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Abstract

Mapping material flows in economy is crucial to identify strategies for resource management towards
lowering waste and environmental impacts of society, a key objective of research in Industrial Ecology.
However, constructing models for mapping material flows at sectoral level such as in Physical Input Output
Tables (PIOTSs) at highly disaggregated levels is tedious and relies on large amount of empirical data. To
overcome this challenge, a novel collaborative cloud platform PIOT-Hub is developed in this work. This
platform utilizes a Python based simulation system for extracting material flow data from mechanistic
models, thus semi-automating the generation of PIOTs. The simulation system implements a bottom-up
approach of utilizing scaled engineering models to generate Physical Supply Tables (PSTs) and Physical
Use Tables (PUTs) which are converted to PIOTs (described in (Vunnava & Singh, 2020a)). Mechanistic
models can be uploaded by users for sectors on PIOT-Hub to develop PIOTs for any region. Both models and
resulting PST/PUT/PIOT can be shared with other users utilizing the collaborative platform. Automation
and sharing feature provided by PIOT-Hub will help to significantly reduce the time required to develop
PIOT and improve the reproducibility/continuity of PIOT generation, thus allowing to study changing
nature of material flows in regional economy. In this paper, we describe the simulation system MFDES
and PIOT-Hub architecture/functionality through a demo example for creating PIOT in agro-based sectors
for Illinois. Future work includes scaling up the cloud infrastructure for large scale PIOT generation and
enhancing the tool compatibility for different sectors in economy.

1 Introduction

Input-Output (I0) methods (Miller & Blair, 2009) have provided a robust framework for research in Industrial
Ecology (IE) to map industrial and economic sector interconnections at multiple scales ranging from state
(Singh et al., 2017)(Wang et al., 2018)(Zhang et al., 2013), national (Faturay et al., 2020) (Brand-Correa et
al., 2017), and global scale (Lenzen et al., 2013) (Timmer et al., 2015) (Feenstra & Sasahara, 2018). The
mapping of interconnections makes it possible to study cascading impacts in economy due to change(s) in one
sector(s) or industry along with evaluating total environmental impacts using the environmentally extended
Input-Output (EEIO) approach. One such I0 based modeling technique is Physical Input-Output Tables
(PIOTs), which provides a comprehensive accounting framework for tracking material flows from one economic
sector to another and to the final end users. By doing so, PIOTs can help perform detailed Economy Wide
Material Flow Accounting (EW-MFA) which provide insights in evaluating and improving our resource use
efficiency. As PIOTs can help track commodities used, produced, emissions and waste flows for each sector,
it provides a framework to map all the material flows in an economic region and provide a physical economy
model for the region being studied (Hoekstra & van den Bergh, 2006). Some of the PIOTs applications include
understanding the physical metabolism and structure of an economy (Altimiras-Martin, 2014), water energy
nexus at regional city levels (Chen, Alvarado, & Hsu, 2018), tracking elemental flows across a regional physical
economy (Singh et al., 2017), and modeling solid waste recycling scenarios (Liang & Zhang, 2012). However,
the true potential of PIOTs and their applications can be realized only if material flows are accounted at highly
disaggregated economic sectors level. PIOTs developed using aggregated flows only provide minor improvements
to conventional MFAs by allocating all the material flows in the economy to a few highly aggregated sectors.
This aggregation gives rise to complications such as sector aggregation bias during material flow allocation as
demonstrated in a recent study using EEIO by highlighting overestimation of raw-materials requirement in an
analysis using aggregated biomass sector (Piniero, Heikkinen, M&enpéé, & Pongracz, 2015).

Despite the known benefits of PIOTSs, their development in a timely fashion for different regions of the world
has been very slow. Specifically, tracking material flows at sub-national level or at highly disaggregated sector
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(Hoekstra & van den Bergh, 2006) level using PIOTSs is very rare except for a few studies that only track one
or a few type of materials (Singh et al., 2017) (Chen et al., 2018) (Wang et al., 2018). The primary hurdles
to build disaggregated PIOTs include reliable data availability, data heterogeneity, validation, and continuity
of data collection for long term updating. Additionally, compiling the regional data in the PIOT framework
itself is very tedious even for a moderate size economic region (Singh et al., 2017). Therefore, there is a critical
need to improve the methodologies and tools for development of PIOTs at desired disaggregation level through
automation that can also reduce the over dependency on empirical data and manual PIOT construction.

In this paper, we fill this need of an automation tool for creation of PIOTs using our developed bottom-
up approach of engineering models to Physical Supply Tables (PSTs) and Physical Use Tables (PUTs) and
PIOTs. The details of approach are described in a method paper (Vunnava & Singh, 2020a), here we focus on
the automation aspect and a cloud infrastructure to quickly build PIOTs. The primary research contribution of
this work is the development of an integrated cloud-based collaborative tool that can facilitate building PSTs,
PUTs, PIOTs faster using a bottom-up approach where mechanistic models for each sector at proper scale can
be uploaded along with import, export and final demand data for commodities in the region. While different
disciplines have developed modeling tools and techniques to account physical flows from microscopic scale to
plant scale, no tools exists in the IE literature that fully and synergistically automate the process of using
the data from these heterogeneous modeling techniques. This automation provided in PIOT-Hub allows for
fast generation of tables along with reproducibility and collaborative generation of large-scale tables using the
bottom up approach. Further, reliance on mechanistic models improve the reliability of data and meeting the
mass balance criteria for each sector.

