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We present an algorithm for implementing a store-collect object in an asynchronous 
crash-prone message-passing dynamic system, where nodes continually enter and leave. 
The algorithm is very simple and efficient, requiring just one round trip for a store 
operation and two for a collect. We then show the versatility of the store-collect object 
for implementing churn-tolerant versions of useful data structures, while shielding the 
user from the complications of the underlying churn. In particular, we present elegant 
and efficient implementations of atomic snapshot and generalized lattice agreement objects 
that use store-collect.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

A popular programming technique that contributes to designing provably-correct distributed applications is to use shared 
objects for interprocess communication, instead of more low-level mechanisms such as message-passing. Although shared 
objects are a convenient abstraction, they are not generally provided in large-scale distributed systems; instead, nodes keep 
copies of the data and communicate by sending messages to keep the copies consistent.

Dynamic distributed systems allow computing nodes to enter and leave the system at will, either due to failures and 
recoveries, moving in the real world, or changes to the systems’ composition, a process called churn. Motivating applications 
include those in peer-to-peer, sensor, mobile, and social networks, as well as server farms. We focus on the situation when 
the network is always fully connected, which could be due to, say, an overlay network. A broadcast mechanism is assumed 
through which a node can send a message to all nodes present in the system; the broadcast is not necessarily reliable and 
a message sent by a failing node may not reach some of the nodes.

The usefulness of shared memory programming abstractions has been long established for static systems (e.g., [4,6]), 
which have known bounds on the number of fixed computing nodes and the number of possible failures. This success has 
inspired work on providing the same for newer, dynamic, systems. However, most of this work has shown how to simulate 
a shared read-write register (e.g., [2,7,11,12,20]). We discuss a couple of exceptions [13,24] below.
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In this paper, we promote the store-collect shared object [8] (defined in Section 2) as a primitive well-suited for dynamic 
message-passing systems with an ever-changing set of participants. Each node can store a value in a store-collect object 
with a Store operation and can collect the latest value stored by each node with a Collect operation. Inherent in the 
specification of this object is an ability to track the set of participants and to read their latest values.

Below we elaborate on three advantageous features of the store-collect object: The store-collect semantics is well-suited 
to dynamic systems and can be implemented easily and efficiently in them; the widely-used atomic snapshot object can 
be implemented on top of a store-collect object; and a variety of other commonly-used objects can be implemented either 
directly on top of a store-collect or on top of an atomic snapshot object. These implementations are simple and inherit the 
properties of being churn-tolerant and efficient, showing that store-collect combines algorithmic power and efficiency.

A churn-tolerant store-collect object can be implemented fairly easily. We adopt essentially the same system model as in [7], 
which allows ongoing churn as long as not too many churn events take place during the length of time that a message is 
in transit. To capture this constraint, there is an assumed upper bound D on the maximum message delay, but no (positive) 
lower bound. Nodes do not know D and have no local clocks, causing consensus to be unsolvable, even if the system is 
static [7]. The model differentiates between nodes that crash and nodes that leave; nodes that have entered but not left are 
considered present even if crashed. The number of nodes that can be crashed at any time is bounded by a fraction of the 
number of nodes present at that time. During any time interval of length D , the number of nodes entering or leaving is a 
fraction of the number of nodes present in the system at the beginning of the interval. (See Section 3 for model details.)

Our algorithm for implementing a churn-tolerant store-collect object is based on the read-write register algorithm in [7]. 
It is simple and efficient: once a node joins, it completes a store operation within one round-trip, and a collect operation 
within two round-trips. The store-collect object satisfies a variant of the “regularity” consistency condition, which is weaker 
than linearizability [22]. In contrast to our single-round-trip store operation, the write operation in the algorithm of [7]
requires two round trips. Another difference between the algorithms is that in ours, each node keeps a local set of tuples 
with an entry for each known node and its value instead of a single value; when receiving new information, instead of 
overwriting the single value, our algorithm merges the new information with the old. One contribution of our work in this 
paper is a significantly revised proof of the churn management protocol that is much simpler than that in [7], consequently 
making it easier to build on the results. (See Section 4.)

Building an atomic snapshot on top of a store-collect object is easy! We present a simple algorithm with an elegant correct-
ness proof (Section 6.2). One may be tempted to implement an atomic snapshot in our model by plugging churn-tolerant 
registers (e.g., [7]) into the original algorithm of [1]. Besides needlessly sequentializing accesses to the registers, such an 
implementation would have to track the current set of participants. In contrast, using our store-collect object, which en-
capsulates the changing participants and collects information from them in parallel, yields a simple algorithm very similar 
in spirit to the original but whose round complexity is linear instead of quadratic in the number of participants. The key 
subtlety of the algorithm is the mechanism for detecting when a scan can be borrowed in spite of difficulties caused by the 
churn, in order to ensure termination.

Atomic snapshot objects have numerous uses in static systems, e.g., to build multi-writer registers, concurrent timestamp 
systems, counters, and accumulators, and to solve approximate agreement and randomized consensus (cf. [1,4]). In addition 
to analogous applications, we show (Section 6.3) how a churn-tolerant atomic snapshot object can be used to provide a 
churn-tolerant generalized lattice agreement object [17]. This object supports a Propose operation whose argument is a 
value belonging to a lattice and whose response is a lattice value that is the join of some subset of all prior input values, 
including its own argument. Generalized lattice agreement is an extension of (single-shot) lattice agreement, well-studied 
in the static shared memory model [9]. Generalized lattice agreement has been used to implement many objects [15,17], 
including atomic snapshots [9] and conflict-free replicated data types [24,28,29], e.g., linearizable abort flags, sets, and max 
registers [24].

The store-collect object specification is versatile. Our atomic snapshot and generalized lattice agreement algorithms demon-
strate that layering linearizability on top of a store-collect object is easy. Yet not every application needs the costs associated 
with linearizability, and store-collect gives the flexibility to avoid them. Our approach to providing churn-tolerant shared 
objects is modular, as the underlying complications of the message-passing and the churn are hidden from higher layers 
by our store-collect implementation. As evidence, we observe (Section 6.1) that store-collect allows very simple implemen-
tations of max-registers, abort flags, and sets, in which an implemented operation takes at most a couple of store and 
collect operations. The choice of problems and the algorithms follow [24] but the algorithms inherit good efficiency and 
churn-tolerance properties from our store-collect implementation.

Related work An algorithm that directly implements an atomic snapshot object in a static message-passing system, bypassing 
the use of registers, is presented by Delporte-Gallet et al. [16]. This algorithm includes several nice optimizations to improve 
the message and round complexities. These include speeding up the algorithm by parallelizing the collect, as is already 
encapsulated in our store-collect algorithm. Our atomic snapshot algorithm works in a dynamic system and has a shorter 
and simpler proof of linearizability.

Aguilera [3] presents a specification and algorithm for atomic snapshots in a dynamic model in which nodes can continu-
ally enter and communicate via shared registers. This algorithm is then used for group membership and mutual exclusion in 
that model. Variations of the model were proposed by Gafni, Merritt and Taubenfeld [19,26], who also provided algorithms 
for election, mutual exclusion, consensus, collect, snapshot, and renaming. Spiegelman and Keidar [27] present atomic snap-
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shot algorithms for a crash-prone dynamic system in which processes communicate via shared registers. Their algorithms 
uniquely identify each scan operation with a version number to help determine when a scan can be borrowed; we use a 
similar mechanism in our snapshot algorithm. However, our atomic snapshot algorithm uses a shared store-collect object 
which tolerates ongoing churn. Our use of a non-linearizable building block requires a more delicate approach to proving 
linearizability, as we cannot simply choose, say, a specific write to an atomic register as the linearization point of an update, 
as done by Spiegelman and Keidar [27].

The problem of implementing shared objects in the presence of ongoing churn and crash failures in message-passing 
systems is studied in [11,12], which considers read-write registers, and [13], which considers sets. Unlike our results, these 
papers assume the system size is restricted to a fixed window and the system is eventually synchronous. Like our algorithms, 
the set algorithm of Baldoni, Bonomi and Raynal [13] uses unbounded local memory at the nodes.

A popular alternative way to model churn in message-passing systems is as a sequence of quorum configurations, each 
of which consists of a set of nodes and a quorum system over that set (e.g., [2,18,20,21,23,24]). Explicit reconfiguration 
operations replace older configurations with newer ones. The assumptions made in these papers are incomparable with 
those made by Attiya et al. [7] and in our paper, as the former assume churn eventually stops while the latter assume the 
churn is bounded.

Most papers on generalized lattice agreement have assumed static systems (cf. [9,15,17,28,29]. A notable exception is 
the work of Kuznetsov, Rieutord, and Tucci-Piergiovanni [24], who consider dynamic systems subject to changes in the 
composition due to reconfiguration. Their paper provides an implementation for a large class of shared objects, including 
conflict-free replicated data types, that can be modeled as a lattice. By showing how to view the state of the system as a 
lattice as well, the paper elegantly combines the treatment of the reconfiguration and the operations on the object. Unlike 
our work, the algorithms of Kuznetsov, Rieutord, and Tucci-Piergiovanni [24] require that changes to the system composition 
eventually cease in order to ensure progress.

2. The store-collect problem

A shared store-collect object [8] supports concurrent store and collect operations performed by some set of clients. Each 
operation has an invocation and response. For a store operation, the invocation is of the form Storep(v), where v is a value 
drawn from some set and p indicates the invoking client, and the response is of the form Ackp , indicating that the operation 
has completed. For a collect operation, the invocation is of the form Collectp and the response is of the form Returnp(V ), 
where V is a view, that is, a set of client-value pairs without repetition of client ids. We use the notation V (p) to indicate 
v if 〈p, v〉 ∈ V and ⊥ if no pair in V has p as its first element.

Informally, the behavior required of a store-collect object is that each collect operation should return a view containing 
the latest value stored by each client. We do not require the store and collect operations to appear to occur instantaneously, 
that is, the object is not necessarily linearizable. Instead, we give a precise definition of the required behavior that is along 
the lines of interval linearizability [14] or the specification of regular registers [25].

A sequence σ of invocations and responses of store and collect operations is a schedule if, for each client id p, the 
restriction of σ to invocations and responses by p consists of alternating invocations and matching responses, beginning 
with an invocation. Each invocation and its matching following response (if present) together make an operation. If the 
response of operation op comes before the invocation of operation op′ in σ , then we say op precedes op′ (in σ) and op′
follows op. We assume that every value written in a store operation in a schedule is unique (a condition that can be achieved 
using sequence numbers and client ids).

