
Fairledger: a Fair Proof-of-Sequential-Work based
Lightweight Distributed Ledger for IoT Networks

Ronghua Xu, Yu Chen
Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902, USA

{rxu22, ychen}@binghamton.edu

Abstract—Blockchain has been recognized as a promising
solution to construct a tamper-proof and trust-free decentralized
framework for Internet of Things (IoT) systems. However,
directly applying cryptocurrency-oriented blockchains in IoT
networks still meets tremendous limitations. Proof-of-Work
(PoW) consensus protocol enables a blockchain to achieve
pseudonymity, scalability and probabilistic finality in an asyn-
chronous and open-access network environment. The compute-
intensive PoW favors nodes possessing more computing power,
but fairness is an important requirement in highly hetero-
geneous IoT networks. A blockchain designed for IoT edge
environments must consider devices with various constraints
on computation power. This paper proposes Fairledger, a fair
Proof-of-Sequential-Work (PoSW) based lightweight distributed
ledger for small-scale, permissioned IoT networks. By com-
bining efficient verifiable delay function (eVDF) and Proof-
of-Credit (PoC) puzzle, PoSW consensus protocol guarantees
fairness by requiring all the miners perform a fixed sequential
computing steps to represent PoW for block generation despite
their hardware resources. Due to the virtual mining manner of
PoSW, Fairledger demonstrates computing efficiency compared
to traditional PoW blockchains. In addition, Fairledger is
less susceptible to “long-range” and “nothing-at-stake” attacks
than Proof-of-Stake (PoS) protocols are. A proof-of-concept
prototype is implemented, and the experimental results verify
the feasibility of running Fairledger in a physical IoT network
with higher throughput, less computation and communication
cost, and better security guarantees.

Index Terms—Blockchain, Fairness, Security, Proof-of-
Sequential-Work (PoSW) Consensus, Verifiable Delay Functions
(VDF), Internet-of-Things (IoT).

I. INTRODUCTION

Thanks to the rapid advancements in artificial intelligence

(AI) based on the fusion of Big Data and Internet of Things

(IoT) technologies, the concept of Smart Cities becomes

realistic to provide seamless, intelligent, and safe services

for communities [29]. With an ever-increasing presence of

IoT-based smart applications and their ubiquitous visibility

from the Internet, the highly connected smart IoT devices

generate a huge volume of transaction data and incur more

concerns on performance, security, and privacy [9], [12].

The heterogeneity of IoT networks necessitates a scalable,

flexible, and lightweight system architecture, which supports

fast development, easy deployment, and secure data sharing

among multiple fragmented service domains [28]. However,

most state-of-the-art applications for smart cities heavily

rely on a centralized authority, which is vulnerable to be a

performance bottleneck and single point of failure, and faces

heterogeneity and scalability challenges with wide adoption

of IoT devices [4].

Blockchain, which acts as the underlying technology of

cryptocurrencies like Bitcoin [21], has demonstrated great

potential to revolutionize traditional business models and

communication infrastructure [15]. In general, blockchain

systems rely on a Peer-to-Peer (P2P) networking architecture

for messages and data propagation. All participants (miners

or validators) cooperatively execute a cryptographic con-

sensus protocol to records blocks on a totally-ordered dis-

tributed ledger. Therefore, participants maintain a transparent,

immutable, and auditable distributed ledger, as opposed to

establishing trust through a centralized third-party authority.

Thanks to attractive features like decentralization, immutabil-

ity and auditability, blockchain is promising to construct a

tamper-proof and trust-free framework for IoT systems.

However, directly applying cryptocurrency-oriented

blockchain schemes in IoT networks still meets tremendous

limitations [4], [10]. The existing permissionless blockchains

(e.g., Bitcoin or Ethereum) uses compute-intensive Proof-

of-Work (PoW) algorithms for block generation, which

is not affordable to resource-constrained IoT devices.

While byzantine fault tolerance (PBFT) protocol adopted by

permissioned blockchains like Hyperledger demonstrates low

energy consumption and high throughout, it allows limited

scalability and incurs high communication complexity [8].

To reduce energy waste by PoW, Proof-of-Stake (PoS) [17]

leverages the coin stakes of miners to mimic a random

lottery for block generation. Such a process of “virtual

mining” requires minimal computational resource for miners.

As an adversary can easily use the same stake to grind

many blocks without any computing efforts on solving

the PoS puzzle problem, PoS protocols are vulnerable to

cost-less simulation attacks [11], like long-range attacks and

nothing-at-stake attacks.

To address aforementioned issues as cooperating conven-

tional blockchains into IoT scenarios, this paper proposes

Fairledger, a fair Proof-of-Sequential-Work (PoSW) based

lightweight distributed ledger for small scale permissioned

IoT Networks. The PoSW leverages an efficient verifiable

delay function (eVDF) such that a validator can get an unique

Fiat-Shamir heuristic proof until it performs a fixed number

of repeated squaring modular exponentiations in a group of

unknown order. Then, a Proof-of-Credit (PoC) algorithm sim-

ulates a lottery process based on the eVDF proofs such that

the probability of winning a block proposal is proportional to

credit stakes of the validators. Finally, a voting-based chain

finality (VCF) process makes an agreement on the epoch

348

2022 IEEE International Conference on Blockchain (Blockchain)

978-1-6654-6104-7/22/$31.00 ©2022 IEEE
DOI 10.1109/Blockchain55522.2022.00055

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

lo
ck

ch
ai

n
(B

lo
ck

ch
ai

n)
 |

 9
78

-1
-6

65
4-

61
04

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
BL

O
CK

CH
AI

N
55

52
2.