In rest of the paper, we first describe the advancement in IE related tools (Section 2). Then we briefly
summarize the bottom-up approach underlying the tool in section 3. In Section 4 we describe the MFDES
tool for extracting data from mechanistic models and converting to PSTs, PUTs and PIOTs, through data
integration and a standardized back-end data infrastructure. Next in Section 5 we discuss PIOT-Hub, our
cloud infrastructure and a collaborative environment for automation of PIOT generation. In Section 6, we
show a demo of the PIOT-Hub capabilities through a case study for the state of Illinois in USA. Finally in
section 7, we conclude with a discussion on potential future applications, additional development for future
functionalities on PIOT-Hub and possibilities of integration of the PIOT-Hub with other existing IE tools.

2 Overview of Existing Tools and Databases in Industrial Ecology

In recent years there has been a growing interest in the IE community regarding faster generation of 10 models
and open source availability of databases because of the tedious nature of model development along with lack
of reproducibility and transparency (Wieland et al., 2020), (Lenzen et al., 2014a). Reproducibility of results
is an important criteria in most established scientific disciplines for design. As IE moves towards redesigning
our economy and industrial systems towards the goal of sustainability, reproducibility will become essential to
identify the most robust pathway. IE community is making gradual progress in this direction to enable large
scale collaborations and reproducible model development through IO databases, tools for automated generation
of IO models and faster IO analysis. We classify the existing work in three categories : standardized 10O
databases, tools/platform for automated and reproducible generation of IO tables and automation scripts/web-
based tools for IO analysis. Table 1 shows literature corresponding to the work in these categories (at the
time of writing this paper). The work in category standardized 10 databases include large scale efforts that
focused on building IO databases for use by IE community. EXIOBASE is one such large scale effort. In the
work by Merciai and Schmidt, the authors describe an algorithm that relies on an existing database called the
EXIOBASE for the construction of multi-regional HSUTs (Merciai & Schmidt, 2018). In their work, hybrid
tables use both monetary and physical data to generate the supply and use tables for 43 countries and 5 rest of
the world regions. The developed algorithm is automated to process the physical flow data available from the
Food and Agriculture Organization statistics, United Nations Comtrade data (United Nations, 2019), energy
supply use tables and data from the supply use tables from the previous studies by the authors’ institute (2.0
LCA consultants, 2018). Since most of the data is from international-level data sets, the built hybrid tables
are aggregated at national or multi-national levels. In another recent work by Bruckner et al.(Bruckner et al.,
2019), the focus was on agricultural commodities in order to document the complex flows of agriculture and
food commodities in the global economy. Agriculture being one of the primary sectors, usually has a better
level of disaggregated data available at an international level from agencies such as the Food and Agriculture
Organization. Capitalizing on this, the authors developed a model called Food and Agriculture Biomass Input-
Output (FABIO) model, which is a set of multi-regional supply, use and input-output tables in physical units
(Bruckner et al., 2019). The model brings together multiple data sources related to trade, crop production, and
utilization in physical units along with supplementary technical data to build consistent and balanced supply
use tables. FABIO uses data sources such as FAOSTAT (United Nations, 2020), UN Comtrade (United Nations,
2019), and Energy Information Agency (EIA) (US Department of Energy, 2020), and also fills/estimates any
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missing data manually. FABIO covers 191 countries and 130 agriculture, food and forestry products from
1986 to 2013. Although FABIO has a standardized methodology for building physical supply use tables from
large public datasets, it relies on FAOSTAT data which is at national level so does not produce tables at
sub-national /regional levels. Further, the reliance on FAOSTAT data puts this method in top-down approach
category.

Among the group of automated and reproducible generation of IO models, the creation of Industrial Ecology
Virtual laboratory (IELab) provides significant advancement (Lenzen et al., 2014b), to overcome the challenge
of data unavailability and tedious nature of multi-regional input-output (MRIO) model generation. The IELab
is an automated collaborative platform that has been used to develop multi regional supply-use tables and
MRIO tables for multiple countries (Lenzen et al., 2014b; Faturay, Lenzen, & Nugraha, 2017; Faturay et al.,
2018, 2020). Thus, IE lab provides a significant advancement to generation of MRIO tables using computational
power and relies on availability of national level data and supplementary data to generate MRIO models.

