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ABSTRACT In order to provide performance increases despite the end of Moore’s law and Dennard scal-
ing, architectures aggressively exploit data- and thread-level parallelism using billions of transistors on a sin-
gle chip, enabled by extreme geometry miniaturization. A resulting challenge is the control, optimization,
and reliable operation of such complex multiprocessing architectures. Modern and future systems will be
required to operate under multi-dimensional variability: from varying workload, quality-of-service (QoS)
goals, and non-functional requirements to varying environmental and operating conditions. A trend has
recently emerged to abstract such complex multiprocessing architectures as self-aware factories whose
resources are monitored, configured and their use is planned during runtime. In this article, we present the
Information Processing Factory (IPF) paradigm for mixed-criticality. We introduce its 5-layer hierarchical
organization and a system configuration framework that ensures that the strict requirements of the safety-
critical functions are always met while dynamically managing and optimizing the mixed-critical system at
runtime. We illustrate the application of IPF in heterogeneous domains with two representative use-cases
(healthcare and automotive), investigate the use of IPF to achieve long-term dependability, and highlight the
open challenges. Experimental results report the reliability levels achievable with the proposed paradigm.

Eberle A. Rambo, Thawra Kadeed, and Rolf Ernst are with the Institute of Computer and Network Engineering, Technische Universitat Braunschweig, 38106

Bryan Donyanavard, Minjun Seo, Caio B. de Melo, Biswadip Maity, Nikil Dutt, and Fadi Kurdahi are with the Center for Embedded and Cyber-physical Systems

INDEX TERMS  Self awareness, mixed criticality, real-time systems, high-dependability, reliability

. INTRODUCTION

Modern computers exploit parallelism throughout the system
stack to increase performance and efficiency [1]. The result is
computer systems with complex multiprocessing architectures
whose control, optimization, and reliable operation have
become significant challenges. These architectures are imple-
mented with billions of transistors on a single die, or even on
multiple chiplets integrated at the package level. Throughout
its lifetime, besides the threat of the usual transient, intermit-
tent, permanent random hardware faults [2], [3], [4] and physi-
cal limitations such as dark silicon [5], [6], future systems will
face multi-dimensional variability: from varying workload,
QoS goals, and non-functional requirements and constraints to
varying environmental and operating conditions. Thus, not

only must future systems manage and optimize the resource
usage at runtime, they must also cope with different types of
faults, doing so while providing uninterrupted service.

The IPF project has recently introduced the abstraction of
such complex architectures as self-aware information proc-
essing factories, the IPF paradigm [7], [8], [9]. These facto-
ries consist of a set of highly configurable resources, such as
CPUs and interconnects, whose use is monitored, planned,
and configured during runtime. Continuing with the analogy,
managing a factory requires multiple considerations, such as
efficiency, availability, reliability, integrity, and timing. IPF
conquers the complexity of managing such systems by hier-
archically decomposing the challenges. These are addressed
by different mechanisms that co-exist in the factory.
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FIGURE 1. IPF’s proactive approach in time versus a reactive one.

Future mixed-critical real-time embedded systems [10]
will employ multiprocessing platforms to increase computa-
tional power, efficiency, and dependability. Considering the
definition in [10], a mixed-critical system is a system in
which application functions of different criticalities share
computation and/or communication resources. Criticality can
include all forms of dependability — e.g., availability, reliabil-
ity, and integrity — but the term is mostly used in the context
of functional safety. Functional safety is the absence of cata-
strophic consequences on the user and the environment. In
most cases, safety-critical functions are also subject to timing
requirements, such that mixed-critical systems are in most
cases real-time systems [10]. Due to their direct impact on
functional safety, such systems are strictly regulated by
safety standards [3], [11], [12]. The standards usually define
five levels of criticality — e.g., in the automotive domain, [3]
defines the automotive safety integrity levels (ASILs) A
through D plus quality management (QM), where QM is not
safety-critical, A is the least critical, and D is the highest crit-
icality level. Mixed-criticality is particularly difficult because
it must ensure that functional and non-functional require-
ments of higher criticality functions are met while co-existing
with less well-behaved functions of lower criticalities — the
so-called sufficient independence between criticalities [11].

With a proactive, hierarchical approach, IPF breaks down
the complexity of managing and configuring such large sys-
tems in five layers responsible for sensing, planning, optimiz-
ing, acting, and processing. Figure 1 illustrates IPF’s
proactive approach over time and compares it with a conven-
tional, reactive one. An IPF system starts in an initial config-
uration, or a current operating region (COR), and
proactively plans the next valid and safe configurations, or
next operating regions (NORs) (U, When an event (y) occurs
that requires action @, the response can immediately follow.
After the reaction @), IPF proactively plans the next configu-
rations (NORs). In contrast, a reactive approach would only
plan a reaction after the occurrence of an event @. Future
system configurations are unknown until a reaction is
required (D®. Being proactive enables immediate reactions

VOLUME 10, NO. 1, JAN.-MAR. 2022

by IPF, resulting in a high responsiveness of the system to
internal and external events — e.g., errors, and temperature
and workload variations.

The self-aware IPF paradigm is an attractive solution for
long-term dependability systems. IPF can tolerate, besides
transient faults, multiple permanent faults. It is impractical, if
not infeasible, to plan, at design time, reactions to all possible
sequences of random hardware faults that might occur in the
system. IPF’s self-aware, dynamic management of the system
enables the system to plan at runtime and handle fault scenar-
ios as they occur. Moreover, IPF can assess the risks and pro-
actively take action on imminent hazards to the system —e.g.,
a permanent fault due to wearout, increasing availability. Such
dynamicity, however, presents an additional challenge if IPF
is to be applied in the mixed-critical real-time domain: ensur-
ing the system’s non-functional requirements [3], [11], [12].

This paper introduces the IPF paradigm for the mixed-crit-
ical real-time domain. The contributions of this paper are
five-fold:

e [PF’s five-layer hierarchical organization and system
configuration framework based on operating regions
and operating points that enable self-awareness, self-
diagnosis, self-organization, and self-optimization in
mixed-criticality.

e An invariant-based safety argument that enables the use
of IPF in mixed-criticality.

e Description of the open challenges in implementing
IPF’s self-optimization, self-diagnosis, self-organiza-
tion, and maintenance mechanisms and the proactive
handling of imminent hazards.

e Two representative use-cases illustrating IPF’s application
in heterogeneous domains: healthcare and automotive.

e Experimental evaluation of the achievable reliability
gains when using IPF for long-term dependability.

The remaining of the paper is organized as follows. The IPF
paradigm for mixed-criticality is introduced in Section II, fol-
lowed by its invariant-based safety argument in Section IIL.
Section IV applies the IPF paradigm for long-term dependabil-
ity. The approach is explored with two representative use cases
in Section V, followed by experimental results in Section VI.
Finally, a review of and comparison to relevant related work
is given in Section VII before concluding the paper in
Section VIII.

Il. THE INFORMATION PROCESSING FACTORY
IPF is a metaphor for self-aware, self-organizing, mixed-criti-
cal systems. IPF provides an infrastructure for system intro-
spection and reflective behavior, which is the foundation for
computational self-awareness. Computational self-awareness
is the ability of a computing system to recognize its own
state, possible actions and the result of these actions on itself,
its operational goals, and its environment, thereby empower-
ing the system to become autonomous [13].