20
22

.0
00

55

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on October 03,2022 at 17:45:31 UTC from IEEE Xplore. Restrictions apply.

checkpoint block to solve forks and finalize blocks of the

main chain on the distributed ledger.

The existing hybrid VDF-Nakamoto consensus protocols

[11], [14], [16], [19], [23], [30] require each miner take

a random and unpredictable numbers of sequential steps

to calculate the VDF proofs, and then the miner who fist

publishes a valid proof that can solve the pre-defined puzzle

problem becomes the leader. However, such a competitive

manner allows miners with fast single core processors to

gain extra benefits. Unlike aforementioned solutions that can

only guarantee a relative μ-fairness [14], Fairledger achieves

an idea 1-fairness such that all participants consume the

same amount of computation power to mine a new block

regardless their hardware resource. In addition, PoC only

needs proofs of eVDF and credit stakes of current committee

members to decide if miners are qualified to generate new

blocks. Therefore, it can avoid energy waste by brute-force

querying hash in conventional PoW blockchains. In sum,

Fairledger is computing-efficient and hardware independent,

and it is suitable for resource-constrained IoT devices with

heterogeneous platforms.

For security properties, the sequentiality of eVDF can

prevent dishonest validators from using parallel computing

scheme to speed up proof calculation, and it also mitigates

long-range attacks and nothing-at-stake attacks in existing

PoS style blockchains [17], [27]. In contrast to existing

VDF-Nakamoto consensus protocols that rely on the “longest

chain” rule to achieve a probabilistic finality, Fairledger

requires a small committee to execute VCF to guarantee

deterministic finality. Therefore, it is promising to solve fork

issues and prevent against block withholding attacks.

In summary, this paper makes the following contributions:

1) A complete architecture of IoT blockchain called

Fairledger is provided along with a detailed explanation

of the key components and work flows;

2) A novel PoSW consensus protocol is introduced and for-

malized, which is a composition of eVDF construction

with PoC-based block generation mechanism;

3) The security properties of Fairledger are described, and

PoSW consensus protocol is briefly analyzed concerning

several possible attacks; and

4) A proof-of-concept prototype is implemented and per-

formance of running Fairledger is evaluated on a small

group of Raspberry Pis. The numerical results show that

Fairledger only incurs limited latency and communica-

tion overhead as scaling up committee size and system

transactions throughput.

The remainder of this paper is organized as follows:

Section II introduces background knowledge of VDFs and

reviews existing VDF-based consensus protocols. Section

III introduces the design rational and system architecture

of Fairledger. A novel PoSW block proposal mechanism is

explained in Section IV. Section V is the security analysis

and Section VI presents the experimental evaluation on the

prototype. Finally, Section VII concludes this paper with

some discussions.

II. STATE OF THE ART AND RELATED WORK

A. Verifiable Delay Functions

The problem of building a Verifiable Delay Function

(VDF) was formalized in 2018 [6]. A VDF f : X → Y
requires a prescribed number of sequential steps to evaluate

an input x ∈ X , independently of the parallel computing

manners exploited by an adversary, and such that an unique

output y ∈ Y can be efficiently and publicly verified by

a proof π. A VDF includes three basic algorithms: Setup,

Eval and V erify.

• Setup(λ, T) →PP is the initialization procedure. It

takes security parameter λ and delay parameter T and

produces public parameters PP consisting of evaluation

and verification key pairs (ek, vk) and other information

for Eval and V erify procedures.

• Eval(PP, x, T) → (y, π) is the evaluation procedure

where all honest parties can compute (y, π) in time T
of sequential steps. However, no parallel computation

with a polynomial number of processors can calculate

y in significant fewer steps.

• V erify(PP, x, y, T, π)→ (True, False) is a determin-

istic algorithm, which verifies that y is the unique correct

output for x based on proof π in time polylog(T).

A VDF must satisfy three security properties: Sequential-
ity, Correctness, and Soundness. Sequentiality guarantees that

using parallelism to correctly evaluate VDF in time less than

T sequential steps is almost impossible. Correctness ensures

that any honest output of evaluation can pass the verification,

while soundness states that a dishonest evaluation result is

always rejected by verification.

To solve time-lock puzzles [24], RSW-VDF aims to pro-

vide a timed-release cryptographic mechanism such that

encryption can only be decrypted until a pre-determined

amount of time has passed. Relying on a trusted setup to

generate a classical Rivest–Shamir–Adleman (RSA) modules

N = pq with φ(N) = (p − 1)(q − 1), RSW-VDF performs

T repeated modular squarings to calculate y = x2T mod N ,

while any party knowing φ(N) can quickly calculate y = xe

mod N where e = 2T mod φ(N). However, RSW-VDF is an

interactive protocol that cannot support efficient and public

verification without sharing φ(N). Sloth [18] uses chaining

modular square roots to build a slow-timed hash function to

enable trustworthy and non-interactive generation of public

random numbers. Sloth guarantees time security given that

modular square root extraction cannot be done faster than

modular exponentiation in evaluation. However, sloth-VDF

construction does not ensure asymptotically efficient verifi-

cation.