Given two views V 1 and V 2 returned by two collect operations in a schedule σ , we write V 1 � V 2 if, for every 〈p, v1〉 ∈
V 1, there exists v2 such that 〈p, v2〉 ∈ V 2 such that either v1 = v2 or the Storep(v1) invocation does not occur after the 
response of Storep(v2) in σ .

A schedule σ satisfies regularity for the store-collect problem if:

• For each collect operation cop in σ that returns V and every client p, if V (p) = ⊥, then no store operation by p precedes 
cop in σ . If V (p) = v 	= ⊥, then there is a Storep(v) invocation that occurs in σ before cop completes and no other 
store operation by p occurs in σ between this invocation and the invocation of cop.

• For every two collect operations in σ , cop1 which returns V 1 and cop2 which returns V 2, if cop1 precedes cop2 in σ , 
then V 1 � V 2.

3. System model

We model each node p as a state machine with a set of states, containing two initial states si
p and s�

p . Initial state si
p

is used if p is initially in the system, whereas s�
p is used if p enters the system later. State transitions are triggered by 

the occurrences of events. Possible triggering events are: node p enters the system (Enterp), node p leaves the system 
(Leavep), node p receives a message m (Receivep(m)), node p invokes an operation (Collectp or Storep(v)), and node p
crashes (Crashp ).

A step of a node p is a 5-tuple (s′, T , m, R, s) where s′ is the old state of p, T is the triggering event, m is the message 
to be sent, R is a response (Returnp(V ), Ackp , or Joinedp) or ⊥, and s is the new state of p. The values of m, R and s are 
3
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determined by a transition function applied to s′ and T . Returnp(V ) is the response to Collectp , Ackp is the response to
Storep , and Joinedp is the response to Enterp . If T is Crashp , then m is ⊥ and R is ⊥.

A local execution of a node p is a sequence of steps such that:

• the old state of the first step is an initial state;
• the new state of each step equals the old state of the next step;
• if the old state of the first step is si

p , then no Enterp event occurs;

• if the old state of the first step is s�
p , then the triggering event in the first step is Enterp and there is no other 

occurrence of Enterp ; and
• at most one of Crashp and Leavep occurs and if so, it is in the last step.

In our model, a node that leaves the system cannot re-enter with the same id. It can, however, re-enter with a new id. 
Likewise, a node that crashes does not recover, instead, it may re-enter with a new id.

A point in time is represented by a nonnegative real number. A timed local execution is a local execution whose steps 
occur at nondecreasing times. If a local execution is infinite, the times at which its steps occur must increase without bound. 
Given a timed local execution of a node, if (s′, T , m, R, s) is the step with the largest time less than or equal to t , then s is 
the state of that node at time t . A node p is said to be present (resp., a member) at time t if Enterp (resp., Joinp) occurs at 
or before t , or p’s initial state is si

p , but Leavep does not occur at or before t . The number of nodes that are present at time 
t is denoted by N(t). A crashed node (i.e., a node for which Crashp occurs at or before t) is still considered to be present 
(resp., a member). A node is said to be active at time t if it is present and not crashed at t .

An execution e is a possibly infinite set of timed local executions, one for each node that is ever present in the system, 
such that there is a nonempty finite set of nodes p, denoted S0, whose initial state is si

p . These nodes are initially members 
of the system.

We assume a reliable broadcast communication service that provides nodes with a mechanism to send the same message 
to all nodes1 in the system; message delivery is FIFO. However, if a broadcast invocation is the last thing that a node does 
before crashing, the message is not guaranteed to be received by all the nodes; this is a weaker assumption than that 
made in [7]. If a message m sent at time t is received by a node at time t′ , then the delay of this message is t′ − t . This 
encompasses transmission delay as well as time for handling the message at both the sender and receiver. Let D > 0 denote 
the maximum message delay that can occur in the system. Formally:

• Every sent message has at most one matching receipt at each node and every message receipt has exactly one matching 
message send.

• If a message m is sent by a node p at time t , p’s next event is not Crashp , and node q is active throughout [t, t + D]
(i.e., q enters by time t and does not leave or crash by time t + D), then q receives m. The delay of every received 
message is in (0, D].

• Messages from the same sender are received in the order they are sent (i.e., if node p sends message m1 before sending 
message m2, then no node receives m2 before it receives m1). This can be achieved by tagging each message with the 
id of its sender and a sequence number.

Let α > 0 and 0 < � ≤ 1 be real numbers that denote the churn rate and failure fraction, respectively. Let Nmin be a 
positive integer, the minimum system size. The parameters α and � are known to the nodes, but Nmin and D are not. We 
assume executions satisfy three assumptions:

Churn Assumption For all times t > 0, there are at most α · N(t) Enter and Leave events in [t, t + D].
Minimum System Size For all times t ≥ 0, N(t) ≥ Nmin .
Failure Fraction Assumption For all times t ≥ 0, at most � · N(t) nodes are crashed at time t .2

We assume “well-formed” interactions between client threads and their users: An invocation occurs at node p only if p
has already joined but has not left or crashed, i.e., p is a member. Furthermore, no previous invocation at p is pending, i.e., 
at most one operation is pending at each node.

An algorithm is a correct implementation of a store-collect object in our model if the following are true for all executions 
with well-formed interactions:

• For every node p /∈ S0, if Enterp occurs, then at least one of Leavep , Crashp , or Joinedp occurs subsequently; that is, 
every node that enters the system and remains active eventually joins. For every node p ∈ S0, Joinedp never occurs.

1 Sending a message to a single recipient can be accomplished by broadcasting the message and indicating the intended recipient so that others will 
ignore the message.

2 Since crashed nodes are counted in N(t), there is a limit on how many nodes can leave before new nodes enter in order to maintain the failure fraction 
assumption.
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• For every node p, if Storep(v) (respectively, Collectp) occurs, then at least one of Leavep , Crashp , or Ackp (respec-
tively, Returnp(V )) occurs subsequently; that is, every store or collect operation invoked at a node that remains active 
eventually completes.

• The schedule resulting from the restriction of the execution to the store and collect invocations and responses satisfies 
regularity for the store-collect problem.

4. The Continuous Churn Collect (CCC) algorithm

In our algorithm, nodes run client threads, which invoke collect and store operations, and server threads. We assume that 
the code segment that is executed in response to each event executes without interruption.

To track the composition of the system (Algorithm 1), a node p maintains a set Changes of events concerning the nodes 
that have entered the system. When an Enterp event occurs, p adds enter(p) to its Changes set (Line 1) and broadcasts an
enter message requesting information about prior events (Line 2). When p finds out that another node q has entered the 
system, either by receiving an enter message directly from q or by receiving an enter-echo message for q from a third 
node, it adds enter(q) to its Changes set (Line 3 or 6). When p receives an enter message from a node q, it replies with an
enter-echo message containing its Changes set, its current estimate LView (local view) of the state of the simulated object, 
its flag is_joined indicating whether p has joined yet, and the id q (Line 4). The first time that p receives an enter-echo in 
response to its own enter message (i.e., one that ends with its own id) from a joined node, it computes join_threshold, the 
number of enter-echo messages it needs to get before it can join (Line 9) and increments its join_counter (Line 10).

The fraction γ is used to calculate join_threshold, the number of enter-echo messages that should be received before 
joining, based on the size of the Present set (nodes that have entered, but have not left, see Line 9). Setting γ is a key 
challenge in the algorithm as setting it too small might not propagate updated information, whereas setting it too large 
might not guarantee termination of the join.

When the required number of replies to the enter message sent by p is received (Line 11), p adds join(q) to its Changes
set, sets its is_joined flag to true (Line 12), broadcasts a message saying that it has joined (Line 14) and outputs Joinedp
(Line 15). When p finds out that another node q has joined, either by receiving a join message directly from q or by 
receiving a join-echo message for q from a third node, it adds join(q) to its Changes set (Line 16 or 19). When a Leavep
event occurs, p broadcasts a leave message (Line 21) and halts (Line 22). When p finds out that another node q is leaving 
the system, either by receiving a leave message directly from q or by receiving a leave-echo message for q from a third 
node, it adds leave(q) to its Changes set (Line 23 or 25).

Initially, node p’s Changes set equals {enter(q)|q ∈ S0}∪{join(q)|q ∈ S0}, if p ∈ S0, and ∅ otherwise. Node p also maintains 
a set of nodes that it believes are present: Present = {q|enter(q) ∈Changes∧leave(q) /∈Changes}, i.e., nodes that have entered, 
but have not left, as far as p knows. Essentially, Algorithm 1 of CCC is the same as CCReg [7] except for Line 5, which 
merges newly received information with current local information instead of overwriting it.

Once a node has joined, its client thread can handle collect and store operations (Algorithm 2) and its server thread 
(Algorithm 3) can respond to clients. The client at node p maintains a derived variable Members = {q | join(q) ∈ Changes ∧
leave(q) /∈ Changes} of nodes that p considers as members, i.e., nodes that have joined but not left.

Our implementation adds a sequence number, sqno, to each value in a view, which is now a set of triples, 
{〈p, v, sqno〉, . . .}, without repetition of node ids. We use the notation V (p) = v if there exists sqno such that 〈p, v, sqno〉 ∈
V , and ⊥ if no triple in V has p as its first element.

A merge of two views, V 1 and V 2, picks the latest value stored by each node according to the highest sqno. If a triple 
for node p is in V 2 but not in V 1 then the merge includes the triple for p from V 2 as well, and vice versa. That is,

Definition 1. Given two views V 1 and V 2, merge(V 1, V 2) is defined as the subset of V 1 ∪ V 2 consisting of every triple whose 
node id is in one of V 1 and V 2 but not the other, and, for node ids that appear in both V 1 and V 2, it contains only the 
triple with the larger sequence number.

