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Advancements in generative models, such as deepfake, allow users to imitate a
targeted person and manipulate online interactions. It has been recognized that
disinformation may cause disturbance in society and ruin the foundation of trust.
This article presents DeFakePro, a decentralized consensus mechanism-based
deepfake detection technique in online video conferencing tools. Leveraging
electrical network frequency (ENF), an environmental fingerprint embedded in
digital media recording affords a consensus mechanism design called proof-of-ENF
(PoENF) algorithm. The similarity in ENF signal fluctuations is utilized in the PoENF
algorithm to authenticate the media broadcasted in conferencing tools. By utilizing
the video conferencing setup with malicious participants to broadcast deepfake
video recordings to other participants, the DeFakePro system verifies the
authenticity of the incoming media in both audio and video channels.

The rise of the fifth-generation (5G) communica-
tion and the Internet of Video Things (IoVT) tech-
nologies enables a broader range of applications

with megascale data (e.g., all conditions all time video),
while COVID-19 forces more activities, such as meet-
ings and conferences, migrated to the cyberspace.
While these network-based applications become esse-
ntial in the new normal, which highly depend on reli-
able, secure, real-time audio or/and video streaming
(e.g., Zoom), they become a target for attackers.1

Enhanced with such security features, users tend to
rely on the communication channel for confidential
conversations and have a higher trust factor on the
information received through audio or video mediums.
Hence, end-to-end multimedia attacks have a signifi-
cant impact where the perpetrator is a trusted partici-
pant in the conference who can relaymisinformation.2

Modern generative deep learning (DL) models have
enabled forging audio and video recordings with
another source and created false media called deep-
fakes.3 The deepfakes are a more potent form of visual
layer attacks since it involves manipulating the video

and audio channels by imitating a targeted person’s
face and voice and creating a false recording to relay
misinformation through a forged and trusted entity.4

Generating such recordings is not difficult with the
vast availability of source images and video recordings
over the Internet.5 Recent advancements in audio soft-
ware called Descript allow a user to generate text-to-
speech content with training data within 10 minutes.6

deepfaked videos, audio, or photos in social media are
highly disturbing and able to mislead the public, raising
further challenges in policy, technology, social, and
legal aspects.7,8 Figure 1 shows an example of a deep-
fake attack on a celebrity mimicking the source actor.

Electrical network frequency (ENF) is a unique envi-
ronmental fingerprinting technique for real-time distrib-
uted authentication.9 ENF is an instantaneous frequency
in the power distribution networks, and the fluctuations
occur due to the load control variations. ENF is embed-
ded in multimedia recording from different power sour-
ces, and the resultant media can be authenticated
based on the time stamp and ENF fluctuation patterns
recovered from it.10 The similarity of the fluctuations
along with its robust and random nature makes ENF a
reliable source for authenticating digital media record-
ings. Existing ENF-exploited solutions rely on centralized
architectures that can be a performance bottleneck and
vulnerable to a single point of failure.11
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Blockchain utilizes a decentralized architecture,
which mitigates the problem of a single point of failure
and allows for immutable data storage and verification.
With the consensus protocol, blockchain executes
transactions on a public distributed ledger, which allow
for transparency, immutability, and auditability ensuring
data authenticity among untrusted devices. Thus, block-
chain is promising to enable a decentralized authentica-
tionmechanism for ENF-based deepfake detection.12

Inspired by spatio-temporal sensitive ENF contained
inmultimedia signals and decentralized consensus algo-
rithms in blockchain, this article proposes DeFakePro, a
novel decentralized ENF consensus-based deepfake
detection in audio–video channels for online conferenc-
ing scenarios. DeFakePro contributes the following:

› the embedded ENF fingerprints of deepfaked
audio and video streams are studied;

› DeFakePro, a secure deepfake authentication
system is introduced along with details of key
components and workflows;

› a partially decentralized PoENF consensus algo-
rithm is designed to ensure the efficiency and
security in distributed authentication of stream-
ing media;

› a proof-of-concept prototype is tested with
deepfaked audio and video authentication in an
online video conferencing setup and verifies the
feasibility of the DeFakePro system;

› an experimental evaluation of the proposed sys-
tem with the current state-of-the-art technique
shows that DeFakePro has similar accuracy per-
formance, but comparatively faster making it
suitable for online applications.

