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Abstract—Static bug detectors aim at helping developers to
automatically find and prevent bugs. In this experience paper,
we study the effectiveness of static bug detectors at identifying
Null Pointer Dereferences or Null Pointer Exceptions (NPEs).
NPEs pervade all programming domains from systems to web
development. Specifically, our study measures the effectiveness of
five Java static bug detectors: CheckerFramework, ERADICATE,
INFER, NULLAWAY, and SPOTBUGS. We conduct our study on
102 real-world and reproducible NPEs from 42 open-source
projects found in the BUGSWARM and DEFECTS4]J datasets. We
apply two known methods to determine whether a bug is found by
a given tool, and introduce two new methods that leverage stack
trace and code coverage information. Additionally, we provide a
categorization of the tool’s capabilities and the bug characteristics
to better understand the strengths and weaknesses of the tools.
Overall, the tools under study only find 30 out of 102 bugs
(29.4%), with the majority found by ERADICATE. Based on our
observations, we identify and discuss opportunities to make the
tools more effective and useful.

Index Terms—static bug detectors, null pointer exceptions, null
pointer dereferences, bug finding, BugSwarm, Defects4]J, Java

I. INTRODUCTION

Defects in software are a common and troublesome fact
of programming. Software defects can cause programs to
crash, lose or corrupt data, suffer from security vulnerabilities,
among other problems. Depending on the application domain,
undesirable behavior can range from poor user experience to
more severe consequences in mission critical applications [44].
Testing to uncover such software defects remains one of the
most expensive tasks in the software development cycle [31].

There is a need for both precision and scalability when
finding defects in real-world code. Furthermore, in an effort
to increase their applicability, static bug detectors are often
designed to target a large variety of software bugs. Many
static bug detectors [2, 5, 7, 9, 10, 13-16] are currently being
developed in industry and academia. Even with many tools to
choose from, developers have some hesitation in using static
bug detectors for a variety of reasons such as large number of
bug warnings, high false positive rates, and inadequate warning
messages [18, 26].

Previous studies have evaluated static bug detectors through
various metrics: number of warnings [35], number of false
negatives [38], tool performance [35], and recall [20, 41].
These studies have focused on popular tools that identify
a large number of bug patterns, and their conclusions are
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drawn with respect to the overall bug-finding capabilities of
the tools. In contrast, this paper evaluates static bug detectors
with respect to their effectiveness at finding a common and
serious kind of bug: Null Pointer Dereferences or Null Pointer
Exceptions (NPEs).

NPEs pervade all programming domains from systems
software to web development. For instance, as of August
2021, there are over 1,900 CVEs (Common Vulnerabilities and
Exposures) that involve NPEs [3]. One such CVE describes
a denial of service attack in early versions of Java (1.3 and
1.4) caused by crashing the Java Virtual Machine when calling
a function with a null parameter [1]. In general, NPEs are
problematic in memory-unsafe and object-oriented languages.
NPEs occur when either a pointer to a memory location or an
object is dereferenced while being uninitialized or explicitly
set to null. Depending on the programming language, NPEs
will result in either undefined behavior or a runtime exception.

This experience paper evaluates recall of static bug detectors
with respect to a known set of real NPE bugs. The focus
on NPEs allows to present an in-depth study of different
approaches to find a same kind of bug, the characteristics of
real-world NPEs, and the reasons that affect tool effectiveness.
To the best of our knowledge, this is the first study on the real-
world effectiveness of static bugs detectors at finding NPEs.

There are two orthogonal approaches to finding or prevent-
ing NPEs, which make use of either a static bug detector or
a type-based null safety checker. The former uses dataflow
analysis [6, 10, 23, 29, 30, 32, 34] to find null dereferences.
Such approaches mainly differ on the complexity of their
analyses. Some favor analysis scalability at the expense of
missing real bugs and/or producing numerous false positives,
e.g., intra/interprocedural and field sensitivity. The latter pre-
vents NPEs via a type system with null-related information
using dataflow analysis for type refinement. The type checker
approach has been adopted in recent years [4, 14, 19, 33].

We study two popular Java static bug detectors: INFER
[6, 15-17] and SPOTBUGS [10], and three popular type-
based null safety checkers for Java: Checker Framework’s
Nullness Checker (CFNULLNESS) [19, 33], ERADICATE [4],
and NULLAWAY [8, 14]. INFER uses separation logic and
bi-abduction analysis [16] to infer pre/post conditions from
procedures affecting memory. SPOTBUGS detects bugs based
on a predefined set of bug patterns. CFNULLNESS verifies
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Fig. 1: Workflow for running tools, collecting reports, parsing results, and analyzing data.

the absence of NPEs via type checking nullable expression
dereferences and assignments. ERADICATE is a type checker
that performs flow-sensitive analysis to find possible null
dereferences. Finally, NULLAWAY uses dataflow analysis to
type check nullability in procedures and class fields.

In this study, we consider 102 real-world and reproducible
NPEs found across 42 popular open-source Java projects. 76
of these NPEs belong to the BUGSWARM dataset [42] while
the remaining 26 are from DEFECTS4J [27]. For each NPE,
both datasets provide buggy and fixed versions of the programs
along with scripts for compilation and testing. Furthermore,
each program has a failing test due to an NPE. This makes both
the BUGSWARM and DEFECTS4] datasets good candidates for
this study; we want to run existing static bug detectors and type
checkers on these programs to determine their effectiveness at
detecting and preventing real NPEs.

The first challenge is to determine whether a tool finds or
prevents a specific NPE bug. Tools may report the program
location at which the null dereference occurs, or simply the
location where the null value originates, which can be far
from the dereference. The latter is particularly difficult to
associate with the bug fix, which is often applied closer to the
dereference site. Another difficulty lies in the large number of
warnings to inspect. On average a tool produces from 122 to
1,307 bug warnings per program (in our dataset).

Previous work has partially automated the process of map-
ping bugs to warnings based on static information such as the
code difference (diff) between buggy and fixed versions [20,
38], and by comparing the warnings produced for each version
of the program [20]. In this paper, we observe that dynamic
information can also be leveraged when an input exposing the
NPE bug is available, which is the case for all the bugs in our
dataset. We present two new mapping methods for NPEs that
use (1) stack trace information, and (2) code coverage of tests
that fail due to NPEs. Our experimental evaluation shows that
these methods complement previous approaches.