Note that V 1, V 2 � merge(V 1, V 2).
Each node keeps a local copy of the current view in its LView variable. In a collect operation, a client thread requests the 

latest value of servers’ local views using a collect-query message (Line 33). When a server node p receives a collect-query
message, it responds with its local view (LView) through a collect-reply message (Line 60) if p has joined the system. 
When the client receives a collect-reply message, it merges its LView with the received view (RView), to get the latest value 
corresponding to each node (Line 35). Then the client waits for sufficiently many collect-reply messages before broadcasting 
the current value of its LView variable in a store message (Line 40). When server p receives a store message with a view 
RView, it merges RView with its local LView (Line 55) and, if p is joined, it broadcasts store-ack (Line 57). The client waits for 
sufficiently many store-ack messages before returning LView to complete the collect (Line 51); this threshold is recalculated 
in Line 38 to reflect possible changes to the system composition that the client has observed.

In a store operation, a client thread updates its local variable LView to reflect the new value by doing a merge (Line 43) 
and broadcasts a store message (Line 46). When server p receives a store message with view RView, it merges RView with 
its local LView (Line 55) and, if p is joined, it broadcasts store-ack (Line 57). The client waits for sufficiently many store-ack
messages before completing the store (Line 50).
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Algorithm 1 CCC—Common code managing churn, for node p.
Local Variables:
LView: set of (node id, value, sequence number) triples, initially ∅ // local view
is_joined: Boolean, initially false // true iff p has joined the system
join_threshold: int, initially 0 // number of enter-echo messages needed for joining
join_counter: int, initially 0 // number of enter-echo messages received so far
Changes: set of enter(q), leave(q), and join(q) // active membership events known to p

initially {enter(q)|q ∈ S0} ∪ {join(q)|q ∈ S0} if p ∈ S0, and ∅ otherwise
Derived Variable:
Present = {q | enter(q) ∈ Changes∧ leave(q) /∈ Changes}

When ENTERp occurs:
1: add enter(p) to Changes
2: broadcast 〈enter, p〉

When RECEIVEp〈enter, q〉 occurs:
3: add enter(q) to Changes
4: broadcast〈enter-echo,Changes, LView,

is_joined, q〉

When RECEIVEp〈enter-echo, C, RView, j, q〉
occurs:
5: LView := merge(LView, RView)
6: Changes := Changes ∪ C
7: if ¬is_joined ∧ (p = q) then
8: if ( j = true) ∧(join_threshold = 0)

then
9: join_threshold := γ · |Present|

10: join_counter++
11: if join_counter ≥ join_threshold > 0

then
12: is_joined := true
13: add join(p) to Changes
14: broadcast 〈join, p〉
15: return JOINEDp

When RECEIVEp〈join, q〉 occurs:
16: add join(q) to Changes
17: add enter(q) to Changes
18: broadcast 〈join-echo, q〉

When RECEIVEp〈join-echo, q〉 occurs:
19: add join(q) to Changes
20: add enter(q) to Changes

When LEAVEp occurs:
21: broadcast 〈leave, p〉
22: halt

When RECEIVEp〈leave, q〉 occurs:
23: add leave(q) to Changes
24: broadcast 〈leave-echo, q〉

When RECEIVEp〈leave-echo, q〉 occurs:
25: add leave(q) to Changes

Algorithm 2 CCC—Client code, for node p.
Local Variables:
optype: string, initially ⊥ // indicates which type of operation (collect or store) is pending
tag: int, initially 0 // counter to identify currently pending operation by p
threshold: int, initially 0 // number of replies/acks needed for current phase
counter: int, initially 0 // number of replies/acks received so far for current phase
sqno: int, initially 0 // sequence number for values stored by p
Derived Variable:
Members = {q| join(q) ∈ Changes ∧ leave(q) /∈ Changes}

When COLLECTp occurs:
30: optype := collect; tag++
31: threshold := β · |Members|
32: counter := 0
33: broadcast 〈collect-query, tag, p〉

When RECEIVEp〈collect-reply, RView, t, q〉
occurs:
34: if (t = tag) ∧ (q = p) then
35: LView := merge(LView, RView)
36: counter++
37: if (counter ≥ threshold) then
38: threshold := β · |Members|
39: counter := 0
40: broadcast 〈store, LView, tag, p〉

When STOREp(v) occurs:
41: optype := store; tag++
42: sqno++
43: LView := merge(LView,{〈p, v, sqno〉})
44: threshold := β · |Members|
45: counter := 0
46: broadcast 〈store, LView, tag, p〉

When RECEIVEp〈store-ack, t, q〉 occurs:
47: if (t = tag) ∧ (q = p) then
48: counter++
49: if (counter ≥ threshold) then
50: if (optype = store) then return ACK

51: else return LView
6
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Algorithm 3 CCC—Server code, for node p.

When RECEIVEp〈store, RView,tag, q〉
occurs:
55: LView := merge(LView, RView)
56: if is_joined then
57: broadcast 〈store-ack, tag, q〉
58: broadcast 〈store-echo, LView〉

When RECEIVEp〈collect-query, tag, q〉
occurs:
59: if is_joined then
60: broadcast 〈collect-reply, LView, tag, q〉

When RECEIVEp〈store-echo, RView〉 occurs:
61: LView := merge(LView, RView)

Table 1
Explanation of notation, and two sets of possible values for the parameters.

Notation Meaning set 1 set 2

α churn rate 0 0.04
� failure fraction 0.21 0.01
β fraction for store/collect threshold 0.79 0.80
γ fraction for join threshold 0.79 0.77
Nmin minimum system size ≥ 2 ≥ 2
N(t) number of nodes present at time t
S0 set of nodes initially present and joined
D maximum message delay

The fraction β is used to calculate the number of messages that should be received (stored in local variable threshold) 
based on the size of the Members set, for the operation to terminate. Setting β is a key challenge in the algorithm as setting 
it too small might not return correct information from collect or store, whereas setting it too large might not guarantee 
termination of the collect and store.

We define a phase to be the execution by a client node p of one of the following intervals of its code:

• lines 30 through 37, the first part of a collect operation,
• lines 38 through 40 and 47 through 51, the second part of a collect operation called the “store-back”, or
• lines 41 through 50, the entirety of a store operation.

The first kind of phase is called a collect phase while the second and third kinds are called a store phase.
For any completed phase ϕ executed by node p, define view(ϕ) to be the value of LViewt

p , where t is the time at the end 
of the phase. Since a store operation consists solely of a store phase, we also apply the notation to an entire store operation.

5. Proof of CCC store-collect algorithm

The correctness of the algorithm relies on the following four constraints. They are stated in terms of a quantity Z =
(1 − α)3 − � · (1 + α)3, which will be shown to be the fraction of nodes that are guaranteed to remain active throughout 
an interval of length 3D .

Nmin ≥ 1

Z + γ − (1 + α)3
(A)

γ ≤ Z/(1 + α)3 (B)

β ≤ Z/(1 + α)2 (C)

β >
(1 − Z)(1 + α)5 + (1 + α)6

((1 − α)3 − � · (1 + α)2)((1 + α)2 + 1)
. (D)

Fortunately, there are values for the parameters α, �, γ , and β that satisfy these constraints. In the extreme case when 
α = 0 (i.e., no churn), the failure fraction � can be as large as 0.21; in this case, it suffices to set both γ and β to 0.79 
for any value of Nmin that is at least 2. As α increases up to 0.04, � must decrease approximately linearly until reaching 
0.01; in this case, it suffices to set γ to 0.77 and β to 0.80 for any value of Nmin that is at least 2. Table 1 summarizes the 
notation we use and lists two sets of possible values for α, �, β , γ and Nmin .

Consider any execution of the algorithm with well-formed interactions. We will show that it satisfies the three properties 
required for correctness given at the end of Section 3. We begin by analyzing the dynamics of nodes entering, leaving, and 
crashing in Lemma 1 through Corollary 4. Then, Observation 5 through Lemma 8 capture how a node’s Changes local variable 
(and thus Present local variable) tracks the Enter, Join, and Leave events that occur. Armed with these results, we show 
in Theorem 9 that an active node eventually joins, which is the first correctness property. Then Theorem 10 states the 
second correctness property, that every operation invoked by an active node eventually completes. Observation 11 through 
Lemma 13 describe how a node’s LView local variable tracks the occurrences of store operations, while Lemma 14 describes 
7
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how a node’s Members local variable tracks the Enter, Join, and Leave events that occur. Lemma 15 is the key for proving 
regularity: it states that if a store phase precedes a collect phase, then the collect returns information that is at least as 
up-to-date as the store. Finally, Theorem 16 states the third correctness property, regularity for store-collect.

Lemma 1. For all i ∈N and all t ≥ 0,
(a) at most ((1 + α)i − 1) · N(t) nodes enter during (t, t + i · D]; and
(b) N(t + i · D) ≤ (1 + α)i · N(t).

Proof. The proof is by induction on i.
Basis: i = 0. For all t , the interval (t, t + 0 · D] = (t, t] is empty and (a) and (b) are true.
Induction: Assume (a) and (b) are true for i and show for i + 1. Partition the interval (t, t + (i + 1) · D] into (t, t + D] and 

(t + D, t + (i + 1) · D]. Since the latter interval is of length i · D , the inductive hypothesis applies (replacing t with t + D) 
and we get:
(a) at most ((1 + α)i − 1) · N(t + D) nodes enter during (t + D, t + (i + 1) · D]; and
(b) N(t + (i + 1) · D) ≤ (1 + α)i · N(t + D).

By the churn assumption, (i) at most α · N(t) nodes enter during (t, t + D] and thus (ii) N(t + D) ≤ (1 + α) · N(t). To 
show (a) for i + 1, combine (i) with the inductive hypothesis for part (a) to see that the number of nodes that enter during 
(t, t + (i + 1) · D] is

≤ α · N(t) + ((1 + α)i − 1) · N(t + D)

≤ α · N(t) + ((1 + α)i − 1) · (1 + α) · N(t) by (ii)

= α · N(t) + (1 + α)i+1 · N(t) − (1 + α) · N(t)

= ((1 + α)i+1 − 1) · N(t).

To show (b) for i + 1:

N(t + (i + 1) · D) ≤ (1 + α)i · N(t + D) by the inductive hypothesis for (b)

≤ (1 + α)i · (1 + α) · N(t) by (ii)

= (1 + α)i+1 · N(t). �
Calculating the maximum number of nodes that can leave in an interval of length i · D as a function of the number of 

nodes at the beginning of the interval (i.e., the analog of part (a) of Lemma 1) is somewhat complicated by the possibility 
of nodes entering during the interval, allowing additional nodes to leave.