Two recent practical VDF constructions, a simple VDF

(sVDF) [22] and an efficient VDF (eVDF) [26], leverage

exponentiation in a group of unknown order and Fiat-Shamir

heuristic based on hash prime to ensure ε-evaluation time,

sequentiality and uniqueness properties [7]. Both VDFs uses

Setup(λ, T) to generate public parameters PP = (G,H, T)
including a finite abelian group G of unknown order and an

efficient hash function H : X → G. The evaluation algorithm

349

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on October 03,2022 at 17:45:31 UTC from IEEE Xplore. Restrictions apply.

of VDFs computes T modular squarings of H(x) and outputs

an evaluator y ← H(x)2
T ∈ G. However, sVDF and eVDF

rely on different public-coin succinct arguments for calculat-

ing proof π and verifying y. In proof generation, sVDF is

more efficient by using O(
√
T) group multiplications than

eVDF that needs O(T). As a trade-off, overall proof π of

sVDF contains log2 T elements in G, while eVDF’s proof

π has a single element in G. Compared with sVDF that

takes 2 log2 T exponentiations in verification, eVDF outputs

the short proof and its verification is faster by executing

two exponentiation. A study compares performance between

sVDF and eVDF in terms of computation and storage [5].

As sVDF needs the larger block size to record total proof of

log2 T elements, this is not suitable for blockchain which

requires compact transaction and block data structure to

ensure communication efficiency. This paper uses eVDF to

construct VDF, which requires non-parallel computational

delay in block generation yet efficient block verification.

B. VDF-based Consensus Protocols

The existing VDF-based consensus solutions aim at fairly

mining for Nakamoto style probabilistic consensus protocols,

like PoW and PoS. To enable a scalable and fair distributed

randomness beacon (DRB) protocol, Sequential Proof-of-

Work (SeqPoW), a hybrid VDF+PoW consensus algorithm,

is introduced to satisfy both sequentiality and hardness [14].

SeqPoW can prevent against parallelizable hash querying of

PoW by using VDF to solve a cryptographic puzzle, which

needs a random and unpredictable number of sequential

steps. Due to sequentiality and hardness of SeqPoW, using

multiple processors do not have any advantage in solving a

puzzle such that fairness is achieved. Similar to SeqPoW, a

improved blockchain consensus protocol is proposed, which

utilizes a distributed VDF (DVDF) to replace conventional

difficulty adjustment algorithm (DAA) of PoW [30]. The

sequentiality of DVDF allows miners to perform hash calcu-

lation within a relatively fixed time despite their considerable

hashrate. As a result, the hashratre fluctuations of DDA is

mitigated to achieve stable rate of block generation.

To design an energy efficient consensus protocol which

has good resistance to the long range attacks, a proof-of-

stake/proof-of-delay hybrid protocol [19] is proposed by

incorporating VDF into a general PoS blockchain [17]. The

verifiable random function (VRF) acts as a pseudo-random

oracle to assign different verifiable delay puzzles to the

miners for a new block generation. The lottery representation

that takes a different number of sequential steps to solve the

delay puzzle in proportion to the percentage of the miners’

ownership of a cryptocurrency. Similar to [19], Proof of

staked hardware (PoSH) [16], a concept of PoW/PoS/PoSeq

hybrid protocol, is proposed to optimize energy utilization

for Nakamoto-style blockchain. However, they do not provide

details of protocol design and security analysis.

Another concurrent VDF-PoS protocol, called PoS with

Arrow-of-Time PoSAT [11] provably achieve dynamic avail-

ability fully without additional trust assumptions for permis-

sionless PoS blockchains. Due to unpredictability of random

sequential steps of VDF computation based on the parent

block till the threshold in proportion to coin stakes of the

miners, an adversary cannot predict PoSAT lottery within

the epoch of the c blocks generation. PoSAT provides a

complete theoretical protocol design and security analysis

for integrating VDF into existing PoS consensus protocols,

however, implementation study is not mentioned to verify

feasibility as applying PoSAT to practical IoT scenarios.

Given a round-robin committee selection mechanism based

on a Trust Execution Environment (TEE) infrastructure, R3V

[23] requires that selected stakeholders compete to generate

blocks by solving VDF puzzles. R3V achieves to ensure

fairness, communication efficiency and less susceptibility to

long-range and grinding attacks in PoS blockchains, however,

numerical results are not provided to verify performance.

III. FAIRLEDGER: RATIONALE AND ARCHITECTURE

A. System Model

System setting. Fairledger considers a permissioned network

N that assumes the system administrator is a trustworthy

oracle to register all nodes (participants or users) ui ∈ N .

Given a trust Public Key Infrastructure (PKI) managed

by the system administrator, a standard RSA scheme is

adopted for key generation (RSA.gen) and digital signa-

ture (RSA.sign, RSA.verify), and a pre-defined collision-

resistant hash function H(·) is used to generates a hash string

h ∈ {0, 1}k with a length of k. Each node ui has a key pairs

(ski, pki) ← RSA.gen(i) and is uniquely identified by its

account address ai = H(pki). In addition, each node ui uses

its credit stake ci to join consensus protocol. Thus, each node

has a tuple (pki, ai, ci) to represent its identity. Due to the

permissioned system management, Fairledger is a partially

decentralized blockchain.

Network model. Fairledger assumes a synchronous network

environment, where message delivery for operations between

nodes is bounded by a known finite time latency TΔ given

local processing time discrepancies and network delays.

Thus, Epoch slE = {sl1, sl2, ..., slt..., slR} is defined to

model a set of sequential time slot slt in consensus rounds,

where R value is the epoch size and slt ≥ TΔ. Fairledger

relies on a structured P2P network called Kademlia [20] for

node discovery, such that each node only directly connect

to a subset of nodes as its neighbours. All validators in a

consensus committee are fully connected.

