detailed Proofs
LEMMA 4.3. Prob[(P(O¥)||A — B) | X] < Prob[P(O,) — 8].

Proor. Based on the adversary A, we will define an adversary
Ap against P(O) that mimics the adversary A against P(OX) con-
ditioned on X for program random steps and takes the choices
for object random steps that maximize the probability of reaching
B. Ap will cause all the prefixes of executions in E(Ap) that end
with a program random step to be complete w.r.t. each preamble
mapping of an object in O. The construction of Ay will ensure that

Prob[(P(O%)||A — B) | X] < Prob[P(O)||Ag — B] (3)

Then, we will use the completeness w.r.t. preamble mappings of
execution prefixes to show that

Prob[P(0)||Ag — B] < Prob[P(Og) — B].

which will complete the proof. Details follow.

Given a sequence g of values returned by program random steps,
let i be a sequence of values returned by program or object random
steps such that @ is a subsequence of # and for every index i in u
representing the value of an object random step,

©

Prob[(P(OF)||A — B) | X | i[< i]]

= maxyey Prob[(P(OM)||A > B) | X | d[<i—1]-0] (5)

215

PODC 22, July 25-29, 2022, Salerno, Italy

where Prob[(P(Ok)HA — B) | X | o] is the probability that A
reaches B in P(Ok) conditioned on X, and further conditioned on
the fact that the first |o| (program or object) random steps return
the values in o (in the order defined by o), and @[< i] is the prefix of
u of length i (by convention, #[< —1] is the empty sequence €). The
schedule A(#) contains k preamble iterations for each method invo-
cation, but only one of them, determined by the result of the object
random step in that invocation, is used to continue the computa-
tion. Let remRedundant(A(i)) be the schedule where all the k — 1
preamble iterations that are not used in a method invocation are
removed. By the definition of the O objects, remRedundant(A(i))
is a schedule producing a valid execution of P(O). We define

Ao (9) = remRedundant(A(#)).

By the construction, property (5) in particular, we have that property
(3) holds. Also, since we consider schedules of A conditioned on
X, all the preamble iterations selected by object random steps are
randomization-free, and therefore, at every program random step
in remRedundant(A(i)), there is no invocation that started but did
not finish its preamble.

To prove property (4), we show that there exists an ad-
versary Ag, against P(O,) such that OutDist(P(0),Ap) =
OutDist(P(QOq), Ag,)- We rely on the facts that each object in O is
tail strongly linearizable, that tail strong linearizability is local (cf.
Theorem 3.1), and that all the prefixes of executions in E(Ap) end-
ing with a program random step are complete w.r.t. each preamble
mapping of an object in O. The adversary A, is defined iteratively
by enumerating program random steps. Initially, by the definition
of an adversary, all executions produced by Ay are identical until
the first occurrence rs; of a program random step. By tail strong
linearizability, it is possible to define a valid linearization (satisfy-
ing each object specification) of the invocations that start before
rs; which does not depend on execution steps that follow rs; (i.e.,
this linearization can be extended by appending more invocations
when considering steps after rs;). Let og be such a linearization.
We impose the constraint that all the executions produced by Ag
start with o).

Next, we focus on execution prefixes that end just before the
second occurrence rsy of a program random step. Assume that rsj is
arandom choice between a set of values V and letv € V. Using again
the definition of an adversary, all the executions produced by the
restriction of Ap to the domain v - V* (sequences of values starting
with v) are identical until rsy. By tail strong linearizability, there
exists a linearization o, of the invocations that started before rs;
in these executions such that oy is a prefix of ;. Moreover, o, can
be chosen in such a way that it does not depend on execution steps
that follow rsz. We define Ag_ such that Ag, (v-V*) € gy - Act™ for
each v € V (Act denotes the set of call/return actions in a history).
That is, each execution that the adversary produces when the first
program random step returns v starts with the linearization o.

Iterating the same construction for all the remaining program
random steps, we get an adversary Ag, against P(O,) such that
Ao, () is a linearization of the invocations in Ag (), for all @.
Therefore, OutDist(P(O), Ag) = OutDist(P(QO,), A,), and prop-
erty (4) holds. o

LEMMA 4.4. Prob[(P(O%)||A — B) | =X] < Prob[P(O) — B].