Lemma 2. For all α, 0 < α < .206, all non-negative integers i ≤ 3, and every time t ≥ 0, at most (1 − (1 − α)i) · N(t) nodes leave 
during (t, t + i · D].

Proof. The proof is by induction on i.
Basis: i = 0. For all t , the interval (t, t + 0 · D] = (t, t] is empty and so no nodes leave during it.
Induction: Suppose the lemma is true for i and prove it for i + 1. Partition the interval (t, t + (i + 1) · D] into (t, t + D]

and (t + D, t + (i + 1) · D]. Since the latter interval is of length i · D , the inductive hypothesis applies (replacing t with t + D), 
stating that the number of nodes that leave in the latter interval is at most (1 − (1 − α)i) · N(t + D).

Let e be the exact number of nodes that enter in (t, t + D] and � be the exact number of nodes that leave in (t, t + D]. 
The number of nodes that leave in the entire interval is:

≤ � + (1 − (1 − α)i) · N(t + D) by the inductive hypothesis

≤ � + (1 − (1 − α)i) · [(1 + α) · N(t) − 2�] .

The last line is true since N(t + D) = N(t) + e − � which equals N(t) + (� + e) − 2�, which is at most N(t) + α · N(t) − 2� by 
the churn assumption. Algebraic manipulations show that this is

≤ (1 − (1 − α)i) · (1 + α) · N(t) + (2(1 − α)i − 1)�

≤ (1 − (1 − α)i) · (1 + α) · N(t) + (2(1 − α)i − 1) · α · N(t) .

The last line is true since � ≤ α · N(t) by the churn assumption and (2(1 − α)i − 1) is non-negative by the constraints on α
and i in the premise of the lemma. This expression equals (1 − (1 − α)i+1) · N(t). �
8
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Recall that a node is active at time t if it has entered, but not left or crashed, by time t . The next lemma counts how 
many of the nodes that are active at a given time are still active after 3D time has elapsed. It introduces the quantity Z
which is the fraction of nodes that must survive an interval of length 3D .

Lemma 3. For any interval [t1, t2] with t2 − t1 ≤ 3D, where S is the set of nodes present at t1, at least Z · |S| of the nodes in S are 
active at t2 . (Recall that Z = (1 − α)3 − � · (1 + α)3 .)

Proof. Consider any interval [t1, t2] with t2 − t1 ≤ 3D and let S be the set of nodes present at t1.
By Lemma 2, at most (1 − (1 − α)3) · |S| nodes leave during the interval. In the worst case, all of the leavers are among 

the original set of nodes S .
By Lemma 1, part (b), the number of nodes present at t2 is at most (1 + α)3 · |S|. By the crash assumption, up to a �

fraction of them crash, and in the worst case all of these are among the original set of nodes S .
Thus the number of nodes in S that remain active at the end of the interval is at least

|S| − (1 − (1 − α)3) · |S| − � · (1 + α)3 · |S| =
[
(1 − α)3 − � · (1 + α)3

]
· |S|. �

As an immediate corollary, since |S| must be at least Nmin , the lower bound on Nmin given in Constraint (A) shows that 
at least one node survives. To match its use cases, the corollary is stated with respect to a time that is in the middle of the 
interval.

Corollary 4. For every t > 0, at least one node is active throughout the interval [max{0, t − 2D}, t + D].

Throughout the proof, a local variable name is subscripted with p and superscripted with t to denote its value in node 
p at time t; e.g., vt

p is the value of node p’s local variable v at time t .
In the analysis, we will frequently be comparing the data in nodes’ Changes sets to the set of Enter, Joined, and Leave

events that have actually occurred in a certain interval. We refer to these as membership events. We are especially interested 
in these events that trigger a broadcast invoked by a node that is not in the middle of crashing, as these broadcasts are 
guaranteed to be received by all nodes that are present for the requisite interval. We call these active membership events.
Because of the assumed initialization of the nodes in S0, we use the convention that the set of active membership events 
occurring in the interval [0, 0] is {enter(p)|p ∈ S0} ∪ {join(p)|p ∈ S0}.

The next lemmas describe how a node’s Changes set relates to prior active membership events. Lemma 6 states that a 
node that has been present in the system sufficiently long (at least 2D time), has all the information about active member-
ship events up until D time in the past. Lemma 8 states that a joined node, no matter how recently it entered the system, 
has all the information about active membership events up until 2D time in the past. The later parts of the correctness 
proof only use Lemma 8, but its proof relies on Lemma 6. The proof of Lemma 8 relies on Lemma 7, which is rather tech-
nical and states that under certain circumstances a node receives an enter-echo message from a long-lived node; we have 
extracted it as a separate lemma as it is also used later in the proof of Lemma 13. Throughout the proof we denote by te

p
the time when event Enterp occurs.

The proofs of Lemmas 6 and 8 use the next observation, which follows from the fact that nodes broadcast en-
ter/join/leave messages when they enter/join/leave and these messages take at most D time to arrive at active nodes 
(unless the broadcast is the very last step by a crashing node, in which case the message might not be received by some 
nodes).

Observation 5. For every node p and all times t ≥ te
p + D such that p is active at time t , Changest

p contains all the active 
membership events for [te

p, t − D].

Lemma 6. For every node p and all times t ≥ te
p + 2D such that p is active at t, Changest

p contains all the active membership events 
for [0, t − D].

Proof. The proof is by induction on the order in which nodes enter. In particular, we consider the nodes in increasing order 
of Enter events, breaking ties arbitrarily, and show the properties are true for the current node at all relevant times.

Basis: The first nodes to enter are those in S0 and they are assumed to do so at time 0. Consider p ∈ S0. For t ≥ 2D , 
Observation 5 gives the result.

Induction: Let p be the next node (not in S0) to enter, at time te
p , and assume the lemma is true for all nodes that 

entered previously.
Consider any time t ≥ te

p + 2D such that p is active at t . By Corollary 4, there exists a node q that is active throughout 
[te

p − 2D, te
p + D]. Let t′ be the time when q receives p’s enter message and t′′ be the time when p receives q’s enter-

echo response. We will show that Changest
p contains all the active membership events for [0, t − D] in three steps: one for 

[0, t′ − D], one for [t′ − D, te
p], and one for [te

p, t − D].
9
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1. Note that q enters the system at least 2D time before it sends its enter-echo message to p at time t′ . By the inductive 
hypothesis, when q sends that message, its Changes set contains all the active membership events for [0, t′ − D]. Once p
receives the message, at time t′′ which is less than or equal to t , its Changes set also contains all the active membership 
events for [0, t′ − D].

2. Suppose some node r enters, joins, or leaves in [t′ − D, te
p] and r does not crash during that event. Node r’s en-

ter/join/leave message is received by q either before te
p , in which case the information is included in q’s enter-echo

message to p, or after te
p , in which case q sends an enter/join/leave-echo message for r, which is received by p before 

t . In either case, the information about r’s event propagates to p before t . Thus the result holds for [t′ − D, te
p].

3. Observation 5 gives the result for [te
p, t − D]. �

Lemma 7. Suppose node p is joined and active at some time t and the first enter-echo response that p receives from a joined node q
is sent at time t′ ≤ t. If Changest′

q contains all the active membership events for [0, max{0, t′ − 2D}], then before p joins, it receives an 
enter-echo response from some node q′ that is active throughout the interval [max{0, t′ − 2D}, t′ + D].

Proof. Let S be the set of nodes present at time max{0, t′ −2D}. We will show that at least one of the enter-echo responses 
received by p before joining is from a node in S , which is our desired q′ . We start with the value of join_threshold, which 
is the number of enter-echo responses for which p waits before joining, and then subtract (1) the maximum number of
enter-echo responses that could come from nodes not in S , (2) the maximum number of nodes in S that could leave too 
soon (before t′ + D), and (3) the maximum number of nodes in S that could crash too soon (before t′ + D).

The value of join_threshold is based on the size of p’s Present set at time t′′ , immediately after p receives the enter-echo
response from q (cf. Line 9 of Algorithm 1). By the premise of the lemma, Changest′

q contains all the active membership 
events for [0, max{0, t′ − 2D}]. Thus when p receives the enter-echo response from q at time t′′ ≤ t′ + D , its Present
variable contains, at a minimum, all the nodes in S minus those that left during [max{0, t′ − 2D}, t′′]—call this quantity 
�—and minus those that crashed while broadcasting their enter message so that p did not receive it—call this quantity f . 
Thus join_threshold ≥ γ · (|S| − � − f ).

We now count the maximum number of enter-echo responses that p can receive from nodes not in S before joining. 
These would be from nodes that enter after max{0, t′ − 2D} but no later than t′ + D , as nodes entering after t′ + D do not 
receive p’s enter message. The number of such nodes is ((1 + α)3 − 1) · |S| by Lemma 1 part (a).

We then subtract the maximum number of nodes in S that leave before t′ + D . By Lemma 2, at most (1 − (1 − α)3) · |S|
nodes leave during (max{0, t′ −2D}, t′ + D]. In the worst case, all these leavers are in S . Recall that we have already charged 
� to this budget.

Finally we subtract the maximum number of nodes in S that crash before t′ + D . The system size at t′ + D is at most 
(1 + α)3 · |S| by Lemma 1 part (b). At most � · (1 + α)3 · |S| nodes are crashed at time t′ + D by the crash assumption. In 
the worst case, all these crashed nodes are in S . Recall that we have already charged f crashes to this budget.

What remains is at least

γ · (|S| − � − f ) − ((1 + α)3 − 1) · |S|
− [(1 − (1 − α)3) · |S| − �] − [� · (1 + α)3 · |S| − f ] ,

which after doing some algebra and using fact that (1 − γ )(� + f ) ≥ 0 is equal to

|S| · (γ − (1 + α)3 + (1 − α)3 − �(1 + α)3) .

Since |S| must be at least Nmin , Constraint (A) ensures that the expression is at least one. Thus before p joins, it receives 
an enter-echo response from at least one node q′ that is active throughout (max{0, t′ − 2D}, t′ + D]. �
Lemma 8. For every node p and all times t such that p is joined and active at t, Changest

p contains all the active membership events 
for [0, max{0, t − 2D}].

Proof. The proof is by induction on the order in which nodes join. In particular, we consider the nodes in increasing order 
of Join events, breaking ties arbitrarily, and show the properties are true for the current node at all relevant times.

