
Interpreting Deep-Learned Error-Correcting Codes
N. Devroye1, N. Mohammadi1, A. Mulgund1, H. Naik1, R. Shekhar1, Gy. Turán1,2, Y. Wei1 and M. Žefran1

1University of Illinois at Chicago, Chicago, IL, USA
2MTA-SZTE Research Group on Artificial Intelligence, ELRN, Szeged, Hungary

{devroye, nmoham24, mulgund2, hnaik2, rshekh3, gyt, ywei30, mzefran}@uic.edu

Abstract—Deep learning has been used recently to learn error-

correcting encoders and decoders which may improve upon previ-

ously known codes in certain regimes. The encoders and decoders

are learned “black-boxes”, and interpreting their behavior is of

interest both for further applications and for incorporating this

work into coding theory. Understanding these codes provides

a compelling case study for Explainable Artificial Intelligence

(XAI): since coding theory is a well-developed and quantitative

field, the interpretability problems that arise differ from those

traditionally considered. We develop post-hoc interpretability

techniques to analyze the deep-learned, autoencoder-based en-

coders of TurboAE-binary codes, using influence heatmaps,

mixed integer linear programming (MILP), Fourier analysis, and

property testing. We compare the learned, interpretable encoders

combined with BCJR decoders to the original black-box code.

I. INTRODUCTION

Recently, a new path emerged in the development of error
correcting codes: “learn” the encoders and/or decoders of error
correcting codes using deep learning in an end-to-end fashion
[1]–[9]. The results are mixed: while some learned codes
significantly outperform known codes, generally on channels
for which error-correcting codes have not been studied at
length [7], in others [2], [10], the general purpose neural
networks-based code designs achieve bit error rates (BERs)
comparable to convolutional codes, below those of near-
optimal codes. While deep-learned codes are explicitly given
by specific neural networks, those can be considered black
boxes in the sense that it is not “understood” how/when they
perform well or whether/if they relate to known codes.

Deep learning has been enormously successful in improving
the prediction capabilities of machine learning (ML) algo-
rithms and extending their applicability to new domains. The
interpretability of learned models is a fundamental require-
ment, important in itself, but also for achieving other objec-
tives, such as trust. It has mostly been discussed for perception
tasks such as image understanding and societal applications
such as loan approval. There are other domains where it
is equally important but has a different nature. In scientific
applications, the lack of interpretability of predictions obtained
through deep learning hinders the incorporation of new find-
ings into current scientific knowledge [11]. Compared with
societal applications, scientists have more precisely defined

This work was supported by NSF under awards 1705058 and 1934915, and
the Ministry of Innovation and Technology NRDI Office within the framework
of the Artificial Intelligence National Laboratory program (MILAB), Hungary.
The authors are in alphabetic order.

notions of an interpretation. The question whether it can be
achieved in such contexts is also of interest for understanding
the nature of scientific research using ML [12].

Thus the study of interpretability of deep-learned error-
correcting codes is motivated by information theory and XAI.
We present initial approaches for one of the simplest exam-
ples of end-to-end learned codes, termed Turbo Autoencoder
(TurboAE and TurboAE-binary, focusing on the latter) [9],
which are learned using convolutional neural networks (CNN).
These are among the first end-to-end learned channel codes
with reliability comparable to modern codes such as Turbo
codes on Additive White Gaussian Noise (AWGN) channels
for moderate block lengths (a few hundred) and signal to noise
ratios (SNRs) below around 1dB (low SNR) [9, Figure 1].

We focus on post-hoc interpretability, i.e., on interpreting
the output of the learned model. By interpretability we mean
comprehensibility for the information and communication the-
ory research community, which is consistent with the context-
dependence of the notion. Thus Turbo codes and the BCJR
decoder are considered interpretable. The iterative Turbo de-
coder is complex [13] and may be interpreted itself [14],
[15], but arguably its opacity is of a different degree than
that of a neural network. Even though in this work network
structure and size allow brute-force examination, our objective
is to develop techniques that may be applicable in general,
such as influence heatmaps, mixed integer linear programming
(MILP), Fourier analysis, and property testing.

Outline. In Section II we describe the encoder, and define
modified Turbo codes used in the interpretation of the Tur-
boAE and TurboAE-binary models of [16], [17]. . Sections
III, IV and V discuss approximate and exact polynomial rep-
resentations of the encoding functions and BER performance,
coupled with BCJR decoders. Observations on the training
dynamics are given in Section VI. Section VII summarizes
and formulates open problems1.

II. TURBOAE-BINARY AND MODIFIED TURBO CODES

The TurboAE encoder architecture [9] resembles a classical
rate 1/3 Turbo code, where the three constituent codes –
generally recursive convolutional codes for classical Turbo
codes [18], [19] – are replaced by CNN blocks, as in Fig.
1. The input to the network is a sequence u of 100 bits, and
the output of each block j 2 {1, 2, 3} is a sequence xAE,j of

1Code for experiments at https://github.com/tripods-xai/isit-2022.

2022 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-2159-1/22/$31.00 ©2022 IEEE 2457

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
In

fo
rm

at
io

n
Th

eo
ry

 (I
SI

T)
 |

97
8-

1-
66

54
-2

15
9-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

IT
50

56
6.

20
22

.9
83

45
99

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on October 03,2022 at 16:46:44 UTC from IEEE Xplore. Restrictions apply.