Adversary model. The adversary is adaptive such that it can

control mi ∈M ⊂ N at any time, and the fraction of com-

promised nodes is no more than f = |M|/|N |. Fairledger

randomly selects a consensus committee called Dynasty, that

includes validator vi∈[1,K] ∈ D where K = |D|. We

assume the adversary is static in a consensus committee.

Thus, the adversary can coordinate compromised nodes to

disturb consensus protocol but cannot increase percentage of

malicious validators in current D.

B. Architecture Overview

Figure 1 illustrates Fairledger system architecture in-

cluding a tree style structure of distributed ledger C and

350

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on October 03,2022 at 17:45:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The Fairledger System Architecture.

committee consensus protocol. Each node ui can encap-

sulate byte strings data ∈ {0, 1}∗ into a time stamped

transaction tx = {tx hash, ai, Tstamp, data, σi}, where

tx hash = H(ai, Tstamp, data) and σi is a digital signature

RSA.signski
(tx hash, pki, Tstamp, data). In current PoSW

block proposal round within slt, a validators vj that computes

valid eVDF proofs SPj to solve the PoC puzzle problem

can publish a signed candidate block B = (pre hash, h +
1,mt root, tx list, SPj , Tstamp, aj , σj), where mt root is

a root hash of Merkle tree of valid transactions tx list and

h is the height of a head block head(C).
The structure of ledger C is a partial order of blocks

indexed by strictly sequential increasing h. For every epoch

height He = � h
R	, a consensus committee uses a chain

finality process to make an agreement on a checkpoint block,

which is the current head block with (h mod R) = 0. As

the upper part of Fig. 1 shows, red blocks are checkpoint

blocks, while blue ones are confirmed blocks that grow along

the finalized chain path. The key components and work flows

in consensus protocol are described as follows:

1. Committee Configuration: At the end of a dynasty

lifetime, each vi ∈ D uses a pseudo random number gen-

erator to locally calculate a random seed Si. By leveraging

a randomness generation protocol that is based on Publicly

Verifiable Secret Sharing (PVSS) [25], the current committee

collaboratively forges a global epoch random seed S∗ that is

the sum of collected Si. Then, all nodes use their ID profile

and S∗ to participate a new committee selection process

based on a Verifiable Random Function (VRF) enabled cryp-

tographic sortition [13]. Finally, the validators of a new com-

mittee establish a fully connected P2P consensus network.

Furthermore, the system administrator uses S∗ to generate a

big prime N with λ length. The new committee configuration

and public parameters (N , T and λ) are recorded into the first

block of a new dynasty.

2. PoSW Block Proposal: Each validator maintains a lo-

cally transactions pool that is denoted as a time ordered

list TX = {txi, tx2, ..., txq}, where q is transaction pool

size. The PoSW block proposal mechanism relies a hybrid

VDF+PoC scheme consisting of two sub-protocols: eVDF

evaluation and PoC puzzle verification. In a block proposal

round, each vi ∈ D firstly executes eV DF.EV al(·) function

based on inputs of mt root of TX , hash string of head

block hc and its account address ai, and then an unique

output tuple SPi including evaluate li and proof πi can

be calculated after T sequential steps of squaring modular

exponentiation on a big prime N (§IV-A). Then PoC solver

sub-protocol decides if a valid SPi can solve a PoC puzzle

problem P (·) such that its owner vi is qualified to propose

a new block (§IV-B). Finally, a vi with valid SPi builds

a new block and broadcasts it to all committee members.

Each committee member accepts all valid blocks that satisfy

eV DF.V erify(·) and PoC conditions P ∗ in the current

block proposal round and appends them onto the head block

of local chain. Similar to PoS that relies on a “longest chain”

rule, the ledger extension in an epoch lifetime follows a

“largest height of block” manner.

3. Chain Finality: At the end of an epoch, a voting-

based algorithm commits checkpoint blocks and finalizes

those already committed blocks on the main chain [27]. The

chain finality ensures that only one path growing along with

checkpoint blocks becomes the main chain, as blue arrows

highlighted in Fig. 1. Therefore, the blocks generated in

the new epoch are only extended on such an unique main

chain. Compared to the longest chain rule used in Nakamoto

blockchains, regularly resolving conflicting checkpoints can

prevent against the forking chain problem and ensure a

deterministic finality on history of the distributed ledger.

IV. POSW BLOCK PROPOSAL MECHANISM

A. eVDF Construction

Each validator vi ∈ D can execute eV DF.Setup(T,N, λ)
to construct an eVDF instance including i) a finite abelian

group G of unknown order; ii) an efficient hash function H :
X → G; and iii) Hprime(m) = next prime(H(m)) that

returns the closest prime numbers larger or equal to H(m)
for any m ∈ {0, 1}∗ [26].

In the eVDF evaluation procedure, a validator vi must

solve the challenge y = x2T mod N to get an evaluator

y given x = H(m). This requires total T sequential steps

of squaring modular exponentiation on N . Lines 3-5 in

Algorithm 1 present the evaluation phase. The proof process

requires vi firstly compute l = Hprime(x + y) and then

calculate π ← x�2
T /l� mod N . Finally, the pair SPi = (l, π)

can be publicly uses as a Fiat-Shamir heuristic proof of

evaluator y for verification. Lines 6-7 in Algorithm 1 present

the proof calculation phase.

351

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on October 03,2022 at 17:45:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Evaluation and verification of eVDF.