Other tool developments in the IE domain have focused on making tasks such as data transformation and
data visualization easy. A tool called Pymrio (Stadler, 2019) was developed to break down large data sets
and perform high level abstraction to analyze global MRIO databases like EXIOBASE, WIOD and EORAZ26.
To make the calculations involved in converting supply use tables to input-output tables easy, tools such as
(Pauliuk et al., 2014) and PyIO (Nazara et al., 2003) were developed. In another work, to make data extraction
from online sources easy and to convert data in formats usable in hybrid Life Cycle Assessment, a tool called
USIO was also developed (Srocka, 2015). In one of the more recent works, Donati et al., proposed a web-based
tool called RaMa-Scene to model circular economy scenarios using the EXIOBASE data (Donati et al., 2020).
This approach using EXIOBASE provides a good method for handling mixed-unit data, however, the primary
reliance on multi-national level data sets and aggregated sectoral classification makes it challenging to perform
any detailed regional economy studies for material flow accounting. The specific features, results and input
requirements for all the databases/tools discussed in this section are shown in Table 1.

So far, most of the methodologies, algorithms and tool developed in the literature have mainly followed
a top-down approach of processing the available national and regional level physical/monetary databases to
build physical/monetary supply use tables, and in a few cases, use some form of optimization approach for
sectoral disaggregation. We aim to complement these tools based on top-down approaches with a bottom-
up approach based tool called Material Flow Data Extractor and Simulator (MFDES) that aims to utilize
mechanistic knowledge of our physical systems in automating the development of PSUTs and PIOTs (see Fig
B in SI). We also have implemented this tool on a collaborative cloud platform, PIOT-Hub to advance PIOT
generation collaboratively. So far, none of the databases or automated tools have implemented a bottom up or
collaborative approach, which is the unique contribution of work presented in this paper. We next summarize
the bottom-up approach underlying the MFDES tool and PIOT-Hub (Section 3), followed by the structure and
functionality of MFDES tool (Section 4) and MFDES based collaborative cloud platform for PIOT generation,
PIOT-Hub (Section 5).

3 Bottom-Up Approach underlying MFDES tool and PIOT-Hub

The Material Flow Data Extractor and Simulator (MFDES) tool is built following a bottom-up approach
that maps data from the fundamental bottom-up physics based engineering models (EMs) to account for
material flows that are then converted to PSTs, PUTs and PIOTs. At the core of MFDES, computationally
developed EMs are used to simulate each economic sector through Python implementation. These EMs are
developed to simulate material transformation operations for different industries in the economy and are based
on fundamental mass, energy balance and chemical kinetics equations. The primary inputs to develop an
EM include the process flow diagrams, physics and chemistry equations that govern the underlying material
transformation mechanisms taking place in an industry, the chemical composition of individual material flows
and, the information on which flows in the EM are considered to be products, co-products, and waste flows.
Since the development and scaling of EMs is out the scope of this tool, some of the recent works on mechanistic
model development and scaling are provided here.((Vunnava & Singh, 2020b), (de Wit, 2018)). When EMs
are simulated at the scale at which an industry operates in a region, it enables the extraction of all relevant
material flow information of that industry for that year and region. Therefore, EMs used needs to be validated
before using in physical economy modeling to ensure that it correctly captures the scale of material flows
in the economy. Each industry being modeled with EM is also mapped to the corresponding NAICS sector
classification (US specific) (United States Census Bureau, 2017) to connect the EMs to IO sectoral framework.
The material flow data simulated from EMs are mapped to PSTs and PUTs by mapping the supply and use
of each commodity, waste/emissions and raw materials by the industries in the region. These PSTs and PUTs
are then augmented with commodity level import, export and final demand data. In this bottom-up approach,
industry (sector) level mass balances are automatically maintained and uncertainty around input and output
flows are reduced for sectors being modeled with EMs. Further balancing of PSTs and PUTs are done at
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commodity level and the remaining imbalances are assigned to Rest of Economy (ROE) to ensure commodity
mass balance. While the proposed bottom-up approach ensures overall mass input and output balances for all
the sectors for which EMs are used, it cannot balance the flows for sectors which do not have EMs. To tackle
this challenge, a slack variable is used to ensure mass balance for industries in ROE, that are not modeled as
EM. For imports, since they come from outside the economy under study, the commodity level imports are
allocated to industries by weighting them with individual industry usage of the commodities as shown in PUTs.
Finally, Eurostat model D was used to transform the PSTs and PUTs which are commodity by industry tables
to PIOTs (industry by industry) tables. For details on bottom-up modeling approach for different sectors in
the economy and integrating with IO framework, we refer readers to the method paper (Vunnava & Singh,
2020a).

4 Automating PIOT generation via MFDES tool : Architecture,
Information low and Data structures

MFDES tool is based on the bottom-up approach described above and automates the process of simulating
respective EMs, extracting the relevant data from simulation results and organizing it in PST/PUT and PIOT
framework for users. The key novelty in providing this functionality is automating the mapping of stream
information from bottom up process modules of industries to respective supply and use tables. The MFDES
to PIOT tool implementation has been divided into 5 modules (see fig 1). The main architecture of MFDES is
built in Python with different modules with functions to simulate models and extract data from models (module
1); process heterogeneous data from EM simulation for material flow characterization (module 2); data mapping
to generate PSUTs (module 3); balancing using additional data (module 4) and finally conversion of PSUTs to
PIOTSs (module 5). The approach used by MFDES functionalities in modules 4 and 5 overlap with other tools
that generate IO based models as it relies on standard methods for transforming PSUTs to PIOTs, however,
modules 1 through 3 are unique in approach and capability to automate data acquisition through engineering
approach that provides the link from EMs to PIOT.