Basis: The first nodes to join are those in S0 and they are assumed to do so at time 0. Consider p ∈ S0. When t ≤ 2D , 
we just need to show that Changest

p contains all the active membership events for [0, 0], which is true by the assumed 
initialization of nodes in S0. When t > 2D , Observation 5 implies the result.

Induction: Let p be the next node (not in S0) to join and assume the lemma is true for all nodes that previously joined. 
Consider any time t when p is joined and active.

When t − te
p ≥ 2D , Lemma 6 gives the result. So we suppose t − te

p < 2D . If t ≤ 2D , then all that’s required is for 
Changest

p to include all the active membership events in [0, 0]. Since p joined, it received an enter-echo message from 
some previously joined node, which by the inductive hypothesis had all the active membership events for [0, 0] in its 
Changes set when it sent the enter-echo. Thus p receives all the active membership events for [0, 0] before it joins. For rest 
of the proof, assume t > 2D .
10
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We will show that Changest
p contains all the active membership events for [0, t −2D] in two steps: one for [0, max{0, t′ −

2D}] and one for [max{0, t′ − 2D}, t − 2D] for an appropriately chosen t′ < t .

1. Let q be the first joined node from which p gets an enter-echo response to its enter message. Let t′ be the time when 
q sends the enter-echo message. By the inductive hypothesis, since q is joined at t′ , Changest′

q contains all the active 
membership events for [0, max{0, t′ − 2D}], and thus so does Changest

p .
2. By Lemma 7, p receives an enter-echo message at some time before it joins from a node q′ that is active throughout 

the interval [max{0, t′ − 2D}, t′ + D]. Let u′ be the time when q′ sends its enter-echo response to p. Suppose some 
node r enters, joins or leaves in [max{0, t′ − 2D}, t − 2D] and does not crash during the event. Our goal is to show that 
p receives the information about r by time t . The latest that r’s message is sent is t − 2D . Since t − t′ ≤ t − te

p < 2D , it 
follows that t − D ≤ t′ + D and thus q′ is guaranteed to receive r’s message, as q′ is still active at t − D , the latest that 
the message could arrive. If q′ receives r’s message before u′ , then p gets the information about r by time t via the
enter-echo response from q′ . Otherwise, q′ receives r’s message after u′; the latest this can be is t − D . Then q′ sends 
an enter-echo message for r which is received by p by time t . �

We can prove that a node that is active sufficiently long eventually joins.

Theorem 9. Every node p that enters at some time t and is active for at least 2D time joins by time t + 2D.

Proof. The proof is by induction on the order in which nodes enter the system.
Basis: The first nodes to enter are those in S0 and they are assumed to do so at time 0. Since they also are assumed to 

join at time 0, the theorem follows.
Induction: Let p be the next node (not in S0) to enter, at time te

p , and assume the lemma is true for all nodes that 
entered previously. Suppose p is active at te

p + 2D .
First we show that p receives an enter-echo response to its enter message from at least one joined node.
Suppose te

p < 2D . By Corollary 4, at least one node in S0 is active throughout [0, 3D] and thus responds to p’s enter
message.

Suppose te
p ≥ 2D . By Corollary 4, there is a node q that is active throughout [te

p − 2D, te
p + D]. Then q enters at least 2D

time before te
p and by the inductive hypothesis is joined by te

p . Since q is active at least until te
p + D , it receives p’s enter

message by time te
p + D and sends back an enter-echo which is received by p by time te

p + 2D .
We now calculate an upper bound on join_threshold, the number of enter-echo responses for which p waits before 

joining. This value is based on the size of p’s Present set when it first receives an enter-echo response from a joined node 
(cf. Line 9 of Algorithm 1). Let q′ be the sender of this message, let t′ be the time when the message is sent and t′′ the time 
when it is received. Since t′ ≥ te

p ≥ 2D , it follows that t′ −2D ≥ 0. By Lemma 8, Changest′
q′ contains all the active membership 

events for [0, t′ − 2D] and thus so does Changest′′
p . As a result, Presentt′′

p contains, at most, all the nodes that are present at 
time t′ − 2D (call this set S) plus the maximum set of nodes that could have entered since then. Since t′′ ≤ t′ + D , it follows 
from Lemma 1 part (a) that at most ((1 +α)3 −1) · |S| nodes enter during (t′ −2D, t′′]. Thus join_threshold ≤ γ · (1 +α)3 · |S|.

We now show that p is guaranteed to receive at least join_threshold enter-echo responses from nodes in S by time 
te

p + 2D . Each node in S that does not leave or crash by te
p + D receives p’s enter message and sends an enter-echo

response by time te
p + D , which is received by p by time te

p + 2D . The minimum number of such nodes is, by Lemma 3 and 
considering the interval (t′ − 2D, t′ + D]:

Z · |S| ≥ γ · (1 + α)3 · |S| by Constraint (B)

≥ join_threshold. �
We prove that a phase terminates if the invoking client node is active long enough.

Theorem 10. A phase invoked by a client that remains active completes within 2D time.

Proof. Consider a phase invoked by node p at time t . We show that the number of nodes that respond to p’s collect-query
or store message is at least as large as the value of threshold computed by p in Line 31 or 38 or 44 of Algorithm 2.

Let S be the set of nodes present at time max{0, t −2D} = t′ . By Lemma 3, the number of those nodes that are still active 
at time t + D is at least Z · |S|. If t′ = 0, then S = S0 and all these nodes are joined throughout; otherwise, by Theorem 9
all these nodes are joined by time t .

We now show that |S| ≥ |Presentt
p|/(1 + α)2. By Lemma 8, Changest

p contains all the active membership events for 
[0, t′]. Presentt

p is as large as possible if every node in S succeeds in the broadcast of its enter message, none of the 
nodes in S leave during [t′, t], and the maximum number of nodes enter during that interval and their enter messages 
get to p by time t . Lemma 1 part (a) implies that the maximum number of nodes that can enter is (1 + α)2 · |S|. Thus 
|Presentt

p| ≤ (1 + α)2 · |S|.
11
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Thus the number of nodes that are joined by time t and are still active at time t + D , guaranteed to respond to p, is at 
least

Z · |S| ≥ Z · |Presentt
p|/(1 + α)2

≥ β · |Presentt
p| by Constraint (C)

≥ β · |Memberst
p| .

The last inequality holds since enter(q) is added to Changesp together with join(q). Since threshold is set to β · |Memberst
p| at 

time t , p receives the required number of collect-reply or store-ack messages by time t + 2D and the phase completes. �
The following observation is true since in this case node p receives phase s’s store message directly within D time.

Observation 11. For any store phase s that starts at time ts and calls broadcast (Line 46 of Algorithm 2) without crashing 
during the broadcast, and any node p that is active throughout [ts, t] where t ≥ ts + D , view(s) � LViewt

p .

The next lemma is the analog of Lemma 6: a node that has been active for at least 2D time “knows about” store phases 
that started up to D in the past.

Lemma 12. If node p is active at any time t ≥ te
p + 2D, then view(s) � LViewt

p for every store phase s that starts at or before t − D
and calls broadcast (Line 46 of Algorithm 2) without crashing during the broadcast.

Proof. The proof is by induction on the order in which nodes enter the system.
Basis: The first nodes to enter are those in S0 and they do so at time 0. The claim holds by Observation 11.
Induction: Let p be the next node (not in S0) to enter and assume the claim is true for all nodes that entered previously. 

Consider any time t ≥ te
p + 2D when p is active. Let s be a store phase that starts at ts ≤ t − D and calls broadcast without 

crashing. If ts ≥ te
p , the claim holds by Observation 11.

Suppose ts < te
p . By Corollary 4, there is at least one node q that is active throughout [max{0, te

p − 2D}, te
p + D]. Since 

t ≥ te
p + 2D , p receives q’s enter-echo response by time t . Since views and sequence numbers are included in enter-echo

messages, LViewt′
q � LViewt

p , where t′ is the time when q receives p’s enter message.
Case 1: ts < max{0, te

p − D}. We show that the inductive hypothesis applies for node q, time t′ , and store phase s. Thus 
view(s) � LViewt′

q , and by transitivity, view(s) � LViewt
p . To show that the inductive hypothesis holds, note that q enters 

before p, q has been active for at least 2D time by t′ and store phase s starts at or before t′ − D .
Case 2: ts ≥ max{0, te

p − D}. The store message sent during s is guaranteed to arrive at q either before te
p or at or after te

p . 
In the former case, q’s enter-echo response, which p receives by te

p +2D ≤ t , contains a view V such that view(s) � V . In the 
latter case, q’s store-echo message contains a view V with view(s) � V and p receives this message by ts +2D < te

p +2D ≤ t . 
In both situations, view(s) � LViewt

p . �
The next lemma is the analog of Lemma 8: a node that is joined “knows about” store phases that started up to 2D in 

the past.

Lemma 13. If node p is joined and active at any time t, then view(s) � LViewt
p for every store phase s that starts at or before t − 2D

and calls broadcast (Line 46 of Algorithm 2) without crashing.

Proof. The proof is by induction on the order in which nodes join the system.
Basis: The first nodes to join are those in S0 and they do so at time 0, which is also the time that they enter. The claim 

holds by Observation 11.
Induction: Let p be the next node (not in S0) to join and assume the claim is true for all nodes that joined previously. 

Consider any time t at which p is joined and active. Let s be any store phase that starts at ts ≤ t − 2D and calls broadcast 
without crashing. If t ≥ te

p + 2D , then the claim follows from Lemma 12.
Suppose t < te

p + 2D . For every store phase that starts at or after te
p , the claim follows from Observation 11.

Consider any store phase that starts at some time ts < te
p . Let q be the sender of the first enter-echo response received 

by p from a joined node; suppose the message is sent at t′ and received at t′′ .
Case 1: ts < t′ − 2D . We show that the inductive hypothesis holds for node q, time t′ , and store phase s. Thus view(s) �

LViewt′
q , and by transitivity, view(s) � LViewt

p . To show that the inductive hypothesis holds, note that q joins before p, it is 
joined at time t′ , and store phase s starts before t′ − 2D .