1: procedure: eVDF.Eval(m, T , N)

2: x← H(m); y ← x
3: for t← 1 to T do
4: y ← y2 mod N
5: end
6: l← Hprime(x+ y)

7: π ← x�2T /l� mod N
8: return (l, π)

9: procedure: eVDF.Verify(m, T , N , (l, π))

10: x← H(m)
11: r ← 2T mod l
12: y ← πlxr mod N
13: if l �= Hprime(x+ y) then
14: return False
15: return True

In the eVDF verification procedure, any validator vj ∈ D
can use SPi = (l, π) to non-interactively check if validator

vi correctly calculates its evaluator y = x2T mod N . As y
can be locally recovered by calculating r=2T mod l and then

y ← πlxr mod N , any party can compare l with output of

Hprime(x+y) to perform the verification on m and SPi. This

only needs total λ4 time and is independent of T , therefore,

the asymptotically efficient verification is achieved. Lines 10-

15 in Algorithm 1 present the verification phase.

B. PoC-based Block Generation

Essentially, the PoC-based block proposal mechanism fol-

lows the principles of chain based PoS, and it simulates a

virtual mining manner by pseudorandomly assigning block

proposal rights to validators. The credit distribution of a

dynasty is represented as D = {p1, p2, ..., pK}, where pi =
ci∑K

j=1 cj
. For each time slot slt round, a random slot leader se-

lection process called PoC puzzle solver determines whether

a validator vi with proof SPi is allowed to propose a new

block. Unlike PoW that utilizes a brute-force manner to query

a nonce as the proof to meet the uniform target difficulty, our

PoSW requires that each vi takes the same sequential steps

to calculate SPi = eV DF.EV al(hc||mt root||ai||) as the

proof for PoC puzzle problem. The PoC puzzle problem can

be formally defined as follows:

Definition 1: Proof-of-Credit Puzzle - Given an adjustable

difficulty condition parameter ξ, the process of PoC puzzle

solver aims to verify a solution string poc proof proposed

by vj , which is calculated by taking ξ length lower bits of

the hash string of (hc||mt root||aj ||SPj), is smaller than a

target value generated by the difficulty condition dcond(ξ, pj):

P(H((hc||mt root||aj ||SPj)), ξ) ≤ dcond(ξ, pj) (1)

where function P(·) outputs a poc proof with lower ξ bits

of the hashcode H(·); and the difficulty condition function

dcond(·, ·) is denoted as:

dcond(ξ, pj) = (2ξ − 1) · pj (2)

where dcond(ξ, pj) ∈ {0, 1}ξ.

Algorithm 2 The PoC block generation procedures.

1: procedure: mine block(TX)

2: hc← H(head(C)); h← head(C).h+ 1
3: mt root←MTree(TX)
4: SPi ← eVDF.Eval((hc||mt root||ai), T,N)
5: dcond ← (2ξ − 1)pi
6: poc proof ← P(H(hc||mt root||ai||SPi), ξ)
7: if poc proof ≤ dcond then
8: block ← (hc||mt root||TX||h||ai||ci||SPi)
9: σi ← RSA.sign(block, ski)

10: return (block, σi)

11: end if
12: procedure: verify block(block, σj)

13: if RSA.verify(block, σj , pkj) �= True OR

14: block.mt root �= MTree(block.TX) then
15: return False
16: end if
17: hc ← H(head(C))
18: if block.h �= head(C).h+ 1 OR

19: block.hc �= hc then
20: return False
21: end if
22: mj = (hc||block.mt root||aj); SPj = block.SP
23: dcond ← (2ξ − 1)pj
24: poc proof ← P(H(hc||mt root||aj ||SPj), ξ)
25: if poc proof > dcond OR

26: eVDF.Verify(mj , T,N, SPj) �= True then
27: return False
28: end if
29: return True

Given the above definitions, PoC-enabled block generation

procedures are presented as pseudo-code in Algorithm 2.

Given transactions pool TX and head block of ledger C,

each validator vi executes the mining routine mine block(·)
to probably get a candidate block based on its credit stake.

Lines 2-3 prepare head information and mt root, and then

line 5 is the process of calculating eVDF proof SP . Lines 5-

10 represent the procedure of PoC puzzle solver, which com-

putes PoC solution poc proof and publish a block singed by

ski if poc proof satisfies the difficulty condition dcond based

on pi. Other validators vj ∈ D keep receiving blocks and

execute verify block(·), which verifies blocks, and then add

valid ones to their local ledger C. The verification includes:

i) validating the signature of a block along with mt root of

its saved transactions (lines 13-16); ii) checking if a block is

directly linked to the head block with correct height (lines

17-21); iii) verifying eVDF proof SP and poc proof of a

block (lines 22-28). If all conditions are satisfied, vj accepts

a block B and updates head(C) = B accordingly. Otherwise,

vj discards all invalid blocks.

C. Ledger Extension Rules in an Epoch

The probability of a block B generated by vi is propor-

tional to its credit weight pi, thus, the number of candidate

blocks in a slt round is denoted as b ∈ [0,K]. To ensures the

liveness such that there is at least one block can be mined

in each round, the ledger extension rules in an epoch are

described as follows:

352

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on October 03,2022 at 17:45:31 UTC from IEEE Xplore. Restrictions apply.

1) b = 1: it is a basic scenario that only one candidate

block Bh+1 is proposed at height h = head(C).h.

2) b > 1: it is a conflicting head block update scenario as

multiple validators propose their valid blocks during current

slot round. The ledger head update follows two sub rules:

a) head(C) points to a block Bh+1 whose sender has the

highest credit c than other blocks’ senders; or

b) if blocks are generated by validators who have the same

highest credit, head(C) points to a block Bh+1 with the

smallest poc proof .