DEEPFAKE ATTACKS ON ONLINE
CONFERENCING TOOLS

With advanced computation power and development
in DL models, generative adversarial networks (GAN)

can imprint the source facial landmarks or impres-
sions on a targeted person to recreate similar content
with a fake personality commonly referred to as deep-
fake.3 Both audio and video recordings can be manipu-
lated with enough training data available from the
source. Current deepfake detection relies on DL mod-
els trained to detect visual artifacts introduced in the
deepfake videos. However, with more training data
and models, such artifacts can be removed, and deep-
fake videos’ precision gets better.5

For online digital media in the context of confer-
ence tools, both audio and video are equally targeted
to create the mirage of a fake digital presence.
Authentication of both audio and video recording for
forgery detection is eminent for information integrity13

in all available channels. A detection technique void of
training data and large-scale computational infra-
structure, which depends on underlying fingerprints or
multimedia artifacts to locate deepfake forgeries, ena-
bles reliable digital media authentication. Deepfakes
can perform better with more training data and create
visually perfect manipulation of the target, however, it
results in high-frequency artifacts and shows poor per-
formance in reconstructing spectral consistencies.4,8

Applicationswith simple videomanipulation, such as
Face-swap or Face-Shifting software, and audiomanipu-
lation, such as generating text-to-audio speech on the
go using a modified voice, have become abundantly
available for common users.6,14 For online conferencing
tools, the participating perpetrator has complete control
over the audio and video broadcasted to other users.
With such manipulation tools easily accessible, the per-
petrator can imitate a targetedperson and spreadmisin-
formation. Such attacks raise concerns over the virtual
communication platforms, and along with the existing
network-level security, online conferencing software
also requires an authentication scheme for the informa-
tion broadcasted.

A study in video deepfake detection using the spatial
frequency inconsistencies caused by the up-sampling
mechanism ofmost deepfake generatormodels confirms
the frequency-level modifications.8 The resulting fre-
quency fingerprints are utilized to train neural networks
to detect the GAN-based modifications.4,15 However, the
spatial frequency inconsistency still remains a trainable
parameter and the resulting fingerprints could be mini-
mized.8 Leveraging the incapability of deepfakemodels to
preserve spectral consistencies and the random nature
of ENF consisting of spatio-temporal fingerprint informa-
tion, we introduce DeFakePro channels as a distributed
authentication system for online media broadcasts. The
proposed DeFakePro identifies fingerprints sensitive to
both spatial and temporal frequencymanipulations.

FIGURE 1. Facial reenactment deepfake attack.
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DEFAKEPRO SYSTEM
The DeFakePro system comprises a decentralized
authentication system, where each participating node
estimates ENF and broadcasts it for proof of authen-
ticity. Figure 2(a) represents the system workflow.
Each modules are discussed as follows.

ENF Estimation in Multimedia
Recordings
The presence of an ENF signal in a multimedia recording
depends on the location of the recording, where the esti-
mation of the signal varies based on the type of multime-
dia source. DeFakePro tackles both audio and video
streams for dual authentication and adds robustness to

the system. For the online conferencing setup, we assume
the recordings aremade in an indoor environment.

ENF in Audio Recordings
The ENF is embedded in an audio recording through
electromagnetic induction for devices powered by the
electrical grid10 or background hum for devices run-
ning on a battery-powered source.16 Audio recordings
are typically captured with a high sampling frequency
(44.1 kHz), but for ENF estimation, a low frequency,
such as 1–8 kHz, is sufficient.

ENF in Video Recordings
The source of ENF in video recordings is through the illu-
mination frequency from light sources powered by the
electrical grid. The illumination frequency, i.e., 120 Hz
when the nominal frequency is 60 Hz, is captured by the
recording devices based on the imaging sensor used.17

The twomost commonly used imaging sensors are com-
plementary metal-oxide-semiconductor (CMOS) and
charge-coupled device (CCD) sensors. Each sensor has
its unique shutter mechanism associated with image
capturing, and the total samples captured depend on
the number of frames per second (FPS). CCD sensors uti-
lize a global shutter mechanism where the whole sensor
is exposed to light for each frame, resulting in lower sam-
ples. In the case of CMOS sensors, the frames are cap-
tured using a rolling shutter mechanism, where each row
of the imaging sensor is sequentially exposed to light,
and the number of ENF samples captured is increased
by the frame height.18 Among CCD and CMOS-based
sensors, CMOS is most commonly used for general pur-
poses due to its cost efficiency and broad applicability.

ENF Estimation
The ENF is estimated in the following steps:

1) Power spectrum matrix is computed using the
spectrogram technique from the collected sam-
ples in audio and video recordings;

2) based on the nominal frequency, the weights are
estimated from the harmonic frequencies in the
power spectrum matrix;

3) the computed weights are used to combine spec-
trum slices resulting in a robust ENF estimation.