Session 4

PROOF. As in the proof of Lemma 4.3, property (3), one can
define an adversary A}, against P(O) that mimics the adversary

A against P(OF) for program random steps and takes the choices
for object random steps that maximize the probability of reaching
$. This argument is actually agnostic to the conditioning on =X,
because it does not depend on the specific results returned by object
random steps from which to make the desired choice. We include
the conditioning only to match the proof goal coming from (1). We
have that

Prob[(P(Ok)HA - B)|-X] < Prob[P(O)HA'O — B] (6

The result follows from the fact that Prob[P(0)||A’O — B] <
Prob[P(0O) — 8B]. |

LEMMA 4.5. Prob[X] > (%M)n l.

PROOF. Since the random choices in OF method invocations are
independent, we have that Prob[X] = []; Prob[X;] where X; is the
event that the i-th object random step in an invocation to a method
of O chooses a randomization-free preamble iteration (we assume
an arbitrary but fixed total order on invocations in P). The mini-
mal value for Prob[X] can be attained by making many Prob[X;]
as small as possible. To minimize the product of Prob[X;] terms,
we need that each program random step overlaps with a maxi-
mum number of preamble iterations, i.e., one preamble iteration
from each other process. Then, to maximize the number of small
Prob[X;] terms, we need to maximize the number of invocations
that contain a maximal number of preamble iterations overlapping
with a program random step. These two constraints can be attained
assuming that all program random steps are in the same process
and each one of them overlaps with a different preamble iteration
from the same invocation of each other process. If k < r, in the
worst case the adversary might be able to ensure that no object
random step returns an index that corresponds to a randomization-
free preamble iteration, which is the reason for the use of the max
function. Therefore, for n — 1 invocations i,
max{0,k —r}

k
and Prob[X] = 1 for the rest of the invocations j. Therefore,

max{0,k — r} n-1
k

Prob[X;] =
Prob[X] > (

5 EXAMPLES OF TAIL STRONGLY
LINEARIZABLE OBJECTS

We discuss several objects introduced in the literature that are not
strongly linearizable, but are tail strongly linearizable with respect
to some non-trivial, effect-free preamble mapping.

5.1 ABD Register

Variations of the ABD implementation of a register in a crash-prone
message-passing system are used in many applications. Unfortu-
nately, it is impossible to have a strongly linearizable version of
ABD [6, 10]. However, as we show next, our transformation is
applicable to ABD.

216

PODC 22, July 25-29, 2022, Salerno, Italy

Specifically, we show that the multi-writer variant [22] of the
ABD register [3] (which is listed in Algorithm 2 and explained in
the introduction) is tail strongly linearizable w.r.t. the preamble
mapping II4pp that associates Read and Write with the control
points Lines 22 and 26, respectively. These are the control points of
the steps that assign the return value of queryPhase to (v, u) and
(-, (¢, —)), respectively.

THEOREM 5.1. The ABD object in Algorithm 2 is tail strongly
linearizable w.r.t. Il ogp.

Proor. The timestamp of a Read invocation is the timestamp
returned by its query phase (the value u at line 22), and the times-
tamp of a Write is the timestamp given as parameter to its update
phase (the pair (¢ + 1, i) at line 27). The timestamp of an invocation
o is denoted by ts(o).

Given an execution e that is complete w.r.t. II4gp, we say that
an invocation o is logically-completed in e when there exists an
invocation o’ that returns in e such that ts(o) < ts(o’). Since o
and o’ may coincide, if an invocation returns in e, then it is also
logically-completed in e. By definition, every invocation in e has a
well-defined timestamp (since every invocation passed the query
phase).

We define a function f that associates to each such execution e
a linearization that contains all the invocations that are logically-
completed in e ordered according to their timestamp. A set of in-
vocations in e that have the same timestamp consists of exactly
one Write invocation and some number of Read invocations. The
linearization f(e) orders the write before all the reads with the
same timestamp, if any.

To show that f is prefix-preserving, let e, ¢’ € E(ABD, II) such
that e is a prefix of e/. We show that a linearization of e where
invocations that are logically-completed in e are ordered before
invocations that are not logically-completed is consistent with an
analogous linearization of e’.