Input

EM1 Raw data Processed Commodity flow
Heterogeneous EM inputs extraction Data Material flow data output .
EM2 — Raw data - ) et Raw materials
formattin, characterization
EM3 Emissions & wastes

EM4 Module 1: Simulation l Module 2: Data processing I Industry clalssiﬁcation

<

PIOT and network Complete physical supply table Processing data | | Partial physical supply table
5 < - from partial PSUTs ¢__ Data reorganization
construction Complete physical use table and TCD data Partial physical use table

Balanced
PSUT and \,/‘Z 1
PIOT

I Module 5: PIOT construction | Module 4: PSUT completion | | Module 3: Partial PSUT construction
Trade and consumer
demand (TCD) data

Figure 1: Overview of the different modules of the MFDES tool

4.1 Module 1: Simulation and Data Extraction

Module 1 in MFDES tool consists of a Python based script that takes in heterogeneous EMs built using dif-
ferent modeling techniques and simulates them to extract the material flow data for corresponding economic
sector (see Fig C in SI). Each of the EMs that are input to module 1 represent different economic sectors in a
region. In order to ensure that these models represent the physical flows in the economic region and MFDES
can extract the relevant flows, EMs must be first scaled and primed into a format that MFDES can simulate.
Scaling of EMs is independent of MFDES tool, so that users can simulate any regional economy. Priming is
done before input to the MFDES tool for standardization of extracting data from EMs to be mapped to PSUTs.

Scaling the EMs: Although EMs are very good at representing the material transformation processes of
various industries, these need to be scaled appropriately to represent the scale at which an industry operates
in a region/year. Hence, the scaling process is tightly linked to the EM development and user dependent.
The users would be required to upload scaled models as appropriate for their region/year of interest. MFDES
will not perform any scaling operations to allow the users selecting their year and size of regional operations
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for which PIOTs are desired. There are different approaches that the users can adopt for scaling based on
industrial information or survey based datasets, we describe scaling and validating approach for EMs in the
method paper (Vunnava & Singh, 2020a).

Priming the EMs: Priming involves modification steps to make an EM compatible with MFDES. These
modifications usually involve simple tweaking of the variable names used in an EM so that they can be parsed
and passed on as a MFDES object or as a .csv file in case a black-box like model (model with just in/out
material flow information). These name tweaking is part of standardization approach like other simulation
engines for enabling automation of material tracking. For example, if an EM represents the biofuel industry
and is built in Aspen Plus software, then there will be a series of variable names in the EM representing different
flows and sub-systems in the process of producing biofuel. Now, to prime this EM, some of the variable names
containing relevant material flows have to be changed/edited to make it compatible with MFDES. MFDES
then processes this information to keep track of the relevant flows picked during the simulation process. This
process of priming must be done by the user by modifying the variable names in the EMs using the priming
manual that will be provided for PIOT-Hub model uploads. An example of priming process is provided in the SI.

Data Extraction and Storage: Once primed EMs are provided, MFDES invokes different simulation in-
frastructures to simulate different EMs based on their types (ex: Aspen plus, Python etc.) and extracts raw
data from the EMs. Raw data extracted contains information about mass flows for each relevant stream, that
is model specific. Each EM is simulated using a relevant EM simulator based on the file extension type. For
example, if EM1 is a python file, then MFDES recognizes the .py extension of the file and invokes a Python
compiler to simulate the material flows for the industrial sector represented by EM1. The functionality of in-
voking different EM simulators and extracting the outputs of the simulated EMs for building PST/PUT/PIOT
is novel and unique to the MFDES tool. While it may be obvious to automatically simulate a series of single file
types (say .py files) that represent different sectors, it is not trivial to simulate different EMs and simultaneously
process material flows from all model types to create PST/PUTs and PIOTs. MFDES provides standardization
for data extraction and compilation to generate these tables. Hence, MFDES provides the required automation
to simulate a variety of model types used for mapping a physical economy and maintain compatibility during
material flow extraction from different model types.