We run CFNULLNESS, ERADICATE, INFER, NULLAWAY,
and SPOTBUGS on our dataset of 102 real NPEs. We find
that the tools produce a large number of warnings, including
over 500,000 NPE warnings across all programs. We apply
existing approaches, and our new methods, to identify the
warnings that describe the bugs under study. Ultimately, we
find that the tools detect only 30 out of 102 bugs (29.4%),
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with ERADICATE finding the majority of these.

The second challenge is to understand the reasons why
tools fail to find NPEs to identify opportunities to improve
their real-world effectiveness. This requires understanding the
capabilities of the tools under study as well as the charac-
teristics of the NPE bugs in our dataset. First, we conduct
a detailed analysis of the tools’ capabilities with respect to
well-known program-analysis properties (e.g., flow sensitivity,
context sensitivity, etc.), and we identify common sources of
unsoundness. This process required us to manually inspect the
source code of the tools and write tests. All of our findings
were later confirmed by tool developers. Second, we manually
inspect and categorize each NPE bug in the dataset with
respect to the nature of the dereference and its context. Based
on the tool results, and the tool and bug characterizations,
we identify several open opportunities to improve static bug
detectors that find NPEs.

The contributions of this paper are:

o We present two new methods that leverage dynamic infor-
mation to map tool warnings to NPE bugs (Section II).
We provide a categorization of the tool’s capabilities and
the bug characteristics to better understand the strengths
and weaknesses of the tools under study (Section III).
We evaluate CFNULLNESS, ERADICATE, INFER, NULL-
AWwAY, and SPOTBUGS on a collection of 102 NPEs, from
which only 29.4% of NPE bugs are detected (Section IV).
We discuss the capabilities and limitations of each tool,
and provide future directions for improving their real-
world effectiveness (Section V).

II. METHODOLOGY

Here we describe the benchmark and tool selection, and
the methodology to determine the effectiveness of the tools at
finding NPEs. Figure 1 shows the main steps of our approach.

A. Benchmark Selection

Our study focuses on Null Pointer Exceptions (NPEs). We
consider bugs from the BUGSWARM and DEFECTS4] datasets,
both of which provide a bug classification based on runtime
exceptions. Our selection criteria is: (1) the bug is due to an
NPE, (2) there is a failing test due to the NPE, and (3) code
coverage can be measured. Additionally, we control for unique
builds when selecting BUGSWARM bugs. Our final dataset



consists of 76 NPE bugs from the BUGSWARM dataset and
26 from DEFECTS4]. The BUGSWARM NPE bugs belong
to 32 Java projects hosted on GitHub that use the Maven
build system, while the DEFECTS4J bugs belong to 10 Java
projects that use the Ant build system. Note that all NPEs are
reproducible, i.e., one can run the programs and observe a Null
Pointer Exception being thrown. Furthermore, we manually
verified that each NPE bug in our study is an actual NPE, i.e.,
a null object is eventually dereferenced. Each NPE instance
consists of the source code that contains the bug, the source
code that fixes the bug, and scripts to compile and test.

B. Tool Selection and Configuration

We conducted an extensive search for tools that find or
prevent NPE bugs in Java projects. We focused on publicly
available tools that are standalone and under active devel-
opment. Out of nine tools, four [29, 30, 32, 34] did not
satisfy at least one of these requirements. In this paper we
study the remaining five tools: CFNULLNESS, ERADICATE,
INFER, NULLAWAY, and SPOTBUGS. Note that INFER and
SPOTBUGS find a large variety of bugs in addition to NPE
bugs. CFNULLNESS, ERADICATE, and NULLAWAY exclu-
sively specialize in NPEs. Below we describe each tool.

a) CFNULLNESS: A type checker written using the
Checker Framework, which is available as a compiler plu-
gin. CFNULLNESS works with nullness type annotations,
@Nullable and @NotNull, and looks for violations in their
use. Namely looking for dereferences on @Nullable expres-
sions and for @Nullable-value assignments to @NotNull
variables. CFNULLNESS produces compile-time warnings. We
run CFNULLNESS using its default configuration.

b) ERADICATE: A type checker part of the INFER static-
analysis suite. ERADICATE type checks for @Nullable
annotations in Java programs by performing a flow-sensitive
analysis to propagate null-related information through assign-
ments and calls. ERADICATE produces warnings for accesses
that could lead to an NPE. ERADICATE produces a report
in JSON format that provides the stack trace, severity, and
source location associated with each bug detected. We run
ERADICATE using its default configuration.

c) INFER: A static-analysis tool developed by Facebook
that finds a variety of bugs in Java, C/C++, and Objective-
C programs. INFER uses bi-abduction analysis to find bugs
including deadlocks, memory leaks, and null pointer deref-
erences. Similar to ERADICATE, INFER produces a report in
JSON format that provides the stack trace, severity, and bug
location. We use INFER’s default setting, which runs the bi-
abduction analysis.

d) NULLAWAY: A type checker for Java developed by
Uber that applies various AST-based checkers to find NPE
bugs. NULLAWAY is available as a plugin for Maven and
Gradle. We use NULLAWAY’s default configuration, which
assumes that unannotated method parameters, return values,
and class fields are not null. In such cases, the tool produces
a warning when it is found that any of those locations could
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hold a null value. The user can add explicit @Nullable
annotations to obtain more precise results.

e) SPOTBUGS: SPOTBUGS applies pattern matching and
limited dataflow analysis to find a large variety of bugs
such as infinite recursion, integer overflows, and null pointer
dereferences. The tool produces an XML report listing bug
warnings that include class name, method name, severity, and
line numbers associated with the identified bug. SPOTBUGS
is available as a plugin for a variety of build systems such
as Ant, Gradle, and Maven. We run SPOTBUGS with effort
level “max”, which indicates that SPOTBUGS performs its
interprocedural analysis. Also, we use two different error con-
fidence threshold settings “low” and “high” (“low” confidence
threshold may report a higher number of false positives).

C. Analysis of NPE Warnings

A challenge in this study is to determine whether a tool finds
or prevents a specific NPE bug. In the case of NPEs, tools
may report the program location at which the null dereference
occurs, or simply report the location where the null value
originates, which can be far from the dereference. The latter
is particularly difficult to associate with the bug fix, which is
often applied closer to the dereference site.