An IPF system is defined as a hardware and software sys-
tem consisting of a set of highly configurable hardware
resources that execute mixed-critical workloads and whose
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FIGURE 2. IPF’s five-layer organization.

use is planned, configured, monitored, and optimized at run-
time by hardware and software components. For example,
consider a network-connected pacemaker device (discussed
in Section V-A) that consists of a combination of safety-
critical life support functions, and non-critical network com-
munication functions. Not only must the factory manage
resources and mixed-critical workload at runtime, it must do
so while ensuring that the requirements of the safety-critical
functions of the workload are not violated. IPF addresses that
challenge with two levels of awareness: a first level with local,
autonomous actions and a second level with global ones.
Together, they ensure the adaptability, safety, and dependabil-
ity of the mixed-critical system throughout its execution.
Resembling a factory,' IPF is organized in five layers, as
illustrated in Figure 2. The workload execution occurs in the
production line (layer 1), which contains the system resour-
ces and the mixed-critical workload. The workload executes
within the infrastructure and execution model of the process
support (layer 2), which provides basic execution support
such as the operating systems (OSs), real-time operating sys-
tems (RTOSs), and the runtime environments (RTEs). The
resources’ statuses are monitored and the workload execution
is optimized by the supervisory process control (layer 3),
which acts locally and autonomously within boundaries
specified by the layers above. The manufacturing execution
control (layer 4) is responsible for enforcing safe system con-
figurations by globally monitoring, assessing risks, and con-
trolling the layers below, under the guidance of the top layer.
The enterprise resource planning (layer 5) is responsible for
long-term planning of IPF. It plans future proactive and

'Terminology inspired by enterprise control systems [14].
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Layer 1

reactive actions, taking into account the operating conditions
of the system, assessing risks and impacts of short-term
factors such as error rates, energy consumption, workload
variations; and long-term factors such as aging, energy con-
straints, and changes in the workload, QoS goals, and non-
functional constraints. The IPF infrastructure present in
layers 3-5 depends on the target application and system struc-
ture, goals, and requirements. It’s possible for all or none of
the layers to play a role. Consider a specific deployment of
our pacemaker example that does not allow for optimization
of non-critical functions. In this case, an IPF deployment
could simply consist of a single layer 4 mechanism to specify
the explicit resource configuration of the entire application.
Note that, in the absence of the top three layers, layers 1 and
2 compose the original non-self-aware system and are always
present as a minimum.

A. PRODUCTION LINE (LAYER 1)

The lowest layer of IPF is responsible for the workload exe-
cution. Depicted in Figure 2, the production line consists of
the system resources and the mixed-critical workload.

The mixed-critical workload consists of a best-effort (BE)
component and a safety-critical (SC) component. The BE
workload is characterized by its goals, and the SC workload
is characterized by its non-functional requirements. The BE
workload has application-specific QoS, such as achieved
throughput, and also has system constraints such as power
budget. The SC workload has requirements, such as period,
worst-case execution time (WCET), deadline, maximum
downtime, maximum failure in time (FIT), and data consis-
tency. Different levels of criticality [10] as defined in safety
standards [3], [11], [12] are also supported. The five usual
levels of criticality — e.g., ASILs A through D plus QM, are
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captured by the different requirements of the workload. For
simplicity and without loss of generality, throughout the
paper we refer to the two representative levels: BE and SC.
For example, our pacemaker consists of 1) Doctor configura-
tion, 2) AH sensing, 3) VH sensing, 4) VA activity monitor,
5) AV activity monitor, 6) APPG actuation, 7) VPPG actu-
ation, 8) Logging, and 9) Reporting, of which 1,8, and 9 are
BE workloads and the rest are SC workloads.

Processing resources are highly configurable and charac-
terized by their properties — e.g., operating frequencies,
power consumption, temperature, and error rates. They can
consist of a single or multiple cores in a cluster. Processing
resources can be used for executing either BE or SC work-
load. Therefore, IPF requires them to have a safety-critical
mode where the execution is deterministic, predictable, and
enables minimum performance guarantees for applications
that require it — i.e., the SC workload. For BE workload exe-
cution, processing resources can enable non-predictable fea-
tures, such as caches in the memory hierarchy and dynamic
voltage and frequency scaling (DVEFS). Shared resources
must provide predictable and deterministic service and
ensure sufficient independence® between different critical-
ities [11], thereby enabling minimum performance guaran-
tees for the SC workload. The resources are configured by
the manufacturing execution control (layer 3), which enables
and disables configurable features according to the executing
workload.

Processing resources in IPF have five different states and
two superstates, as illustrated in Figure 3. A processing
resource can either be operational or non-operational. When
operational, a processing resource can be allocated to the SC
workload execution or the BE workload execution. In the
former case, the respective processing resource belongs to
the SC zone, and in the latter, to the BE zone. When non-
operational, e.g., due to errors, the processing resource can
be either under maintenance or failed. If a processing
resource is under maintenance, IPF attempts to find a config-
uration under which the resource can still be employed.
When failed, the resource is no longer usable. The resource
planning is done in layer 5, while resource management is
done at layer 4, where the system controller (SyC) and the
best-effort controller (BEC) are responsible for the different

2Also known as freedom from interference [3].
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transitions. The controllers are introduced later in Section II-
E. Shared resources are managed similarly and serve both
SC and BE zones.

The following assumptions about the production line
enable the use of IPF in the mixed-critical domain:

Assumption 1. The shared and non-shared resources in IPF
present a mode in which they operate with deterministic and
predictable behavior.

Assumption 2. The shared resources in IPF present mecha-
nisms to achieve sufficient independence” between critical-
ities [11].

B. PROCESS SUPPORT (LAYER 2)

The second layer of IPF is responsible for basic workload
execution support and the execution model. The process sup-
port comprises elements such as OSs, RTOSs, and RTEs, as
illustrated in Figure 2. Notice that the lowest two layers alone
comprise a regular mixed-critical system without any self-*
properties.

For modularity and to enable predictable dynamicity at
runtime, the execution model of IPF is based on containers.
A container encapsulates a (sub)set of either a SC or BE
workload, and is referred to as an SC container or a BE con-
tainer, respectively. A container also includes an RTE with
OS or RTOS, and a software stack. Each container is mapped
to a processing resource, which is associated with a single
container — i.e., there exists a strict one-to-one mapping
between containers and processing resources. The mapping
of workload to containers and the mapping of containers to
resources are specified in operating regions (ORs), to be
introduced in Section II-C. At runtime, the workload can be
redistributed among different containers, and containers can
be moved between resources, e.g., with workload balancing
and migration techniques. That can be carried out by entities
in layers 4 and 5 by means of transitions between ORs.

The following property of the process support enables the
use of IPF in the mixed-critical domain:

Property 1. A container contains either BE or SC work-
load and includes the appropriate runtime environment.

C. OPERATING REGIONS AND OPERATING POINTS
Before advancing to the next layers, we define the concepts
of ORs and operating points (OPs). The vision for OPs is
introduced in [8]. Here, we apply the concept in a framework
for configuring and managing the system. The framework
consists of ORs and OPs, illustrated in Figure 4. An OR is a
set of possible system configurations (the OPs) with room
for optimization changes. Optimization changes are carried
out by changing the OPs inside the OR. More significant
changes, when required, are carried out by changing the OR.
An OR represents a configuration of the system where the
mixed-critical workload (including goals and requirements),
its mapping to BE and SC containers, the mapping of con-
tainers to resources, and the configuration of the shared
resources are fixed. The concept is illustrated in Figure 4(a).
In an OR, the configuration of the containers and the
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ferent events (o, 8, and y). An operating region can have multiple valid operating points (OPs).

associated processing resources (in the BE zone) can be var-
ied. What can be varied depends on the specific instance of
IPF and on the underlying hardware. How much it can be
varied, i.e., the configuration range, is determined at runtime
in layer 5, introduced in Section II-F. Both what can be var-
ied and how much it can be varied are specified in the OR.
The intuition behind ORs is that they represent valid system
configurations where the system is predictable and safe for
executing the SC workload, while still providing safely
bounded flexibility for local optimizations of the execution
of BE workload.

An OP is a specific configuration within an OR. It can also be
decomposed in two components, and be defined as a pair:
OP = (OPsc,0Pgg). The OPgp represents a specific configura-
tion of the BE zone, and OPg¢ represents a specific configura-
tion of the SC zone. The concept is illustrated in the top left
quadrant of Figure 4(b), where there are multiple OPs within an
OR. The intuition behind OPs is that they represent a specific,
valid configuration at any given point in time within an OR.

As illustrated in Figure 4(b), the system starts at an initial,
valid OR, named current operating region (COR). A number
of autonomous actions can be performed locally by the sys-
tem, which move the OP around inside the COR. Whenever
an event occurs in IPF that requires significant changes to the
configuration, IPF handles it by transitioning to a new OR,
named next operating region (NOR). A suitable NOR is cho-
sen from a set N of NORs and IPF then reconfigures the sys-
tem according to the selected NOR, which becomes the
COR. Then, the set N of NORs becomes empty, and new,
valid NORs must be created and added to V.