<latexit sha1_base64="PnYoCHduSr2h7O4tfPDSnAUlkMo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fipk/WDkKSzQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLcGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/Hcy5AqZEVNLKFPc3krYmCrKjE2oZEPwVl9eJ+2rqlev1h5qlcZtHkcRzuAcLsGDa2jAPTShBQwm8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gAtaY96</latexit>u
<latexit sha1_base64="/KXDt05vbrzY+1rkTETGbW+vEAM=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeqCB4r2A9oQtlsN+3SzSbsbsQS8je8eFDEq3/Gm//GTZuDtj4YeLw3w8w8P+ZMadv+tkorq2vrG+XNytb2zu5edf+go6JEEtomEY9kz8eKciZoWzPNaS+WFIc+p11/cpP73UcqFYvEg57G1AvxSLCAEayN5KauH6CnQXp1m2WDas2u2zOgZeIUpAYFWoPqlzuMSBJSoQnHSvUdO9ZeiqVmhNOs4iaKxphM8Ij2DRU4pMpLZzdn6MQoQxRE0pTQaKb+nkhxqNQ09E1niPVYLXq5+J/XT3Rw6aVMxImmgswXBQlHOkJ5AGjIJCWaTw3BRDJzKyJjLDHRJqaKCcFZfHmZdM7qznm9cd+oNa+LOMpwBMdwCg5cQBPuoAVtIBDDM7zCm5VYL9a79TFvLVnFzCH8gfX5A86BkYw=</latexit>xAE

<latexit sha1_base64="7N7LJg8REdj+M65Npr5gCyLLnXU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//ci1EbF6wEnC/YgOlQgFo2ildtYLQvI07ZcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwzO8wpuTOC/Ou/OxaC04+cwx/IHz+QMx+I99</latexit>x

<latexit sha1_base64="HamLw9MtuVAVXaswHPRqCR0A9UE=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzEOSJcxOZpMh81hmZsWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bK6ysrq1vFDdLW9s7u3vl/YOmUakmtEEUV7odYUM5k7RhmeW0nWiKRcRpKxrdTP3WI9WGKXlvxwkNBR5IFjOCrZMesm4Uo6deMOmVK37VnwEtkyAnFchR75W/un1FUkGlJRwb0wn8xIYZ1pYRTielbmpogskID2jHUYkFNWE2O3iCTpzSR7HSrqRFM/X3RIaFMWMRuU6B7dAselPxP6+T2vgqzJhMUkslmS+KU46sQtPvUZ9pSiwfO4KJZu5WRIZYY2JdRiUXQrD48jJpnlWDi+r53Xmldp3HUYQjOIZTCOASanALdWgAAQHP8ApvnvZevHfvY95a8PKZQ/gD7/MHW4aQIQ==</latexit>x1

<latexit sha1_base64="Bj67J5tu1KDrDK5wHNRYROci+sE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT0WvXisYD+kXUo2zbahSXZJsmJZ+iu8eFDEqz/Hm//GdLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcjP3O49UaRbJezONqS/wSLKQEWys9JD2gxA9DWqzQbniVt0MaJV4OalAjuag/NUfRiQRVBrCsdY9z42Nn2JlGOF0VuonmsaYTPCI9iyVWFDtp9nBM3RmlSEKI2VLGpSpvydSLLSeisB2CmzGetmbi/95vcSEV37KZJwYKsliUZhwZCI0/x4NmaLE8KklmChmb0VkjBUmxmZUsiF4yy+vknat6l1U63f1SuM6j6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzseiteDkM8fwB87nD10LkCI=</latexit>x2

<latexit sha1_base64="EK1hkKg0JVlu06UGl+vOfR/Kh4g=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9nVoh6LXjxWsB/SLiWbZtvQJLskWbEs+yu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvpn67UeqNIvkvZnE1Bd4KFnICDZWekh7QYie+udZv1xxq+4MaJl4OalAjka//NUbRCQRVBrCsdZdz42Nn2JlGOE0K/USTWNMxnhIu5ZKLKj209nBGTqxygCFkbIlDZqpvydSLLSeiMB2CmxGetGbiv953cSEV37KZJwYKsl8UZhwZCI0/R4NmKLE8IklmChmb0VkhBUmxmZUsiF4iy8vk9ZZ1buo1u5qlfp1HkcRjuAYTsGDS6jDLTSgCQQEPMMrvDnKeXHenY95a8HJZw7hD5zPH16QkCM=</latexit>x3

<latexit sha1_base64="JXGkx+NGafyorcn3FOKPkTRCaiQ=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBg5RESvVYFcFjBfsBbSyb7aZdutmE3Y1aQv6HFw+KePW/ePPfuG1z0NYHA4/3ZpiZ50WcKW3b31ZuaXlldS2/XtjY3NreKe7uNVUYS0IbJOShbHtYUc4EbWimOW1HkuLA47Tlja4mfuuBSsVCcafHEXUDPBDMZwRrI90nXc9HT73k4vrESdNesWSX7SnQInEyUoIM9V7xq9sPSRxQoQnHSnUcO9JugqVmhNO00I0VjTAZ4QHtGCpwQJWbTK9O0ZFR+sgPpSmh0VT9PZHgQKlx4JnOAOuhmvcm4n9eJ9b+uZswEcWaCjJb5Mcc6RBNIkB9JinRfGwIJpKZWxEZYomJNkEVTAjO/MuLpHladqrlym2lVLvM4sjDARzCMThwBjW4gTo0gICEZ3iFN+vRerHerY9Za87KZvbhD6zPH62Okf0=</latexit>xAE,1

<latexit sha1_base64="3rZTYsyu+9SgdJzsb8p/SOS0BYA=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPVYFcFjBfsBbSyb7aZdutmE3Y1aQv6HFw+KePW/ePPfuG1z0NYHA4/3ZpiZ50WcKW3b31ZuaXlldS2/XtjY3NreKe7uNVUYS0IbJOShbHtYUc4EbWimOW1HkuLA47Tlja4mfuuBSsVCcafHEXUDPBDMZwRrI90nXc9HT73k4vqkkqa9Ysku21OgReJkpAQZ6r3iV7cfkjigQhOOleo4dqTdBEvNCKdpoRsrGmEywgPaMVTggCo3mV6doiOj9JEfSlNCo6n6eyLBgVLjwDOdAdZDNe9NxP+8Tqz9czdhIoo1FWS2yI850iGaRID6TFKi+dgQTCQztyIyxBITbYIqmBCc+ZcXSbNSdk7L1dtqqXaZxZGHAziEY3DgDGpwA3VoAAEJz/AKb9aj9WK9Wx+z1pyVzezDH1ifP68Ukf4=</latexit>xAE,2

