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Abstract8

Mapping material flows in economy is crucial to identify strategies for resource management towards9

lowering waste and environmental impacts of society, a key objective of research in Industrial Ecology.10

However, constructing models for mapping material flows at sectoral level such as in Physical Input Output11

Tables (PIOTs) at highly disaggregated levels is tedious and relies on large amount of empirical data. To12

overcome this challenge, a novel collaborative cloud platform PIOT-Hub is developed in this work. This13

platform utilizes a Python based simulation system for extracting material flow data from mechanistic14

models, thus semi-automating the generation of PIOTs. The simulation system implements a bottom-up15

approach of utilizing scaled engineering models to generate Physical Supply Tables (PSTs) and Physical16

Use Tables (PUTs) which are converted to PIOTs (described in (Vunnava & Singh, 2020a)). Mechanistic17

models can be uploaded by users for sectors on PIOT-Hub to develop PIOTs for any region. Both models and18

resulting PST/PUT/PIOT can be shared with other users utilizing the collaborative platform. Automation19

and sharing feature provided by PIOT-Hub will help to significantly reduce the time required to develop20

PIOT and improve the reproducibility/continuity of PIOT generation, thus allowing to study changing21

nature of material flows in regional economy. In this paper, we describe the simulation system MFDES22

and PIOT-Hub architecture/functionality through a demo example for creating PIOT in agro-based sectors23

for Illinois. Future work includes scaling up the cloud infrastructure for large scale PIOT generation and24

enhancing the tool compatibility for different sectors in economy.25

1 Introduction26

Input-Output (IO) methods (Miller & Blair, 2009) have provided a robust framework for research in Industrial27

Ecology (IE) to map industrial and economic sector interconnections at multiple scales ranging from state28

(Singh et al., 2017)(Wang et al., 2018)(Zhang et al., 2013), national (Faturay et al., 2020) (Brand-Correa et29

al., 2017), and global scale (Lenzen et al., 2013) (Timmer et al., 2015) (Feenstra & Sasahara, 2018). The30

mapping of interconnections makes it possible to study cascading impacts in economy due to change(s) in one31

sector(s) or industry along with evaluating total environmental impacts using the environmentally extended32

Input-Output (EEIO) approach. One such IO based modeling technique is Physical Input-Output Tables33

(PIOTs), which provides a comprehensive accounting framework for tracking material flows from one economic34

sector to another and to the final end users. By doing so, PIOTs can help perform detailed Economy Wide35

Material Flow Accounting (EW-MFA) which provide insights in evaluating and improving our resource use36

efficiency. As PIOTs can help track commodities used, produced, emissions and waste flows for each sector,37

it provides a framework to map all the material flows in an economic region and provide a physical economy38

model for the region being studied (Hoekstra & van den Bergh, 2006). Some of the PIOTs applications include39

understanding the physical metabolism and structure of an economy (Altimiras-Martin, 2014), water energy40

nexus at regional city levels (Chen, Alvarado, & Hsu, 2018), tracking elemental flows across a regional physical41

economy (Singh et al., 2017), and modeling solid waste recycling scenarios (Liang & Zhang, 2012). However,42

the true potential of PIOTs and their applications can be realized only if material flows are accounted at highly43

disaggregated economic sectors level. PIOTs developed using aggregated flows only provide minor improvements44

to conventional MFAs by allocating all the material flows in the economy to a few highly aggregated sectors.45

This aggregation gives rise to complications such as sector aggregation bias during material flow allocation as46

demonstrated in a recent study using EEIO by highlighting overestimation of raw-materials requirement in an47

analysis using aggregated biomass sector (Piñero, Heikkinen, Mäenpää, & Pongrácz, 2015).48

Despite the known benefits of PIOTs, their development in a timely fashion for different regions of the world49

has been very slow. Specifically, tracking material flows at sub-national level or at highly disaggregated sector50
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(Hoekstra & van den Bergh, 2006) level using PIOTs is very rare except for a few studies that only track one51

or a few type of materials (Singh et al., 2017) (Chen et al., 2018) (Wang et al., 2018). The primary hurdles52

to build disaggregated PIOTs include reliable data availability, data heterogeneity, validation, and continuity53

of data collection for long term updating. Additionally, compiling the regional data in the PIOT framework54

itself is very tedious even for a moderate size economic region (Singh et al., 2017). Therefore, there is a critical55

need to improve the methodologies and tools for development of PIOTs at desired disaggregation level through56

automation that can also reduce the over dependency on empirical data and manual PIOT construction.57

In this paper, we fill this need of an automation tool for creation of PIOTs using our developed bottom-58

up approach of engineering models to Physical Supply Tables (PSTs) and Physical Use Tables (PUTs) and59

PIOTs. The details of approach are described in a method paper (Vunnava & Singh, 2020a), here we focus on60

the automation aspect and a cloud infrastructure to quickly build PIOTs. The primary research contribution of61

this work is the development of an integrated cloud-based collaborative tool that can facilitate building PSTs,62