We consider four approaches for mapping bug warnings to
actual bugs in the source code, i.e., determine whether a tool
finds a given bug under study. Two of these approaches have
been used in previous work: the CODE DIFF METHOD [20, 38]
and the REPORT DIFF METHOD [20]. We explore two new
approaches, which we refer to as the STACK TRACE METHOD
and the COVERAGE METHOD.

Figure 2 shows an example of an NPE found in the
OpenPnP! GitHub project as part of the BugSwarm dataset.”
Method saveDebugImage is called on Line 8 of file
OpenCvVisionProvider. java (see Figure 2b), where
argument debugMat is null. Method saveDebugImage
in file OpenCvUtils. java calls toBufferedImage on
Line 6 (see Figure 2a), passing in null, which is then
dereferenced on Line 11. The code highlighted (in green)
represents the patch to fix the NPE. Figure 2e shows the stack
trace, and Figures 2c and 2d show the warnings produced by
SPOTBUGS and INFER, respectively.

1) CODE DIFF METHOD: This method takes as input the
set of warnings reported for the buggy program and the set of
patches from the GitHub code diff.> The analysis focuses on
NPE bug warnings, and checks whether the source location of
these warnings overlaps with the lines changed in the patches.
However, this is based on an over-approximation; the lowest
and highest line numbers associated with the patch in each
changed file are considered.* If an overlapping line is found,
then the warning is considered a bug candidate. We manually
examine bug candidates to verify their validity.

Uhttps://github.com/openpnp/openpnp

2BugSwarm image tag: openpnp-openpnp-213669200.

3A GitHub code diff may consist of several patch fragments.

“4Previous work has also added a configurable number of lines before the
starting point and after the ending point of the line range [20].
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OpenCvVisionProvider. java:8)

public static void saveDebugImage(..., Mat mat) {

.,OpenCvUtils.toBufferedImage (mat)) ;

) A

<BugInstance rank="8" abbrev="NP" category="
CORRECTNESS" priority="2" type="
NP_NULL_PARAM_DEREF">

<Method classname="org.openpnp.util.

OpenCvUtils" name="saveDebugImage">
<Sourceline classname="org.openpnp.util.
OpenCvUtils" start="6" end="6"
sourcefile="OpenCvUtils. java"/>

(c) SpotBugs XML report.

public static BufferedImage toBufferedImage (Mat m) {

{"bug_class":"PROVER",

"kind": "ERROR",

"bug_type":"NULL_DEREFERENCE",

"qualifier":"object ‘debugMat‘' last assigned
on line 3 could be null and is
dereferenced by call to ‘saveDebugImage
(...)Y at line 8.",

"file":"OpenCvVisionProvider. java",

"severity":"HIGH",

}

(d) Infer JSON report.

org.openpnp.util.OpenCvUtils.toBufferedImage (OpenCvUtils. java:11)
org.openpnp.util.OpenCvUtils.saveDebugImage (OpenCvUtils. java:6)
org.openpnp.machine.reference.vision.OpenCvVisionProvider.getTemplateMatches (

(e) Stack trace for buggy program.

Fig. 2: GitHub diff, stack trace, SpotBugs XML report, and Infer JSON report for an NPE found by SPOTBUGSLT and INFER.

Consider the patch in Figure 2a. The line at the top
(starting with @@) indicates that the patch includes orig-
inal lines 2 through 6, and new lines 2 through 9 from
file OpenCvUtils. java. Therefore, the approximated line
range is 2 through 9 for the buggy program, i.e., the
program before the fix. The SPOTBUGS report (see Fig-
ure 2¢) includes the XML tag SourceLine: Line 6 of file
OpenCvUtils. java. This location lies within the line
range 2-9, thus the method correctly collects this warning
as a bug candidate. On the other hand, even though INFER
(see Figure 2d) successfully finds the bug, the CODE DIFF
METHOD approach fails to map the warning because the report
does not include lines close to the fix. In this case, using code
diff information is not effective.

2) REPORT DIFF METHOD: This method uses the set of
bug warnings of the buggy program, and the set of warnings
of its fixed version. The algorithm searches for NPE bug warn-
ings that are only reported for the buggy program. The intuition
is that the warning that describes the bug of interest should
not be present in the bug report of the fixed program. Using
this method, both SPOTBUGS and INFER are determined to
have found the bug from Figure 2. This method is convenient
because it only requires two bug reports. However, the absence
of a bug warning in the fixed program does not necessarily
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mean that the bug of interest was found. The code change
could have introduced “noise” that leads the tool to conclude
that an unrelated bug warning is no longer a problem. We
observe that this occurs often in practice (see Section IV-B).

3) STACK TRACE METHOD: This approach requires the set
of bug warnings of the buggy program, and the stack trace(s)
produced when running the buggy program. As with previous
methods, this approach only considers warnings related to NPE
bugs. For each NPE warning, the algorithm retrieves the file
and line number(s) associated with the warning, and checks
whether those are included in the stack trace. If so, the warning
is classified as a bug candidate.

Consider again the example from Figure 2. The
SPOTBUGS report (Figure 2c) mentions Line 6 in file
OpenCVUtils. java. The report pinpoints that there is a
null parameter in a recursive call to saveDebugImage,
which could result in an NPE. On the other hand, the IN-
FER report (Figure 2d) lists a warning associated with file
OpenCvVisionProvider. java on Line 8. The call to
saveDebugImage in method getTemplateMatches is
passed debugMat as argument, which could be null and
result in an NPE. Note that INFER refers to a lower stack
frame than SPOTBUGS, but the STACK TRACE METHOD
successfully maps both reports to the same bug because both



locations can be found in the stack trace (Figure 2e).

The STACK TRACE METHOD takes advantage of the nature
of NPE bugs and their presence in the stack trace. Because
NPE bugs correspond to Null Pointer Exceptions, the call stack
is given at the time the exception occurs. This information is
a valuable resource that leads to a more natural bug mapping
than previous methods. However, this method requires an
executable buggy program and a reproducible NPE. Also, this
method provides a line in the stack trace that can be mapped
to a bug warning, however, this does not necessarily mean
that the tool found the correct dereference; there are long
dereference chains that may be associated with the same line.
Thus, as with previous methods, it is necessary to manually
verify that the trace indeed matches the context of the NPE
warning. We consider all available sources of information such
as source code and code diff during manual inspection.