For an invocation oy that is logically-completed in e, we show
that ts(o1) < ts(oz) for every invocation o, that is not logically-
completed in e. There are two cases to consider. First, if 0, queries
after e, then we use the fact that ABD guarantees that the timestamp
of an invocation is smaller than or equal to the timestamp returned
by any query phase starting after that invocation returned. By the
definition of logically-completed, there exists an invocation o] that
returns in e such that ts(o1) < ts(o}). Using the property of ABD
mentioned above, we get that ts(oi) < ts(02), which implies that
ts(o1) < ts(o02).Second, if 02 queries during e, then by the definition
of logically-completed, ts(02) > ts(o7) for every invocation o that
returns in e. Since o5 is logically-completed in e, we get that there
exists an invocation o] that returns in e such that ts(o1) < ts(o/).
Therefore, ts(01) < ts(o2). Next, we show that there cannot exist
a Write invocation o; that is not logically-completed in e while a
Read invocation o3 with the same timestamp is logically-completed
in e. Clearly, 0; cannot query after e since oz queries during e by
definition. Assuming that both invocations query during e, we
get a contradiction because the definition of logically-completed
implies that ts(o;) > ts(o]) for every invocation o] that returns

1

in e and there exists an invocation oé that returns in e such that

ts(oz) < ts(0}). These two statements imply that ts(o1) > ts(oz)

Session 4

which is a contradiction to the fact that 0; and 02 have the same
timestamp.

Finally, an invocation o7 that is not logically-completed in e
cannot return before an invocation oz that is logically-completed
in e. Since 02 queries during e, this would imply that o returns in
e which would imply that o; is logically-completed in e. O

The above result holds also for the original single-writer ver-
sion [3], which is also not strongly linearizable [10, 16].

5.2 Snapshot

Another popular shared object is the atomic snapshot. It is impossi-
ble to implement a strongly-linearizable lock-free snapshot object
using single-writer registers [19] and it is impossible to implement
a strongly-linearizable wait-free snapshot object using multi-writer
registers [12]. However, we show next that we can apply our trans-
formation to the linearizable wait-free snapshot implementation
in [1], which uses single-writer registers.

The snapshot object implementation of [1] uses an array M of
registers whose length is the number of processes (accesses to these
registers are atomic, i.e., they execute instantaneously). It provides a
Scan method that returns a snapshot of the array and an Update(v)
method by which a process i writes value v in M[i]. Scan performs
a series of collects, i.e., successive reads of the array’s cells in some
fixed order; a collect in a process can interleave with steps of other
processes. This series of collects stops when either two successive
collects return identical values, or the process observes that another
process has executed at least two Update invocations during the
timespan of the Scan. In the latter case, the return value is the
last snapshot written by the other process during an Update. An
Update invocation at a process i starts with a Scan followed by an
atomic write to M[i] of the result of Scan together with the value
received as argument (and a local sequence number seq; that is
read in other Scan invocations).

This snapshot object is known to not be strongly linearizable [14],
but it is tail strongly linearizable w.r.t. a preamble mapping that
maps each Scan to the control point just before it returns and each
Update to the initial control point. The linearization associated to
an execution that is complete w.r.t. this preamble mapping contains
all the (possibly pending) Scan invocations and all the Update
invocations that performed their writes to the array cells, in some
order consistent with the specification (each Scan is linearized
after an Update if it observes its value). Actually, the preamble
of Update can be defined in an arbitrary manner, e.g., extended
until the end of its scan, and tail strong linearizability would still
hold. The reason is that an Update is linearized only if it executed
its write— the scan it performs before the write is only to ensure
progress (wait-freedom). As can be seen in Section 4, extending a
preamble may help in reducing the probability of reaching “bad”
outcomes, but this comes at a cost in terms of time complexity.

5.3 Multi-Writer Multi-Reader Register

Another central shared object is a multi-writer multi-reader regis-
ter. There is no strongly-linearizable wait-free implementation of
such a register using single-writer registers [19]. We show, how-
ever, that our transformation can be applied to the linearizable
implementation in [24].

217

PODC 22, July 25-29, 2022, Salerno, Italy

In this implementation, each value written has a timestamp,
which is a pair consisting of an integer and a process identifier. A
single-writer register Val[i] is associated with each writer i of the
implemented register. When a Read is invoked on the implemented
register, the reader reads (value, timestamp) pairs from all the Val
registers, chooses the value with the largest timestamp using lexi-
cographic ordering, and returns that value. When a Write of value
v on the implemented register is invoked at writer i, the writer
calculates a new timestamp and writes the value together with the
timestamp into Val[i]. To calculate the new timestamyp, i reads all
the Val variables and extracts from it the timestamp entry. Its new
timestamp is one plus the maximal timestamp of all other processes,
together with i’s identifier. This implementation is tail strongly lin-
earizable by choosing the preamble of the Read method to end
just before it returns and the preamble of the Write method to end
immediately before writing to Val[i]. The tail strong linearizability
proof is similar to the one for the ABD register.