4.2 Module 2: Data processing for Material Flow Characterization

The raw data from the previous module cannot be directly used as it will still be in the format compatible with
different simulators invoked. In the data processing stage, MFDES is equipped to automatically clean the raw
data by stripping any simulator specific non-material flow information so that data flows can be characterized.
The automatic process of stripping non-material flow information from EMs and categorizing them is novel and
unique to MFDES. MFDES stores all the recorded information from the EMs in temporary memory files and
interprets the internal nomenclature used by the EMs to identify different flows and selectively pick only the
essential material flow information. For example, if an EM is developed using Aspen Plus process modeling
software, then MFDES looks for the nomenclature used for identifying flows in the variable explorer section
(input flows are tagged by ‘40’ character and outputs are tagged by ‘#1’ character in Aspen Plus) of the model
and picks only the input and output material flows and leaves out any intermediate flows in the model. After
stripping and cleaning raw data from Aspen Plus models, MFDES looks for individual chemical constituents in
each flow extracted and matches them with existing information in existing database. Similarly, if Python based
models are uploaded, MFDES looks for variable tags used to mark input/output material flows in the priming
stage and extracts material flow information from the tagged variables after simulating them. For classification
of materials into products or wastes, MFDES maintains a database called Material Flow Characterization
(MFC) database that contains the chemical composition of all commodities in the form of individual component
and mass fractions. A default database will be provided with MFDES, however as new models for additional
materials are added to the system, this database will be updated. MFDES calculates the mass fractions of all
the material flows it extracts from the EMs and compares them with the available mass fraction in the default
MFC database. If there is a match, it assigns the database name for the extracted material flow. If not, it will
create a new material in the the database and store the new mass fraction combinations. It is not in the scope
of the MFDES tool to characterize the chemical composition of all commodities in the economy, hence MFDES
facilitates the development of a collaborative MFC database of all the commodities encountered by the tool in
the form of user uploaded EMs. To achieve this, the GUI (graphical user interface) provides an option to user
for adding their commodities to the global database. These new commodities and it’s composition will be then
peer reviewed by the development team. For example, if MFDES comes across a new user uploaded model that
contains a novel biopolymer commodity for which no chemical composition information is available in the MFC
database, on approval by development team, MFDES appends this new information to the MFC database.
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Use table Industry codes
Code 1 | Code 2 | Code 3 | ROE | Exports | Final demand
Commodity 1 - - - - - -
Commodity 2 - - - - - -
Commodity 3 - - - - - -
Commodity 4 - - - - - -
Natural resource 1 - - - - - -
Natural resource 2 - - - - - -
Slack - - - - - -
Total - - - - - -
Supply table Industry codes
Code 1 | Code 2 | Code 3 | ROE | Imports
Commodity 1 - - - - -
Commodity 2 - - - - -
Commodity 3 - - - - -
Commodity 4 - - - - -
Emission 1 - - - - -
Waste 1 - - - - -
Slack - - - - -
Total - - - - -

Table 2: Physical supply use table format used by MFDES

Once appended, MFC will now store the chemical mass fractions of the novel biopolymer and identify it in
any future uploaded models that contain the same polymer. These newly characterized compositions are then
readily available for all future users in default MFC database. It is intended that the MFC database grows as
the user community uploading new shared EMs grows. The global commodity database will be available on the
PIOT-Hub. More details on the available GUI feature for database update is provided in the PIOT-hub demo
section 6. Once mapping material flow information to the MFC database is complete, MFDES identifies the
flows based on priming information as either a “commodity”, “raw material”, “emission” or “waste”. These
are the data types defined in the MFDES tool for final organization to build PSTs, PUTs and PIOTs.

4.3 Module 3 : Data reorganization and Partial PST/PUT Construction

In next step, MFDES reorganizes the data from flow characterization step in the form of PST and PUT first
based on the four data types (commodity, raw material, emission or waste). This is the key innovative feature
that connects the EM simulation outputs to the macroeconomic framework of PSTs, PUTs and PIOTs. The
standard PST/PUT format used by the MFDES is shown below in table 2. This step even though involves
only reorganization of data simulated through EM engines and classified in step 2, is normally time consuming
if done manually for a large economy with all the commodities, waste and emissions data. Hence, another key
strength of MFDES is in automating the whole process of simulating (i.e. generating reliable data), classifying
and finally organizing it in an easy to interpret user-friendly format. At this stage, MFDES has all the data
required to build PSTs/PUTSs except for the columns and rows relating to exports, imports and final consumer
demand (table 2). Hence, at this stage the PSTs/PUTs are only partially completed with information of supply
and use of commodities/wastes/raw materials by sectors in the economy.

4.4 Module 4 : Balancing PST, PUT and External Data Integration

The PSTs and PUTs generated by module 3 are generally unbalanced as supply and use in an economy will
not balance without inclusion of imports, exports and consumer use. These partially completed tables need
to be balanced with trade and consumer demand (TCD) data, that cannot be obtained from EMs. However,
from this step, the tables can be used with the standard IO theory to generate balanced tables and perform
further analysis. Many balancing approaches already exist in the literature (Nicolardi, 2013) (Serpell, 2018)
(Stanger, 2018). Balancing approach in our bottom-up approach is briefly summarized in section 3. Following
the approach, MFDES combines the partially completed PST/PUT with any available user specific trade
(ex: state level import/export data) and consumer demand (TCD) data to complete PSTs and PUTs. In
this stage, all the missing information in the partially completed PSUTs can be filled by uploading .csv files
containing missing information. These .csv files can be provided to the MFDES tool just like any other EMs.
On recognizing the .csv file type, MFDES simply parses through the missing information and extracts the
required information to complete the PSUT. Once all data is collated, MFDES tool automates the PST and

7



297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

PUT balancing approach described in section 3 (details in (Vunnava & Singh, 2020a)) and augments the data
structure with a new column on ROE and row for slack variables in module 4. Finally, once PSTs and PUTs
balancing and construction is complete the results are rendered to user as output and passed on to module 5
for PIOT construction.