PUTs, PIOTs faster using a bottom-up approach where mechanistic models for each sector at proper scale can63

be uploaded along with import, export and final demand data for commodities in the region. While different64

disciplines have developed modeling tools and techniques to account physical flows from microscopic scale to65

plant scale, no tools exists in the IE literature that fully and synergistically automate the process of using66

the data from these heterogeneous modeling techniques. This automation provided in PIOT-Hub allows for67

fast generation of tables along with reproducibility and collaborative generation of large-scale tables using the68

bottom up approach. Further, reliance on mechanistic models improve the reliability of data and meeting the69

mass balance criteria for each sector.70

In rest of the paper, we first describe the advancement in IE related tools (Section 2). Then we briefly71

summarize the bottom-up approach underlying the tool in section 3. In Section 4 we describe the MFDES72

tool for extracting data from mechanistic models and converting to PSTs, PUTs and PIOTs, through data73

integration and a standardized back-end data infrastructure. Next in Section 5 we discuss PIOT-Hub, our74

cloud infrastructure and a collaborative environment for automation of PIOT generation. In Section 6, we75

show a demo of the PIOT-Hub capabilities through a case study for the state of Illinois in USA. Finally in76

section 7, we conclude with a discussion on potential future applications, additional development for future77

functionalities on PIOT-Hub and possibilities of integration of the PIOT-Hub with other existing IE tools.78

2 Overview of Existing Tools and Databases in Industrial Ecology79

In recent years there has been a growing interest in the IE community regarding faster generation of IO models80

and open source availability of databases because of the tedious nature of model development along with lack81

of reproducibility and transparency (Wieland et al., 2020), (Lenzen et al., 2014a). Reproducibility of results82

is an important criteria in most established scientific disciplines for design. As IE moves towards redesigning83

our economy and industrial systems towards the goal of sustainability, reproducibility will become essential to84

identify the most robust pathway. IE community is making gradual progress in this direction to enable large85

scale collaborations and reproducible model development through IO databases, tools for automated generation86

of IO models and faster IO analysis. We classify the existing work in three categories : standardized IO87

databases, tools/platform for automated and reproducible generation of IO tables and automation scripts/web-88

based tools for IO analysis. Table 1 shows literature corresponding to the work in these categories (at the89

time of writing this paper). The work in category standardized IO databases include large scale efforts that90

focused on building IO databases for use by IE community. EXIOBASE is one such large scale effort. In the91

work by Merciai and Schmidt, the authors describe an algorithm that relies on an existing database called the92

EXIOBASE for the construction of multi-regional HSUTs (Merciai & Schmidt, 2018). In their work, hybrid93

tables use both monetary and physical data to generate the supply and use tables for 43 countries and 5 rest of94

the world regions. The developed algorithm is automated to process the physical flow data available from the95

Food and Agriculture Organization statistics, United Nations Comtrade data (United Nations, 2019), energy96

supply use tables and data from the supply use tables from the previous studies by the authors’ institute (2.097

LCA consultants , 2018). Since most of the data is from international-level data sets, the built hybrid tables98

are aggregated at national or multi-national levels. In another recent work by Bruckner et al.(Bruckner et al.,99

2019), the focus was on agricultural commodities in order to document the complex flows of agriculture and100

food commodities in the global economy. Agriculture being one of the primary sectors, usually has a better101

level of disaggregated data available at an international level from agencies such as the Food and Agriculture102

Organization. Capitalizing on this, the authors developed a model called Food and Agriculture Biomass Input-103

Output (FABIO) model, which is a set of multi-regional supply, use and input-output tables in physical units104

(Bruckner et al., 2019). The model brings together multiple data sources related to trade, crop production, and105

utilization in physical units along with supplementary technical data to build consistent and balanced supply106

use tables. FABIO uses data sources such as FAOSTAT (United Nations, 2020), UN Comtrade (United Nations,107

2019), and Energy Information Agency (EIA) (US Department of Energy, 2020), and also fills/estimates any108
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missing data manually. FABIO covers 191 countries and 130 agriculture, food and forestry products from109

1986 to 2013. Although FABIO has a standardized methodology for building physical supply use tables from110

large public datasets, it relies on FAOSTAT data which is at national level so does not produce tables at111

sub-national/regional levels. Further, the reliance on FAOSTAT data puts this method in top-down approach112

category.113

Among the group of automated and reproducible generation of IO models, the creation of Industrial Ecology114

Virtual laboratory (IELab) provides significant advancement (Lenzen et al., 2014b), to overcome the challenge115

of data unavailability and tedious nature of multi-regional input-output (MRIO) model generation. The IELab116

is an automated collaborative platform that has been used to develop multi regional supply-use tables and117

MRIO tables for multiple countries (Lenzen et al., 2014b; Faturay, Lenzen, & Nugraha, 2017; Faturay et al.,118

2018, 2020). Thus, IE lab provides a significant advancement to generation of MRIO tables using computational119

power and relies on availability of national level data and supplementary data to generate MRIO models.120

Other tool developments in the IE domain have focused on making tasks such as data transformation and121

data visualization easy. A tool called Pymrio (Stadler, 2019) was developed to break down large data sets122

and perform high level abstraction to analyze global MRIO databases like EXIOBASE, WIOD and EORA26.123