Case 2: ts ≥ t′ − 2D . Since q is joined at t′ , Lemma 8 implies that Changest′
q contains all the active membership events 

for [0, max{0, t′ − 2D}]. Thus Lemma 7 applies and before p joins it receives an enter-echo response from a node q′ that 
is active throughout [max{0, t′ − 2D}, t′ + D]. The store message sent during s is guaranteed to arrive at q′ either before te

p

12
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or at or after te
p . In the former case, the enter-echo message from q′ that is sent to p contains a view V with view(s) � V ; 

this message is received by p before it joins. In the latter case, the store-echo message from q′ that is sent to p contains a 
view V with view(s) � V ; this message is received by p by ts + 2D < te

p + 2D ≤ t . In both situations, view(s) � LViewt
p . �

The next lemma gives a lower bound on the size of a node’s Members set as a function of the size of the system 3D
time in the past.

Lemma 14. For every node p and every time t at which p is joined and active,
|Memberst

p| ≥ ((1 − α)3 − � · (1 + α)2) · N(max{0, t − 3D}).

Proof. Let S be the set of nodes that are present at time max{0, t − 3D}, so |S| = N(max{0, t − 3D}).
First, assume t ≥ 3D . Since Theorem 9 implies that it takes at most 2D time for a node to join, at a minimum Memberst

p
contains all the nodes in S except for those that leave during [t − 3D, t] and those that crash while broadcasting their join
message so that p does not receive the message. By Lemma 2, the maximum number of nodes that leave during [t − 3D, t]
is (1 − (1 −α)3) · |S|. To maximize the number of nodes that crash while sending their join message, we consider the largest 
that the system can be by time t − D (the latest that the nodes in S can join), which is (1 + α)2 · |S| by Lemma 1. We 
assume that the maximum number of nodes crash, which is � · (1 + α)2 · |S|, and that all the crashed nodes are in S . Thus, 
|Memberst

p| ≥ ((1 − α)3 − � · (1 + α)2) · |S|.
Now, assume t < 3D . Then S equals S0, the set of nodes initially in the system, and Memberst

p is minimized if no 
nodes enter and the maximum number of nodes in S0 leave and p receives all their leave messages by time t . Since 
Lemma 2 implies that the maximum number of nodes that can leave during [0, t] is (1 − (1 − α)3) · |S|, it follows that 
|Memberst

p| ≥ (1 − α)3 · |S|, which is bigger than the desired lower bound. �
To prove the following lemmas, we consider two cases: If the two phases are sufficiently far apart in time, then an 

information-propagation argument, analogous to that used for the Changes sets, applies. If the two phases are close together 
in time, then an argument relating to overlapping sets of contacted nodes is used.

Lemma 15. For any store phase s and any collect phase c, if s finishes before c starts and c terminates, then view(s) � view(c).

Proof. Let p1 be the client node that executes s and ts the start time of s. Let p2 be the client node that invokes c and tc

the start time of c. Let Q s be the set of nodes that p1 hears from during s (i.e., that sent messages causing p1 to increment 
counter on Line 48 of Algorithm 2) and Q c be the set of nodes that p2 hears from during c (i.e., that sent messages causing 
p2 to increment counter on Line 36 of Algorithm 2).

Case I: tc − ts ≥ 2D . Consider any node q ∈ Q c . Since q is in Q c , q is joined when it receives c’s collect-query message 
at some time, say t ≥ tc . By the assumption of the case, t − ts ≥ 2D . Thus by Lemma 13, view(s) � LViewt

q . Since p2 receives 
an enter-echo message from q containing LViewt

q before completing c, it follows that view(s) � view(c).
Case II: tc − ts < 2D . We will show that Q c and Q s have a nonempty intersection and thus Q c contains a node whose 

LView variable is � view(s) before it sends its collect-reply message to p2, ensuring that view(s) � view(c). We define the 
following sets of nodes.

• Let J be the set of all nodes that are joined and active at some time in [tc, tc + D]. These are the nodes that could 
possibly respond to c’s collect-query message. Thus Q c ⊆ J .

• Let K ⊆ Q s be the set of nodes in Q s that are still active at tc . Note that K ⊆ J .

We will show that |Q c | + |K | > | J |. Since Q c and K are both subsets of J , it follows that they intersect, and thus Q c and 
Q s intersect. We show the inequality by calculating an upper bound on | J | and lower bounds on |Q c | and |K |. All three 
bounds are stated in terms of a common quantity, which is the system size at a particular time t∗ = max{0, tc − 2D}.

First we calculate an upper bound on | J |. Since it takes at most 2D time to join after entering by Theorem 9, every node 
in J is either present at t∗ or enters during [t∗, tc + D]. By Lemma 1(b), | J | ≤ (1 + α)3 · N(t∗).

Next we calculate a lower bound on Q c .

|Q c| = β · |Memberstc
p2

| by the code

≥ β · [(1 − α)3 − � · (1 + α)2] · N(max{0, tc − 3D}) by Lemma 14

≥ β · [(1 − α)3 − � · (1 + α)2] · (1 + α)−1 · N(t∗) by Lemma 1 (b).

We now calculate a lower bound on |K |. By Lemma 3, at most (1 − Z) · N(ts) nodes crash or fail during [ts, tc + D], since 
the length of the interval is at most 3D . In the worst case, all the nodes that crash or fail are in Q s .
13
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|K | ≥ |Q s| − (1 − Z) · N(ts)

= β · |Membersts
p1

| − (1 − Z) · N(ts) by the code

≥ β · [(1 − α)3 − � · (1 + α)2] · N(max{0, ts − 3D}) − (1 − Z) · N(ts)

by Lemma 14

≥ β · [(1 − α)3 − � · (1 + α)2] · (1 + α)−3 · N(t∗) − (1 − Z) · N(ts)

by Lemma 1(b) since 0 < tc − ts < 2D

≥ β · [(1 − α)3 − � · (1 + α)2] · (1 + α)−3 · N(t∗) − (1 − Z) · (1 + α)2 · N(t∗)

by Lemma 1(b) since 0 < ts − t∗ < 2D and 1 − Z > 0

=
[
β · [(1 − α)3 − � · (1 + α)2] · (1 + α)−3 − (1 − Z) · (1 + α)2

]
· N(t∗) .

Finally, we show |Q c | + |K | > | J |.

|Q c| + |K | ≥ [β · [(1 − α)3 − � · (1 + α)2] · (1 + α)−1 + β · [(1 − α)3

− � · (1 + α)2] · (1 + α)−3 − (1 − Z) · (1 + α)2] · N(t∗)

> (1 + α)3 · N(t∗) by Constraint (D)

≥ | J | . �
Theorem 16. The schedule resulting from the restriction of the execution to the store and collect invocations and responses satisfies 
regularity for the store-collect problem.

Proof. (1) Suppose cop is a collect operation that returns view V . Let c be the collect phase of cop. Let p be a node. If 
V (p) = ⊥ and a store operation by p, consisting of store phase s, precedes cop, then, by Lemma 15, view(s) � view(c). 
Hence, view(s) contains a tuple for p with a non-⊥ value, which is a contradiction.

Therefore, V (p) = v 	= ⊥. We show that a Storep(v) invocation occurs before cop completes and no other store operation 
by p occurs between this invocation and the invocation of cop. A simple induction shows that every (non-⊥) value for one 
node in another node’s LView variable at some time comes from a Store invocation by the first node that has already 
occurred. Since V is the value of the invoking node’s LView variable when cop completes, there is a previous Storep(v)

invocation.
Now suppose for the sake of contradiction that the Storep(v) completes—call this operation sop—and there is another 

store operation by p, call it sop′ , that follows sop and precedes cop. Let v ′ be the value of sop′; by the assumption of unique 
values, v 	= v ′ . Since sop and sop′ are executed by the same node, it is easy to see from the code that view(sop) � view(sop′). 
By Lemma 15, view(sop′) � view(c) = V . But then value v is superseded by value v ′ 	= v , contradicting the assumption that 
V (p) = v .

(2) Suppose cop1 and cop2 are two collect operations such that cop1 returns V 1, cop2 returns V 2, and cop1 precedes cop2. 
Note that cop1 contains a store phase s which finishes before the collect phase c of cop2 begins. By Lemma 15, view(s) �
view(c). Regularity holds since view(s) = V 1 and view(c) = V 2, implying that V 1 � V 2. �

By Theorem 9, every node that enters and remains active sufficiently long eventually joins. Since a store operation 
consists of a store phase and a collect operation consists of a collect phase followed by a store phase, by Theorem 10, which 
states that every phase eventually completes as long as the invoker remains active, every operation eventually completes as 
long as the invoker remains active. Finally, Theorem 16 ensures regularity.

Corollary 17. CCC is a correct implementation of a store-collect object, in which each Store or Collect completes within a constant 
number of communication rounds.

6. Implementing distributed objects despite continuous churn

In this section we show how to implement a variety of objects using store-collect. For all applications, we assume that 
the conditions for store-collect termination hold, which guarantees termination of the operations.
14
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6.1. Simple, non-linearizable objects

We start with three simple applications of store-collect for implementing other (non-linearizable) shared objects.3 The 
choice of problems and algorithms follows [24], but the algorithms inherit good efficiency properties from our store-collect 
implementation.

Max register Holds the largest value written into it [5]; provides two operations:

• writeMax(v) takes a value v as an argument and returns Ack.
• readMax() has no arguments and returns a value.

A max register ensures that the value returned by a readMax is equal to the value of some writeMax that starts before the
readMax completes and is at least as large as the value of any writeMax that ends before the readMax starts. If there is 
no preceding writeMax, then the readMax returns ⊥ or the value of an overlapping writeMax.

Algorithm 4 uses a single store-collect object, holding a single value val for each node, a local variable V for each node, 
holding a store-collect view, and a local variable lmax for each node, initialized to −∞. writeMax stores the new value 
(Line 56) if it is the largest value to be stored so far by this node, and returns Ack (Line 58). readMax collects a view 
(Line 59) and returns the maximum value stored in it (Line 62).

Algorithm 4 Max-Register: code for node p.