Events that trigger OR transitions can have various causes,
such as:

e anticipated violation of the requirements of the safety-
critical workload, i.e., a hazard;
pursuit of long-term optimization goals;
changes in the workload, its goals and requirements;
changes in the environmental conditions;
changes in the operating conditions.

254

Events are generated by the entities in layers 3 and 4 and
will be introduced in the respective layers.

The following properties of the configuration framework
based on ORs and OPs enable the use of IPF in the mixed-
critical domain:

Property 2. The mapping of workload to containers, the
mapping of containers to resources, and the configuration of
shared resources are fixed in an OR.

Property 3. The configuration ranges for the configuration
of the containers and processing resources are specified in
an OR.

D. SUPERVISORY PROCESS CONTROL (LAYER 3)

The supervisory process control is responsible for monitoring
and autonomously optimizing the workload execution. It is
also responsible for gathering useful information about the pro-
duction line that supports the upper layers’ long-term planning
and execution. Supervisory process control components carry
out actions that directly modify the configuration of the system
by changing its OP. As illustrated in Figure 2, the layer com-
prises the IPF infrastructure components Trace Abstraction
Layer (TAL) and Learning Classifier Table (LCT).

TAL is responsible for monitoring the system for errors,
and it is a source of events that trigger OR transitions. TAL
[15] performs runtime verification based on processor tracing.
It checks the execution of the workload against contracts (sys-
tem requirements) described as Timed Automata (TA) mod-
els. The contracts are loaded into TAL, which continuously
monitors the system at runtime. In the pacemaker, the TAL
can monitor hardware performance degradation due to aging,
and propagate an increased risk of permanent failure to
the IPF’s layer 4 entity. TALs operate in both BE and SC
containers.

The LCT is responsible for optimizing the execution of
the BE workload towards achieving goals. LCTs [16] are
rule-based reinforcement learning engines that explore and
optimize configurations within the COR. They operate only
within BE containers. LCTs collect periodic sensor data to
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update the fitness of rules and determine the action for the
next period. First, based on the effect of the previous action
toward achieving an objective, the LCT updates the rule fit-
ness for the previous period using a version of Q-learning
[17]. Second, based on the current state and rule fitnesses,
the LCT applies an action to configure the system for the
upcoming period by changing the OP within the COR (cf.
Section II-C). For example, in the pacemaker, if it is possi-
ble to improve performance of a BE task by scheduling it
more frequently without affecting SC requirements, the
LCT should explore and apply this optimization for BE
workloads. LCTs and TALs are configured and maintained
by layer 3.

The following properties of the supervisory process con-
trol enable the use of IPF in the mixed-critical domain:

Property 4. The workload execution optimizations are
bounded by the COR and concern only BE containers
mapped to resources in the BE zone.

Assumption 3. Events that can affect guarantees given to
the safety-critical functions are detected and reported before
the guarantees can be violated.

E. MANUFACTURING EXECUTION CONTROL (LAYER 4)
In the factory analogy, the manufacturing execution control
is responsible for the global monitoring, risk assessment, and
control of the system. It monitors the layers below with the
support of layer 3 and controls them by means of the ORs
provided by the enterprise resource planning (layer 5).
Changes to the system configuration initiated by this layer
are realized with transitions from a COR to a NOR (cf.
Section II-C).

As illustrated in Figure 2, the layer comprises two enti-
ties: the best-effort controller (BEC) and the system control-
ler (SyC). BECSyC SyC monitors and controls the safety-
critical part of the system (the SC zone) as well as the
shared resources according to the COR. BEC monitors and
controls the best-effort part of the system, the BE zone,
according to the COR. SyC coordinates the control of the
BE zone with BEC, but for safety, SyC has ultimate control
over the entire system.

The SyC is responsible for configuring the system
according to the COR. It configures the resources and the
entities in the lower layers of IPF, loads the SC and BE
containers onto the respective resources, and configures the
shared resources as specified by the COR. The BEC is
responsible for configuring the resources and entities in the
BE zone according to the COR, and ensures that the auton-
omous actions carried out in the lower layers are within the
specification of the COR.

Both entities globally monitor the system, assess risks, and
proactively and reactively act on changes in the system or
environment. These proactive and reactive measures in the
system are triggered by events (cf. Section II-C), which
require significant changes in the configuration of the system.
Events are generated either in layer 3 or in this layer. SyC
monitors the system for changes in the environmental or
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operating conditions that impact the execution of the SC
workload. Similarly, BEC monitors the BE zone for changes
in the system or environment that impacts the execution of
the BE workload. Events refer to, for example, changes in
the BE workload and its goals, changes in the SC workload
and its requirements, or the failure of a processing resource,
which will be reactively handled in IPF. An event can also
refer to a predicted change that will be proactively handled
by IPF, such as the imminent failure of a processing resource.
Because changes in the global system configuration impact
the SC workload execution, SyC is responsible for handling
all events, including events that occur in the BE zone, which
are forwarded by BEC to SyC. Handling the event means
transitioning from the COR to a suitable NOR associated
with that event. An application example of IPF with proac-
tive handling is introduced in Section IV.

Transitions from the COR to NORs are carried out by SyC
with the collaboration of BEC. Such transitions can include
changes to the configuration of a single resource or can
include a complete change in the mapping of workload to
containers and their mapping to resources. During a transi-
tion, in addition to the above-described configuration respon-
sibilities, resources can be added and removed from the SC
and BE zones. The management of a resource’s state by the
SyC and BEC controllers is illustrated in Figure 3, where
solid-arrow changes to the resource state involve only SyC,
and dashed-arrow transitions involve both SyC and BEC.
When the SC and BE zones are resized, i.e., resources are
added to or removed from a zone, a controller appropriately
releases its resources before handing them over to the other
one — e.g., BEC removes a resource from the BE zone before
handing it over to SyC to be added to the SC zone. Note that
the transition of a resource from BE zone to SC zone in
Figure 3 is timing critical. Therefore, SyC is allowed to
forcefully execute that transition without BEC, in case the
latter takes too long to release it, in order to make the execu-
tion of the SC workload independent of the execution of the
BE workload (sufficient independence). Shared resources are
configured by SyC since they must comply with the highest
levels of criticality [3], and they must be reconfigured before
any BE containers can resume execution in order to ensure
sufficient independence and prevent unexpected interference
on the execution of the SC workload. Note that the time to
transition between ORs varies depending on the amount of
reconfiguration involved.

Consider a scenario in which the pacemaker’s Logging
and Report BE components cause a rise in temperature sig-
nificant enough to threaten the SC workload. The layer 4
components with global system view respond by spreading
the best-effort workload out across more processing elements
in order to dissipate heat. Layer 4 can also proactively
respond to imminent threats due to aging signaled from layer
3, e.g., by migrating the threatened workload to a resource
with reduced risk. The migration mitigates the increased risk
to the safety-critical functions by transitioning from the cur-
rent OR to a next OR.
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TABLE 1. Failure scenarios in IPF where an event concerning
either BE or SC workload has no associated NOR with a reactive
or proactive measure.

Reactive Proactive
BE workload Limited QoS (optional)
SC workload Failure report Deferred failure report

When an event occurs for which there is no associated
NOR, the reaction of IPF depends on the event. The possible
scenarios are summarized in Table 1. In case the event is
related to the execution of the SC workload, the system must
signal its failure before the non-functional properties of the
workload are violated. The failure is either reported immedi-
ately if the event concerns a reactive measure, or it can be
deferred to when the failure actually occurs if the event con-
cerns a proactive measure. If the event is related to the execu-
tion of BE workload, the system continues operating albeit
with limited QoS, which can be optionally reported. Such
scenarios can be triggered either because there are actually
no more valid NORs for that event, e.g., due to a number of
resource failures leading to an insufficient number of resour-
ces, or because a valid NOR has not been created yet (but
eventually will), e.g., due to a quick succession of events.

The following property and assumption of the manufactur-
ing execution control enable the use of IPF in the mixed-criti-
cal domain:

Property 5. The transition between ORs is independent of
the performance of the BE workload, in the worst-case.

Assumption 4. Detected events that can affect guarantees
given to the safety-critical functions are acted upon before
the guarantees can be violated.