5.4 Single-Writer Multi-Reader Register

Yet another standard shared object is a (single-writer) multi-reader
register. A well-known implementation of such a register using
(single-writer) single-reader registers is given in [21]. This imple-
mentation is not strongly linearizable, which can be shown by mim-
icking the counter-example for the ABD register appearing in [16].
However, our transformation is applicable to this implementation,
as we show next. (It seems likely that the argument in [10] can be
adapted to show that it impossible to have a strongly-linearizable
implementation of a multi-reader register using single-reader reg-
isters, as it is easy to simulate a message-passing channel with a
single-reader register.)

In the implementation, a single-reader register Val[i]is associated
with each reader i of the implemented register. To Write a value v
to the implemented register, the (unique) writer writes v, together
with a sequence number, into all of the Val registers. The readers
communicate with each other via a (two-dimensional) array Report
of single-reader registers, where reader i writes to all the registers
in row i and reads from all the registers in column i. When a Read
of the implemented register is invoked at process i, it reads (value,
sequence number) pairs from Val[i] and from all the registers in
column i of Report; it then chooses the value to return with the
largest sequence number, writes this pair to all the registers in
row i of Report, and returns. This implementation is tail strongly
linearizable: the preamble of the Read method ends just before the
first write to an element of Report, while the preamble of the Write
method is empty. As before, the proof of tail strong linearizability
is similar to the one for the ABD register.

6 RELATED WORK

Golab, Higham and Woelfel [14] were the first to recognize the
problem when linearizable objects are used with randomized pro-
grams, via an example using the snapshot object implementation
of [1]. They proposed strong linearizability as a way to overcome the
increased vulnerability of programs using linearizable implemen-
tations to strong adversaries, by requiring that the linearization
order of operations at any point in time be consistent with the

Session 4

linearization order of each prefix of the execution. Thus, strongly-
linearizable implementations limit the adversary’s ability to gain
additional power by manipulating the order of internal steps of
different processes. Consequently, properties holding when a con-
current program is executed with an atomic object continue to
hold when the program is executed with a strongly-linearizable
implementation of the object. Strong linearizability is a special case
of our class of implementations, where the preamble of each opera-
tion is empty and thus, vacuously, effect-free; in this case, applying
the preamble-iterating transformation results in no change to the
implementation.

Other than [6, 10] which studied message-passing implementa-
tions, prior work on strong linearizability focused on implementa-
tions using shared objects, and considered various progress prop-
erties. If one only needs obstruction-freedom, which requires an
operation to complete only if it executes alone, any object can be im-
plemented using single-writer registers [19]. When considering the
stronger property of lock-freedom (or nonblocking), which requires
that as long as some operation is pending, some operation com-
pletes, single-writer registers are not sufficient for implementing
multi-writer registers, max registers, snapshots, or counters [19]. If
the implementations can use multi-writer registers, though, it is pos-
sible to get lock-free implementations of max registers, snapshots,
and monotonic counters [12], as well as of objects whose operations
commute or overwrite [23]. It was also shown [4] that there is no
lock-free implementation of a queue or a stack from objects whose
readable versions have consensus number less than the number of
processes, e.g., readable test&set. For the even stronger property of
wait-freedom, which requires every operation to complete, it is pos-
sible to implement bounded max registers using multi-writer regis-
ters [19], but it is impossible to implement max registers, snapshots,
or monotonic counters [12] even with multi-writer registers. The
bottom line is that the only known strongly-linearizable wait-free
implementation is of a bounded max register (using multi-writer
registers), while many impossibility results are known.

Write strong linearizability (WSL) [18] is a weakening of strong
linearizability designed specifically for register objects. It requires
that executions be mapped to linearizations where only the pro-
jections onto write operations are prefix-preserving. While single-
writer registers are trivially WSL, neither the original multi-writer
ABD nor the preamble-iterating version we introduce in this paper
is WSL [18]. The WSL implementation given in [18] has effect-
free preambles, and so our transformation is applicable to it. It is
not known whether it is possible to implement WSL multi-writer
registers in crash-prone message-passing systems.