4) COVERAGE METHOD: This method is a general version
of the STACK TRACE METHOD, but it includes all lines
executed by the test that triggers the NPE. The input is the
set of NPE warnings of the buggy program, and the lines
covered (executed) by a test case that fails due to an NPE.
The approach determines if the source location given in a
warning is covered, in which case the warning is added to
the set of bug candidates. This captures the scenario where
the location of an NPE warning is far away from the actual
dereference, which is particularly useful when analyzing the
warnings produced by type checkers such as NULLAWAY and
ERADICATE. The assumption is that even if the NPE warning
and the actual dereference are located far away from each
other, both source locations will be part of the execution trace.
For example, consider a case in which a field is set to null
in a constructor and the field is dereferenced in some method.
Type checkers may produce a warning related to setting the
field to null, but not a warning describing the dereference
itself. However, in this case, both source locations will be
part of the execution trace. Note that this approach requires
the existence of a failing test that triggers the NPE, and the
ability to execute the test. Both requirements are met for our
dataset. As with other methods, we manually inspect all bug
candidates to determine their validity.

III. BuG AND TOOL CHARACTERIZATION

A fundamental step in evaluating the effectiveness of static
bug detectors is to understand their capabilities, and whether
real-world bugs possess the desired characteristics to be de-
tected. In this section, we characterize the dataset of real
NPEs as well as the tools under study with respect to their
approaches to find NPEs. We describe our methodology and
results, which will be critical in Section IV to determine
whether a given NPE can be found by the tools.

First, we performed a manual categorization of all 102
NPEs to determine the root cause of the null pointer deref-
erences. The categorization was performed separately by an
author of this paper and two people external to the project.
When in disagreement, the inspectors met to reach consensus.
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Fig. 3: Bug Classification Results

Using the source code, the GitHub code diff, and the build
log, we identified the origin of the null value, and its
dereference location. Based on this inspection, we identified
nine general categories of NPEs with respect to what is deref-
erenced, and the context of the dereference. These categories
along with their counts can be found in Figure 3. Note that
an NPE can belong to multiple categories. The most common
categories are when a method return value is dereferenced (32
bugs) and when a field is dereferenced (17 bugs).

As for the tool capabilities, we consider seven well-known
program analysis properties: (1) intraprocedural, (2) interpro-
cedural, (3) flow sensitive, (4) context sensitive, (5) field
sensitive, (6) object sensitive, and (7) path sensitive [11].

We identified seven common sources of unsoundness: (1)
handling of third-party libraries whose source code may not
be available, (2) impure methods that have side effects and
are non-deterministic, (3) concurrency, (4) reasoning about
dynamic dispatch, (5) dealing with code that uses reflection,
(6) field initialization after a constructor is called, and (7)
generic parameters. Unsoundness can lead to false positives
(incorrect bug warnings) and false negatives (missed bugs).

We studied CFNULLNESS, ERADICATE, INFER, NULL-
AWAY, and SPOTBUGS with respect to the above analysis
characteristics and sources of unsoundness. In this process,
we manually inspected the source code and documentation of
the tools, and we wrote kernel test programs that exhibited
different categories of behaviors to confirm tools’ capabilities
and limitations. Table I shows the tool capabilities, and Table II
shows the sources of unsoundness for each tool. Below we
describe our findings for each tool, which were confirmed by
the corresponding developers.

a) CFNULLNESS: An ensemble of three checkers: (1)
an intraprocedural flow-sensitive qualifier inference for the
nullness of a particular object, (2) initialization checking, and
(3) map key checking. It assumes @NonNull for unannotated
code except for locals, and provides an analysis for iterating
over null collections and arrays. Additionally, CFNULLNESS
supports annotations to denote: (1) if a method has no side-
effects or is deterministic, (2) the target of a reflection invo-
cation, (3) and upper bounds of types for generic objects.



TABLE I: Tool Capabilities Confirmed by Developers. v'= has capabilities, X= no capabilities, Partial = limited capabilities.

Tool Intraproc.  Interproc.  Field Sensitive  Context Sensitive  Object Sensitive ~ Flow Sensitive = Path Sensitive
CFNULLNESS v X v X X v X
ERADICATE v X Partial X X v v
INFER v v v X v v v
NULLAWAY v Partial Partial X N/A Partial Partial
SPOTBUGS v Partial Partial X X Partial Partial

TABLE II: Sources of Unsoundness for the Tools. v'= is sound, X= is unsound, Partial = unsound in some aspects.

Tool Third Party Libs. Impure Methods Concurrency Dynamic Dispatch  Reflection  Field Init.  Generic Types
CFNULLNESS v v v v v v v
ERADICATE Partial X X X X Partial X
INFER Partial Partial X Partial X X X
NULLAWAY X X X v X Partial X
SPOTBUGS X X X X X X X

b) ERADICATE: An intraprocedural flow-sensitive anal-
ysis for the propagation of nullability through variable assign-
ments and function calls. ERADICATE also raises an alarm
for accesses to fields that have annotated nullability, however
its field initialization checker is subject to ongoing work.
ERADICATE’s nullability annotations allow for the annotation
of methods, fields, and method parameters with @Nullable
annotations. As detailed in Table II, ERADICATE provides
built-in models of the JDK and Android SDK and supports
user-specified nullability signatures for other third-party li-
braries, which helps mitigate false negatives.

c¢) INFER: An interprocedural analysis that supports
tracking object aliasing, side effects in methods, and dynamic
types of objects. All our tests were successful when running
INFER, showing that the tool is interprocedural and field
sensitive. A caveat is that INFER does not find uninitialized
fields, but it can find null dereferences to fields that have been
initialized. As shown in Table II, INFER partially supports
third-party libraries via an internal model of the JDK. For
impure methods, INFER tracks some effects in methods, e.g.,
if a method sets this.field null, the effect will be
tracked at the call site. Tracking dynamic types of objects
is useful to refine the control-flow graph. However, this only
occurs in the context of the entry point of the analysis.