To make the calculations involved in converting supply use tables to input-output tables easy, tools such as124

(Pauliuk et al., 2014) and PyIO (Nazara et al., 2003) were developed. In another work, to make data extraction125

from online sources easy and to convert data in formats usable in hybrid Life Cycle Assessment, a tool called126

USIO was also developed (Srocka, 2015). In one of the more recent works, Donati et al., proposed a web-based127

tool called RaMa-Scene to model circular economy scenarios using the EXIOBASE data (Donati et al., 2020).128

This approach using EXIOBASE provides a good method for handling mixed-unit data, however, the primary129

reliance on multi-national level data sets and aggregated sectoral classification makes it challenging to perform130

any detailed regional economy studies for material flow accounting. The specific features, results and input131

requirements for all the databases/tools discussed in this section are shown in Table 1.132

So far, most of the methodologies, algorithms and tool developed in the literature have mainly followed133

a top-down approach of processing the available national and regional level physical/monetary databases to134

build physical/monetary supply use tables, and in a few cases, use some form of optimization approach for135

sectoral disaggregation. We aim to complement these tools based on top-down approaches with a bottom-136

up approach based tool called Material Flow Data Extractor and Simulator (MFDES) that aims to utilize137

mechanistic knowledge of our physical systems in automating the development of PSUTs and PIOTs (see Fig138

B in SI). We also have implemented this tool on a collaborative cloud platform, PIOT-Hub to advance PIOT139

generation collaboratively. So far, none of the databases or automated tools have implemented a bottom up or140

collaborative approach, which is the unique contribution of work presented in this paper. We next summarize141

the bottom-up approach underlying the MFDES tool and PIOT-Hub (Section 3), followed by the structure and142

functionality of MFDES tool (Section 4) and MFDES based collaborative cloud platform for PIOT generation,143

PIOT-Hub (Section 5).144

3 Bottom-Up Approach underlying MFDES tool and PIOT-Hub145

The Material Flow Data Extractor and Simulator (MFDES) tool is built following a bottom-up approach146

that maps data from the fundamental bottom-up physics based engineering models (EMs) to account for147

material flows that are then converted to PSTs, PUTs and PIOTs. At the core of MFDES, computationally148

developed EMs are used to simulate each economic sector through Python implementation. These EMs are149

developed to simulate material transformation operations for different industries in the economy and are based150

on fundamental mass, energy balance and chemical kinetics equations. The primary inputs to develop an151

EM include the process flow diagrams, physics and chemistry equations that govern the underlying material152

transformation mechanisms taking place in an industry, the chemical composition of individual material flows153

and, the information on which flows in the EM are considered to be products, co-products, and waste flows.154

Since the development and scaling of EMs is out the scope of this tool, some of the recent works on mechanistic155

model development and scaling are provided here.((Vunnava & Singh, 2020b), (de Wit, 2018)). When EMs156

are simulated at the scale at which an industry operates in a region, it enables the extraction of all relevant157

material flow information of that industry for that year and region. Therefore, EMs used needs to be validated158

before using in physical economy modeling to ensure that it correctly captures the scale of material flows159

in the economy. Each industry being modeled with EM is also mapped to the corresponding NAICS sector160

classification (US specific) (United States Census Bureau, 2017) to connect the EMs to IO sectoral framework.161

The material flow data simulated from EMs are mapped to PSTs and PUTs by mapping the supply and use162

of each commodity, waste/emissions and raw materials by the industries in the region. These PSTs and PUTs163

are then augmented with commodity level import, export and final demand data. In this bottom-up approach,164

industry (sector) level mass balances are automatically maintained and uncertainty around input and output165

flows are reduced for sectors being modeled with EMs. Further balancing of PSTs and PUTs are done at166
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commodity level and the remaining imbalances are assigned to Rest of Economy (ROE) to ensure commodity167

mass balance. While the proposed bottom-up approach ensures overall mass input and output balances for all168

the sectors for which EMs are used, it cannot balance the flows for sectors which do not have EMs. To tackle169

this challenge, a slack variable is used to ensure mass balance for industries in ROE, that are not modeled as170

EM. For imports, since they come from outside the economy under study, the commodity level imports are171

allocated to industries by weighting them with individual industry usage of the commodities as shown in PUTs.172

Finally, Eurostat model D was used to transform the PSTs and PUTs which are commodity by industry tables173

to PIOTs (industry by industry) tables. For details on bottom-up modeling approach for different sectors in174

the economy and integrating with IO framework, we refer readers to the method paper (Vunnava & Singh,175

2020a).176

4 Automating PIOT generation via MFDES tool : Architecture,177

Information flow and Data structures178

MFDES tool is based on the bottom-up approach described above and automates the process of simulating179

respective EMs, extracting the relevant data from simulation results and organizing it in PST/PUT and PIOT180

framework for users. The key novelty in providing this functionality is automating the mapping of stream181

information from bottom up process modules of industries to respective supply and use tables. The MFDES182

to PIOT tool implementation has been divided into 5 modules (see fig 1). The main architecture of MFDES is183

built in Python with different modules with functions to simulate models and extract data from models (module184