When writeMaxp(v) occurs:
55: if lmax < v then
56: Storep(v)

57: lmax := v
58: return Ack

When readMaxp() occurs:
59: V := Collectp()

60: if V = ∅ then
61: return ⊥
62: else return max(V .val)

To see that this implements a max register, first note that the writeMax code ensures that each node stores a sequence 
of increasing values. Consider a readMax that returns v . If v = ⊥, then the readMax’s collect returned nothing, which 
means by the regularity property of store-collect that there is no store that precedes the collect and thus no writeMax that 
precedes the readMax. If v 	= ⊥, then v is the argument of a store that starts before the collect finishes, and thus v is the 
argument of a writeMax that starts before the readMax finishes. Assume in contradiction there exists v ′ > v such that a
writeMax(v ′) ends before the readMax begins. By the regularity property of store-collect, the readMax would observe v ′
or a larger value in its collect, and thus would return v ′ or a larger value, not v .

Abort flag A Boolean flag that can only be raised from false to true [24]; provides two operations:

• abort() has no arguments and returns Ack.
• check() has no arguments and returns true or false.

An abort flag ensures that if check returns true then an abort starts before check ends; furthermore, if check returns false
then no abort completes before check starts.

Algorithm 5 follows [24]. It uses a single store-collect object, holding a single flag for each node, and a local variable F
for each node, holding a view. abort stores true (Line 59) and returns ack (Line 60). check collects the flags (Line 61). If 
any of the flags is true then check returns true (Line 62). Otherwise, returns false (Line 63).

Algorithm 5 Abort Flag: code for node p.

When abortp() occurs:
59: Storep(true)
60: return Ack

When checkp() occurs:
61: F := Collectp()

62: if ∃q s. t. F(q) = true then
63: return true
64: else return false

To see that this implements an abort flag, assume an abort completes before a check starts. Then, the store of this abort

sets the flag before the start of the collect by check. By the regularity of store-collect, the check returns true. Conversely, 
if no abort starts before a check completes, then the regularity of store-collect implies that the collect of check does not 
read any false value, and returns false.

3 The behavior of these objects can be formalized through interval linearizability [14].
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Set Contains all values added into it [24]; provides two operations:

• addSet(v) takes a value v as an argument and returns Ack.
• readSet() has no arguments and returns a set of values.

This object ensures that if an addSet(v) completes before a readSet starts, then the readSet returns a set of values that 
includes v; furthermore, if a readSet’s return value includes v , then an addSet(v) starts before the readSet completes.

Algorithm 6 uses a store-collect object, holding a set of values for each node, and two local variables for each node: 
S , a view, and LSet, holding all values previously stored by p. addSet adds the value to the local set (Line 65), stores it 
(Line 66), and returns ack (Line 67). readSet collects the set of values (Line 68) and returns the union of all the sets of 
values (Line 69).

Algorithm 6 Set: code for node p.

When addSetp(v) occurs:
65: LSet := LSet ∪{v}
66: Storep (LSet)
67: return Ack

When readSetp() occurs:
68: S := Collectp()

69: return ∪S .set

To see that this implements a set, assume an addSet(v) completes before a readSet starts. Since the store of addSet

completes before the collect of readSet starts, the regularity property for store-collect implies that the collect returns a set 
of values that includes v . Conversely, if a readSet returns a set that includes the value v , then v appears in the information 
returned by the enclosed collect. By the regularity property of store-collect, there is a store of v that starts before the collect 
ends and thus its enclosing addSet starts before the readSet ends.

6.2. Atomic snapshots

Like other atomic snapshot algorithms [1,16,27], our algorithm uses repeated collects to identify an atomic scan when 
two collects return the same collected views. Updates help scans to complete by embedding an atomic scan that can be 
borrowed by overlapping scans they interfere with. A major challenge in our algorithm is to identify an atomic scan to 
borrow, when there are no two identical views. In the classical approach [1], if a scanner fails to obtain two identical views 
but observes two changes by the same node, then it can safely borrow the embedded scan in that node’s second store, 
which is guaranteed to be sufficiently recent. When the number of nodes is static, the scanner is bound to eventually either 
obtain two identical views or observe two changes by the same node. In our dynamic model, however, since new nodes 
can continue to arrive, each new node can do a single store, causing the scanner to fail to get two identical views but 
also fail to observe two changes by the same node. We thus need a new mechanism for the scanner to identify a view 
that is recent enough to borrow. Similar to the Spiegelman and Keidar [27] algorithm, we attach sequence numbers to scan 
operations. Scanning node p can borrow q’s embedded scan from the collected view if that scan is enclosed within p’s scan, 
as indicated by q having read the sequence number of p’s current scan before q performs its scan.

The set from which the values to be stored in the snapshot object are taken is denoted ValA S . A snapshot view is a subset 
of 	 × ValA S , i.e., a set of (node id, value) pairs, without duplicate node ids.

Formally, an atomic snapshot [1] provides two operations:

• Scan(), which has no arguments and returns a snapshot view, and
• Update(v), which takes a value v ∈ ValA S as an argument and returns Ack.

Its sequential specification consists of all sequences of updates and scans in which the snapshot view returned by a Scan

contains the value of the last preceding Update for each node p, if such an Update exists, and no value, otherwise.
An implementation should be linearizable [22]. Roughly speaking, for every execution α, we should find a sequence of 

operations, lin(α), containing all completed operations in α and some of the pending operations, such that:

• lin(α) is in the sequential specification of an atomic snapshot, and
• lin(α) preserves the real-time order of non-overlapping operations in α.

Our algorithm to implement an atomic snapshot uses a store-collect object, whose values are taken from the set (P
indicates the power set of its argument):

ValSC = ValA S ×N ×N ×P(	 × ValA S) ×P(	 ×N)

The first component (val) holds the argument of the most recent update invoked at p. The second component (usqno) holds 
the number of updates performed by p. The third component (ssqno) holds the number of scans performed by p. The 
fourth component (sview) holds a snapshot view that is the result of a recent scan done by p; it is used to help other nodes 
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complete their scans. The fifth component (scounts) holds a set of counts of how many scans have been done by the other 
nodes, as observed by p. The projection of an element v in ValSC onto a component is denoted, respectively, v.val, v.usqno, 
v.ssqno, v.sview, v.scounts.

A store-collect view is a subset of 	 × ValSC , i.e., a set of (node id, value) pairs, with no duplicate node ids. We extend 
the projection notation to a store-collect view V , so that V .comp is the result of replacing each tuple 〈p, v〉 in V with 
〈p, v.comp〉. Recall that for any kind of view V , V (p) is the second component of the pair whose first component is p (⊥ if 
there is no such pair). Sometimes we restrict attention to those tuples in a view V whose val component is a “real” value, 
reflecting a store; to this end we use the notation

r(V ) = {〈p, v〉|〈p, v〉 ∈ V andv.val 	= ⊥}.
To execute a Scan, Algorithm 7 increments the scan sequence number (ssqno) (Line 70) and stores it in the shared store-

collect object with all the other components unchanged, indicated by the − notation. Then, a view is collected (Line 72). In 
a while loop, the last collected view is saved and a new view is collected (Line 74). If the two most recently collected views 
reflect the same set of updates (Line 75), the latest collected view is returned (Line 76); Lines 75 and 76 consider only tuples 
with “real” values. We call this a successful double collect, and say that this is a direct scan. Otherwise, the algorithm checks 
whether the last collected view contains a node q that has observed its own ssqno, by checking the scounts component 
(Line 77). If this condition holds, the snapshot view of q is returned (Line 78); we call this a borrowed scan.

An Update first obtains all scan sequence numbers from a collected view and assigns them to a local variable scounts
(Line 79). Next, the value of an embedded scan is saved in a local variable sview (Line 80). Then it sets its val variable to 
the argument value and increments its update sequence number (Lines 81 and 82). Finally the new value, update sequence 
number, collected view, and set of scan sequence numbers are stored; the node’s own scan sequence number is unchanged 
(Line 83).

Algorithm 7 Atomic snapshot: code for node p.
Local Variables:
ssqno: int, initially 0 // counts how many scans p has invoked so far
scounts: set of (node id, integer) pairs with no duplicate node ids; initially ∅
val: an element of ValA S , initially ⊥ // argument of most recent update invoked by p
usqno: int, initially 0 // number of updates p has invoked so far
sview: a snapshot view, initially ∅ // the result of recent embedded scan by p
V 1, V 2: store-collect views, both initially ∅

When SCANp () occurs:
70: ssqno++
71: Storep(〈−, −, ssqno, −, −〉)
72: V 1 := Collectp()

73: while true do
74: V 2 := V 1; V 1 := Collectp()

75: if (r(V 1).usqno = r(V 2).usqno) then
76: return r(V 1).val // direct scan
77: if ∃q such that

〈p, ssqno〉 ∈ V 1(q).scounts then
78: return V 1(q).sview

// borrowed scan

When Updatep(v) occurs:
79: scounts := Collectp().ssqno
80: sview := Scanp() // embedded scan
81: val := v
82: usqno++
83: Storep(〈val, usqno, −, sview, scounts〉)
84: return ACK

To prove linearizability, we consider an execution and specify an ordering of all the completed scans and all the updates 
whose store on Line 83 started. The ordering takes into consideration the embedded scans, which are inside updates, as 
well as the “free-standing” scans; since scans do not change the state of the atomic snapshot object, it is permissible to do 
so.

We first show that the snapshot views returned by direct scans are comparable in the following order: Let W1 be the 
snapshot view returned by a direct scan based on the collect view V 1 (cf. Line 76) and W2 be the snapshot view returned 
by a direct scan based on the collect view V 2 (cf. Line 76). We define W1 � W2 if for every 〈p, v〉 ∈ W1, there exists 
〈p, v ′〉 ∈ W2 where the usqno associated with v in V 1 is less than or equal to the usqno associated with v ′ in V 2.

Lemma 18. If a direct scan by node p returns W1 and a direct scan by node q returns W2 , then either W1 � W2 or W2 � W1 .

Proof. Let cop1
p , returning V ′

1, followed by cop2
p , returning V 1, be the successful double collect at the end of p’s direct scan 

and let cop1
q , returning V ′

2, followed by cop2
q , returning V 2, be the successful double collect at the end of q’s direct scan. 

Note that W1 = r(V 1).val, which is equal to r(V ′
1).val, and similarly W2 = r(V 2).val = r(V ′

2).val.
Case 1: cop1

p completes before cop2
q starts. Consider any 〈r, w〉 ∈ W2. Then 〈r, v〉 is in both V ′

1 and V 1, with v .val = w
and v .usqno > 0. By regularity of store-collect, V ′ � V 2. Thus there is an entry 〈r, v ′〉 ∈ V 2 such that either v = v ′ or v ′ is 
1
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stored by r after v is stored by r. Since the usqno variable at r takes on increasing values, v .usqno ≤ v ′ .usqno. Thus there is 
an entry 〈r, w ′〉 ∈ W2 where the usqno associated with w ′ is at least as large as that associated with w . Hence W1 � W2.