F. ENTERPRISE RESOURCE PLANNING (LAYER 5)
Finally, the enterprise resource planning is responsible for
the long-term planning of the system. That is, developing the
future configurations of the system in the form of NORs. The
planning is supported by system information supplied by
layers 3 and 4, including the resources and their current oper-
ating conditions. Planning also considers the system’s cur-
rent and previous ORs; current and previous operating
conditions; the workload, its QoS goals and non-functional
constraints; short-term and long-term factors, such as error
rates, energy consumption, aging, and energy constraints;
and events that may occur at runtime.

The planner is the main entity of this layer. Its main
responsibility is to create and maintain the set N of NORs.
N is modified when IPF transitions to a NOR, which
requires a new set of NORs, and N is therefore emptied;
and when the planner creates a new, valid NOR, in which
case a new NOR is added to N. The planner also defines
the valid OPs in ORs — i.e., the configuration ranges in an
OR within which IPF’s local autonomous actions and opti-
mization in layer 3 can operate. That is required due to pos-
sible coupling between system resources. For example,
physical temperature coupling, where the high temperature
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of a processing resource can affect neighboring resources
and increase their error rates.

An OR is a valid configuration range of the system, and
therefore the planner only includes a new NOR in the set N
if it meets all non-functional requirements of the SC work-
load. That includes checking the ORs and their OPs with,
e.g., system-level performance analysis tools such as com-
positional performance analysis (CPA) [18]. The planner
can take the QoS goals of the BE workload into consider-
ation, but there is no guarantee that the goals will be met in
a given OR.

The transitions between different ORs are triggered by dif-
ferent events. Independent of the event, the planner must
consider the cost of transitioning between different ORs.
Transitions can involve the remapping of workload to con-
tainers and the remapping of containers to resources. Remap-
ping requires moving code and data and therefore impacts
the response time of the executing workload, which can lead
to system-level timing violations (deadline misses). Thus,
the planner must also check for system-level timing and
safety violations of the transition from the COR to the NOR
before the NOR can be included in the set N.

The following properties of the enterprise resource plan-
ning enable the use of IPF in the mixed-critical domain:

Property 6. An OR is a valid configuration for the mixed-
critical real-time system where all non-functional require-
ments of the SC workload are met.

Property 7. A configuration is valid if all requirements of
the SC workload can be guaranteed — e.g., timing, integrity,
and availability.

Property 8. An NOR and its transition from a COR exist if
and only if it does not violate the non-functional require-
ments of the SC workload at runtime.

lll. THE IPFINVARIANT-BASED SAFETY ARGUMENT
Applying the IPF paradigm in a mixed-criticality system
requires proof of its safety, especially for the highest criti-
cality levels. Relevant properties have been listed through-
out Section II for each layer. Now we put them together in
order to formalize IPF’s safety guarantees. We must cover
the scenarios that may cause the violation of the guarantees
given to the safety-critical functions. Given the configura-
tion framework based on ORs and OPs, two scenarios must
be considered: within a COR; and the transition from a
COR to an NOR.

Lemma 1. The IPF paradigm is safe for safety-critical func-
tions within an OR as long as Assumptions 1 and 2 are met.

Proof. The proof is by direct deduction.

From Property 2 we have that the mapping of workload to
containers, the mapping of containers to resources, and the
configuration of the shared resources are fixed within an OR.
From Properties 6 and 7 we have that an OR meets all
requirements of the safety-critical functions in the system,
given that the hardware is predictable (Assumptions 1 and
2). From Property 4 we have that the performance and integ-
rity of an SC container cannot be directly impacted by
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autonomous optimizations within an OR since those are lim-
ited to BE containers by design. It remains to prove that there
is no indirect impact of autonomous optimizations within an
OR on the SC workload through shared resources. That is
ensured by Assumption 2. Thus, we conclude that the IPF
paradigm is safe for the execution of the SC workload within
an OR, as long as Assumptions 1 and 2 are met. a

Lemma 2. The IPF paradigm is safe for safety-critical func-
tions when transitioning between the COR and a NOR.

Proof. The proof is by direct deduction.

The system starts in an initial OR, the COR, which is safe
by definition (Property 6). The system keeps a set N of
NORs, which are the next configurations that the system can
take. N can only be modified in two ways: upon a transition
from the COR to a NOR; or whenever the planner entity
finds a new suitable NOR to be associated with an event. In
the former, the set is emptied (N = (). In the latter, either an
existing NOR associated with an event « is replaced by a bet-
ter one, or a new NOR associated to a different event 8 is
included in N. From Property 8, we have that a NOR only
exists in N if the NOR and its transition from the COR are
safe, that is, the performance and integrity of the SC work-
load are guaranteed. Since the system can only transition to a
NOR that exists in N, as long as N is not empty when an
event « requiring a NOR occurs, the system is safe. If event
a occurs that concerns the SC workload and N is empty, the
system shall indicate failure. O

Theorem 1. The IPF paradigm is safe to be applied in the
mixed-critical domain, as long as Assumptions 1, 2, 3, and 4
are met.

Proof. From Lemmas 1 and 2, we have that IPF is safe for
the SC workload within an OR and when transitioning
between the COR and a NOR, given that Assumption 1 and
2 are met. It remains to address the event triggering the tran-
sition. From Assumptions 3 and 4, we have that events trig-
gering OR transitions must be detected, reported and handled
before any violation of the performance or integrity of the
SC workload can occur. Thus, we conclude that the IPF para-
digm is safe to be applied in the mixed-critical domain, as
long as Assumptions 1, 2, 3, and 4 are met. O

IV. USING IPF FOR LONG-TERM DEPENDABILITY

We now apply the IPF paradigm to achieve long-term
dependability of many-core platforms for mixed-critical real-
time systems. In addition to self-organizing, IPF is able to
assess risks and proactively act upon imminent hazards that
threaten the system. Through self-diagnosis and mainte-
nance, an IPF system instance can detect and handle far more
complex hazards than classical error handling that rely on
simple error models. In the following, we introduce a tile-
based architecture template and apply the IPF paradigm.
Then, we describe threats to the system dependability in the
form of a fault model and detail the IPF mechanisms that
ensure continuous system operation through proactive hazard
detection and handling.
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FIGURE 5. IPF on a NoC-based many-core platform.

A. THE UNDERLYING ARCHITECTURE

An architecture template is illustrated in Figure 5. The hard-
ware architecture, depicted in the bottom half of Figure 5,
consists of tiles connected by a network-on-chip (NoC). Net-
work interfaces connect the tiles to NoC routers (abstracted
as NoC in the figure). Tile contents vary: from processors
and SRAMs to memory controllers, peripherals, and I/O
interfaces. The components of a tile are connected to each
other and the network interface by a local bus. In IPF termi-
nology, tiles with compute units are considered processing
resources; the NoC, memory controllers, and I/O interfaces
are shared resources.

The processing tiles can be homogeneous or heteroge-
neous. For simplicity, in this paper we consider homoge-
neous tiles that include at least one processor core, an LCT
instance, and a TAL instance. They also include sensors for
monitoring power consumption and temperature. The LCT
and TAL instances are hardware implementations of the
entities introduced in Section II-D. LCT is a rule-based
implementation of a reinforcement learner to adapt to sys-
tem changes. Each LCT instance consists of sensors for
determining state and evaluating the objective function,
logic to evaluate the objective function and calculate
reward, a rule table to store rules, and actuators to modify
the system configuration. LCTs operate only within BE con-
tainers, and are disabled in SC containers. TAL is a non-
intrusive runtime verification technique based on timed
automata [19], which monitors and verifies properties at
runtime. TAL’s hardware implementation consists of a com-
patibility layer that provides a compatible interface for dif-
ferent processors, a filtering layer that has a programmable
filtering mechanism to extract information needed for the
verification, and a verification layer which checks system
properties at runtime. The TAL is connected to the local
bus and also to the processor via its trace interface, and it
can operate in both BE and SC containers. The verification
properties are derived at design-time [15].