<latexit sha1_base64="z2VhO8qecvw4YTwY7P/YP8+dFrQ=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBg5REi3qsiuCxgv2ANpbNdtMu3WzC7kYtIf/DiwdFvPpfvPlv3LY5aOuDgcd7M8zM8yLOlLbtbyu3sLi0vJJfLaytb2xuFbd3GiqMJaF1EvJQtjysKGeC1jXTnLYiSXHgcdr0hldjv/lApWKhuNOjiLoB7gvmM4K1ke6Tjuejp25ycX10kqbdYsku2xOgeeJkpAQZat3iV6cXkjigQhOOlWo7dqTdBEvNCKdpoRMrGmEyxH3aNlTggCo3mVydogOj9JAfSlNCo4n6eyLBgVKjwDOdAdYDNeuNxf+8dqz9czdhIoo1FWS6yI850iEaR4B6TFKi+cgQTCQztyIywBITbYIqmBCc2ZfnSeO47JyWK7eVUvUyiyMPe7APh+DAGVThBmpQBwISnuEV3qxH68V6tz6mrTkrm9mFP7A+fwCwmpH/</latexit>xAE,3

<latexit sha1_base64="YxGfHyChJak4ZkGhqc2jDgT/fHU=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkoiRT0WvXisYD+gjWWz3bRLN5u4uymUkN/hxYMiXv0x3vw3btMctPXBwOO9GWbmeRFnStv2t1VYW9/Y3Cpul3Z29/YPyodHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k9u535lSqVgoHvQsom6AR4L5jGBtJDfpez4aPSZV5zxNB+WKXbMzoFXi5KQCOZqD8ld/GJI4oEITjpXqOXak3QRLzQinaakfKxphMsEj2jNU4IAqN8mOTtGZUYbID6UpoVGm/p5IcKDULPBMZ4D1WC17c/E/rxdr/9pNmIhiTQVZLPJjjnSI5gmgIZOUaD4zBBPJzK2IjLHERJucSiYEZ/nlVdK+qDmXtfp9vdK4yeMowgmcQhUcuIIG3EETWkDgCZ7hFd6sqfVivVsfi9aClc8cwx9Ynz/U75GA</latexit>

g(1)

<latexit sha1_base64="rSGdmyKOivSVyfM8NnI49yLTH7s=">AAAB9HicbVBNT8JAEJ3iF+IX6tHLRmKCF9ISoh6JXjxiIh8JVLJdtrBhuy27WxLS9Hd48aAxXv0x3vw3LtCDgi+Z5OW9mczM8yLOlLbtbyu3sbm1vZPfLeztHxweFY9PWiqMJaFNEvJQdjysKGeCNjXTnHYiSXHgcdr2xndzvz2lUrFQPOpZRN0ADwXzGcHaSG7S83w0fErK1cs07RdLdsVeAK0TJyMlyNDoF796g5DEARWacKxU17Ej7SZYakY4TQu9WNEIkzEe0q6hAgdUucni6BRdGGWA/FCaEhot1N8TCQ6UmgWe6QywHqlVby7+53Vj7d+4CRNRrKkgy0V+zJEO0TwBNGCSEs1nhmAimbkVkRGWmGiTU8GE4Ky+vE5a1YpzVak91Er12yyOPJzBOZTBgWuowz00oAkEJvAMr/BmTa0X6936WLbmrGzmFP7A+vwB1naRgQ==</latexit>

g(2)

<latexit sha1_base64="u5bC3T5x9zPX/7N9PHJUFiD7LAs=">AAAB9HicbVBNT8JAEJ3iF+IX6tHLRmKCF9IKUY9ELx4xkY8EKtkuW9iw3dbdLQlp+ju8eNAYr/4Yb/4bF+hBwZdM8vLeTGbmeRFnStv2t5VbW9/Y3MpvF3Z29/YPiodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG1749uZ355QqVgoHvQ0om6Ah4L5jGBtJDfpeT4aPibl6nma9oslu2LPgVaJk5ESZGj0i1+9QUjigApNOFaq69iRdhMsNSOcpoVerGiEyRgPaddQgQOq3GR+dIrOjDJAfihNCY3m6u+JBAdKTQPPdAZYj9SyNxP/87qx9q/dhIko1lSQxSI/5kiHaJYAGjBJieZTQzCRzNyKyAhLTLTJqWBCcJZfXiWti4pzWand10r1myyOPJzAKZTBgSuowx00oAkEnuAZXuHNmlgv1rv1sWjNWdnMMfyB9fkD1/2Rgg==</latexit>

g(3)

<latexit sha1_base64="Yv3vhztvCyWwLoZO8RPy4NuW4ZI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRahgpREinosevFYwX5AE8Jmu2mXbrJhdyKEUP+KFw+KePWHePPfuG1z0NYHA4/3ZpiZFyScKbDtb6O0tr6xuVXeruzs7u0fmIdHXSVSSWiHCC5kP8CKchbTDjDgtJ9IiqOA014wuZ35vUcqFRPxA2QJ9SI8ilnICAYt+WY19HPn3IUxBTytu2Qo4Mw3a3bDnsNaJU5BaqhA2ze/3KEgaURjIBwrNXDsBLwcS2CE02nFTRVNMJngER1oGuOIKi+fHz+1TrUytEIhdcVgzdXfEzmOlMqiQHdGGMZq2ZuJ/3mDFMJrL2dxkgKNyWJRmHILhDVLwhoySQnwTBNMJNO3WmSMJSag86roEJzll1dJ96LhXDaa981a66aIo4yO0QmqIwddoRa6Q23UQQRl6Bm9ojfjyXgx3o2PRWvJKGaq6A+Mzx/zxpRV</latexit>

f1,✓(·)

<latexit sha1_base64="XhjW0RtEORO7v2izd1N6mU0LuH8=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBEqSElKUZdFNy4r2Ac0IUymk3bo5MHMjRBC/RU3LhRx64e482+ctllo64ELh3Pu5d57/ERwBZb1baytb2xubZd2yrt7+weH5tFxV8WppKxDYxHLvk8UEzxiHeAgWD+RjIS+YD1/cjvze49MKh5HD5AlzA3JKOIBpwS05JmVwMsbFw6MGZBpzaHDGM49s2rVrTnwKrELUkUF2p755QxjmoYsAiqIUgPbSsDNiQROBZuWnVSxhNAJGbGBphEJmXLz+fFTfKaVIQ5iqSsCPFd/T+QkVCoLfd0ZEhirZW8m/ucNUgiu3ZxHSQosootFQSowxHiWBB5yySiITBNCJde3YjomklDQeZV1CPbyy6uk26jbl/XmfbPauiniKKETdIpqyEZXqIXuUBt1EEUZekav6M14Ml6Md+Nj0bpmFDMV9AfG5w/1WZRW</latexit>

f2,✓(·)