1); process heterogeneous data from EM simulation for material flow characterization (module 2); data mapping185

to generate PSUTs (module 3); balancing using additional data (module 4) and finally conversion of PSUTs to186

PIOTs (module 5). The approach used by MFDES functionalities in modules 4 and 5 overlap with other tools187

that generate IO based models as it relies on standard methods for transforming PSUTs to PIOTs, however,188

modules 1 through 3 are unique in approach and capability to automate data acquisition through engineering189

approach that provides the link from EMs to PIOT.190

Figure 1: Overview of the different modules of the MFDES tool

4.1 Module 1: Simulation and Data Extraction191

Module 1 in MFDES tool consists of a Python based script that takes in heterogeneous EMs built using dif-192

ferent modeling techniques and simulates them to extract the material flow data for corresponding economic193

sector (see Fig C in SI). Each of the EMs that are input to module 1 represent different economic sectors in a194

region. In order to ensure that these models represent the physical flows in the economic region and MFDES195

can extract the relevant flows, EMs must be first scaled and primed into a format that MFDES can simulate.196

Scaling of EMs is independent of MFDES tool, so that users can simulate any regional economy. Priming is197

done before input to the MFDES tool for standardization of extracting data from EMs to be mapped to PSUTs.198

199

Scaling the EMs: Although EMs are very good at representing the material transformation processes of200

various industries, these need to be scaled appropriately to represent the scale at which an industry operates201

in a region/year. Hence, the scaling process is tightly linked to the EM development and user dependent.202

The users would be required to upload scaled models as appropriate for their region/year of interest. MFDES203

will not perform any scaling operations to allow the users selecting their year and size of regional operations204
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for which PIOTs are desired. There are different approaches that the users can adopt for scaling based on205

industrial information or survey based datasets, we describe scaling and validating approach for EMs in the206

method paper (Vunnava & Singh, 2020a).207

208

Priming the EMs: Priming involves modification steps to make an EM compatible with MFDES. These209

modifications usually involve simple tweaking of the variable names used in an EM so that they can be parsed210

and passed on as a MFDES object or as a .csv file in case a black-box like model (model with just in/out211

material flow information). These name tweaking is part of standardization approach like other simulation212

engines for enabling automation of material tracking. For example, if an EM represents the biofuel industry213

and is built in Aspen Plus software, then there will be a series of variable names in the EM representing different214

flows and sub-systems in the process of producing biofuel. Now, to prime this EM, some of the variable names215

containing relevant material flows have to be changed/edited to make it compatible with MFDES. MFDES216

then processes this information to keep track of the relevant flows picked during the simulation process. This217

process of priming must be done by the user by modifying the variable names in the EMs using the priming218

manual that will be provided for PIOT-Hub model uploads. An example of priming process is provided in the SI.219

220

Data Extraction and Storage: Once primed EMs are provided, MFDES invokes different simulation in-221

frastructures to simulate different EMs based on their types (ex: Aspen plus, Python etc.) and extracts raw222

data from the EMs. Raw data extracted contains information about mass flows for each relevant stream, that223

is model specific. Each EM is simulated using a relevant EM simulator based on the file extension type. For224

example, if EM1 is a python file, then MFDES recognizes the .py extension of the file and invokes a Python225

compiler to simulate the material flows for the industrial sector represented by EM1. The functionality of in-226

voking different EM simulators and extracting the outputs of the simulated EMs for building PST/PUT/PIOT227

is novel and unique to the MFDES tool. While it may be obvious to automatically simulate a series of single file228

types (say .py files) that represent different sectors, it is not trivial to simulate different EMs and simultaneously229

process material flows from all model types to create PST/PUTs and PIOTs. MFDES provides standardization230

for data extraction and compilation to generate these tables. Hence, MFDES provides the required automation231

to simulate a variety of model types used for mapping a physical economy and maintain compatibility during232

material flow extraction from different model types.233

234

4.2 Module 2: Data processing for Material Flow Characterization235

The raw data from the previous module cannot be directly used as it will still be in the format compatible with236

different simulators invoked. In the data processing stage, MFDES is equipped to automatically clean the raw237

data by stripping any simulator specific non-material flow information so that data flows can be characterized.238

The automatic process of stripping non-material flow information from EMs and categorizing them is novel and239

unique to MFDES. MFDES stores all the recorded information from the EMs in temporary memory files and240

interprets the internal nomenclature used by the EMs to identify different flows and selectively pick only the241

essential material flow information. For example, if an EM is developed using Aspen Plus process modeling242

software, then MFDES looks for the nomenclature used for identifying flows in the variable explorer section243

(input flows are tagged by ‘#0’ character and outputs are tagged by ‘#1’ character in Aspen Plus) of the model244

and picks only the input and output material flows and leaves out any intermediate flows in the model. After245

stripping and cleaning raw data from Aspen Plus models, MFDES looks for individual chemical constituents in246

each flow extracted and matches them with existing information in existing database. Similarly, if Python based247

models are uploaded, MFDES looks for variable tags used to mark input/output material flows in the priming248

stage and extracts material flow information from the tagged variables after simulating them. For classification249

of materials into products or wastes, MFDES maintains a database called Material Flow Characterization250