The detailed discussion of ENF estimation techni-
ques for different multimedia recordings are described
in our previous work.11,19

Security Service
DeFakePro leverages security services to provide
basic cryptography security primitives for permission

FIGURE 2. DeFakePro system. (a) DeFakePro System Archi-

tecture. (b) PoENF Consensus Workflow.
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IoVT, as shown on the left of Figure 2. All devices and
users must complete registration to join the network,
and DeFakePro assumes that a system administrator
is a trusted oracle to manage the profiles of all regis-
tered entities. DeFakePro relies on container technol-
ogy to implement security services that support
resource isolation, data flexibility, and maintenance
simplicity in a distributed network environment. Each
service unit exposes a set of RESTful web service APIs
for devices/users. Identity verification services rely on
a virtual trust zone method to authenticate identities.
Access control services use a capability-based access
model to support decentralized access authorization
and verification.9

Proof-of-ENF (PoENF) Consensus
To maintain ground-truth ENF benchmarks used for
deepfake detection, the DeFakePro solution designed
a byzantine-resistant PoENF consensus algorithm
that is executed by a PoENF committee. Such a com-
mittee can be either preconfigured by a system admin-
istrator or randomly elected given a certain period of
time. Figure 2(b) illustrates the PoENF consensus
workflow consisting of three main procedures.

Collect ENF Transactions
At the beginning of the current consensus round, a
validator V ðiÞ can broadcast an ENF transaction sav-
ing its ENF proof EðiÞ among PoENF committee mem-
bers. Then, other validators can verify a received ENF
transaction given conditions that a) it should be sent
by validators in committee; and b) it should be neither
outdated nor existed in the local transactions pool.
Finally, all valid transactions are locally buffered.

Calculate ENF Scores
Given a local ENF transaction pool, a validator V ðiÞ
can extract ENF proofs from other committee mem-
bers and build a global view of collected ENF proofs.
To prevent against byzantine validators who send arbi-
trary or poisoned ENF proofs, DeFakePro adopts a byz-
antine resilient aggregation rule in the ENF score
calculation. Finally, each validator has a global view of
ENF scores, as shown by Figure 2(b).

PoENF Consensus
In the PoENF consensus stage, every validator can
sort ENF scores and choose the minimum one as
ground truth E�. As all honest validators have an iden-
tical global view of ENF scores, they can generate the
same E�. The PoENF requires that a validator always
uses E� as the ground-truth ENF. Therefore, the
PoENF consensus can make an agreement on E�

given an assumption that an adversary can only com-
promise at most f committee members.

Interested readers can refer to Xu et al.’s work20

for details about PoENF consensus protocol.

Deepfake Detection Using PoENF
Consensus
Once the PoENF consensus agrees on the ground-
truth ENF E� for the round, each node compares its
local ENF with the ground-truth ENF using the correla-
tion coefficient. The measure of similarity ranges from
½�1; 1�, where 1 represents the highest similarity.
Based on the experiments, we adopted a threshold of
0.8 to compare the ENF signals. For localization of the
forgery, a sliding window protocol is used to compare
the ENF signal.

PROTOTYPE AND EVALUATION
Experimental Setup
A proof-of-concept prototype of DeFakePro is imple-
mented in Python. To emulate the participants in an
online conferencing tool, we adopted Raspberry Pi-4
(RPi) as the nodes to cap the computation power
requirements. For the performance of PoENF consensus,
we compared the time latency on RPi and a Dell Opti-
plex-7010 desktop. The collected raw footage is proc-
essed in the devices and using the ENF estimation
techniques, the ENF signal is broadcasted to the PoENF
committee. For audio deepfakes, the Descript platform6

is used, where the software can generate a text-to-
speech synthesis in real time for any pretrained vocals.
For video deepfakes, a live deepfake generator named
DeepFaceLive is used.14 The video deepfake generator
uses the live webcam feed and synthesizes the targeted
users’ face on the source image.

Performance of PoENF Consensus
Mechanism
Table 1 presents the cumulative time taken for a round
of PoENF consensus, including ENF proof broadcast,
verification, and PoENF algorithm execution. The time
complexity of the PoENF consensus is OðK2 dÞ, where
K is the committee size, d is the ENF sample size, and
the latency increases with the number of validators. A
general conference scenario typically includes less
than 50 participants and incurs delays up to 0.5 and
0.2 second on a desktop.

Detecting Audio and Video Deepfakes
The audio and the video deepfakes are generated
independently to analyze the effects of ENF on each
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recording. For audio recordings broadcasted, the text-
to-speech modification is made in multiple locations
throughout the recording.6 After comparing the ENF
from the ground-truth ENF and the audio deepfake
ENF with multiple forgery locations, a low correlation
coefficient indicates fake audio from which the modi-
fied section can be localized. Figure 4(a) represents
the mismatch in the ENF, where the correlation coeffi-
cient is below the threshold.