<latexit sha1_base64="bStrKPsYOD03bO4X4xgKTU1qmcA=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAgVpCRa1GXRjcsK9gFNCJPJpB06yYSZGyGE+ituXCji1g9x5984fSy09cCFwzn3cu89QcqZAtv+NlZW19Y3Nktb5e2d3b198+Cwo0QmCW0TwYXsBVhRzhLaBgac9lJJcRxw2g1GtxO/+0ilYiJ5gDylXowHCYsYwaAl36xEfnFx5sKQAh7XXBIKOPXNql23p7CWiTMnVTRHyze/3FCQLKYJEI6V6jt2Cl6BJTDC6bjsZoqmmIzwgPY1TXBMlVdMjx9bJ1oJrUhIXQlYU/X3RIFjpfI40J0xhqFa9Cbif14/g+jaK1iSZkATMlsUZdwCYU2SsEImKQGea4KJZPpWiwyxxAR0XmUdgrP48jLpnNedy3rjvlFt3szjKKEjdIxqyEFXqInuUAu1EUE5ekav6M14Ml6Md+Nj1rpizGcq6A+Mzx/27JRX</latexit>

f3,✓(·)
<latexit sha1_base64="SszqgylynoqdSluBuqAHHUtxGgs=">AAACA3icbVC7SgNBFJ2N7/iK2mkzGAQLCbsSVLQRbLSLYBIhu4TZyV0dMju7zNwVwxKw8VdsLBSx9Sfs/Bsnj0KNBwYO55zLnXvCVAqDrvvlFKamZ2bn5heKi0vLK6ultfWGSTLNoc4TmejrkBmQQkEdBUq4TjWwOJTQDLtnA795B9qIRF1hL4UgZjdKRIIztFK7tOkj3GN+oRC0BGaje33qn1C/Jtqlsltxh6CTxBuTMhmj1i59+p2EZzEo5JIZ0/LcFIOcaRRcQr/oZwZSxrvsBlqWKhaDCfLhDX26Y5UOjRJtn0I6VH9O5Cw2pheHNhkzvDV/vYH4n9fKMDoKcqHSDEHx0aIokxQTOiiEdoQGjrJnCeNa2L9Sfss047YRU7QleH9PniSN/Yp3UKleVsunx+M65skW2Sa7xCOH5JSckxqpE04eyBN5Ia/Oo/PsvDnvo2jBGc9skF9wPr4Be+iXYg==</latexit>

Interleaver, �

<latexit sha1_base64="PnYoCHduSr2h7O4tfPDSnAUlkMo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fipk/WDkKSzQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLcGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/Hcy5AqZEVNLKFPc3krYmCrKjE2oZEPwVl9eJ+2rqlev1h5qlcZtHkcRzuAcLsGDa2jAPTShBQwm8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gAtaY96</latexit>u
<latexit sha1_base64="SszqgylynoqdSluBuqAHHUtxGgs=">AAACA3icbVC7SgNBFJ2N7/iK2mkzGAQLCbsSVLQRbLSLYBIhu4TZyV0dMju7zNwVwxKw8VdsLBSx9Sfs/Bsnj0KNBwYO55zLnXvCVAqDrvvlFKamZ2bn5heKi0vLK6ultfWGSTLNoc4TmejrkBmQQkEdBUq4TjWwOJTQDLtnA795B9qIRF1hL4UgZjdKRIIztFK7tOkj3GN+oRC0BGaje33qn1C/Jtqlsltxh6CTxBuTMhmj1i59+p2EZzEo5JIZ0/LcFIOcaRRcQr/oZwZSxrvsBlqWKhaDCfLhDX26Y5UOjRJtn0I6VH9O5Cw2pheHNhkzvDV/vYH4n9fKMDoKcqHSDEHx0aIokxQTOiiEdoQGjrJnCeNa2L9Sfss047YRU7QleH9PniSN/Yp3UKleVsunx+M65skW2Sa7xCOH5JSckxqpE04eyBN5Ia/Oo/PsvDnvo2jBGc9skF9wPr4Be+iXYg==</latexit>

Interleaver, �

}

}

TurboAE
(Binary)

Interpretable
code

Encoder structures of

Fig. 1: The rate R = 1
3 (u 2 {0, 1}100,xAE,j 2 {±1}100)

TurboAE-binary encoder structure. Functions fj,✓(·) are the con-
stituent codes implemented as CNNs. Our interpretable codes either
find compact Boolean representations for the learned function fj,✓ or
approximate it with a modified convolutional code g(j).

equal length of either real numbers (for Turbo-AE) or {±1}
(for binarized version Turbo-AE-binary). The focus of this
paper is TurboAE-binary [9, Section 3.2], a modification of the
TurboAE architecture where the functions fj,✓ are binarized
using a sign function and Straight-Through-Estimator [20],
[21]. Therefore, in the rest of the paper, and in Fig. 1 we
assume that encoding functions fj,✓ : {0, 1}100 ! {±1}, and
we drop the “binary” suffix. TurboAE also has power control
modules and zero-padding – we refer the readers to [9] for
the details omitted to keep things simple.

A closer look at the CNN blocks reveals that the constituent
codes of block j implements a real-valued Boolean function
fj,✓ : {0, 1}9 ! R (Turbo-AE) or Boolean function fj,✓ :
{0, 1}9 ! ±1 (Turbo-AE-binary) of memory 9 applied to bits
` � 4 : ` + 4 of u to produce the bit ` of xAE,j . The encoder
CNN is paired with a decoder CNN function �✓ (omitted, we
interpret the encoder only) and the network is trained in an
end-to-end fashion to obtain network parameters ✓.