(MFC) database that contains the chemical composition of all commodities in the form of individual component251

and mass fractions. A default database will be provided with MFDES, however as new models for additional252

materials are added to the system, this database will be updated. MFDES calculates the mass fractions of all253

the material flows it extracts from the EMs and compares them with the available mass fraction in the default254

MFC database. If there is a match, it assigns the database name for the extracted material flow. If not, it will255

create a new material in the the database and store the new mass fraction combinations. It is not in the scope256

of the MFDES tool to characterize the chemical composition of all commodities in the economy, hence MFDES257

facilitates the development of a collaborative MFC database of all the commodities encountered by the tool in258

the form of user uploaded EMs. To achieve this, the GUI (graphical user interface) provides an option to user259

for adding their commodities to the global database. These new commodities and it’s composition will be then260

peer reviewed by the development team. For example, if MFDES comes across a new user uploaded model that261

contains a novel biopolymer commodity for which no chemical composition information is available in the MFC262

database, on approval by development team, MFDES appends this new information to the MFC database.263
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Use table Industry codes
Code 1 Code 2 Code 3 ROE Exports Final demand

Commodity 1 - - - - - -
Commodity 2 - - - - - -
Commodity 3 - - - - - -
Commodity 4 - - - - - -

Natural resource 1 - - - - - -
Natural resource 2 - - - - - -

Slack - - - - - -
Total - - - - - -

Supply table Industry codes
Code 1 Code 2 Code 3 ROE Imports

Commodity 1 - - - - -
Commodity 2 - - - - -
Commodity 3 - - - - -
Commodity 4 - - - - -

Emission 1 - - - - -
Waste 1 - - - - -

Slack - - - - -
Total - - - - -

Table 2: Physical supply use table format used by MFDES

Once appended, MFC will now store the chemical mass fractions of the novel biopolymer and identify it in264

any future uploaded models that contain the same polymer. These newly characterized compositions are then265

readily available for all future users in default MFC database. It is intended that the MFC database grows as266

the user community uploading new shared EMs grows. The global commodity database will be available on the267

PIOT-Hub. More details on the available GUI feature for database update is provided in the PIOT-hub demo268

section 6. Once mapping material flow information to the MFC database is complete, MFDES identifies the269

flows based on priming information as either a “commodity”, “raw material”, “emission” or “waste”. These270

are the data types defined in the MFDES tool for final organization to build PSTs, PUTs and PIOTs.271

4.3 Module 3 : Data reorganization and Partial PST/PUT Construction272

In next step, MFDES reorganizes the data from flow characterization step in the form of PST and PUT first273

based on the four data types (commodity, raw material, emission or waste). This is the key innovative feature274

that connects the EM simulation outputs to the macroeconomic framework of PSTs, PUTs and PIOTs. The275

standard PST/PUT format used by the MFDES is shown below in table 2. This step even though involves276

only reorganization of data simulated through EM engines and classified in step 2, is normally time consuming277

if done manually for a large economy with all the commodities, waste and emissions data. Hence, another key278

strength of MFDES is in automating the whole process of simulating (i.e. generating reliable data), classifying279

and finally organizing it in an easy to interpret user-friendly format. At this stage, MFDES has all the data280

required to build PSTs/PUTs except for the columns and rows relating to exports, imports and final consumer281

demand (table 2). Hence, at this stage the PSTs/PUTs are only partially completed with information of supply282

and use of commodities/wastes/raw materials by sectors in the economy.283

4.4 Module 4 : Balancing PST, PUT and External Data Integration284

The PSTs and PUTs generated by module 3 are generally unbalanced as supply and use in an economy will285

not balance without inclusion of imports, exports and consumer use. These partially completed tables need286

to be balanced with trade and consumer demand (TCD) data, that cannot be obtained from EMs. However,287

from this step, the tables can be used with the standard IO theory to generate balanced tables and perform288

further analysis. Many balancing approaches already exist in the literature (Nicolardi, 2013) (Serpell, 2018)289

(Stanger, 2018). Balancing approach in our bottom-up approach is briefly summarized in section 3. Following290

the approach, MFDES combines the partially completed PST/PUT with any available user specific trade291

(ex: state level import/export data) and consumer demand (TCD) data to complete PSTs and PUTs. In292

this stage, all the missing information in the partially completed PSUTs can be filled by uploading .csv files293

containing missing information. These .csv files can be provided to the MFDES tool just like any other EMs.294

On recognizing the .csv file type, MFDES simply parses through the missing information and extracts the295

required information to complete the PSUT. Once all data is collated, MFDES tool automates the PST and296
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PUT balancing approach described in section 3 (details in (Vunnava & Singh, 2020a)) and augments the data297

structure with a new column on ROE and row for slack variables in module 4. Finally, once PSTs and PUTs298

balancing and construction is complete the results are rendered to user as output and passed on to module 5299

for PIOT construction.300

4.5 Module 5 : PST/PUT to PIOT Construction301

Module 5 uses custom built Python libraries to convert PSTs and PUTs to PIOTs. The PSTs/PUTs from302

module 4 are provided as input to the Python libraries in module 5 which transforms these tables to PIOTs303

using a modified version of the Model D approach from the Eurostat (Eurostat, 2008) manual. Model D is304

the “fixed product sales structure assumption” and it allows for the creation of balanced industry by industry305