Case 2: cop1
q completes before cop2

p starts. An analogous argument shows that W2 � W1. �
Consider all direct scans in the order they complete and place them by the comparability order. Suppose a direct scan 

returning snapshot view W1, obtained from collect view V 1, precedes another direct scan returning snapshot view W2, 
obtained from collect view V 2. The regularity of store-collect ensures that V 1 � V 2, and thus W1 � W2. Hence, this ordering 
preserves the real-time order of non-overlapping direct scans.

The next lemma helps to order borrowed scans. Its statement is based on the observation that if a scan sopp by node p
borrows the snapshot view in V 1(q), then there is an update uopq by q that writes this view (via a store).

Lemma 19. If a scan sopp by node p borrows from a scan sopq by node q, then sopq starts after sopp starts and completes before sopp
completes.

Proof. Let uopq be the update in which sopq is embedded. Since sopp borrows the snapshot view of sopq , its ssqno appears 
in scounts of q’s value in the view collected in Line 74. The properties of store-collect imply that the collect of uopq
(Line 79) does not complete before the store of p (Line 71) starts. Hence, sopq (called in Line 80) starts after sopp starts. 
Furthermore, since the collect of p returns the snapshot view stored after sopq completes (Line 83), sopq completes before 
sopp completes. �

For every borrowed scan sop1, there exists a chain of scans sop2, sop3, . . ., sopk such that sopi borrows from sopi+1, 
1 ≤ i < k, and sopk is a direct scan from which sop1 borrows. Consider all borrowed scans in the order they complete and 
place each borrowed scan after the direct scan it borrows from, as well as all previously linearized borrowed scans that 
borrow from the same direct scan. Applying Lemma 19 inductively, sopk starts after sop1 starts and completes before sop1
completes, i.e., the direct scan from which a scan borrows is completely contained, in the execution, within the borrowing 
scan. This fact, together with the rule for ordering borrowed scans, implies that the real-time order of any two scans, at 
least one of which is borrowed, is preserved since direct scans have already been shown to be ordered properly.

Finally, we consider all updates in the order their stores (Line 83) start. Place each update, say uop by node p with 
argument v , immediately before the first scan whose returned view includes 〈p, v ′〉, where either v ′ = v or v ′ is the 
argument of an update by p that follows uop. If there is no such scan, then place uop at the end of the ordering. Note 
that all later scans return snapshot views that include 〈p, v ′〉, where either v ′ = v or v ′ is the argument of an update by 
p that follows uop. This rule for placing updates ensures that the ordering satisfies the sequential specification of atomic 
snapshots.

Note that if a scan completes before an update starts, then the scan’s returned view cannot include the update’s value; 
similarly, if an update completes before a scan starts, then the scan’s returned view must includes the update’s value or a 
later one. This shows that the ordering respects the real-time order between non-overlapping updates and scans. The next 
lemma deals with non-overlapping updates.

Lemma 20. Let V be the snapshot view returned by a scan sop. If V (p) is the value of an update uopp by node p and an update uopq
by node q precedes uopp , then V (q) is the value of uopq or a later update by q.

Proof. Let sop′ be sop if sop is a direct scan and otherwise the direct scan from which sop borrows. Let W be the (store-
collect) view returned by the last two collects, cop1 and cop2, of sop′ .

We now show that V = W .val. If sop′ = sop, then V = W .val by Line 76, since sop is a direct scan. Otherwise, V = W .val
because W .val is returned to the enclosing scan, assigned to sview, and then stored (cf. Lines 80 and 83). This snapshot 
view is then propagated through the chain of borrowed-from scans and their enclosing updates until reaching sop where it 
is returned as V .

Since V includes the value of uopp , so does W . It follows that both stores of uopp start before cop1 completes and thus 
before cop2 starts. Since uopq precedes uopp , the store of uopq at Line 83 completes before either store of uopp starts. Thus 
the store of uopq completes before cop2 starts, and by the store-collect property, the view W returned by cop2 must include 
the value of uopq or a later update by q. Since V = W .val, the same is true for V . �

Consider an update uopp , by node p, that follows an update uopq , by node q, in the execution. If uopp is placed at the 
end of the (current) ordering because there is no scan that observes its value or a later update by p, then it is ordered after 
uopq . If uopp is placed before a scan, then the same must be true of uopq . By construction, the next scan after uopp in the 
ordering, call it sop, returns view V with V (p) equal to the value of uopp or a later update by p. By Lemma 20, V (q) must 
equal the value of uopq or a later update by q. Thus uopq cannot be placed after sop, and thus it is placed before uopp .

We now consider the termination property of the algorithm. Suppose scan sopq by node q contains two consecutive col-
lects cop1, which returns V 1, followed by cop2, which returns V 2, and this double collect is unsuccessful. Then V 1(p).usqno
is not equal to V 2(p).usqno for some node p and V 2 does not contain an scounts that includes sopq ’s scan sequence number 
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ssqno. Thus, there exists an update uopp by node p that is observed by V 2 but not by V 1. The correctness of store-collect 
implies that uopp finishes after V 1 starts. Yet uopp does not include sopq ’s ssqno, which means that uopp starts before the 
store at the beginning of sopq completes. Let t be the time when the store at the beginning of sopq completes and recall that 
N(t) denotes the number of nodes present at time t . Thus at most N(t) updates are pending at time t , implying that sopq

has at most N(t) unsuccessful double collects before it can borrow a scan view. Hence, Update executes at most O (N(t))
collects and stores. Putting the pieces together, we have:

Theorem 21. Algorithm 7 is a linearizable implementation of an atomic snapshot object. The number of communication rounds in a
Scan or an Update operation is at most linear in the number of nodes present in the system when the operation starts.

6.3. Generalized lattice agreement

Let 〈L, �〉 be a lattice, where L is the domain of lattice values, ordered by �. We assume a join operator, �, that merges 
lattice values. A node p calls a Propose operation with a lattice input value, and gets back a lattice output value. The input 
to p’s i-th Propose is denoted v p

i and the response is w p
i . The following conditions are required:

Validity Every response value w p
i is the join of some values proposed before this response, including v p

i , and all values 
returned to any node before the invocation of p’s i-th Propose.

Consistency Any two values w p
i and wq

j are comparable.

This definition is a direct extension of one-shot lattice agreement [9], following [24]. The version studied in [17] is weaker 
and lacks real-time guarantees across nodes.

Algorithm 8 uses an atomic snapshot object, in which each node stores a single lattice value (val), initialized to ∅. A
Propose operation is simply an Update of a lattice value which is the join of all the node’s previous inputs, followed by a
Scan returning the analogous values for all nodes, whose join is the output of Propose.

Algorithm 8 Generalized lattice agreement: code for node p.
When Proposep(v) occurs:

85: val := val � v // track previous inputs of p
86: Updatep(val)
87: sview := Scanp()

88: return �sview.val

To show validity of a Propose operation op, first note that its output value is the join of values obtained from the 
atomic snapshot object, including op’s own input value. By the specification of atomic snapshot, the obtained values are 
those proposed by other Propose operations that start before op finishes. The output is also the join of all values returned 
before op begins for the following reason: Suppose op′ finishes before op begins and returns v ′ . We argue that every value 
contributing to v ′ is also observed by op. Suppose the input v ′′ of op′′ is in the scan by op′ and thus used to compute v ′ . 
Then the update by op′′ is linearized before the scan of op′ . Since op′ finishes before op begins, the scan of op′ is linearized 
before the scan of op. Therefore the update of op′′ is linearized before the scan of op. Thus, v ′′ is joined into the value 
returned by op.

To show consistency, consider two views V 1 and V 2 used to produce two return values of Propose. By the atomic 
snapshot properties, the sets of values in these two views are comparable (by containment), and hence their joins are 
comparable in the lattice.

Clearly, the algorithm terminates within O (N) collects and stores, where N is the maximum number of nodes concur-
rently active during the execution of Propose. Since Propose includes one Update and one Scan, it terminates if the node 
does not crash or leave.

7. Conclusion

We have advocated for the usefulness of the store-collect object as a powerful, flexible, and efficient primitive for im-
plementing a variety of shared objects in dynamic systems with continuous churn. We presented a simple churn-tolerant 
implementation of store-collect in which the store operation completes within one round trip and the collect operation com-
pletes within two. We presented an algorithm for atomic snapshots and another one for generalized lattice agreement using 
atomic snapshot. The good performance of the underlying store-collect carries over to the latter two problems, since the 
values can be collected in parallel rather than in series. We also described some simple implementations of non-linearizable 
objects (max register, abort flag, and set) using store-collect. This assortment of applications highlights the ability to choose 
whether we want to pay the price of linearizability or settle for the weaker “regularity” condition of store-collect.

If the level of churn is too great, our store-collect algorithm is not guaranteed to preserve the safety property; that is, a 
collect might miss the value written by a previous store, essentially by the same counter-example as that given in [7]. This 
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behavior is in contrast to the algorithms in [2,20,24], which never violate the safety property but only ensure progress once 
reconfigurations cease. In future work, we would like to either improve our algorithm to avoid this behavior or prove that 
any algorithm that tolerates ongoing churn is subject to such bad behavior.

Our correctness proof for our store-collect algorithm requires that the parameters defining the churn rate and failure 
fraction satisfy certain conditions. These conditions imply that even in the absence of churn the failure fraction tolerable by 
our algorithm is smaller than in the static case (namely, less than one-third versus less than one-half). Some degradation 
is unavoidable when allowing for the possibility of churn, since an argument from [7] can be adapted to show that when 
implementing store-collect in a system with churn rate α, the fraction of failures must be less than 1/(α + 2). It would be 
nice to find less restrictive constraints on the parameters, either through a better analysis or a modified algorithm, or to 
show that they are necessary.

Another desirable modification to the store-collect algorithm would be reducing the size of the messages and the amount 
of local storage by garbage-collecting the Changes sets. In the same vein, we would like to know if modifying the atomic 
snapshot specification to remove from returned views entries of nodes that have left, as is done in [27], can lead to a more 
space-efficient algorithm.
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