d) NULLAWAY: A flow-sensitive type refinement anal-
ysis to infer nullness of local variables that includes a field
initialization checker. NULLAWAY assumes that unannotated
code cannot be null. For methods, fields, and method parame-
ters annotated with the @Nullable annotation, NULLAWAY
ensures no dereferences, and that their value will not be
assigned to a non-null field or argument. Our tests showed
that NULLAWAY finds local and object field dereferences
without annotations. With annotations, NULLAWAY can find
null dereferences of method parameters and return values.
NULLAWAY is able to avoid dynamic dispatch as a source of
unsoundness by ensuring that methods that are overridden have
the same nullability as its parent’s class. NULLAWAY’s field
initialization is unsound. For example, the analysis does not
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check fields that are read by methods called from constructors.

e) SPOTBUGS: A null-pointer analysis inherited from
FINDBUGS [24] that combines forward and backward dataflow
analyses for tracking null values. The analysis provides
limited tracking of object fields; it does not support aliasing
and volatile fields, and it assumes that any method can modify
a field of an object passed as argument. Additionally, SPOT-
BUGS provides a null-related annotation @CheckForNull to
denote values that must be null-checked prior to a dereference.
Our tests confirmed the intraprocedural nature of SPOTBUGS,
however we were unable to expose SPOTBUGS’ field sensi-
tivity. Lastly, SPOTBUGS infers parameter and return value
information intraprocedurally if these are null checked, and it
suffers from all sources of unsoundness as shown in Table II.

IV. EXPERIMENTAL EVALUATION

This experimental evaluation is designed to answer the
following research questions:
RQ1 How prevalent are NPEs among all warnings?
RQ2 How effective are bug mapping methods for NPEs?
RQ3 How effective are static bug detectors for NPEs?
RQ4 What are the reasons bug detectors miss NPEs?
We ran CFNULLNESS, ERADICATE, INFER, NULLAWAY,
and SPOTBUGS on our dataset of 102 programs with real NPE
bugs to generate bug reports for the buggy and fixed versions
of the programs. We ran the tools on the full programs,
and verified that the files relevant to the bug and fix were
indeed analyzed by the tools. We considered two settings for
SPOTBUGS: low and high thresholds. The results are presented
as SPOTBUGSLT and SPOTBUGSHT, respectively. We au-
tomatically parsed the bug reports to extract and normalize
relevant information, which we stored in a MySQL database.
Our study is fully reproducible. The dataset of real re-
producible NPE bugs from BUGSWARM and DEFECTS4J is
publicly available as well as the tools we study. The scripts
for performing the experiments and all data described in this
section is publicly accessible.?

Shttps://github.com/ucd-plse/Static-Bug-Detectors-ASE-Artifact
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Fig. 4: SPOTBUGSLT, SPOTBUGSHT, and INFER distribution of top 5 warnings.

TABLE III: Number of all warnings and NPE warnings
produced by each tool.“Avg All” and “Avg NPEs” refer to
the average number of warnings produced per program.

Tool All NPEs Avg All  Avg NPEs
CFNULLNESS 231,860 231,860 (100%) 1,137 1,137
ERADICATE 266,682 266,682 (100%) 1,307 1,307
INFER 37,035 12,307 (33.2%) 181 60
NULLAWAY 25,065 25,065 (100%) 122 122
SPOTBUGSHT 49,555 8,807 (17.8%) 243 43
SPOTBUGSLT 129,183 22,656 (17.5%) 633 111

A. RQI: Prevalence of NPE Warnings

Table IIT shows the total and average number of warnings
produced by each tool when analyzing the programs. There are
a total of 739,380 warnings across the 102 x 2 programs in
our dataset. ERADICATE yields the largest number of warnings
with 266,682, all of which are NPE warnings. Similarly,
CFNULLNESS has the second highest number of NPE warn-
ings with a total of 231,860. SPOTBUGSLT produces the
third highest number of warnings with 129,183 warnings,
and SPOTBUGSHT follows with 49,555 warnings. Unlike
ERADICATE, CFNULLNESS and NULLAWAY, SPOTBUGS can
generate over a hundred different types of non-NPE warnings
while INFER generates seven.

Figure 4 shows the top five types of warnings for SPOT-
BUGSLT, SPOTBUGSHT, and INFER. It is observed that NPEs
are one of the most prevalent warnings for these tools: the most
common for SPOTBUGSLT, and the second most common
for both SPOTBUGSHT and INFER. Indeed, NPEs constitute
from 17.5% to 33.2% of the total warnings produced by
these tools. For SPOTBUGSHT, we observe a reduction in
total number of warnings and NPE warnings with respect to
SPOTBUGSLT of 61.6% and 61.1%, respectively.

Finally, NULLAWAY produces the fewest warnings (all of
them are NPE warnings), with a total of 25,065.

RQ1: NPE warnings are prevalent in all the tools stud-
ied. A total of 567,377 NPE warnings (76.7% of all
warnings) are produced for our dataset. The percentage
of NPE warnings for SPOTBUGSLT is 17.5%, SPOT-
BUGSHT 17.8%, and INFER 33.2%.
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TABLE IV: Bugs mapped by each method. We show the
number of correct mappings / the total number of mappings.
Column “Bugs Found” gives the total number of bugs found
per tool. Inside parenthesis are the number of bugs that a tool
found but not others. 30 unique bugs are found across tools.

Method
Tool Code Report Stack Covered Bugs Found
CFNULLNESS 6/56 5/18 7126 5/56 11 (2)
ERADICATE 10/51 7124 7/22 8/52 20 (5)
INFER 3/23 2/13 9/12 7/27 10 (1)
NULLAWAY 1/17 0/21 1/4 5/26 502
SPOTBUGSHT 4/18 4/6 1/5 2/13 4 (0)
SPOTBUGSLT 6/46 6/13 6/12 3/26 9 (1)
Total 30/211 24/95  31/81 30/200 30 Unique

B. RQ2: Effectiveness of Bug Mapping Methods

We applied the four methods discussed in Section II-C to
find whether the tool warnings describe the bugs of interest.
In total, all methods together correctly find 30 distinct bugs
out of 102 bugs (29.4%). All bug candidates were manually
inspected. Table IV summarizes the results.