The platform must be predictable and provide sufficient
independence between criticalities in order to meet Assu-
mptions 1 and 2 and to support mixed-criticality [10], [11].
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These requirements are satisfied by spatial isolation and
bounded interference in shared resources. Spatial isolation is
achieved with the tile-based architecture together with a NoC
for mixed-critical real-time systems [20]. The NoC imple-
ments wormhole switching, where variable-sized packets are
composed of fixed-sized flow control units (flits); virtual-
channel flow control, where flits transit through a number of
virtual channels; priority-based arbitration; and deterministic
source routing, where the route and virtual channel are
defined in the network interface. The network interfaces con-
trol the NoC communication on a whitelist basis: tiles can
only communicate with other tiles and resources if they are
allowed by the SyC. Moreover, the network interface also
can enforce spatial isolation by means of a memory protec-
tion unit with memory translation. The configuration of the
NoC network interfaces is maintained by the SyC.

The software architecture is depicted in the top half of
Figure 5. As described in Section II-B, the mixed-critical
workload is partitioned into BE and SC containers that are
mapped to processing tiles at runtime. Each container
includes the runtime environment with operating system
and the software stack for the execution of the respective
workload. The container can be tailored for its workload.
For example, an SC container includes an RTOS for safety
and predictability, whereas different BE containers can
include a different OS and software stacks for efficiency
and performance.

B. IMMEDIATE ERRORS

1) HARDWARE FAULT MODEL

Critical integrated circuit design today protects hardware
platforms against immediate errors caused by random hard-
ware faults [3], also known as physical faults [21]. We call
the resulting errors immediate because they have an imme-
diate effect on the system state, even if they are still latent
and have not yet been detected. Faults, when activated and
not masked, cause errors [21]. An error has different effects
on different layers of hardware and software [4]. If not
appropriately detected and handled, the error propagates
and can cause system failure [21] — i.e., the discontinuation
of operation.

Random hardware faults can be transient, intermittent, or
permanent. In hardware, transient and intermittent faults are
usually abstracted as bit-flips [4]. Transient faults are caused
by electromagnetic interference and energetic particles. They
occur once and subsequently disappear. Intermittent faults
occur from time to time and then disappear. They can be con-
fused with transient faults, but they tend to occur in bursts at
the same location, and the replacement of the affected circuit
removes the intermittent fault [22]. Intermittent faults can be
caused by circuit-level timing violations during runtime due
to process variability, temperature variations, and aging. Per-
manent faults are events where the device fails permanently.
They usually occur at the beginning or end of the lifetime of
the device, due to manufacturing defects or aging processes,
respectively. In hardware, permanent faults are usually
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abstracted as stuck-at or bridging faults [22]. Before the
occurrence of permanent faults caused by aging processes,
increasing error rates and intermittent faults are observed
[22], [23].

2) DETECTION AND HANDLING OF IMMEDIATE ERRORS
Error detection and recovery in mixed- and safety-critical
computation usually relies on modular redundancy
approaches applied in time or space. Error detection in com-
munication heavily relies on information redundancy. For
achieving integrity and predictability, it is therefore impera-
tive that errors be detected and contained before they propa-
gate. Moreover, they must be handled before the system
availability is compromised and the timing constraints of the
SC workload are violated. That includes silent data corrup-
tion — i.e., undetected faults present in the system, which can
lead to multiple error scenarios and system failure. Most
practical fault-tolerant systems are dimensioned for single
error scenarios, with the assumption that an error will be han-
dled before a second one occurs.

The current state of the art includes the so-called cross-
layer approaches, which combine error detection and han-
dling techniques in different layers of the system stack for
lower overhead and increased efficiency. An example is the
redundant software execution with hardware-supported error
detection [24], where the software can be protected with rep-
lication in space or time, for example in dual modular redun-
dancy (DMR) or triple modular redundancy (TMR),
combined with efficient error detection in hardware. The
approach can be additionally coupled with other error detec-
tion mechanisms to increase coverage and resilience while
ensuring integrity [25]. Another example is TAL, introduced
in Section II-D and integrated in IPF as a layer-3 entity. TAL
is a runtime verification technique based on timed automata
[19]. Tt continually checks whether the workload execution
satisfies (or violates) certain properties.

Like a factory, IPF also allows self-diagnosis at a higher
level, which enables the extended local diagnosis of isolated
chip resources at runtime, as commonly prescribed by safety
standards [3]. Coupled with TAL, self-diagnosis can be time-
triggered. Online self-diagnosis can be periodically executed
on BE and SC containers within the COR. Self-diagnosis
with reconfiguration, more thorough and less frequent than
online testing, can be performed periodically by transitioning
to a specific NOR. If the diagnosis finds a suitable configura-
tion for the affected tile that is still suitable for an SC or BE
container, the system can transition to a NOR where that tile
is operational again. That is represented by the under mainte-
nance resource state in Figure 3. After diagnosis, either the
resource is deemed operational again or permanently non-
operational (failed).

Handling immediate errors is a reactive activity, since the
error has already occurred, and tolerating them requires redun-
dancy in some form. The industrial approach for safety-critical
systems still relies on costly hardware modular redundancy
approaches, such as diverse DMR or TMR with lock-step
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FIGURE 6. Imminent hazard as a reliability drop at time 7}, for a
critical function i in a given OR A. For comparison, the reliability
in ORs B and C on a same system and on systems that have
aged faster (larger \s) and slower (smaller \s).

execution [26]. State-of-the-art cross-layer approaches, such as
[24], resort to error handling and recovery in software, which
allows for larger flexibility and less overhead.

C. IMMINENT HAZARDS — A NEW HARDWARE FAULT
MODEL FOR LONG-TERM DEPENDABILITY

1) HARDWARE FAULT MODEL

The classical hardware fault model outlined in Section IV-B1
captures changes of state that have already occurred. The detec-
tion and handling, if possible, of such faults must be done before
the error propagates, in order to ensure integrity, and before a
failure occurs. This requirement can be hard to meet if the effects
are only visible very late, as in silent data corruption, or spread
quickly, as in operating systems [27]. Furthermore, physical
effects, such as aging, can increase the susceptibility to random
hardware faults in a way that, in combination with late error
detection, the single error assumption does not hold any more.

In critical systems, we are interested in the resulting reli-
ability — i.e., the probability of survival. The reliability in
time R(7), also known as the survival function, gives the
probability that the system survives the time interval (0, 7]
and is still functioning at time ¢ [28]. Using the reliability in
time rather than fault probability gives us the opportunity to
cover dynamics in the fault probability, such as the resulting
effects of different aging rates and process variability. Even
more importantly, given the required minimum reliability
Rmin,» the timing constraints of a critical function, and the
hardware fault probability, we can compute the maximum
time #,4x_repair the system has to take action. The concept is
illustrated in Figure 6, which shows the reliability in time
R (t) of a critical function i in an OR A and the minimum
reliability R; ., required by that function. To abstract from
the many potential physical effects affecting hardware faults
and, consequently, reliability, we introduce the concept of an
imminent hazard.

Let us start with the hazard. A hazard is a consequence of
the system failing to function as expected. From ISO 26262
[3], a failure is the termination of the ability of the system or
sub-system to perform a function as required. A hazard is
then a potential source of harm caused by the malfunctioning
behaviour of the system [3], i.e., a system failure. An immi-
nent hazard is then defined as follows:
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Definition 1. Imminent hazard: an increased risk of future
errors that can lead to system failure and, therewith, a hazard.

An imminent hazard can be caused by physical causes, envi-
ronmental conditions, or operating conditions. They can be
caused, e.g., by the imminent failure of a resource due to an
impending permanent fault. When a permanent fault is close to
occur due to aging processes, increasing error rates and inter-
mittent faults are observed [22], [23]. In this case, imminent
hazards must be distinguished from latent faults and regular
fault occurrences. Imminent hazards can also be caused by
error rates for which the system is not dimensioned to tolerate.

Now, we can formally define an imminent hazard in terms
of reliability. An imminent hazard occurs if, any time ¢,
R‘?(Z) < Rimin, where A is a given OR and i is a critical
function. In other words, the probability or risk of a hazard
becomes higher than acceptable. That is illustrated in
Figure 6, occurring at time #7y,. In practice, a conservative
hardware fault probability estimation providing a lower
bound on R#(¢) will be sufficient for a conservative immi-
nent hazard estimation and timing (proof is straightforward).
This imminent hazard model will be the basis to extend
detection and handling of immediate errors to a strategy for
long-term dependability.