A. Modified Turbo codes

To develop the interpretation of TurboAE-binary we con-
sider modified Turbo codes. Here, the constituent codes are
modified convolutional codes: nonsystematic, nonrecursive,
involve affine functions instead of linear ones (as a Boolean
function and its complement are equivalent for the neural
network so it may converge to either), and may also include
a delay (shift), i.e., an output bit may depend on future input
bits (up to a lookahead horizon L). Thus, x`, the `th bit of
the modified convolutional encoding output, equals:

x` =
MM

i=1

gi u`+L�i+1 � gM+1, (1)

where � is binary mod 2 addition, gi 2 {0, 1}, i 2 1 : (M +1)
are the code parameters, and M is the memory length.

III. APPROXIMATE TURBO ENCODING

We now explore several alternatives for how to find the best
affine approximations of the constituent encoders. Schemati-
cally, the approximation problem is depicted in Fig. 1.

A. Mixed integer linear programming (MILP)

The first approach is to treat the encoder entirely as a black
box, with no assumption on its architecture, and formulate
the approximation as a MILP problem. We do not assume
that each encoding block consists of sequentially applying the
same function to a sliding window of the input bits as in a
convolutional code. Instead, each learned encoder block may
be a general function f block

j,✓
: {0, 1}k ! ±1k. We look for

the best modified convolutional code approximation to this
arbitrary black box. This is a reasonable first approximation
given that TurboAE is meant to “mimic” Turbo codes (for
which constituent codes are convolutional codes), and since
convolutional codes are such a well-studied class of codes
with relatively few parameters.

Let �conv be the set of all modified convolutional codes.
The code g(j)

conv 2 �conv closest to the TurboAE encoder block
f block

j,✓
minimizes the expected Hamming distance between the

corresponding encoder outputs (codewords) produced by the
two codes. Given gconv 2 �conv, let xgconv(u) and xAE,j(u) be
the output strings obtained by encoding the input string u with
gconv (applied repeatedly as in a standard convolutional code)
and f block

j,✓
, respectively. Then:

g(j)
conv = arg min

gconv2�conv

Eu2{0,1}k [dH(xgconv(u),xAE,j(u))] (2)

where dH(a,b) = 1
k

P
k

`=1 a`�b` is the normalized Hamming
distance. We parameterize each modified convolutional code
g(j)

conv by a binary vector g(j) of length M + 1 as Eq. (1).
A MILP can be obtained from (2) using a reformulation of

binary arithmetic (see, e.g., [22]); linearity follows from the
linearity of (1) in parameters gi (and could be extended to
non-linear functions in input u) and is readily solved using
available solvers; we use the Gurobi solver [23]. While it may
not be true in general, in our case Gurobi’s solution is optimal
as confirmed by brute-force search. The expected value in
(2) is approximated through random sampling. For sufficiently
large shift L and memory length M , the optimal generators
are g(1) = 111111, g(2) = 101110, and g(3) = 111101 ,
where the last bit is the parity bit. These produce encoded
bits which differ from those of TurboAE-binary for about
10%, 1.5% and 24.3% on average respectively, including edge
effects. Multiple equivalent solutions for block 3 exist and are
related to the Fourier coefficients (see Section VI).

B. Influence and Fourier representation

In this section we consider another approach that takes
some information available about the network – that it is a
CNN – into account. We use the notion of the influence of a
variable [24], which is a natural importance measure in our
context (other measures used in XAI are described in [25]).

2022 IEEE International Symposium on Information Theory (ISIT)

2458Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on October 03,2022 at 16:46:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: TurboAE Constituent Code Influence heatmaps of (a) Block
1, (b) Block 3 without the interleaver.

The influence of the input variable xi for a single-output
Boolean function f : {0, 1}k ! {0, 1} is defined as

Inf
i

(f) =
1

2k

X

x2{0,1}k

|f(x) � f(x(i))| = Pr(f(x) 6= f(x(i)),

(3)
where x(i) is x with the ith coordinate flipped. The influence of
a variable is 0 iff the function does not depend on that variable.
For an affine function a �

L
i2I

xi, with I ✓ {1, . . . , n} the
influence of variable xi is 1 if i 2 I and 0 otherwise. For
an (n, k) code viewed as a multi-output Boolean function f :
{0, 1}k ! {0, 1}n (or {±1}n) the matrix of influences Infi(f)
can be visualized as a heatmap.

The heatmap for a nonrecursive convolutional code shows
a staircase pattern (shuffled if interleaved). Influence can be
computed exhaustively, or estimated by random sampling.
Influences for the encoder functions f1,✓ and f3,✓ for TurboAE
are shown in Fig. 2; f2,✓’s heatmap is that of a parity. For `th
output, inputs only in window ` � 2 : ` + 2 have non-zero
influences (for each block). The architecture would allow for
a non-zero influence window of length 9, so it is interesting
that only a length 5 emerged from training. Consistent with
the structure of a CNN, the influence pattern is the same for
outputs 3 : 98 of each block.

The CNN architecture also implies that the output bits
in a block compute the same function of their input bits.
This function can be studied, in particular for finding a best
affine approximation, using Fourier analysis. Switching to the
domain {1, �1}, Boolean functions have a unique Fourier

representation as a multilinear polynomial

f(x) =
X

S✓[n]

f̂(S)�S ,

where �S =
Q

i2S
xi [24]. The Fourier coefficients are

f̂(S) = hf, �Si, for inner product hf, gi = Ex(f(x)g(x)). Let
d(f, g) = Pr(f(x) 6= g(x)) be the distance of f and g. Then
hf, �Si = 1�2d(f, �S), and so the best parity approximation
of f corresponds to the largest Fourier coefficient.

The Fourier coefficients of the three functions computed by
the three blocks of TurboAE-binary are shown in Figure 4(c)
and are consistent with those obtained in the previous section.
The multiple optimal approximations (4 large Fourier coeffi-

cients) in block 3 are also visible. The computation is done
by brute force based on the influence information providing
the number of relevant variables, or memory size.

The Goldreich-Levin algorithm [26] is a randomized learn-
ing algorithm which computes large Fourier coefficients with
high probability in polynomial time. It requires query access
to the function, which is available in our setup. This algorithm
could be used without any information about memory size.