4.5 Module 5 : PST/PUT to PIOT Construction

Module 5 uses custom built Python libraries to convert PSTs and PUTs to PIOTs. The PSTs/PUTs from
module 4 are provided as input to the Python libraries in module 5 which transforms these tables to PIOTs
using a modified version of the Model D approach from the Eurostat (Eurostat, 2008) manual. Model D is
the “fixed product sales structure assumption” and it allows for the creation of balanced industry by industry
IO tables(from the Eurostat manual (Eurostat, 2008) — “Each product has its own specific sales structure,
irrespective of the industry where it is produced”. We have interpreted the “sales structure” to be the “material
flow network” (the flow of all the materials coming from all other industries/imports per unit produced) to
produce a product/commodity. This final module also provides multiple ways of visualizing the constructed
PIOTs: 1) raw PIOT in .csv table format, 2) heatmap of the PIOT. All the visualization forms are based on the
PIOT constructed. MFDES uses the data from this raw PIOT and applies the data to different visualization
program libraries encoded with the MFDES infrastructure.

5 PIOT-Hub : A Cloud Based Infrastructure and User Interface
for Automation of PIOT Generation

An online tool called PIOT-Hub has been developed to make building PSTs, PUTs and PIOTs easily accessible
and more collaborative by implementing the MFDES services on a cloud based infrastructure. Deployed on a
production quality HUBzero (McLennan & Kennell, 2010) based science gateway called MyGeoHub (Kalyanam
et al., 2019), PIOT-Hub builds upon the open source HUBzero science gateway framework and directly leverages
HUBzero’s support for online collaboration, scientific data management, hosting of dynamic online simulation
tools, as well as common functions including federated authentication and user management, connection and
job submission mechanism to high performance computing (HPC) systems on the Purdue campus and national
resources such as XSEDE. In addition, MyGeoHub provides the capabilities to interoperate with remote data
repositories and cyberinfrastructures with synergistic functions and social networking tools such as group, wiki,
blog, ticket, and forum, making it an ideal platform for the development, publication, and dissemination of
PIOT-Hub to the user community.
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Figure 2: Overview of PIOT-Hub Infrastructure
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There are several challenges in implementing the PIOT-Hub to map full economy. First, the system needs to
support several types of input models commonly used by the community, including open source python models,
Aspen Plus models, and CSV files. Second, the Aspen Plus software runs on Windows while the rest of the
system are Linux based. In addition, the Aspen Plus software is proprietary with complex installation and set-up
process. Third, users upload python or Aspen Plus modeling code as input for MFDES jobs. However, it poses
a security risk to execute user-provided code on the server side, leading to system vulnerability to malicious
attacks. Finally, when the size of the PIOT table grows, it could become data and computationally intensive,
making it harder to scale to a large number of users or support a large number of industry segments. Hence,
we have developed a cloud based modular PIOT modeling system to address these challenges. Implemented as
a Jupyter Notebook (JN) (Kluyver et al., 2016) application, PIOT-Hub provides an easy to use web based user
interface that collects user inputs in a flexible format and presents PIOT, PST and PUT outputs in multiple
ways. As shown in Figure 2, the functionality of PIOT-Hub includes an easy to use GUI front-end built on
the JN that is integrated with back-end simulation services. Users can launch the JN instance in a virtual
container on MyGeoHub to set input parameters or get results through a web browser. Once users set all of
the required input parameters on the web, the information is submitted to the back-end services. The back-end
PIOT services consist of four modules: (1) a python model engine that is responsible for executing python
input models; (2) an Aspen Plus model engine that runs on a remote Aspen Plus server with a service API that
accepts Aspen Plus model input and returns output after execution; (3) a controller that runs on MyGeoHub
and is responsible for preprocessing user requests, creating MFDES jobs, dispatching the jobs to either the
python engine or Aspen Plus engine, getting the results back, and merging the results in the MFDES job
instances once all simulations are done; and (4) a visualization module for converting the outputs to tables or
heatmaps.

In addition to mapping material flows and creating PIOTs, PIOT-Hub also supports collaborative features
such as model and result sharing among users. By default, all models and outputs are private and only accessible
by the owner. For the succeeded MFDES jobs, a user can easily share the results with a single click. The basic
provenance information of the results is automatically recorded and shared. The user can also add additional
information about the results such as references. Once the results are shared, all the other users in PIOT-Hub
can directly see the results or download the result files to their local machines. Similarly, a user can make their
MFDES models public and accessible to others. The shared model can be directly used as an MFDES input or
downloaded to users’ machines so that they can see the details of the python/Aspen model code and modify it
for a new MFDES job.