IO tables(from the Eurostat manual (Eurostat, 2008) – “Each product has its own specific sales structure,306

irrespective of the industry where it is produced”. We have interpreted the “sales structure” to be the “material307

flow network” (the flow of all the materials coming from all other industries/imports per unit produced) to308

produce a product/commodity. This final module also provides multiple ways of visualizing the constructed309

PIOTs: 1) raw PIOT in .csv table format, 2) heatmap of the PIOT. All the visualization forms are based on the310

PIOT constructed. MFDES uses the data from this raw PIOT and applies the data to different visualization311

program libraries encoded with the MFDES infrastructure.312

5 PIOT-Hub : A Cloud Based Infrastructure and User Interface313

for Automation of PIOT Generation314

An online tool called PIOT-Hub has been developed to make building PSTs, PUTs and PIOTs easily accessible315

and more collaborative by implementing the MFDES services on a cloud based infrastructure. Deployed on a316

production quality HUBzero (McLennan & Kennell, 2010) based science gateway called MyGeoHub (Kalyanam317

et al., 2019), PIOT-Hub builds upon the open source HUBzero science gateway framework and directly leverages318

HUBzero’s support for online collaboration, scientific data management, hosting of dynamic online simulation319

tools, as well as common functions including federated authentication and user management, connection and320

job submission mechanism to high performance computing (HPC) systems on the Purdue campus and national321

resources such as XSEDE. In addition, MyGeoHub provides the capabilities to interoperate with remote data322

repositories and cyberinfrastructures with synergistic functions and social networking tools such as group, wiki,323

blog, ticket, and forum, making it an ideal platform for the development, publication, and dissemination of324

PIOT-Hub to the user community.325

Back-end Services

Controller

Job Creation

Preprocessing Authorization

Visualization
Python 
Model 
Engine

Hub Tool 
Container

ASPEN Model Engine

API Service

ASPEN Sever Campus Cluster

Front End

Cloud resources

User Interface

Cloud 
Resources

Model/Result Sharing

Commodity DB Update

Provenance Job Status Tracking

Figure 2: Overview of PIOT-Hub Infrastructure
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There are several challenges in implementing the PIOT-Hub to map full economy. First, the system needs to326

support several types of input models commonly used by the community, including open source python models,327

Aspen Plus models, and CSV files. Second, the Aspen Plus software runs on Windows while the rest of the328

system are Linux based. In addition, the Aspen Plus software is proprietary with complex installation and set-up329

process. Third, users upload python or Aspen Plus modeling code as input for MFDES jobs. However, it poses330

a security risk to execute user-provided code on the server side, leading to system vulnerability to malicious331

attacks. Finally, when the size of the PIOT table grows, it could become data and computationally intensive,332

making it harder to scale to a large number of users or support a large number of industry segments. Hence,333

we have developed a cloud based modular PIOT modeling system to address these challenges. Implemented as334

a Jupyter Notebook (JN) (Kluyver et al., 2016) application, PIOT-Hub provides an easy to use web based user335

interface that collects user inputs in a flexible format and presents PIOT, PST and PUT outputs in multiple336

ways. As shown in Figure 2, the functionality of PIOT-Hub includes an easy to use GUI front-end built on337

the JN that is integrated with back-end simulation services. Users can launch the JN instance in a virtual338

container on MyGeoHub to set input parameters or get results through a web browser. Once users set all of339

the required input parameters on the web, the information is submitted to the back-end services. The back-end340

PIOT services consist of four modules: (1) a python model engine that is responsible for executing python341

input models; (2) an Aspen Plus model engine that runs on a remote Aspen Plus server with a service API that342

accepts Aspen Plus model input and returns output after execution; (3) a controller that runs on MyGeoHub343

and is responsible for preprocessing user requests, creating MFDES jobs, dispatching the jobs to either the344

python engine or Aspen Plus engine, getting the results back, and merging the results in the MFDES job345

instances once all simulations are done; and (4) a visualization module for converting the outputs to tables or346

heatmaps.347

In addition to mapping material flows and creating PIOTs, PIOT-Hub also supports collaborative features348

such as model and result sharing among users. By default, all models and outputs are private and only accessible349

by the owner. For the succeeded MFDES jobs, a user can easily share the results with a single click. The basic350

provenance information of the results is automatically recorded and shared. The user can also add additional351

information about the results such as references. Once the results are shared, all the other users in PIOT-Hub352

can directly see the results or download the result files to their local machines. Similarly, a user can make their353