For video recordings, the deepfakes are generated in
realtime using a pretrained model face set in the Deep-
FaceLab tool.14 For our experiment, multiple deepfake

videos were generated using the DeepFaceLab tool. For
the generated deepfake videos, a subset of frames from
each video is analyzed for spatial frequency inconsisten-
cies generated due to the deepfake model up-sampling
mechanism.8 Figure 4(c) represents the changes in spa-
tial frequencies caused by most deepfake models, gen-
erated by analyzing the azimuthally averaged frequency
spectrum of deepfake frames.8 Along with the facial
manipulations in the frame center, the spatial frequency
inconsistencies represent that the deepfake model
adds additional perturbations in the static background
of the frame.

The video frames are buffered in online conferencing
tools to collect enough samples for a reliable ENF esti-
mation. With more samples, ENF estimation is more
accurate. A sliding window approach is used for an
online authentication system to buffer incoming frames
and estimate ENF. We tested various window sizes and
a fixed shift size of 5 seconds for our experiment since
shift size has a low effect on ENF estimation. Figure 3(a)
shows a clear separation between original frames and
deepfake frames, while Figure 3(b) represents the accu-
racy of detecting deepfake videos aswindow sizes vary.

Using the appropriate window and shift sizes, ENF-
based video authentication is presented in Figure 4(b).
Given the ground- truth ENF, the measure of similarity
of the incoming deepfake video ENF estimates is lower
than the original video streams. In deepfake recordings,
even though the facial landmark regions are forged, the
pixel intensities through the frame are modified due to
added perturbations, as seen in Figure 4(c).

Performance Evaluation
A comparison study is performed to analyze the effec-
tiveness of ENF-based authentication compared to
the spatial frequency-based GAN fingerprint. To the

TABLE 1. Poenf consensus latency (second) with different

number of validators.

No. of validators 10 20 50 100 200 500

RPi-4 0.02 0.08 0.48 1.93 7.71 48.5

Desktop 0.01 0.02 0.15 0.59 2.4 15.4

Note: Comparative evaluations on platform benchmarks.

FIGURE 3. (a) Correlation coefficient values for deepfake

localization. (b) ROC curve for optimal ENF window size for

lower false positives and threshold selection.

FIGURE 4. (a) Original and deepfaked audio recording correlated with ground-truth ENF. (b) Real-time Face-swap deepfake gen-

erated using DeepFaceLab software and compared with ground-truth ENF. (c) Spectral inconsistencies generated by deepfake

model, generated using frequency transform and azimuthal averaging.
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best of our knowledge, the presented approach is the
only technique focused on online deepfake detection
using a distributed backbone system. We collected
ten 5-minutes deepfake videos, collected with ground-
truth ENF, and evaluated the performance using
ENF-technique and spatial inconsistencies-based detec-
tionUpConv in Durall et al.’s work.8

Table 2 represents the performance of each deep-
fake detection technique in multiple resolutions. For
online conference scenarios, faster and more reliable
techniques are more viable due to their time-sensitive
nature. The area under the curve for both techniques
is similar for all formats, however, the number of FPS
for the proposed DeFakePro system is higher since
there is minimal frame processing required and no fea-
ture training. DeFakePro is applicable to any input
streams as long as it carries a background ENF signa-
ture, and the nominal frequency is known. The pre-
sented approach is effective against any kind of frame
modification since the ENF fingerprint carries unique
fluctuations and allows for a distributed authentica-
tion system enabling deepfake detection and byzan-
tine nodes.

CONCLUSION
This article presents DeFakePro—a decentralized
deepfake attack detection system leveraging embed-
ded ENF signals in online video conferencing tools.
The proposed DeFakePro adds resilience to byzantine
nodes and verifies media integrity with minimal
computational resources using the integrated PoENF
consensus mechanism. The consensus mechanism
establishes the ground-truth ENF in each round, and
each participating node can verify the media authen-
ticity using a correlation coefficient. Furthermore, the
consensus mechanism is evaluated for time latency
based on the number of participants in each round.
However, the application of ENF-based authentication
is limited to zones with passive ENF presence, such as
indoor environments.

The experimental results show that the DeFakePro
system can detect and localize the deepfake audio
and video attacks using the estimated ENF signal. The
DeFakePro system is evaluated against the current

deepfake detection techniques, and the proposed sys-
tem achieves similar performance and had a faster
processing rate, which is a prerequisite for an online
detection system.
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