2) DETECTION AND HANDLING OF IMMINENT HAZARDS
The detection of imminent hazards differs from detection of
immediate errors because there is no change to the state of
system yet. Besides passive observation of untypical physical
parameter values, there are proactive ways of system identifi-
cation or active parameter testing, both to be executed with-
out interruption of service and with no reduction of
reliability, just like in a factory. One way to predict imminent
hazards is to employ a stochastic model that reflects the reli-
ability of the platform. An imminent hazard represents an
increased risk that requires action in bounded time, which is
nicely reflected by the reliability metric. As the reliability of
a safety function in a given platform configuration (OR)
decreases and falls below the minimum required, the immi-
nent hazard is detected and reported as an event to the SyC.
Ideally, the next imminent hazard of a critical function in a
given OR can be predicted by evaluating the model. How-
ever, no two platforms age identically, even when the design
is identical. Factors, such as process variation, temperature,
and switching activity resulting from the executed workload,
result in different aging of different instances of a same plat-
form, or even different aging of identical resources within a
same platform instance. Thus, to accurately reflect the plat-
form’s reliability, the model must be regularly updated. The
model is updated by periodically characterizing the platform
resources, and updating their failure rates A\, which capture
the resources’ aging process, in the model. The characteriza-
tion can be integrated with the online testing and the self-
diagnosis with reconfiguration introduced in Section IV-B2.
Figure 6 illustrates what happens to the model is updated
with larger As and smaller As, which shift the reliability
curves to the left and to the right, respectively. Although, a
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FIGURE 7. Example of a healthcare pacemaker application with a mixed-critical workload mapped to an IPF instance (a). The operation
of that IPF system in time and its configuration by means of operating regions (ORs) and operating points (OPs) (b).

conservative model can be safely employed, an accurate,
self-updating model can reduce costs of overprovisioning for
safety and remove the dependence on correct design-time
estimations.

Complementary to the stochastic reliability model-based
detection, a prediction mechanism that predicts imminent
hazard occurrences can be employed. With the complemen-
tary prediction mechanism, a less conservative R, can be
employed, such that, an imminent hazard occurs earlier than
predicted (#,) can be safely detected. Such a mechanism can
be an extension of TAL [15], which monitors parameters of
the system and predicts the imminent occurrence of a hazard.
An initial idea is introduced in [9].

Factory operation manages such risk-increasing effects in
their devices by employing maintenance and repair to bring
the failure probability back to an acceptable level, i.e., within
range of the dependability requirements. Similarly, mainte-
nance is an intrinsic part of safety standards. In contrast to
factories, on-chip system repair by replacing degraded parts
is not possible. Instead, reconfiguration and reorganization
techniques can be adapted and combined into self-organiza-
tion that proactively handles imminent hazards to functions
of different levels of criticality.

The proactive self-organization handles the imminent haz-
ard by transitioning the system to a new configuration
(NOR) that increases the reliability of the critical function to
the required level. To achieve that, in new configuration
(e.g., OR B), the affected SC workload can be remapped to
resources that are less probable to fail. Platform resources
with moderately higher failure probabilities that are unfit for
SC workload anymore might still be acceptable for BE work-
load. Special configuration for those resources can be speci-
fied in the NOR, e.g., limited temperature or voltage.

The transition between configurations can involve the
migration of tasks and containers, which is timing critical
due to the downtime involved. As stated in Section II-C, not
only the ORs must meet the requirements of the SC
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workload, but also the transitions between ORs. In practice,
those transitions involve a set of mechanisms and protocols
between the SyC and BEC that are timing critical.

Finally, the proactive handling of imminent hazards relies
on the NORs provided in advance by the planner. The spe-
cific NOR to be chosen depends on the actual hazard. Note
that predicting and computing all these possibilities at design
time might be unfeasible, if not very limiting, because the
system can only react to known scenarios and does not sup-
port, e.g., any type of unsupervised changes to the workload.
Besides imminent hazard detection, the reliability model can
also be used by the planner to improve the planning of NORs
since it reflects the current condition of the system resources.
The idea will not be explored further here.

V. APPLYING IPF IN HETEROGENEOUS DOMAINS

This section illustrates the application of the IPF paradigm in
heterogeneous domains. We use two representative use cases
from the healthcare and automotive domains.

A. HEALTHCARE DOMAIN

Our first representative use case is a network-connected pace-
maker.> The pacemaker supports physician-configurable pac-
ing configuration, the communication of cardiac activity to a
home monitoring device, and emergency physician notifica-
tion for significant cardiac events. The pacemaker application
consists of a mixed-critical workload of eleven tasks. Eight
SC tasks are responsible for the core pacemaker functional-
ity, which involve monitoring the heart, and actuating when
required. These tasks must execute under tight and strict tim-
ing constraints and reliability. Three BE tasks implement the
functionality that is not life-critical: the configuration inter-
face with the physician and interface for analyzing the car-
diac data.

*The example was first introduced in the special session paper [9].
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The SC tasks need to execute continuously in order to
guarantee that the required pace is maintained. Although the
precise deadlines for actuation vary upon each patient, the
software timers must be triggered every 1 ms to allow appro-
priate action in a timely manner for all circumstances. Addi-
tionally, given that the pacemaker execution is critical and
must monitor the patient’s condition indefinitely. For the tim-
ing requirements for application, Atrio-Ventricular Interval,
Ventriculo-Atrial Interval, Ventricular Refractory Period,
and Post Ventricular Atrial Refractory Period timers for
interval calculations have default deadlines of 150 ms,
850 ms, 620 ms, and 350 ms, respectively. These interval
values are later adjusted according to the arrhythmia of the
patient. The life expectancy of a typical pacemaker is at least
five years, which involves over 157 billion reliable timer
operations [15].

Figure 7 illustrates the mapping of a pacemaker applica-
tion to an IPF tile-based many-core system, as described in
Section IV-A, and exemplifies the different features of IPF.
IPF verifies the execution of safety-critical workload at run-
time, it proactively acts upon imminent hazards, and it also
optimizes both locally and globally the best-effort workload
execution.

The pacemaker can be mapped to an IPF system, as illus-
trated in Figure 7(a). The mixed-critical workload, repre-
sented as a directed acyclic graph (DAG), consists of eight
safety-critical tasks (red nodes) and three best-effort tasks
(green nodes). The arrows represent data and control depen-
dencies between tasks. In the initial configuration, the work-
load is partitioned into two SC and two BE containers,
which are mapped to four tiles (processing resources), as
indicated by the arrows. Notice that some details, such as
software stack and the NoC, are abstracted away in the
figure for clarity.

A possible execution sequence of that IPF system is illus-
trated in Figure 7(b). The system starts in an initial configura-
tion @O within the range of the COR. Local changes in the
configuration of containers and resources move the OP
within the COR. At time @), workload variations are detected
in one of the resources (BE,;) by layer-3 entities, who identify
opportunities for local self-optimization. The local self-opti-
mization is then carried out in ® by changing the configura-
tion of the resource (executing workload of container BE;)
according to a given goal, represented by a change of the sys-
tem’s OP within the same COR. Later at time @), a more sig-
nificant workload variation is detected by the layer-4 global
monitoring of the system. The global self-optimization and
self-organization are carried out at ® by moving the best-
effort workload (containers BE; and BE,) into a common
processing resource (combined container BE,,) and power-
ing-off one of the resources to save energy. That is repre-
sented by the transition from the COR to a NOR. Later on ®,
an imminent hazard caused by an impending permanent fault
due to aging processes is detected by IPF’s layer-3 self-diag-
nosis. It represents an increased risk to the system. Upon
detection, IPF’s self-organization takes a proactive measure
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to mitigate the increased risk to the safety-critical functions
in the workload @. The proactive action is carried out by
migrating the affected safety-critical workload (SC®) to a
resource with reduced risk, represented by a transition from
the COR to an NOR ®.

B. AUTOMOTIVE DOMAIN

Our second representative use case is in the automotive
domain, which is currently experiencing disruptive advan-
ces in both embedded hardware and software. Until
recently, such systems have been statically configured, as
seen in AUTOSAR classic [29], with a configuration
defined offline at design time and uploaded to the car’s
electronic control units (ECUs) during maintenance at a
mechanical workshop. Software updates were seldom and
time consuming.