MFDES models public and accessible to others. The shared model can be directly used as an MFDES input or354

downloaded to users’ machines so that they can see the details of the python/Aspen model code and modify it355

for a new MFDES job.356

As discussed in 4.2, MFDES maintains a database for commodities with their chemical compositions. Cur-357

rently the default database consists of 44 commodity files and each file describes the chemical composition of a358

commodity. When a user simulates a model with additional materials that do not exist in the default database,359

the MFDES database needs to be properly updated to include the new materials in a collaborative way. The360

commodity database in PIOT-Hub is maintained using a mechanism involving local and global commodity361

databases. In detail, once the controller finds new materials in a user job request, it appends “unknown” to362

the commodity names and stores them into the user’s local commodity database after the job completes. The363

newly created materials persist on user’s local database and could be renamed later from the user interface364

by the user. The user could issue a request to merge a new commodity into the global commodity database365

after specifying a meaningful commodity name. The PIOT-Hub admin will get notified with the merge request366

and can authorize it from a tab of the PIOT-Hub tool that is only accessible by admin users. The reason to367

keep separate databases (i.e., local and global) is to avoid issues where the same chemical composition could368

exist with different commodity names (i.e., duplication) or a commodity could have multiple versions with369

different chemical compositions (i.e., variation). Once the PIOT-Hub admin approves the merge request, the370

local commodity name with its chemical composition is merged to the global commodity database and all the371

other users can use them in their MFDES jobs.372

The PIOT-Hub front-end user interface and most of the back-end services including the controller and373

python model engine are built in Python using open source python packages such as Jupyter Widgets for GUI,374

Matplotlib/NetworkX for result visualization, and Numpy/Pandas for data processing. The service API on375

the Aspen Plus server is built using Javascript with Node.js, which provides an access point to the controller376

running on MyGeoHub for receiving simulation requests and sending the simulation results back. The Aspen377

Plus simulation engine manages the user requests through Docker containers and RabbitMQ for scalable and378

efficient data processing.379

The PIOT-Hub tool is designed to be a usable, scalable, and secure online modeling environment. The380

system automatically detects the input model type and dispatches it to the corresponding back-end processing381

engine. Priming manual will be made available to help users prepare their models so that they comply with382

the format expectation of the tool. The PIOT-Hub tool currently runs python models on the hub server and383

Aspen Plus models on a remote Aspen Plus server. Aspen Plus backend services will be migrated in future to384

Linux server using windows VM support. Validation code is added to prevent malicious attack as well as to385
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provide feedback to the user if the model fails to run. Furthermore, in each user session, the PIOT-Hub tool386

runs in a secure virtual container on the HUBzero platform which helps mitigate the security risk as well.387

The flowchart for the cloud implementation process, called PIOT-Hub is shown in Fig 3. When a user388

uploads a model, PIOT-Hub will attempt to parse it and check if the model is primed and compatible with389

MFDES. The model will proceed to next stage if primed, if not, PIOT-Hub will notify users that the model is390

not primed. A primed model will be handled by MFDES following all the steps in section 4 to generate PSTs,391

PUTs and PIOTs as shown in the demo next.392

Figure 3: PIOTHub: Collaborative cloud implementation of the MFDES tool

6 Automated PIOT Generation Demo on PIOT-Hub393

In this section, we demonstrate the tool functionalities and step by step information on using the tool. We use394

9 agro-based industries of Illinois as an example to automate extraction of the physical flows using PIOT-Hub395

and develop a PIOT. EMs for these 9 industries were previously developed (Vunnava & Singh, 2020a) and396

were scaled to represent the industries in 2018 Illinois economy. The list of the industries and the modeling397

techniques used to develop EMs is shown in Table A in the SI.398

A user begins the process by uploading different EMs that are developed and primed to the PIOT-Hub399

using the GUI. The screenshot of input GUI of PIOT-Hub is shown in fig 4. PIOT-Hub is also capable of400

dealing with NAICS classification codes for EMs representing industrial sectors. Users can directly select the401

relevant preloaded NAICS code using the Sector Name drop-down list prompted while entering the sector402

name. However, the current selection of EMs are limited by the models developed in our group, which will be403

expanded. Since EMs could also have many supporting files as per priming needs, the users are required to404

upload all files associated with an EM as a zip file. File types such as .csv, .py and aspen plus .bkp files are405

currently accepted). For each EM upload, PIOTHub creates a directory in the user’s home on MyGeoHub and406

unpacks all the files in the directory to be accessed by the MFDES job instance. Once all the EMs are uploaded407

and data input is complete, users submit the job using ‘Run’ button to start the simulations.408

After sumbmitting the job, MFDES initiates different simulating environments based on EM file extensions409

and proceeds with all the steps shown in Fig 3. Once simulation is complete, the GUI takes the user to the410

output tab. All the results generated by the PIOT-Hub can be directly viewed within the GUI as PST, PUT411

or PIOT. It also provides users with options to view and download the heatmap of the PIOT. Fig 6 shows412

a PIOT for the modeled sectors in Illinois generated using the simulation of EMs. The default units shown413

across all output tables is metric tons, which we plan to update in future. Unless external information related414

to final demand, imports and exports is given, MFDES assigns all the unbalanced material flows to the rest of415

economy sector (RoE). If users also upload these information as a .csv model file in the input window, MFDES416

will use that data to fill in respective columns and rows in the tables and the table format will be updated.417
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Figure 4: Input tab of the PIOTHub

Figure 5: Output tab of the PIOTHub with PIOT view as a table.