As discussed in 4.2, MFDES maintains a database for commodities with their chemical compositions. Cur-
rently the default database consists of 44 commodity files and each file describes the chemical composition of a
commodity. When a user simulates a model with additional materials that do not exist in the default database,
the MFDES database needs to be properly updated to include the new materials in a collaborative way. The
commodity database in PIOT-Hub is maintained using a mechanism involving local and global commodity
databases. In detail, once the controller finds new materials in a user job request, it appends “unknown” to
the commodity names and stores them into the user’s local commodity database after the job completes. The
newly created materials persist on user’s local database and could be renamed later from the user interface
by the user. The user could issue a request to merge a new commodity into the global commodity database
after specifying a meaningful commodity name. The PIOT-Hub admin will get notified with the merge request
and can authorize it from a tab of the PIOT-Hub tool that is only accessible by admin users. The reason to
keep separate databases (i.e., local and global) is to avoid issues where the same chemical composition could
exist with different commodity names (i.e., duplication) or a commodity could have multiple versions with
different chemical compositions (i.e., variation). Once the PIOT-Hub admin approves the merge request, the
local commodity name with its chemical composition is merged to the global commodity database and all the
other users can use them in their MFDES jobs.

The PIOT-Hub front-end user interface and most of the back-end services including the controller and
python model engine are built in Python using open source python packages such as Jupyter Widgets for GUI,
Matplotlib/NetworkX for result visualization, and Numpy/Pandas for data processing. The service API on
the Aspen Plus server is built using Javascript with Node.js, which provides an access point to the controller
running on MyGeoHub for receiving simulation requests and sending the simulation results back. The Aspen
Plus simulation engine manages the user requests through Docker containers and RabbitMQ for scalable and
efficient data processing.

The PIOT-Hub tool is designed to be a usable, scalable, and secure online modeling environment. The
system automatically detects the input model type and dispatches it to the corresponding back-end processing
engine. Priming manual will be made available to help users prepare their models so that they comply with
the format expectation of the tool. The PIOT-Hub tool currently runs python models on the hub server and
Aspen Plus models on a remote Aspen Plus server. Aspen Plus backend services will be migrated in future to
Linux server using windows VM support. Validation code is added to prevent malicious attack as well as to
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provide feedback to the user if the model fails to run. Furthermore, in each user session, the PIOT-Hub tool
runs in a secure virtual container on the HUBzero platform which helps mitigate the security risk as well.

The flowchart for the cloud implementation process, called PIOT-Hub is shown in Fig 3. When a user
uploads a model, PIOT-Hub will attempt to parse it and check if the model is primed and compatible with
MFDES. The model will proceed to next stage if primed, if not, PIOT-Hub will notify users that the model is
not primed. A primed model will be handled by MFDES following all the steps in section 4 to generate PSTs,
PUTs and PIOTs as shown in the demo next.

Upload
model

Input Model type Simulation Model
e :
to identification environment invoked ——¥ simlated

based on model type

Material flow Material flow
Output Convert EX'St.mg data extraction Cha:;c;eb”;::on
table and table into —] physical
network PIOT supply
table

Merge input
sector with
existing table,

Organize flows
into supply and
demand

Materia| flow
characterized?

Input external
balancing info

Figure 3: PIOTHub: Collaborative cloud implementation of the MFDES tool

6 Automated PIOT Generation Demo on PIOT-Hub

In this section, we demonstrate the tool functionalities and step by step information on using the tool. We use
9 agro-based industries of Illinois as an example to automate extraction of the physical flows using PIOT-Hub
and develop a PIOT. EMs for these 9 industries were previously developed (Vunnava & Singh, 2020a) and
were scaled to represent the industries in 2018 Illinois economy. The list of the industries and the modeling
techniques used to develop EMs is shown in Table A in the SI.

A user begins the process by uploading different EMs that are developed and primed to the PIOT-Hub

using the GUI. The screenshot of input GUI of PIOT-Hub is shown in fig 4. PIOT-Hub is also capable of
dealing with NAICS classification codes for EMs representing industrial sectors. Users can directly select the
relevant preloaded NAICS code using the Sector Name drop-down list prompted while entering the sector
name. However, the current selection of EMs are limited by the models developed in our group, which will be
expanded. Since EMs could also have many supporting files as per priming needs, the users are required to
upload all files associated with an EM as a zip file. File types such as .csv, .py and aspen plus .bkp files are
currently accepted). For each EM upload, PIOTHub creates a directory in the user’s home on MyGeoHub and
unpacks all the files in the directory to be accessed by the MFDES job instance. Once all the EMs are uploaded
and data input is complete, users submit the job using ‘Run’ button to start the simulations.
After sumbmitting the job, MFDES initiates different simulating environments based on EM file extensions
and proceeds with all the steps shown in Fig 3. Once simulation is complete, the GUI takes the user to the
output tab. All the results generated by the PIOT-Hub can be directly viewed within the GUI as PST, PUT
or PIOT. It also provides users with options to view and download the heatmap of the PIOT. Fig 6 shows
a PIOT for the modeled sectors in Illinois generated using the simulation of EMs. The default units shown
across all output tables is metric tons, which we plan to update in future. Unless external information related
to final demand, imports and exports is given, MFDES assigns all the unbalanced material flows to the rest of
economy sector (RoE). If users also upload these information as a .csv model file in the input window, MFDES
will use that data to fill in respective columns and rows in the tables and the table format will be updated.
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Simulation Name: | Type simulation name