An effective mapping method is defined as having high
recall and precision. The STACK TRACE METHOD is the most
effective among the four, mapping 31 bugs with a precision
of 38.2%. All the NPEs mapped to a warning were contained
within the STACK TRACE METHOD, except for four. On the
other hand, while the CODE DIFF METHOD and COVERAGE
METHOD produce the largest number of bug candidates across
all tools, they also suffer from the lowest precision, 14.2% and
15.0%, respectively. The REPORT DIFF METHOD mapped the
lowest number of true bugs in comparison to other methods
(24 bugs), but its precision of 25.3% was still higher than that
of the CODE DIFF METHOD and COVERAGE METHOD. The
results show that the four methods are primarily complemen-
tary of each other as they map different types of information.

RQ2: The STACK TRACE METHOD is the most effective
with 81 bug candidates, of which 31 were true bugs
(38.2%). The CODE DIFF METHOD and COVERAGE
METHOD had similar recall than the STACK TRACE
METHOD, but a lower precision of 14.2% and 15.0%,
respectively. The REPORT DIFF METHOD had the lowest
recall but a higher precision than CODE DIFF METHOD
and COVERAGE METHOD.




lprotected Object decode (Channel channel, ...){

2 - if (channel == null) {
3 + if (channel != null) {
4 channel.write (response, remoteAddress);

5 }
6}

(a) NPE bug found by both SPOTBUGS and ERADICATE.

Iprotected void ldCmdVerSheet (String sheetName) {
2 Sheet sheet = switchToSheet (sheetName, false);
3+ if (sheet==null) return;

4 while(i<sheet.getRows()) { ... }

5}

(c) NPE bug due to null dereference of a return value.

lpublic class GrblCntrllr extends AbstractCntrllr {
2 - capabilities = null;

3 + capabilities = new GrblUtils.Capabilities ()
4protected void pauseStreamingEvent () {

5 if (this.capabilities.REAL_TIME) { ... }

6}

(b) NPE bug dereferencing field of an object not found by any tool.

Iprivate void verifyDecodedPosition() {

2 - if(p.gNtk() !=null) {
3 + if (p.gNtk () !=null && p.gNtk().gTwrs() !=null) {
4 for (Twr Twr : p.gNtk().gTwrs()) {

5}

(d) NPE bug with dereferencing object returned from a method.

Fig. 5: Examples of NPE diffs from the dataset.

C. RQ3: Effectiveness of Tools at Finding NPEs

Overall, the tools find 30 distinct bugs out of 102 bugs
(29.4%). The breakdown per tool is shown in Table IV.
ERADICATE finds the most bugs with 20 out of 30. CFNULL-
NESS finds 11 bugs, INFER 10 bugs, and SPOTBUGSLT 9
bugs. NULLAWAY and SPOTBUGSHT find the fewest bugs
with 5 and 4, respectively. We examined the overlap among
bugs found by each tool. The two tools with the most overlap
are CFNULLNESS and ERADICATE with 7 bugs. Interestingly,
each tool finds bugs not found by other tools (also shown in
Table IV). This shows that the tools are complementary, and
that practitioners could benefit from running multiple tools. A
challenge to this is the large number of warnings to inspect.

An example of a bug found by CFNULLNESS, INFER, and
SPOTBUGSLT was given in Figure 2a. We show the diff
between a buggy version (with an NPE bug) and the fixed
version of the GitHub project openpnp/openpnp (a robotic
pick and place machine). The call to the buggy method that
causes the NPE is located on Line 6 of the buggy program.
The fix for this NPE bug consists of adding a null check for
parameter mat in saveDebugImage.

Figure 5a shows an example of a bug found by CFNULL-
NESS, ERADICATE, SPOTBUGSHT, and SPOTBUGSLT. Here
we show the diff between a buggy version and the fixed version
of project t raccar/traccar (a GPS tracking system). The
bug was that the null check was flipped, incorrectly deref-
erencing channel when null. The fix simply consists of
changing the comparison operator from == to !=. A possible
reason why INFER did not find this bug is that INFER does
not gather information from checks. Since Figure 5a includes
a null check, SPOTBUGS is able to reason that channel is
dereferenced when null, leading to an NPE.

We conducted an additional experiment on a random sample
of 40 programs® from our initial set for which annotations
were inferred using IntelliJ IDEA’s Infer Nullity [7]. IntelliJ
Idea infers both @Nullable and @NotNull annotations.
Note that 49 out of the 102 programs originally include

%The process could not be automated due to the IDE, thus the sample.

some nullness annotations. We ran all tools on the anno-
tated programs, except for INFER which does not use an-
notations. IntelliJ] added 34,229 @Nullable and 167,236
@NotNull annotations. We applied the COVERAGE METHOD
to map warnings. This resulted in 2, 3, 0, and 2 additional
bugs found by CFNULLNESS, ERADICATE, NULLAWAY, and
SPOTBUGSLT, respectively. These accounted for three unique
bugs across all tools. Despite the small increase in bugs found,
the results are promising as annotating less than half of the
programs resulted in finding 10% more bugs in total.

RQ3: Overall, the tools have low effectiveness at finding
NPE bugs. Out of the 102 bugs in our dataset, ERAD-
ICATE found 20 bugs (19.6%), CFNULLNESS found
11 (10.8%), INFER found 10 (9.8%), SPOTBUGSLT
found 9 bugs (8.8%), NULLAWAY found 5 (4.9%), and
SPOTBUGSHT found 4 (3.9%). Additional annotations
resulted in finding 3 more bugs.

D. RQ4: Reasons Bug Detectors Miss NPEs

We are interested in understanding the reasons why bug
detectors fail to find real NPEs. We start by discussing the
characteristics of the bugs that the tools find based on the
characterization of 102 bugs from our dataset and the tools
themselves (see Section IIT). We then discuss the characteris-
tics of those bugs that the tools fail to find.

a) CFNULLNESS: CFNULLNESS found 11 bugs includ-
ing every category shown in Figure 3. These included 3
dereferences to a method return value and 2 dereferences of a
map object. The sound properties of CFNULLNESS allow it to
find classes of bugs that the other tools cannot. For example,
CFNULLNESS also found bugs due to concurrency, field
initialization, generics, and reflection. The lack of necessary
annotations in the projects under study inhibits CFNULL-
NESS’s ability to find all of the bugs in those categories.

b) ERADICATE: ERADICATE found 20 bugs where 9
dereferenced a method return value, 3 dereferenced an object
field, 1 retrieved a value from a map object, and the rest
dereferenced a method parameter. Despite using a partial

299



model of the JDK, ERADICATE missed bugs in other third-
party libraries. ERADICATE does not handle concurrency and
reflection. These limitations explain some of the false nega-
tives, while others can be explained by the lack of full field
initialization checks and dynamic dispatch.

c) INFER: INFER found 10 bugs that included 4 deref-
erences of a method parameter, 4 dereferences of a method
return value (one of which is from a JDK library), a derefer-
ence of a list, and a dereference of an object field. These
NPEs are interprocedural in nature, which aligns with our
characterization of INFER in Section III. However, INFER did
not find the remaining NPEs that involve method parameters,
method return values, or object fields, which we would expect
to be captured by interprocedural analysis. One reason is that
INFER does not take into account existing null checks.