3) b = 0: if no block satisfies PoC conditions at the end of

a slot round, block generation follows a spin manner. As

validators of current committee can be sorted by account

address, we can calculate ind = height (mod K). Thus,

a validator at rank ind becomes the leader to propose a

candidate block in current round, and updating the head block

follows the rule 1) b = 1.

V. SECURITY ANALYSIS

A. Security Properties

We assume that an adversary is subject to the usual crypto-

graphic hardness assumptions, he/she is aware of neither the

private keys of the honest nodes nor φ(N) of the big prime

N . Fairledger utilizes PoSW consensus protocol to achieve

security properties: fairness, liveness, and consistence.

Fairness: specifies that each validator is allowed to publish

a new block only if he/she can compute an unique proof

SP after a fixed T steps of non-parallelizable computation

regardless of its financial stake or computation power. If

an adversary exploits a parallel algorithm A) by using at

most poly(λ) processors to speed up eV DF.Eval(·), the

probability of calculating correct S̃P less than time T is

Pr

⎡
⎢⎢⎣

pp← Setup(λ),
SP ← eV DF.Eval(pp, x),

S̃P ← A(pp, x),
eV DF.V erify(pp, S̃P) = True

⎤
⎥⎥⎦ ≤ negl(λ).

Therefore, sequentiality of eVDF evaluation process ensures

the advantage of an adversary over the honest nodes is

confined by a neglect function negl(λ) even with a potential

large number of parallel processors. Moreover, for an input

x ∈ X , there is only exactly one output y = x2T mod

N . Therefore, eVDF has uniqueness property, such that any

proof pairs (l, π) that are generated from an estimator y can

be accepted by the verification process.

Liveness: ensures that transactions submitted by the honest

nodes are recorded into blocks and finalized on the distributed

ledger after a sufficient amount of time defined by an epoch.

In each round of block generation, a set of validators attempt

to create new blocks, and only one block is accepted as the

head block to extend the ledger. Therefore, a new block is

always appended on the main chain in each slt round given

the ledger extension rules, and fairledger achieves liveness.

Consistence: ensures the safety goal that all honest val-

idators accept valid blocks and agree on the checkpoint

blocks of the ledger. Thus, the probability of reverting the

finalized blocks is negligible as the ledger continuously

grows. Our fairledger relies on a deterministic chain finality

to achieve consistence. Given assumption that an adversary

can only control no more than f nodes if the total number

of nodes satisfies n ≥ 3f + 1. Therefore, the adversary

has at most m = 1/4 chance per round to control the

checkpoint voting process. As a result, the probability that

an adversary controls n consecutive checkpoint is upper-

bounded by P [X ≥ n] = 1
4n < 10−τ . For τ = 6, the

adversary will control at most ten consecutive chain finality

runs with the probability 10−6.

B. Possible Attacks
Nothing-at-Stake Attack: As one of common attacks in PoS

blockchains, the adversary can use the same stakes to easily

mine many blocks on different forks without any resource

cost, like computation or storage. As a result, attackers can

extend multiple branches to maximize benefits. However, our

PoSW consensus requires that each validator can mine a

new block by performing a computation consisting of non-

parallel sequential steps, it’s difficult for a dishonest validator

to generate many blocks within a block proposal round given

the marginal performance gap between single cores.
Long-Range Attacks: Owing to the cost-less mining pro-

cess in PoS blockchains, the adversary can create a fast

growing branch starting from an earlier block (or even a

genesis block) to overtake the longest main branch of the

blockchain. The success of long-range Attacks leads to revert

the history of public ledger. In our fairledger, the sequentiality

of eVDF proof calculation and chain extension rules makes

it expensive for the adversary to continuously propose valid

blocks. Moreover periodically performing the deterministic

chain finality on checkpoint blocks of an epoch makes the

probability of successful long-range attack negligible.
Block Withholding Attacks: The adversary can mine blocks

on its private branch of the ledger, then strategically publish

later to gain extra rewards by reverting the main chain. In our

fairledger, new blocks generation is divided into rounds, and

mining blocks during current round are based on previous

block. Therefore, an adversary can only launch a block-

withholding attack only if he/she correctly calculates eVDF

proofs and wins block proposal right in successive rounds.

Nonetheless, the chances of successful attacks are low.
Content Grinding Attacks: In a content grinding attack,

an adversary can parallel mine multiple blocks based on

mt root by using different sets and orders of transactions

and then choose the most advantageous candidate block.

To successfully launch such a attack, an adversary must

literately compute eVDF proofs until a proof can solve the

PoS puzzle problem before the end of a round. The sequential

executions in eVDF evaluation imposes extra computation

cost on attackers compared with PoS blockchains. However,

an adversary with powerful single core may have advantage

of winning a grinding attack, and we leave investigation and

mitigation in future work.

VI. IMPLEMENTATION AND EVALUATION

A proof-of-concept prototype of Fairledger is implemented

in Python. We use gmpy2 [2] to support multiple-precision

353

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on October 03,2022 at 17:45:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Comparison of latency for an epoch cycle of PoSW consensus
protocol as scaling: a) validators; b) tps.

arithmetic operation on big integers and Flask [1] to develop

networking and web service functions. All security functions

like asymmetry cryptography and hash functions are devel-

oped by using standard python library cryptography [3].