Our approach draws (loose) inspiration from the vast research
on oblivious RAM (ORAM) (initiated in [15]), although the goals and
technical details significantly differ. ORAMs provide an interface
through which a program can hide its memory access pattern, while
at the same time accessing the relevant information. More generally,
program obfuscation [9] tries to hide (obfuscate) from an observer
knowledge about the program’s functionality, beyond what can
be obtained from its input-output behavior. The goal of ORAMs
and program obfuscation is to hide information from an adversary,
while our goal is to blunt the adversary’s ability to disrupt the pro-
gram’s behavior by exploiting linearizable implementations used
by the program. We borrow, however, the key idea of introducing

218

PODC 22, July 25-29, 2022, Salerno, Italy

additional randomization into the implementation, in order to make
it less vulnerable to the adversary.

7 DISCUSSION

We have presented the preamble-iterating transformation for a vari-
ety of linearizable object implementations, e.g., [1, 3, 21, 24], which
approaches the probability of reaching particular outcomes, when
these implementations replace the corresponding atomic objects. In
this manner, it salvages randomized programs that use these highly-
useful objects—which lack strongly-linearizable implementations—
so they still terminate, without modifying the programs or their
correctness proofs. Furthermore, the transformation is mechanical,
once the preamble is identified.

Our results are just the first among many new opportunities for
modular use of object libraries in randomized concurrent programs,
including the following exciting avenues for future research.

One direction is to improve our analysis and obtain better bounds,
specifically, by exploring the tradeoff between the increased com-
plexity of many repetitions of the preamble, and decreased proba-
bility of bad outcomes.

Our transformation introduces computational overhead that de-
pends on the number of program random steps that must be con-
sidered. Thus it is crucial to reduce, or at least bound, this number.
This can be done by making assumptions about the structure of the
randomized concurrent program. For example, many randomized
programs are round-based, where each process takes a fixed (often,
constant) number s of random steps in each round, and termina-
tion occurs with high probability within some number of rounds,
say T. In this case, we can let the program run for T rounds and
apply the preamble-iterating transformation with k > T - s; if the
program does not terminate within T rounds, which happens with
small probability, the program just continues with the original,
linearizable object. An alternative approach for dealing with an
unbounded number of random steps is to assume that the rounds
are communication-closed [13], resulting in a smaller number of
random choices that could affect the linearizable implementation.
For example, a common style of algorithm partitions the code into
phases (or rounds) and has each of n processes flip a single coin in
each phase, i.e., 7 = n. If our transformation is applied to each phase
by repeating the preamble of each operation k = 2r = 2n times,
good probabilistic behavior is achieved with linear (in n) overhead.
See [7, Section 2.4] for an example along these lines.

Another direction is to consider other objects without wait-free
strongly-linearizable implementations, e.g., queues or stacks [4],
which lack effect-free preambles that can be easily repeated. For
such objects, it might be possible to roll back the effects of repeating
certain parts of their implementation.

ACKNOWLEDGMENTS

Hagit Attiya is partially supported by the Israel Science Foundation
(grant number 380/18). Jennifer L. Welch is supported in part by
the U.S. National Science Foundation under grant number 1816922.

REFERENCES

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir
Shavit. 1993. Atomic Snapshots of Shared Memory. 7. ACM 40, 4 (1993), 873-890.

Session 4

(2]

=

[9

=

[10]

(11

[12]

[13

James Aspnes. 2003. Randomized protocols for asynchronous consensus. Dis-
tributed Computing 16, 2-3 (2003), 165-175.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly
in Message-passing Systems. J. ACM 42, 1 (1995), 124-142.

Hagit Attiya, Armando Castafieda, and Danny Hendler. 2018. Nontrivial and
universal helping for wait-free queues and stacks. J. Parallel and Distrib. Comput.
121 (2018), 1-14.

Hagit Attiya and Constantin Enea. 2019. Putting Strong Linearizability in Context:
Preserving Hyperproperties in Programs that Use Concurrent Objects. In 33rd
International Symposium on Distributed Computing (DISC). Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2:1-2:17.

Hagit Attiya, Constantin Enea, and Jennifer L. Welch. 2021. Impossibility of
Strongly-Linearizable Message-Passing Objects via Simulation by Single-Writer
Registers. In 35th International Symposium on Distributed Computing (DISC).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 7:1-7:18.