INFER has an internal partial model of the JDK, which
enables reasoning about certain library methods. Surprisingly,
despite the fact that INFER supports field sensitivity, and was
successful at finding such bugs in our tests, it missed many
other field sensitive bugs. Note that INFER does not have a
check for field initialization so it does not find uninitialized
fields, but it does support fields set to null. Such an example
is shown in Figure 5b. Additionally, INFER does not find NPEs
that involve reflection, concurrency, maps, or use of third-party
libraries outside of the JDK.

d) NULLAWAY.: NULLAWAY found 5 bugs, all of which
dereference a return value. This shows the challenge in placing
annotations in the right place to be beneficial. NULLAWAY’s
main sources of false negatives are its assumptions that
unannotated code is not null and that third-party libraries
do not return null. While manual tests written during our
categorization revealed correct warnings about dereferenced
fields, real bugs that share these characteristics were not
detected. Such an example is shown in Figure 5b, where
an unannotated field (considered non-null) is being assigned
null. This represents a strict violation of the assumption that
the field cannot hold a null value, and should result in a
warning. Finally, in the process of running NULLAWAY, one
of the programs crashed the tool. The problem was due to
a buggy treatment of certain methods in the standard Java
library. We reported the bug to NULLAWAY developers, and
it is now fixed in the latest release.

e¢) SPOTBUGS: SPOTBUGS found 9 NPEs, of which 5
occur when dereferencing a method parameter, 3 when derefer-
encing a method return value, and another when dereferencing
a field. In all cases, there is at least one null check within the
method for the object being dereferenced, but the programmer
dereferences the object in a path that is not checked. The
null checks enable SPOTBUGS to reason about the NPEs
intraprocedurally (Section III). The remaining NPEs in our
sample that dereference a method’s return value or parameter
are not found because they require interprocedural reasoning.
Additionally, the 17 NPEs that involve the dereference of an
object field are not found by SPOTBUGS. SPOTBUGS fails
to find any bugs dealing with reflection, concurrency, third-
party libraries, maps, and lists. This conforms to our tool
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characterization; SPOTBUGS does not provide complete field
sensitivity.

RQ4: SPOTBUGS misses NPEs that require interproce-
dural analysis. INFER performs interprocedural analysis
but does not have a field initialization check nor does it
handle some path-sensitive information from null checks.
NULLAWAY relies on nullness annotations but does not
handle maps nor third-party libraries. ERADICATE deals
with third-party libraries better than other tools, but it
still misses bugs due to partial field initialization check-
ing. CFNULLNESS provides sound analyses to handle
reflection and initialization which allows finding bugs that
other tools cannot. However, the lack of annotations can
still lead to missed bugs.

E. Threats to Validity

Although we conducted this study on a substantial number
of real-world NPEs, our results cannot be generalized. We
attempted to reduce this threat by including a large number
of NPE bugs from a diverse set of 42 projects from two Java
bug datasets. It is possible that we may have missed other
tools that are eligible for our study. We still believe that the
five tools considered are good representatives of popular and
widely-used state-of-the-art static bug detectors for NPEs. The
four different mapping methods used in this paper are not
perfect, and may lead to false positives. To alleviate this threat,
we manually inspected all warnings that were deemed to be
bug candidates. Anything requiring human intervention can be
error prone and subjective. To mitigate this threat and reduce
bias, we involved two people external to our project in the
categorization of bugs. Finally, we consulted tool developers to
confirm our findings regarding tool capabilities and limitations,
as discussed in Section III.

V. LESSONS LEARNED

This section describes some opportunities for improvement.
a) Need for reducing or ranking warnings: Over 500,000
NPE warnings were generated across all tools and programs,
with NPEs being in the top-2 warnings for every tool. The
average number of warnings per program was in the hundreds,
which is a cumbersome amount. Because of this, we had
to employ a combination of mapping methods and manual
verification to determine if a bug was found. In our case it is
known that an NPE exists, and the goal is to determine whether
the tools find it. However, this is not the usual setting for tool
usage; developers do not know beforehand of the existence
of bugs, or else the tools would not be needed. Thus, the
large number of warnings is especially problematic in a real
setting where true bugs are unknown and all warnings must
be inspected.

A bug ranking system could help in navigating the large
number of warnings. All tools studied, except for NULLAWAY,
provide severity warning information, but this information did
not correlate to finding the NPEs under study. For example,
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SPOTBUGS provides a severity ranking: “concerning”, “trou-
bling”, “scary”, and “scariest”. However, the true bugs found
were not associated with the most severe category, but with the
“troubling” and “scary” categories. This shows the need for
more conservative strategies to process warnings, or to label
warnings that are more likely to be true bugs.