The prototype is deployed on a physical network envi-

ronment consisting of 16 validators that are deployed on

16 separate Raspberry Pi 4 (Rpi) devices with Quad core

Cortex-A72 (ARM v8) CPU at 1.5GHZ CPU and 4 GB

memory. While the system administrator is deployed on a

desktop with Intel core i7-2600K (8 cores) CPU at 3.4GHZ

and 8GB memory. All devices are connected through a local

area network (LAN). We conduct 20 test runs for each

test scenario and take the average as numerical results for

performance evaluation.

A. End-to-End Latency

We let λ = 256 and T = 220 for eVDF functions and

make system transaction throughput ThS=100 Transactions

Per Second (TPS). Figure 2a) presents the network latency

for Fairledger to complete an entire round of consensus

protocol given the number of validators K varying from 4

to 16. The latency includes the round trip time (RTT) and

function processing time on the remote host. As propagate

transaction and chain finality needs O(K) communication

complexity for data broadcasting and verification, the delays

of propagating transaction Tpt and chain finality Tcf are

linear scale to committee size. The block proposal latency

Tbp is dominated by eVDF evaluation process given a small

consensus network, as a result, it demonstrates stable delays.

To observe the influence of numbers of transactions, we

fix committee size K=16 while increasing ThS . Figure 2b)

shows the latency trends of the consensus protocol as scaling

ThS from 100 tps to 1000 tps. As larger ThS means longer

processing time for broadcasting transactions and calculating

mt root in a block generation, therefore, Tpt and Tbp are

almost linear scale to ThS . Fairledger leverages a small

scale consensus committee to reduce delays of propagating

transactions and blocks among validators. The latency of

committing a new block on the ledger mainly depends on

eVDF estimator and proof calculation.

B. Processing Time

To evaluate the impact of eVDF parameters (λ, T) on

PoSW processing time on host machine, we let ThS=100

tps and K=16 as scaling λ and T . Figure 3a) shows the

processing time of mining a block by the validator as scaling

T given different λ. As the most computational intensive

Fig. 3. Comparison of processing time on the validator as scaling parameters
(λ, T): a) mine block; b) verify block.

Fig. 4. Comparison of network usage as scaling: a) validators; b) tps

process in mining a block, eVDF evaluation requires se-

quential T steps of m2 such that mining time is linear scale

to O(T). However, eVDF proof verification has O(log2 T)
complexity, therefore, the validator takes negligible time of

block verification compared to block mining, as Fig. 3b)

shows. The security parameter λ influences the length of

big prime N , so that the processing time increases when λ
increases. However, the verify block process is still asymp-

totically efficient even with 1024 bit RSA groups.

C. Data Throughput

Given λ=256, T = 220 and ThS = 100 tps, Fig. 4a

demonstrates data transmission for individual stages of a con-

sensus round as scaling up committee size. Fairledger uses

json format for data transmission. Each transaction includes

a 128 bytes data and has the size dtx=430 Bytes, while a vote

message has fixed size dvt=589 Bytes. Total data transmis-

sion of propagating transactions denotes as Dpt=dtx×ThS×
K, and it linearly scales to K with fixed ThS . For a chain

finality round, broadcasting vote messages needs total data

transmission Dcf=dvt×K2, which scales to K2. Each block

has the fixed header dheader=613 Bytes and only contains

hash values of the transactions with size dtx hash=68 Bytes,

and a block size is dB=dheader + dtx hash × ThS . Thus,

data transmission of block proposal can be calculated as

Dbp=dB ×K=dheader ×K + dtx hash× ThS ×K, which is

almost scale to K when ThS is fixed.

We let K=16 to repeat test. Figure 4-b shows network

usage as increasing ThS . As the chain finality is independent

of ThS such that Dcf is stable with the fixed committee

size. The Dct depends on ThS × dtx, and varying dtx also

influences network usage. However, the block size dB is

linearly scale to ThS regarding the fixed size of dheader
and dtx hash. Therefore, Dbp is independent to different

transaction data and keeps low increasing rate.

Given results in Fig. 3b) and Fig. 4b), the total latency is

calculated as TM=Tpt+Tbp+Tcf , and then we can calculate

354

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on October 03,2022 at 17:45:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DATA THROUGHPUT VS. TRANSACTIONS.

ThS (TPS) 100 200 500 1000

dB (KB) 7.5 14.3 34.7 68.7

ThD (MB/s) 0.8 1.4 3.2 5.7

data throughput ThD =
Dpt+Dbp+Dcf

TM (MB/s). Table I

provides block size and data throughput with variant ThS

as committee size K=16. Given the maximum transactions

list in Fairledger, increasing ThS can improve capacity by

recording data on the distributed ledger, and it implies a theo-

retical maximum data throughput of 5.7 MB/s as ThS=1000

(tps), which can satisfy network bandwidth requirements of

majority IoT networks.

VII. CONCLUSIONS

This paper presents a lightweight distributed ledger for

IoT networks called Fairledger, which leverages a novel

PoSW consensus protocol to achieve fairness, liveness, and

consistency. Thanks to the sequentiality of eVDF proofing

and efficiency of PoC puzzle solver, Fairledger is promising

to prevent against cost-less simulation attacks [11] in existing

PoS blockchains. The experimental results are based on a

Fairledger in practical IoT scenarios.

While the prototype of Fairledger mainly demonstrates

performance improvements, like high throughput, low la-

tency and limited bandwidth usage, more investigation and

test are necessary to evaluate the scalability and security

of random committee election. Thus, our on-going efforts

includes validating Fairledger in real-world IoT applications

and evaluating overall performance and security based on

various attack scenarios. Moreover, there are unanswered

questions on incentives mechanism that motivates devices

to devote their resources (e.g., computation and storage) to

participant Fairledger and behave honestly for extra profits.