C. Property testing

In property testing [27], the objective is to decide if an
unknown black-box function has a property or if it is far from
having the property. Property testing is intended to provide
a preliminary, but very efficient test for the black box. The
black box is queried by an input, and the function value at
that input is returned. A notion of distance of a function from
the property is assumed. Given ✏, the function is accepted
with probability 1 if it has the property, and is rejected with
probability at least 2/3 if its distance from the property is at
least ✏. A testing algorithm is tolerant [28] if for some ✏0 < ✏
functions having distance at most ✏0 from the property are
accepted with probability at least 2/3 as well. Tolerant property
testing seems suitable for our context as an exploratory tool.

We consider property testing for multi-output Boolean func-
tions f = (f1, . . . , fn) : {0, 1}n ! {0, 1}m. The distance of
two such functions f, g is d(f, g) = Pri,x(fi(x) 6= gi(x)).
The distance of f from a property is the minimum of d(f, g)
over functions g having the property.

A multi-parity function is of the form g = (h, . . . , h) :
{0, 1}n ! {0, 1}n, where h is a parity function. For x =
(x1, . . . , xn) let s(x) = (x2, . . . , xn, x1) be the cyclic shift of
x. A cyclically shifted multi-parity (CSMP) function is of the
form f(x) = (h(x), h(s(x)), . . . , h(s(n�1)(x)) : {0, 1}n !
{0, 1}n, where h is a parity. A CSMP function is similar to a
convolutional code with the exception of the wraparound.

Theorem 1. There is a tolerant testing algorithm (with ✏0 =
✏/18) for CSMP using O(1/✏) queries.

The proof is given in the Appendix of [29]. Testing a single
output Boolean function f for being a parity function is based
on testing f(x)�f(y) = f(x�y) for randomly chosen x and
y, and repeating this test O(1/✏) times [30]. In the multi-input
case one can select random vectors x, y and random indices

i, j, k, and test fi(x) � fj(y) = fk(x � y). The analysis uses
the Fourier approach of [31] for linearity testing.

A cyclically shifted multi-affine (CSMA) function is a CSMP
function, except parity functions are replaced by affine ones.
As an affine function is either linear or its complement is,
Theorem 1 can be extended to this case (see Appendix of
[29]). Property testing is efficient but it does not provide the
approximating parity or affine function (that requires further
testing using the self-correction property).

IV. NONLINEAR TURBO ENCODING

We now look not at approximating the constituent encoders,
but at describing them exactly. The truth tables of the 5-
variable encoding functions can be determined exactly by

2022 IEEE International Symposium on Information Theory (ISIT)

2459Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on October 03,2022 at 16:46:44 UTC from IEEE Xplore. Restrictions apply.

brute force, and, in order to understand the nonlinearity of
the functions, one can turn these functions into their unique
representation as a multilinear polynomial over F2.

We consider an extended F2-polynomial representation,
which we refer to as a unate multilinear polynomial. In unate
form, variables can also have negative polarity, i.e., have all
their occurrences negated. A polynomial obtained from an-
other polynomial by replacing all occurences of a subset of the
variables by their negations, and/or by negating the function, is
a unate variant. For example, x1�x̄2�x1x̄2 is a unate variant
of x1 � x2 � x1x2. The use of unate polynomials allows for
more compact representation, appealing for interpretability.

The simplest unate polynomials for the encoding functions
of TurboAE-binary are in Table I. These are moderately non-
linear syntactically, having 3 nonlinear terms altogether. The
function in block 1 is also moderately nonlinear semantically
(differs from parity at only 3 points), but the function in block
3 is semantically further from linear (differs at 8 points).

It turns out that there is a more direct way to obtain these
polynomials. Going beyond the nonzero pattern of influences
in the heatmap 2, now we make use of their values as well.
The nonzero influence values in each row for block 1 (read
right to left) are (15

16 , 13
16 , 13

16 , 13
16 , 15

16), for block 2 they are
(1, 0, 1, 1, 1), and for block 3 they are (1, 1, 1

2 , 1, 1
2). These

particular influence values determine unique functions up to
unate variants. This is a very special case of the inverse

influence problem and such a result cannot be expected in
general, but it suggests that it may be of interest to study
conclusions that can be drawn from influences. Influences are
also called the Banzhaf index [32].

Theorem 2. a) (Block 1) Let f : {0, 1}5 ! {0, 1} have

variable influences
15
16 , 13

16 , 13
16 , 13

16 , 15
16 . Then

f(u) = u1 � u2 � u3 � u4 � u5 � (1 � u1u5)u2u3u4

or a unate variant.

b) (Block 2) Let f : {0, 1}5 ! {0, 1} have variable

influences 1, 0, 1, 1, 1, then f(u) = u1 � u3 � u4 � u5, or

a unate variant.

c) (Block 3) Let f : {0, 1}5 ! {0, 1} have variable

influences 1, 1, 1
2 , 1, 1

2 , then f(u) = u1 � u2 � u4 � u3u5,

or a unate variant.

The proof is in the Appendix of [29]. The proof of part a)

uses the edge isoperimetric inequality for the hypercube [33].
As Theorem 2 and Table I2 show, TurboAE-binary’s con-
stituent codes are nonsystematic and nonrecursive. Blocks 1
and 3 are nonlinear, while block 2 is affine.

V. DECODING

So far we have considered interpreting the encoder, leaving
the decoder untouched. We investigate how the modified
Turbo code found using MILP and the exact nonlinear Turbo
code perform when coupled with an iterative BCJR decoder.
Iterative BCJR attempts to calculate the posterior probabilities

2Linear part of Block 3 in Table I is one of the MILP solutions - 110100.

Block # Expression for output #j

1 1 � u1 � ū2 � u3 � ū4 � u5

� ū2u3ū4 � u1ū2u3ū4u5

2 u1 � u3 � u4 � u5

3 u1 � u2 � u4 � ū3ū5

where u1 = xj+2, u2 = xj+1, u3 = xj ,
u4 = xj�1, u5 = xj�2, x = inputs

TABLE I: Exact expressions for TurboAE-Binary encoder.

P(ui = 1|y) for received message y [34] [35], whereas the
outputs of the black-box CNN decoder of TurboAE-binary
may or may not correspond to true probabilities.