Hagit Attiya, Constantin Enea, and Jennifer L. Welch. 2021. Linearizable Imple-
mentations Suffice for Termination of Randomized Concurrent Programs (version
1). CoRR abs/2106.15554 (2021). https://arxiv.org/abs/2106.15554v1

Hagit Attiya, Constantin Enea, and Jennifer L. Welch. 2022. Blunting an Adversary
Against Randomized Concurrent Programs with Linearizable Implementations.
CoRR abs/2106.15554 (2022). https://arxiv.org/abs/2106.15554

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. 2012. On the (im)possibility of obfuscating programs.
9. ACM 59, 2 (2012), 1-48.

David Yu Cheng Chan, Vassos Hadzilacos, Xing Hu, and Sam Toueg. 2021. An
Impossibility Result on Strong Linearizability in Message-Passing Systems. CoRR
abs/2108.01651 (2021). https://arxiv.org/abs/2108.01651

Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of
Computer Security 18, 6 (2010), 1157-1210.

Oksana Denysyuk and Philipp Woelfel. 2015. Wait-Freedom is Harder Than
Lock-Freedom Under Strong Linearizability. In Distributed Computing - 29th
International Symposium (DISC). Springer, 60-74.

Tzilla Elrad and Nissim Francez. 1982. Decomposition of Distributed Programs
into Communication-Closed Layers. Sci. Comput. Program. 2, 3 (1982), 155-173.

PODC 22, July 25-29, 2022, Salerno, Italy

https://doi.org/10.1016/0167-6423(83)90013-8

Wojciech Golab, Lisa Higham, and Philipp Woelfel. 2011. Linearizable Implemen-
tations Do Not Suffice for Randomized Distributed Computation. In Proceedings
of the 43rd ACM Symposium on Theory of Computing (STOC). ACM, New York,
NY, USA, 373-382.

Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. 7. ACM 43, 3 (1996), 431-473.

Vassos Hadzilacos, Xing Hu, and Sam Toueg. 2020. On Atomic Registers and
Randomized Consensus in M&M Systems (version 4). CoRR abs/1906.00298 (2020).
http://arxiv.org/abs/1906.00298

Vassos Hadzilacos, Xing Hu, and Sam Toueg. 2020. On Linearizability and the
Termination of Randomized Algorithms. CoRR abs/2010.15210 (2020). http:
//arxiv.org/abs/2010.15210

Vassos Hadzilacos, Xing Hu, and Sam Toueg. 2021. On Register Linearizability
and Termination. In ACM Symposium on Principles of Distributed Computing
(PODC). ACM, New York, NY, USA, 521-531.

Maryam Helmi, Lisa Higham, and Philipp Woelfel. 2012. Strongly linearizable im-
plementations: possibilities and impossibilities. In ACM Symposium on Principles
of Distributed Computing (PODC). ACM, New York, NY, USA, 385-394.

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463-492.

Amos Israeli and Ming Li. 1993. Bounded Time-Stamps. Distributed Computing
6, 4 (1993), 205-209.

Nancy A Lynch and Alexander A Shvartsman. 1997. Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts. In Proceedings of IEEE
27th International Symposium on Fault Tolerant Computing. IEEE, 272-281.
Sean Ovens and Philipp Woelfel. 2019. Strongly Linearizable Implementations
of Snapshots and Other Types. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, (PODC). ACM, New York, NY, USA, 197-206.
Paul M. B. Vitanyi and Baruch Awerbuch. 1986. Atomic Shared Register Access by
Asynchronous Hardware. In 27th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 233-243.

https://arxiv.org/abs/2106.15554v1
https://arxiv.org/abs/2106.15554
https://arxiv.org/abs/2108.01651
https://doi.org/10.1016/0167-6423(83)90013-8
http://arxiv.org/abs/1906.00298
http://arxiv.org/abs/2010.15210
http://arxiv.org/abs/2010.15210

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Objects
	2.2 (Strong) Linearizability
	2.3 Randomized Programs
	2.4 Adversaries

	3 Tail Strong Linearizability
	4 Blunting an Adversary Against Tail Strongly Linearizable Objects
	4.1 The Preamble-Iterating Transformation for Tail Strongly Linearizable Objects
	4.2 Quantifying the Blunting Power
	4.3 Proof Outline for Theorem 4.2
	4.4 Detailed Proofs

	5 Examples of Tail Strongly Linearizable Objects
	5.1 ABD Register
	5.2 Snapshot
	5.3 Multi-Writer Multi-Reader Register
	5.4 Single-Writer Multi-Reader Register

	6 Related Work
	7 Discussion
	Acknowledgments
	References