Modern automotive systems are now complex distributed
systems with heterogeneous ECUs [30] connected by
multi-domain, heterogeneous networks [31]. Future appli-
cations to be executed on these systems have introduced
new complexity levels that are not feasible with current
electric and electronic (E/E) architectures. Consider
advanced driver assistance systems and autonomous driv-
ing applications. They consist of several functions: localiza-
tion, perception, planning, control, and system management
[30]. From those, perception [32] and planning [33] are par-
ticularly complex and have stimulated the introduction of
new high performance, efficient multiprocessing ECUs
with hardware accelerators for, e.g., convolutional neural
networks (CNNs). Tasks of these complex applications are
then mapped to multiple, distributed ECUs to across the
system, in order to manage the amount of data sensed,
transmitted, and processed. In contrast to their predeces-
sors, these connected systems will be much more frequently
remotely updated with, e.g., security patches and algorithm
improvements.

As part of an automotive system, ECUs must present
certain reliability levels depending on the criticality of the
function it implements. These are defined by standards
such as the ISO 26262 [3], which define criticality levels —
from the most critical, ASIL D, to the least critical, QM —
as well as the Hazard Analysis and Risk Assessment meth-
odology to assign ASILs to functions, considering factors
such as the exposure, severity, and the controllability of
the vehicle in case of function failure. The hardware fail-
ure probabilities defined by [3] as target values, and by
[11] as requirements, are between 1073 failures per hour
or less for ASIL D and 107 for ASILs B and C. ASIL A
and QM do not have target reliability values, and consider
reliability as QoS.

In our use case, we focus on one multiprocessing ECU of
such a system. The ECU consists of an IPF system, to which
the perception tasks are mapped. For such a task, we consider
a larger system with 32 processing resources that consist of
clusters of cores. Similarly to the pacemaker example illus-
trated in Figure 7, the mixed-critical workload is mapped to
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FIGURE 8. MTTF of an IPF system when varying the degree of
redundancy. For reference, baseline (rp =np) is plotted in
orange.

SC and BE containers, which are then mapped to processing
resources of the IPF system. Mixed-criticality in the ECU
comes from auxiliary functions, such as logging and perfor-
mance monitoring of the main perception function. Those
auxiliary functions and the tasks implementing them are
important for the perceived quality of the vehicle but not in
terms of safety, and are usually of low criticality or not safety
critical at all (ASIL A and QM). Perception, the main func-
tion, is considered to be classified as ASIL D given its impor-
tance for the vehicle. The ECU inherits then the highest
ASIL from the functions it implements. In this use case, the
IPF system must not only provide unprecedented computing
power and efficiency, but it must also provide a flexible sys-
tem architecture that supports frequent software updates and
autonomously adapts to varying workloads, hazards and
imminent hazards while meeting stringent requirements of
critical ASILs (cf. Figure 7(b)).

VI. QUANTIFYING IPF’S RELIABILITY GAIN

We now investigate the reliability improvements achieved by
applying the IPF paradigm with respect to permanent random
hardware faults due to aging. We quantify the reliability by
means of the well-known mean time to failure (MTTF) met-
ric, which denotes the expected time to failure for a system
[28]. The FIT rate, another relevant metric, can be derived
from the MTTF with FIT = 10° - MTTF ! [28].

We built a reliability model considering a hardware plat-
form, as described in Section IV-A, where processing resour-
ces are tiles and the shared resource is the NoC. The model
takes as input the number of processing (rp € [1,32]) and
shared resources (rs € [1,1]), their respective failure rates
(Ap € [10711,1077] and As € [107!!,1077]), and the number
of critical containers (np € [1,32]). The critical containers
are the containers whose failure cause the failure of the sys-
tem. Considering that an IPF system fails if a requirement of
the safety-critical workload is violated or, optionally, if the
minimum QoS of the best-effort workload is violated, the
critical containers consist of all SC containers and, option-
ally, the minimum set of BE containers required to meet the
minimum QoS. Equation (1) shows the resulting MTTF
equation of the reliability model.
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We start by investigating the reliability gains obtained by
increasing the degree of redundancy in an IPF system. Then
we investigate further the trade-off between the robustness of
the processing and shared resources, the robustness of indi-
vidual processing resources impact the overall system robust-
ness, and the impact of shared resources on the resulting
reliability. Unless stated otherwise, the experiments consider
rp=4,rs=1Xp =108 \g =103, and np = 2.

Figure 8 reports the MTTF of an IPF system when varying
the degree of redundancy — i.e., varying the number of criti-
cal containers and the number of processing resources in a
platform. With the proactive planning at runtime and the
self-organization, IPF is able to handle multiple permanent
error occurrences when redundant resources are available. In
comparison with a baseline* system, IPF’s MTTF increases
between 4.77 and 1.8 times when doubling the number of
processing resources from rp = 8 to rp = 16 (with np = 8)
and rp = 2 to rp = 4 (with np = 2), respectively. By intro-
ducing a single spare processing resource into a baseline sys-
tem, the reliability increases between 1.5 and 1.88 times for
rp =np = 2 and rp = np = 15, respectively.

To put the results in perspective, let us consider the use
cases from Section V. The pacemaker setup in the example
of Figure 7 contains two critical containers and four process-
ing resources (np = 2,rp =4). An IPF system, as in the
example, can achieve an MTTF of 6- 107 hours, an improve-
ment by a factor of 1.8 over a baseline* (cf. Figure 8). Con-
sidering a single critical container accommodates the SC
workload (np = 1), an IPF system can achieve MTTFs of
6.66-107 (rp =2) and 7.5-107 hours (rp = 3), which is an
increase of 33 and 50 percent in comparison with a baseline*
system, respectively. That is beyond the 5-year life expec-
tancy of the pacemaker, which is usually limited by the bat-
tery. The perception tasks of the automotive use case
Section V-B would require a minimum of twenty containers
to execute in time on an IPF system with thirty two process-
ing resource clusters (np = 20, rp = 32). An IPF system can
achieve an MTTF of 3.9-107 hours (25.6 FIT), an improve-
ment by a factor of 8.27 over a baseline® (cf. Figure 8).
Although IPF is able to substantially extend the system life-
time, the use case still falls short of the 108 hours target for
ASIL D. Next, we investigate why the MTTF struggles to
surpass 10% hours.

Figure 9 reports the MTTF when varying the number of
processing resources (rp) and the failure rates of those
resources (Ap). Similar reliability levels can be achieved with
different combinations of number of spare resources with dif-
ferent robustness levels: more less-reliable resources or
fewer more-reliable resources. For example, an MTTF of 5-
107 hours (20 FIT) can be achieved with two highly reliable

“Non-redundant or statically configured baseline system (rp = np).
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FIGURE 9. The redundancy-robustness trade-off of an IPF system
in terms of MTTF. For reference, baseline (r» = 2) is plotted in
orange.

cores, four medium-reliable cores, or even sixteen unreliable
cores. However, note that increasing the degree of redun-
dancy (rp) indefinitely for a fixed \p brings limited benefit
—e.g., rp > 8 for \p = 1077, We found that to be caused
by the use of available/spare resources in the IPF system to
execute BE workload. When IPF allows BE workload to
execute on any resource that is not required by the SC
workload, that resource also ages, leading to the effect seen
in Figure 9. When a permanent fault or imminent hazard
occurs, a reconfiguration is triggered at the SyC, which per-
forms a so-called minimum repair, after which all resources
are “as good as old” since they are aging at approx. the
same rate [28]. Thus, even though an IPF system can plan
accordingly and handle multiple permanent error occur-
rences, which is possible as long as there are enough spare
resources and valid ORs, the benefit can be limited depend-
ing on the resource usage policy.

Another observation is that, even when more robust
resources are employed (smaller Ap), a plateau is reached at
approximately 10% h in Figure 9. That is caused by the shared
resource, which can easily become the reliability bottleneck,
as is the case of the interconnect [25], and limit the benefits
of IPF’s planning and self-organization. We then evaluated
whether employing more-reliable shared resources would
solve the problem. Figure 10 shows the MTTF when varying
the number of processing resources (rp) and the failure rate
of the shared resource (\g). In contrast to Figure 9, we now
fix \p = 1073 and vary \s. The results confirm the existence
of the bottleneck — i.e., increasing the reliability of the shared
resource (smaller Ag) does increase the overall reliability.
However, the reliability gains are still limited by the above-
mentioned minimum repair effect.