7 Discussions and Potential Tool Applications418

Mapping our physical economy continuously as the technologies, industrial design and consumption patterns419

change is a significant challenge. This tool is being developed with a vision to provide the much needed420

automation in generating the material flow map using the power of mechanistic engineering models and advances421

in cyberinfrastructure. The cloud based PIOT-Hub provides a novel platform that enables a faster generation of422

PIOTs using bottom-up approach implemented via MFDES that generates PSTs, PUTs and PIOTs for a region.423

Hence, PIOT-Hub can be a place where industries, academics and stakeholders can collaborate to understand424

material flows and their dependency with other industries in the region. The key novelty of this platform425

is that it allows integration of mechanistic EMs for physical economy modeling using a bottom-up approach426

with the macroeconomic view of economy. This collaborative PIOT-Hub infrastructure will also be helpful in427

validating the reproducibility of PIOTs being generated in one group by other researchers, thus enabling open428

science approach to material tracking and collaboration. Further, the model sharing feature enables reduced429

time efforts in adopting the sectoral models for another region. While, the current implementation is focused430

on regional scale where we have assumed homogeneous technology for each sector, the method and tool can431

be expanded to include multiple technologies being used in same sector as percentage share of production. A432

significant advantage of the MFDES tool is that it can overcome the basic limitations of complete dependence433

on survey-based databases that form the foundation of modeling in IE and time lag that arises due to reliance434

on survey data. It also serves a larger goal of enabling collaborations between engineering modeling community435

and Industrial ecologists. While this tool goes a step further and integrates EMs to generation of PIOTs, it436

remains compatible to be integrated in future with other methodologies and build on the progress made so far,437

especially the constrained optimization approaches to fill data gaps such as in MRIO construction. To conclude,438

we describe some potential applications as we envision for the tool that can support mapping physical economy439

and decision making below :440

11



BI
OD

IE
SE

L

SO
YO

IL

UR
EA

Be
an

_f
ar

m
in

g

Co
rn

_f
ar

m
in

g

Ho
g_

fa
rm

in
g

Po
ta

to
_f

ar
m

in
g

So
yb

ea
n_

fa
rm

in
g

W
he

at
_f

ar
m

in
g

RO
E

EX
PO

RT
S

FI
NA

L_
DE

M
AN

D

W
AS

TE

BIODIESEL

SOYOIL

UREA

Bean_farming

Corn_farming

Hog_farming

Potato_farming

Soybean_farming

Wheat_farming

ROE

IMPORTS

SLACK

10

15

20

25

30

M
at

er
ia

l f
lo

ws
 (t

on
s-

lo
g_

sc
al

e)

Figure 6: PIOTHub output in the form of a heatmap

1. Material Flow Maps to Identify Vulnerability in Production Systems due to Risks to a particular Industry:441

Once the physical economy of a region is modeled, it can be used to study the material intensities of442

different supply chains to identify the vulnerabilities for production in a region in case of supply shocks.443

2. Material Flow Dynamics for Future Planning of Material Supplies: Since, EMs are capable of simulating444

scenarios, such scenarios can be executed fast on PIOT-Hub to generate time series of material flow445

networks, providing insights into potential dynamic changes.446

3. Evaluating Impact of recycling technologies on Material Flow Networks : Another important application447

using PIOT-Hub can be in the area of identifying the impact of implementing circular economy on material448

flow intensities. Using EMs, it is possible to identify co-products/waste flows in one industry that can449

be used as potential feedstocks in another industry. Using this information, a model for a new recycling450

technologies can be added to waste processing sector and PIOTs updated to evaluate material intensities451

in new economy.452

4. Identifying the best Emerging Technology for Scale Up: The integration of mechanistic models to update453

PIOTs, allow to test scale up of any emerging technology it’s impact on material flows, hence guiding454

selection.455

Finally, PIOT-Hub eliminates the need to install or set up any software by end users. However, for Aspen456

Plus a license agreement needs to be provided currently, which we plan to overcome by moving to open source457

process modeling softwares. The system is scalable to multiple simultaneous users as well as to large compu-458

tation needs by leveraging the high performance computation (HPC) resources provided by campus clusters459

or national cyberinfrastructure such as XSEDE. Its modular architecture makes it easy to expand the tool to460

support models of different types in the future. Our future work entails scaling up the capability for wider IE461

audience overcoming early stage capacity limitations, adding features for industrial stakeholders and academic462

research use. Further, integration of this tool with open source tools such as US-IO may also be pursued for463

hybrid model creation or for comparison of economic structure presented by MIOTs vs PIOTs. The issues such464

as large scale usability, cybersecurity, and data privacy will also become important, which we foresee as future465

challenges to be addressed for scaling up the capacity of PIOT-Hub to map the physical economy. Through466

this tool, we envision a faster, reproducible and collaborative mapping of the physical economy using PIOT467

framework.468
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