Description: ‘ Type description

Reference: ‘ Type reference, links, stc.
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311224 - Soybean and Other Oilseed Processing

Figure 4: Input tab of the PIOTHub

Input Output Shared Models Shared Results Local Commodities Commodities Mgmt ‘
# Name Start Time Finish Time Status Status details Post-processing Shared
106 testnew 2021-02-28 15:05:09 2021-02-28 15:08:13 Simulation Completed X
Description
Region Alabama
Year 2000
Reference
105 testnew 2021-02-28 15:00:28 2021-02-28 15:00:35 [ ] Failed X
Description
Region Alabama
Year 2000
Reference
104 test11 2021-02-28 13:54:22 2021-02-28 13:54:25 Simulation Completed X
Description
Region Alabama
Year 2000
Reference
103 abab 2021-02-28 13:51:12 2021-02-28 13:51:13 Simulation Completed X
Description

Figure 5: Output tab of the PIOTHub with PIOT view as a table.

7 Discussions and Potential Tool Applications

Mapping our physical economy continuously as the technologies, industrial design and consumption patterns
change is a significant challenge. This tool is being developed with a vision to provide the much needed
automation in generating the material flow map using the power of mechanistic engineering models and advances
in cyberinfrastructure. The cloud based PIOT-Hub provides a novel platform that enables a faster generation of
PIOTSs using bottom-up approach implemented via MFDES that generates PSTs, PUTs and PIOTs for a region.
Hence, PIOT-Hub can be a place where industries, academics and stakeholders can collaborate to understand
material flows and their dependency with other industries in the region. The key novelty of this platform
is that it allows integration of mechanistic EMs for physical economy modeling using a bottom-up approach
with the macroeconomic view of economy. This collaborative PIOT-Hub infrastructure will also be helpful in
validating the reproducibility of PIOTs being generated in one group by other researchers, thus enabling open
science approach to material tracking and collaboration. Further, the model sharing feature enables reduced
time efforts in adopting the sectoral models for another region. While, the current implementation is focused
on regional scale where we have assumed homogeneous technology for each sector, the method and tool can
be expanded to include multiple technologies being used in same sector as percentage share of production. A
significant advantage of the MFDES tool is that it can overcome the basic limitations of complete dependence
on survey-based databases that form the foundation of modeling in IE and time lag that arises due to reliance
on survey data. It also serves a larger goal of enabling collaborations between engineering modeling community
and Industrial ecologists. While this tool goes a step further and integrates EMs to generation of PIOTs, it
remains compatible to be integrated in future with other methodologies and build on the progress made so far,
especially the constrained optimization approaches to fill data gaps such as in MRIO construction. To conclude,
we describe some potential applications as we envision for the tool that can support mapping physical economy
and decision making below :
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Figure 6: PIOTHub output in the form of a heatmap

1. Material Flow Maps to Identify Vulnerability in Production Systems due to Risks to a particular Industry:
Once the physical economy of a region is modeled, it can be used to study the material intensities of
different supply chains to identify the vulnerabilities for production in a region in case of supply shocks.

2. Material Flow Dynamics for Future Planning of Material Supplies: Since, EMs are capable of simulating
scenarios, such scenarios can be executed fast on PIOT-Hub to generate time series of material flow
networks, providing insights into potential dynamic changes.

3. Evaluating Impact of recycling technologies on Material Flow Networks : Another important application
using PIOT-Hub can be in the area of identifying the impact of implementing circular economy on material
flow intensities. Using EMs, it is possible to identify co-products/waste flows in one industry that can
be used as potential feedstocks in another industry. Using this information, a model for a new recycling
technologies can be added to waste processing sector and PIOTs updated to evaluate material intensities
in new economy.

4. Identifying the best Emerging Technology for Scale Up: The integration of mechanistic models to update
PIOTs, allow to test scale up of any emerging technology it’s impact on material flows, hence guiding
selection.

Finally, PIOT-Hub eliminates the need to install or set up any software by end users. However, for Aspen
Plus a license agreement needs to be provided currently, which we plan to overcome by moving to open source
process modeling softwares. The system is scalable to multiple simultaneous users as well as to large compu-
tation needs by leveraging the high performance computation (HPC) resources provided by campus clusters
or national cyberinfrastructure such as XSEDE. Its modular architecture makes it easy to expand the tool to
support models of different types in the future. Our future work entails scaling up the capability for wider IE
audience overcoming early stage capacity limitations, adding features for industrial stakeholders and academic
research use. Further, integration of this tool with open source tools such as US-IO may also be pursued for
hybrid model creation or for comparison of economic structure presented by MIOTs vs PIOTs. The issues such
as large scale usability, cybersecurity, and data privacy will also become important, which we foresee as future
challenges to be addressed for scaling up the capacity of PIOT-Hub to map the physical economy. Through
this tool, we envision a faster, reproducible and collaborative mapping of the physical economy using PIOT
framework.
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