In summary, the results show that the IPF paradigm is able
to extend the system lifetime substantially, especially in
larger systems such as the one in the automotive use case.
However, the resource use policy requires special attention.
Allowing all non-SC processing resources to be used for the
execution of BE workload provides for higher BE perfor-
mance but limits the system lifetime due to the more uniform
resource aging (minimum repair effect). Thus, an envisioned,
promising policy is to reserve a set of spare processing
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FIGURE 10. Impact of the shared resource on the reliability of an
IPF system. For reference, baseline (r» = 2) is plotted in orange.

resources to be used only in case of imminent hazards. The
size of that set can be derived from the target MTTF. Explor-
ing this idea further is left for future work.

VIl. RELATED WORK

This section summarizes the relevant state of the art on self-
aware and mixed-critical embedded systems. We start with
the definition of self-awareness of [13], whose survey gives a
comprehensive overview of existing research on the topic.
Self-awareness is defined as the combination of three proper-
ties that a system or service should possess: self-reflective,
self-predictive, and self-adaptive. Self-reflective refers to
being aware of the system state, its goals, and dynamic
changes in them. Self-predictive refers to being able to pre-
dict dynamic changes (e.g., workload or requirements) and
predict the effect of adaption actions; Self-adaptive refers to
being able to proactively adapt and optimize to dynamic
changes in order to meet QoS goals and requirements. Self-
aware computing combines concepts that have been the sub-
ject of prior computer science research in areas including
artificial intelligence, autonomic computing, self-adaptive
and self-organizing systems, and cognitive computing [34].
In our work, we utilize aspects of computational self-aware-
ness in our information processing factory to address four
technical challenges of self-aware systems: learning, formu-
lation of goals, scalability, ensuring correctness, and an
appropriate design methodology.

Mixed-critical real-time systems are systems that imple-
ment functions of two or more distinct criticality levels,
such as safety-critical and best-effort [10], [35]. Nowadays,
most of the complex embedded systems found, e.g., in the
automotive and avionics domains are evolving into mixed-
critical systems to increase efficiency and reduce size,
weight, and power (SWaP). The major challenge is enabling
formal guarantees, such as performance and integrity, for a
function or criticality independent of the other criticalities
when they share resources. These systems have strict
requirements [3], [11], [12] that call for dedicated techni-
ques that assure safety without jeopardizing the efficiency
of resource usage, the so-called partitioning-sharing trade-
off [35]. A comprehensive overview of mixed-criticality is
found in [35]. Traditionally, mixed-critical real-time systems
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TABLE 2. IPF Comparison With State-of-the-Art Approaches

[36] [37] [40] IPF DMR/TMR [28]

A. Self-reflective * x vV
B. Self-predictive VA
C. Self-adaptive v o vV
1. Integrity T T v v
2. Reliability 1 i i v i
3. Availability T i v *
4. System-wide and hierarchical v
5. Mixed-criticality aware v v
6. Variability aware VA
7. Multi-objective v v
8.Reconfiguration cost aware v v
9. Independent of design-time DSE vy v

Legend: v presents/improves, * limited, T potentially.

have had static configurations for higher criticalities and
flexibility for best-effort functions. There are also systems
with room for adaptation [36], [37], which can be classified
as self-adaptive systems. Self-awareness in mixed-critical
real-time systems has received relatively little attention with
approaches that focus on a specific aspect, such as commu-
nication [38]. The IPF paradigm for mixed-critical multipro-
cessing aims at a system-wide self-awareness that can
autonomously handle and learn with changes in the environ-
ment, the system itself, and the implemented functions rep-
resented by the mixed-critical workload.

Employing system reconfiguration with task migration to
overcome permanent errors and adapt to changes in the sys-
tem is a recurrent idea. A comprehensive overview of trends
in mapping on multi and many-core systems is found in [39].
A challenge that arises, however, when migrating mixed-
critical workload since timing guarantees must be given to
the safety-critical component of the workload not only before
and after, but also during the migration process. Mapping
reconfiguration of hard real-time tasks was recently investi-
gated in [36] for NoC-based many-core systems. Similarly to
IPF, the authors have considered the cost that reconfiguration
incurs at runtime, which can violate the timing requirements
of the safety-critical workload if not appropriately consid-
ered. The work in [36] relies on design-time design space
exploration (DSE) to create a set of possible configurations
for the system and a hybrid latency analysis for the migra-
tion, which combines a computation-intensive discovery of
migration routes at design-time with a final latency calcula-
tion at runtime. Similarly, the authors in [37] propose a
hybrid methodology, where design-time DSE is combined
with an agent-based runtime adaptation, that targets dynamic
cross-layer reliability. Although not explicitly addressed,
[36], [37] can potentially be combined with mechanisms to
ensure integrity, increase reliability and availability.

A summary of the relevant related work is given in Table 2
— intended as a feature comparison and not as an exhaustive
list of features. In contrast to [36] and [37], IPF aims at
becoming independent of design-time DSE in order to auton-
omously adapt to variations in the workload and in the physi-
cal system. Therefore, the proposed IPF paradigm introduces
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a planning entity that strategically performs DSE on demand
and for a limited number of scenarios (the NORs) at a time,
as opposed to requiring an exhaustive exploration at design-
time. Moreover, IPF’s self-reflective and self-predictive
properties makes it variability aware. No two physical system
instances behave or age exactly the same, even when execut-
ing the same workload, and that can only be addressed at run-
time by observing the platform’s operation. A similar trend is
seen in other approaches, such as [40], which manages
resources with self-awareness to achieve QoS targets in the
presence of varying workload. For reference only, [40] is
used here to represent a class of self-aware resource manage-
ment approaches that address specific aspects other than reli-
ability and are mixed-criticality unaware. In contrast to
those, IPF adopts a system-wide, hierarchical, and multi-
objective approach that can handle the different requirements
and QoS targets of the mixed-critical workload. Finally, IPF
is compared to the classic modular redundancy approaches
(DMR and TMR) [28]. Both are widely used in industrial
safety-critical systems to provide error detection and achieve
integrity, e.g., with lock-step execution [26]. However, they
can only detect immediate errors — that is, once the error
affects the system’s state — as opposed to IPF’s proposed
imminent hazard detection and handling. Despite its expres-
sive cost, modular redundancy does not extend the average
system lifetime (reliability) in its classical form [28]. It can,
however, increase reliability in conjunction with other
approaches, as it is done in IPF. IPF’s self-aware resource
management exploits the inherent redundancy of resources
in multi and many-core systems to effectively extend the sys-
tem’s lifetime.

The IPF paradigm combines different techniques into a
self-aware factory whose autonomy accounts for the various
constraints that mixed-criticality imposes on the system.
Some of those concepts have been discussed in a special ses-
sion [9] that occurred between an early version of this paper
[41] and its publication. In summary, this paper extends and
supersedes [41], and it elaborates on and integrates the mech-
anisms discussed in [9], reusing the illustrative example of
Figure 7.

VIil. CONCLUSION

This paper introduced the self-aware IPF paradigm for mixed-
critical embedded systems. IPF’s self-aware, dynamic manage-
ment of the system enables the system to plan and handle
changes to the environment, the workload, and to the system
itself at runtime as they occur. A five-layer hierarchical organi-
zation was introduced with a system configuration frame-
work based on operating regions and operating points that
enables self-awareness, self-diagnosis, self-organization and
self-optimization in mixed-criticality. An invariant-based safety
argument that enables the use of IPF in mixed-criticality was
developed, and provides the underlying assumptions that must
be fulfilled when applying the paradigm. The application of IPF
towards long-term dependability was illustrated with two
representative use cases from heterogeneous domains. The new
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concept of imminent hazards was introduced, which allows
risks in the system to be proactively handled. Finally, an experi-
mental evaluation makes an initial assessment of the achievable
reliability gains when using IPF for long-term dependability,
and highlights bottlenecks and opportunities to be explored.
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