Our future work will use game theory to model incentive

design and evaluate its effectiveness and robustness.

ACKNOWLEDGEMENT

This work is supported by the U.S. National Science

Foundation (NSF) via grant CNS-2039342 and the U.S.

Air Force Office of Scientific Research (AFOSR) Dynamic

Data and Information Processing Program (DDIP) via grant

FA9550-21-1-0229. The views and conclusions contained

herein are those of the authors and should not be interpreted

as necessarily representing the official policies or endorse-

ments, either expressed or implied, of the U. S. Air Force.

REFERENCES

[1] “Flask: A Pyhon Microframework,” http://flask.pocoo.org/.
[2] “gmpy2,” https://gmpy2.readthedocs.io/en/latest/index.html.
[3] “pyca/cryptography documentation,” https://cryptography.io/.
[4] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H.

Rehmani, “Applications of blockchains in the internet of things: A
comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1676–1717, 2018.

[5] V. Attias, L. Vigneri, and V. Dimitrov, “Implementation study of two
verifiable delay functions,” Cryptology ePrint Archive, 2020.

[6] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” in Annual international cryptology conference. Springer,
2018, pp. 757–788.

[7] D. Boneh, B. Bünz, and B. Fisch, “A survey of two verifiable delay
functions,” Cryptology ePrint Archive, 2018.

[8] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OsDI, vol. 99, no. 1999, 1999, pp. 173–186.

[9] N. Chen and Y. Chen, “Smart city surveillance at the network edge in
the era of iot: opportunities and challenges,” Smart Cities, pp. 153–176,
2018.

[10] L. Da Xu, Y. Lu, and L. Li, “Embedding blockchain technology into
iot for security: A survey,” IEEE Internet of Things Journal, vol. 8,
no. 13, pp. 10 452–10 473, 2021.

[11] S. Deb, S. Kannan, and D. Tse, “Posat: proof-of-work availability and
unpredictability, without the work,” in International Conference on
Financial Cryptography and Data Security. Springer, 2021, pp. 104–
128.

[12] A. Fitwi, Y. Chen, S. Zhu, E. Blasch, and G. Chen, “Privacy-
preserving surveillance as an edge service based on lightweight video
protection schemes using face de-identification and window masking,”
Electronics, vol. 10, no. 3, p. 236, 2021.

[13] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algo-
rand: Scaling byzantine agreements for cryptocurrencies,” in Proceed-
ings of the 26th symposium on operating systems principles, 2017, pp.
51–68.

[14] R. Han, H. Lin, and J. Yu, “Randchain: A scalable and fair decen-
tralised randomness beacon,” Cryptology ePrint Archive, 2020.

[15] T. Hewa, G. Gür, A. Kalla, M. Ylianttila, A. Bracken, and M. Liyanage,
“The role of blockchain in 6g: Challenges, opportunities and research
directions,” in 2020 2nd 6G Wireless Summit (6G SUMMIT). IEEE,
2020, pp. 1–5.

[16] R. Khalil and N. Dulay, “Short paper: Posh proof of staked hardware
consensus,” Cryptology ePrint Archive, 2020.

[17] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in Annual
international cryptology conference. Springer, 2017, pp. 357–388.

[18] A. K. Lenstra and B. Wesolowski, “A random zoo: sloth, unicorn, and
trx,” Cryptology ePrint Archive, 2015.

[19] J. Long, “Nakamoto consensus with verifiable delay puzzle,” arXiv
preprint arXiv:1908.06394, 2019.

[20] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[21] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

[22] K. Pietrzak, “Simple verifiable delay functions,” in 10th innovations
in theoretical computer science conference (itcs 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[23] M. Raikwar and D. Gligoroski, “R3v: Robust round robin vdf-based
consensus,” in 2021 3rd Conference on Blockchain Research & Appli-
cations for Innovative Networks and Services (BRAINS). IEEE, 2021,
pp. 81–88.

[24] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” 1996.

[25] M. Stadler, “Publicly verifiable secret sharing,” in International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 1996, pp. 190–199.

[26] B. Wesolowski, “Efficient verifiable delay functions,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2019, pp. 379–407.

[27] R. Xu, Y. Chen, and E. Blasch, “Microchain: A light hierarchical
consensus protocol for iot systems,” in Blockchain Applications in IoT
Ecosystem. Springer, 2021, pp. 129–149.

[28] R. Xu, S. Y. Nikouei, Y. Chen, E. Blasch, and A. Aved, “Blendmas: A
blockchain-enabled decentralized microservices architecture for smart
public safety,” in 2019 IEEE International Conference on Blockchain
(Blockchain). IEEE, 2019, pp. 564–571.

[29] R. Xu, S. Y. Nikouei, D. Nagothu, A. Fitwi, and Y. Chen, “Blendsps:
A blockchain-enabled decentralized smart public safety system,” Smart
Cities, vol. 3, no. 3, pp. 928–951, 2020.

[30] M. Zhou, X. Lin, A. Liu, and Y. Che, “An improved blockchain consen-
sus protocol with distributed verifiable delay function,” in 2021 IEEE
International Conference on Electronic Technology, Communication
and Information (ICETCI). IEEE, 2021, pp. 330–337.

355

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on October 03,2022 at 17:45:31 UTC from IEEE Xplore. Restrictions apply.