Although coupling systematic convolutional codes (SCCs)
with a BCJR decoder can be done as in [35], our codes
are nonsystematic convolutional codes (NCCs). To allow for
NCCs, we used the decoding architecture from [36]. Alter-
natively, we can turn our nonrecursive NCCs (NNCC) into
recursive SCCs (RSCC) as in [37] since block 2 of both our
exact and MILP approximated representations are parities. A
rigorous formulation is in the Appendix of [29].

To compare our codes with TurboAE-binary, we estimate
BERs on various channels w.r.t. uniformly chosen binary
blocks of length 100, uniformly chosen interleaver permu-
tations, and channel noise. For estimating TurboAE-binary’s
expected BER, we use the original training interleaver only.
For input message x 2 Fm

2 of length m, the channel outputs
y = x + z, and the channel noise vector z is independent
and identically distributed (iid) according to one of the dis-
tributions below, and parameterized by a signal-to-noise ratio
SNR(�2) = �10 log10 �2 for noise variance �2 2 R:

• AWGN: zi is iid ⇠ N (0, �2);
• Additive T-distribution Noise (ATN): zi is iid ⇠ T (3, �2);

T (⌫, �2) denotes the T-distribution with distribution pa-
rameter ⌫ and scaled to have variance �2.

We also benchmark against the following two Turbo codes:
• code rate R = 1/3 with generating function

�
1, 1+x

2

1+x+x2

�
,

which is denoted Turbo-155-7.
• code rate R = 1/3 with generating function�

1, 1+x
2+x

3

1+x+x3

�
, which is denoted Turbo-LTE.

In all experiments we use only 6 decoding iterations to
remain consistent with the benchmarking in [9]. All decoders
are unchanged for experiments on channels other than the
AWGN channel. That is, TurboAE-Binary is not fine-tuned to
the new channels (unlike [9]), and BCJR (incorrectly) assumes
the channel is AWGN in its calculations. The expected BERs
of our different codes are shown in Figure 3. All experiments
are implemented using Python and Tensorflow [38], [39].

Examining Figure 3, we get a fully interpretable Turbo code
(TurboAE Exact NNCC) that performs better than TurboAE-
binary below SNR 0.5 by simply replacing the black-box
decoder. However, TurboAE-binary’s decoder outperforms
BCJR above SNR 0.5. BCJR is not guaranteed to be optimal
for Turbo codes, and these results suggest that TurboAE-
binary’s neural decoder has learned a better decoder for higher

2022 IEEE International Symposium on Information Theory (ISIT)

2460Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on October 03,2022 at 16:46:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Performance of TurboAE-binary, exact and MILP approxi-
mations of TurboAE-binary, and benchmark Turbo codes. Error bars
are 2 standard deviations on the estimated mean BER. For TurboAE-
binary, we used the weights provided by the authors of [9].

SNRs. On the ATN channel, TurboAE-binary significantly
outperforms the other tested codes. TurboAE-binary’s decoder
appears unusually robust compared to BCJR, suggesting that
it is not simply “approximating” BCJR. Although TurboAE’s
decoder has a similar message passing structure to iterative
BCJR, each iteration involves a different neural network
and it passes more features between iterations. It also uses
information from encoded stream 1, unlike the BCJR decoding
architecture for NCCs from [36].

For the AWGN channel the linear approximated representa-
tion performs just as well as the exact expression (and better
on some SNRs). In future work, it would interesting to explore
whether fine tuning TurboAE’s decoder with the approximated
representation improves performance of TurboAE.

VI. LEARNING

Up to now we have discussed the input-output behavior
of TurboAE-binary. In this section we give some remarks on
the training dynamics, that is, on the evolution of the output
during the learning process. The encoding function learned by
TurboAE is a real-valued Boolean function f : {0, 1}n ! R.

Figure 4 shows snapshots of the 32 Fourier coefficients
for the encoding functions after the three stages of training

Fig. 4: Fourier Coefficients of Block Encoder functions at different
stages of training. (a) Trained TurboAE, (b) Trained TurboAE with
STE module, (c) Trained TurboAE Binary

TurboAE-binary: after training the real-valued-Boolean Tur-
boAE (a), after taking the sign function (b), and the final
result after re-training using the Straight-Through Estimator
(STE) (c). Each coefficient corresponds to a parity function.
The largest coefficient are dominating in each snapshot. For
each block, the snapshots after each stage are similar, but the
dynamics during the first stage and the more subtle changes
after that require further study. The similarity of the Fourier
representations before and after applying the sign functions is
related to Plancherel’s theorem.

VII. CONCLUSION

We conclude our initial study of the interpretability of the
TurboAE-binary with:

• TurboAE-binary is a nonlinear modified Turbo code with
few nonlinear terms, approximated by a modified Turbo
code can be found by MILP.

• Influence heatmaps provide valuable information.
• Interpretable representations (e.g. modified CC) need to

be flexible to accommodate approximations.
• Multi-output property testing and MILP are potential

techniques for further exploring interpretability.
• Using more interpretable modules, e.g. the iterated BCJR

decoder instead of learned decoders, can serve as a stand-
in for TurboAE’s neural decoder.

• There lies potential in applying neural networks to search
the space of non-linear Turbo codes.

• The Fourier representation of Boolean functions can be
a useful tool for exploring the training dynamics.

Several related aspects need further study. These include
robustness of the properties found for other learned models
and investigation of the learned decoder and its apparent
improvements on BCJR. The approaches developed could also
be used for the hidden layers, to understand both the final
representation and the training dynamics.

2022 IEEE International Symposium on Information Theory (ISIT)

2461Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on October 03,2022 at 16:46:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] H. Kim, S. Oh, and P. Viswanath, “Physical layer communication via
deep learning,” IEEE Journal on Sel. Areas in Inf. Theory, vol. 1, no. 1,
pp. 5–18, 2020.