Two main approaches for ranking warnings are found in
the literature, and could be applied in the context of static
bug detectors for NPEs. The first solely focuses on ranking
warnings of a specific program version without considering
information such as warnings produced for other versions
of the program. Examples in this category learn a classifier
via methods ranging from bayesian networks, decision trees,
and neural networks [21, 43]. The second approach uses the
difference of warnings between a previous and the current
version of the program, or self-adapts through user feedback
[22, 36]. A promising approach to aid static bug detectors for
NPEs would be to learn a project-specific classifier that has
user-feedback on predictions. This would benefit users as the
tool learns, over time, domain-specific project characteristics,
which would eventually lead to higher precision.

b) Need for automatically inferring nullability annota-
tions: There is an inherent burden in writing annotations.
Analyzers that depend on annotations could benefit from au-
tomated inference of nullability annotations. Running IntelliJ
IDEA’s Infer Nullity on 40 programs enabled the tools to
find an additional 3 bugs. This shows that there is promise in
annotation-based approaches for bug finding. However, there is
room for improvement in annotation inference as the analysis
still missed annotations that could have lead to finding more
bugs. Furthermore, it was difficult to automate the process of
annotating code using IntelliJ, which may prevent its use in
many scenarios. There exists work that applies static analysis
to infer non-null annotations for object fields in a subset of
Java [25], which could be potentially used to aid annotation-
based NPE bug detectors but it is not publicly available.

c) Need for reasoning about collection-like data struc-
tures: A pain point for all tools studied is reasoning about
the nullability of objects inside a collection-like data structure
such as an array. Users can add annotations to indicate that
a data structure can be null, but there is no mechanism to
annotate the nullability of individual elements in the data struc-
ture. CFNULLNESS, ERADICATE, and NULLAWAY overcome
this challenge for map-like objects by assuming that the get
interface may return a “nullable” value. A similar approach
could be adopted each time an element from other collection-
like data structure is retrieved. Incorporating such strategy
would enable the tools to successfully find 10 additional bugs.

d) Need for reasoning about reflection: Reasoning about
reflection imposes a challenge for any static analysis. All
of the tools in our study are unsound when it comes to
reflection, except CFNULLNESS. Since most of the tools
can leverage annotations, a potential approach for handling
reflection is user-provided annotations. This is exactly what
CFNULLNESS does. This is done via a list of targets, a priori,
of what class or method is being operated on for certain
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reflection calls. This approach has been implemented in other
analyses [28, 37, 39, 40] for Java, where analysis precision was
observed to improve. Indeed, incorporating the above strategy
would enable the NPE bug detectors to find 13 additional
bugs, from which CFNULLNESS successfully finds one given
the existing annotations.

VI. RELATED WORK

a) Static Analyzer Studies: Rutar et al. [35] compare
the static analyzers PMD, FindBugs, JLint, Bandera, and
ESC/Java 2 on a small suite of programs. The authors present
a taxonomy of bugs found by each tool showing that no tool
subsumes the other. The study focuses on runtime and number
of warnings produced. Johnson et al. [26] conduct a study in
which 20 developers are interviewed on their experiences using
static analysis tools. The study finds that the main reason why
developers do not use tools is false positives.

Habib and Pradel [20] study the static analyzers INFER,
ERROR PRONE, and SPOTBUGS to determine how many of all
bugs in DEFECTS4J can be found by these tools. The authors
use the code diff and the bug report mapping methods. The
study finds that only 27 bugs out of 594 bugs (4.5%) were
detected, of which only 2 were NPEs. Tomassi [41] conducts
a study that compares ERROR PRONE and SPOTBUGS to find
how many of al/l bugs in a sample of 320 BUGSWARM artifacts
are found. The author found that only one bug was found
by SPOTBUGS. Instead, we focus on a specific kind of bug,
NPEs, and present a detailed analysis of the capabilities and
the limitations of five popular tools that find NPEs.

Ayewah and Pugh [12] run Coverity, Eclipse, FindBugs,
Fortify, and XYLEM on different versions of the build system
Ant. The authors classify the null dereferences reported by
each tool (plausible, implausible, or impossible), and explore
the usefulness of using null-related annotations. Most recently,
Banerjee et al. [14] presented the tool NULLAWAY and per-
formed a comparison to the Checker Framework’s Nullness
analysis [33], and INFER’s Eradicate looking at build-time
overhead. While Ayewah and Pugh [12] study false positives
in one version of Ant, Banerjee et al. [14] focus on measuring
false negatives in Uber’s Android apps. We study the recall
of five popular bug detectors, including NULLAWAY, on 102
real and reproducible NPEs from 42 open-source projects.

b) Tools to Find Null Pointer Dereferences: Ayewah
et al. [13] present a static analysis tool called FINDBUGS, the
predecessor of SPOTBUGS. FINDBUGS finds a wide variety
of bugs including null pointer dereferences. Hovemeyer and
Pugh [24] extend FINDBUGS’s NPE finding capabilities by
improving the precision of the analysis. These improvements
were a result of a better model of the core API of JDK,
changing how errors on exception paths are handled, improv-
ing field tracking, and finding guaranteed dereferences. We
include SPOTBUGS in our study.

Papi et al. [33] introduce the Checker Framework, which
allows for pluggable type systems for Java. They evaluate
five checkers, including the Nullness checker, running them
over significant sized code bases. The checkers find real bugs



and confirmed the absence of others. We include the Checker
Framework in our study.

Nanda and Sinha [32] develop a demand-driven dataflow
analysis for null-dereference bugs in Java. By being path-
sensitive and context-sensitive, the analysis allows for a low
false positive rate, and an improved precision over FINDBUGS
and JLint. Romano et al. [34] use the analysis from Nanda and
Sinha [32] to find variables and paths that lead to possible null
pointer dereferences. The authors use a genetic algorithm to
generate tests that trigger the null pointer dereferences. Logi-
nov et al. [29] develop a sound interprocedural analysis based
on abstract interpretation called expanding-scope algorithm.
Madhavan and Komondoor [30] demonstrate a sound, demand-
driven, interprocedural, context-sensitive dataflow analysis to
verify whether a dereference will be safe or not. None of the
above tools [29, 30, 32, 34] are publicly available.

VII. CONCLUSION

In this experience paper, we studied the effectiveness of
popular Java static bug detectors CFNULLNESS, ERADICATE,
INFER, NULLAWAY, and SPOTBUGS on 102 real NPEs from
42 open-source projects. We identified the capabilities of the
tools and the characteristics of the NPE bugs in our dataset. We
discussed the problem of mapping tool warnings to actual NPE
bugs, and investigated four mapping methods, including two
new approaches that leverage stack trace and code coverage
information, from which the stack-trace based was the most
effective. Overall, the tools detected a total of 30 out of
102 bugs. We conducted an additional experiment annotating
40 programs using IntelliJ, which resulted in 3 new bugs
found. Finally, we leveraged the characteristics of the tools
and the bugs in our dataset to gain insights into why the tools
missed certain types of bugs. We concluded by discussing
opportunities for improving NPE bug detection. We provide
the link to a public repository that contains both our scripts
and the data produced in our experimental evaluation.
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