[2] Y. Jiang et al., “Learn codes: Inventing low-latency codes via recurrent
neural networks,” IEEE Journal on Selected Areas in Information

Theory, vol. 1, no. 1, pp. 207–216, 2020.
[3] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate:

Channel auto-encoders, domain specific regularizers, and attention,”
in 2016 IEEE International Symposium on Signal Processing and

Information Technology (ISSPIT), 2016, pp. 223–228.
[4] Y. Jiang et al., “Mind: Model independent neural decoder,” in 2019 IEEE

20th International Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), 2019, pp. 1–5.
[5] J. Whang et al., “Neural distributed source coding,” CoRR, vol.

abs/2106.02797, 2021. [Online]. Available: https://arxiv.org/abs/2106.
02797

[6] R. K. Mishra et al., “Distributed Interference Alignment for K -user
Interference Channels via Deep Learning,” in International Symposium

on Information Theory (ISIT), 2021.
[7] H. Kim et al., “Deepcode: Feedback codes via deep learning,” IEEE

Journal on Sel. Areas in Inf. Theory, vol. 1, no. 1, pp. 194–206, 2020.
[8] Y. Jiang et al., “Joint channel coding and modulation via deep learning,”

in 2020 IEEE SPAWC, 2020, pp. 1–5.
[9] ——, “Turbo autoencoder: Deep learning based channel codes for

point-to-point communication channels,” in Proceedings of the 33rd

International Conference on Neural Information Processing Systems,
Dec. 2019, pp. 2758–2768.

[10] H. Ye, L. Liang, and G. Y. Li, “Circular convolutional auto-encoder for
channel coding,” in 2019 IEEE 20th International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC), 2019, pp.
1–5.

[11] T. Ching et al., “Opportunities and obstacles for deep learning in biology
and medicine,” Journal of The Royal Society Interface, vol. 15, no. 141,
p. 20170387, Apr. 2018.

[12] H. Naik and G. Turán, “Explanation from Specification,” in Explainable

Agency in AI Workshop, 35th AAAI Conference, vol. abs/2012.07179,
2021. [Online]. Available: https://arxiv.org/abs/2012.07179

[13] J. M. Walsh, P. A. Regalia, and C. R. Johnson, “Turbo decoding as
iterative constrained maximum-likelihood sequence detection,” IEEE

Transactions on Information Theory, vol. 52, no. 12, pp. 5426–5437,
2006.

[14] J. Walsh, C. Johnson, and P. Regalia, “A refined information geometric
interpretation of turbo decoding,” in Proceedings. (ICASSP ’05). IEEE

International Conference on Acoustics, Speech, and Signal Processing,

2005., vol. 3, 2005, pp. iii/481–iii/484 Vol. 3.
[15] B. Muquet, P. Duhamel, and A. de Courville, “Geometrical interpre-

tation of iterative turbo decoding,” in Proceedings IEEE International

Symposium on Information Theory,, 2002, pp. 142–.
[16] “TurboAE github for TurboAE,” 2020. [Online]. Avail-

able: https://github.com/yihanjiang/turboae/blob/master/models/dta
cont cnn2 cnn5 enctrain2 dectrainneg15 2.pt

[17] “TurboAE github for TurboAE-binary,” 2020. [Online].
Available: https://github.com/yihanjiang/turboae/blob/master/models/
dta steq2 cnn2 cnn5 enctrain2 dectrainneg15 2.pt

[18] S. Lin and D. J. Costello, Error Control Coding. Pearson, 2005.
[19] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge:

Cambridge University Press, 2008.
[20] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagat-

ing gradients through stochastic neurons for conditional computation,”
ArXiv, vol. abs/1308.3432, 2013.

[21] I. Hubara et al., “Binarized neural networks,” in Proceedings of the 30th

International Conference on Neural Information Processing Systems,
Dec. 2016, pp. 4114–4122.

[22] F. Gurski, “Efficient binary linear programming formulations for boolean
functions,” Statistics, Optimization & Information Computing, vol. 2,
no. 4, pp. 274–279, Nov. 2014.

[23] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[24] R. O’Donnell, Analysis of Boolean functions. Cambridge University
Press, 2014.

[25] C. Molnar, Interpretable Machine Learning: A Guide for Making Black

Box Models Interpretable. Leanpub, 2019.

[26] O. Goldreich and L. A. Levin, “A hard-core predicate for all one-
way functions,” in Proceedings of the 21st Annual ACM Symposium

on Theory of Computing, 1989, pp. 25–32.
[27] O. Goldreich, Ed., Introduction to Property Testing. Cambridge

University Press, 2017.
[28] M. Parnas, D. Ron, and R. Rubinfeld, “Tolerant property testing and

distance approximation,” J. Comput. Syst. Sci., vol. 72, pp. 1012–1042,
2006.

[29] N. Devroye et al., “Interpreting deep-learned error-correcting codes,”
Jan. 2022. [Online]. Available: https://devroye.lab.uic.edu/research-2/
publications/

[30] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting with
applications to numerical problems,” J. Comput. Syst. Sci., vol. 47, pp.
549–595, 1993.

[31] M. Bellare et al., “Linearity testing in characteristic two,” IEEE Trans.

Inf. Theory, vol. 42, no. 6, pp. 1781–1795, 1996.
[32] N. Alon and P. H. Edelman, “The inverse Banzhaf problem,” Social

Choice and Welfare, vol. 34, pp. 371–377, 2010.
[33] S. Hart, “A note on the edges of the n-cube,” Discr. Math., vol. 14, pp.

157–163, 1976.
[34] L. Bahl et al., “Optimal decoding of linear codes for minimizing symbol

error rate (corresp.),” IEEE Transactions on Information Theory, vol. 20,
no. 2, pp. 284–287, 1974.

[35] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: Turbo-codes,” IEEE Transactions on Communications,
vol. 44, no. 10, pp. 1261–1271, Oct. 1996.

[36] O. Y. Takeshita, O. M. Collins, and D. J. Costello Jr, “Turbo codes with
non-systematic constituent codes,” in 9th NASA Symposium on VLSI

Design, 2000.
[37] D. J. C. MacKay, Information Theory, Inference, and Learning Algo-

rithms. Cambridge, UK: Cambridge University Press, 2003.
[38] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts

Valley, CA: CreateSpace, 2009.
[39] M. Abadi et al., “TensorFlow: Large-scale machine learning on

heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[40] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge Univ. Press, 2009.

2022 IEEE International Symposium on Information Theory (ISIT)

2462Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on October 03,2022 at 16:46:44 UTC from IEEE Xplore. Restrictions apply.

