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Hyperspectral Imaging (HSI) has been widely adopted in field plant phenotyping activities. Current HSI solutions
such as airborne remote sensing platforms and handheld spectrometers have been proven effective and have
become popular in various phenotyping applications. However, the imaging quality of current airborne sensing
systems still suffers from various noises due to the changing ambient lighting condition, long imaging distance,
and comparatively low resolution. Handheld leaf spectrometers provide a higher quality of spectral data, but
they only measure a small spot on the leaf, which cannot represent the whole leaf or canopy very well due to the
great variation between different locations. In 2018, the Purdue Ag engineers developed a new handheld
hyperspectral leaf imager, LeafSpec. For the first time, phenotyping researchers were able to collect high-
resolution hyperspectral leaf images without the impacts of the changing ambient light and leaf slopes. How-
ever, the application of LeafSpec was still limited by its low throughput and intensive labor cost in the field
measurements. The goal of this project was to develop a robotic system that could replace the human operator to
perform in-field and leaf-level HSI using LeafSpec. The system consisted of a machine-operable version of the
LeafSpec device, a machine vision system for target leaf detection, and a customized cartesian robotic manip-
ulator with five Degrees of Freedom (DOF). In the 2019 field test, the designed system collected data from corn
plants with two genotypes and three levels of nitrogen treatments with an average cycle time of 86 s. The ni-
trogen content predicted by the designed system had an R? value of 0.7307 against the ground truth. The pre-
diction could also differentiate the different nitrogen treatments with P-values of 0.0193 and 0.0102. The
performance was similar to human operators’. The developers, therefore, conclude that the robotic system has
the potential of replacing human operators for LeafSpec hyperspectral corn leaf imaging in the field.

1. Introduction

The world population is expected to grow by over a third, or 2.3
billion people by the end of 2050 (Eise and Foster, 2018). The challenge
is to increase food production and do so in a sustainable way (Bed-
dington, 2010). By connecting the genotype to the phenotype, high-
yielding, stress-tolerant plants can be selected far more rapidly and
efficiently (Li et al., 2014). Hyperspectral Imaging (HSI) technology has
been explored and applied in plant phenotyping as both spatial and
spectral information are obtained in a high-throughput and non-invasive
way (Gowen et al., 2007). It can also detect the early onset of stresses
and diseases, which would be beneficial to farmers and growers as it

would enable earlier interventions to help mitigate against crop loss and
reduced crop quality (Lowe et al., 2017). As the stress and diseases can
be detected earlier and more precisely, resources can also be saved.
There are many solutions for in-field HSI applications, but the data
quality is affected by various noise factors. Currently, the typical use of
HSI technology in agriculture is combining a Hyperspectral Camera
(HSC) with an Unmanned Aerial Vehicle (UAV) or satellite to collect the
top-view images of plants in the field, with high-throughput, under
ambient light (Goetz, 2009). For higher resolution, a ground vehicle can
be used in HSI to collect side-view images of the plants, under ambient
light, in closer proximity (Goetz, 2009). Although these systems provide
effective and high-throughput solutions for in-field phenotyping, their
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signal quality is compromised by various noise factors such as daylight
variation, weather condition and surface angles of the plant leaves
(Wang et al., 2020). Alternatively, there are also handheld devices
equipped with an enclosed imaging chamber and independent lighting
source to collect HS images at leaf-level to eliminate the in-field noise
factors stated above. The most common design uses HSC to collect HS
images of spots on the leaf, known as spectroradiometer (Ge et al.,
2019). However, due to the significant variance of spectrum across the
leaf (Yuan et al., 2016), taking the entire leaf image with a handheld
touch-based HSC can provide higher measurement quality. The newest
whole leaf HSI scanner, LeafSpec (Fig. 1), invented at Purdue University
in 2018, has achieved such capability (Wang et al., 2020).

Although LeafSpec has the capability of taking HS images with high
data quality, the collection of data is low-throughput and laborious. For
each image collection, an operator needs to find the top-collared leaf of
the target plant and then use LeafSpec to grasp gently and scan the leaf
from the stem to the tip (Wang et al., 2020). This process requires the
operator to stay focused throughout the measurements. The repeated
scanning action can cause ergonomic stresses to the arm as well. Besides,
the leaf scanning environment is typically bushy, moist, and often under
hot summer weather conditions. Such long-time in-field manual HSI is a
labor-intensive, slow and error-prone process (Vijayarangan et al.,
2018). It would be ideal to improve the process of operating LeafSpec by
replacing the human operator with a robotic system.

Various robotic arm systems have shown the capability of replacing
human operators in using handheld HSI devices. The 3D perception-
based collision-free robotic leaf probing technology was developed for
automated indoor plant phenotyping (Bao et al., 2018). By combining a
Time of Flight (TOF) camera with an articulated robotic arm, a portable
spectrometer was shown to be capable of collecting leaf-level HS data in
a greenhouse (Atefi et al., 2019). The author reported a grasping success
rate of 78% for maize and 48% for sorghum. These systems are capable
of automated probing or spectrometer measuring at one point, but not
imaging an entire leaf. For in-field applications, a gantry robot has been
used for HSI on plant-level to provide high-throughput data collection
(Palli et al., 2019). In this imaging setup, there was open space between
the camera and the plants, causing the HS data quality to be still affected
by leaf surface slope and ambient light variations. The existing robotic
solutions for leaf-level data collection were only capable of collecting
point data in an indoor environment. A robotic system that could
perform leaf-level HS data collection of an entire leaf in the field was in
need.

The goal of this work was to design and implement a robotic system,
by integrating existing technologies, to test the feasibility of using the
robotic system to replace the human operator in leaf-level HS data
collection with LeafSpec in a cornfield. The human operator of LeafSpec
scans a leaf in three steps: 1) Identifying the top matured/collared leaf
on the target plant; 2) Moving LeafSpec to the target leaf while avoiding
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the other leaves around it;3) Grasping the leaf with the device to collect
the HS data. Correspondingly, the five objectives of this work were:

. To design a machine vision system that can detect and obtain 3D
coordinates of corn leaves.

2. To design a robotic manipulator that can operate LeafSpec to collect
HS data.

3. To modify LeafSpec to improve its compatibility with the designed
robotic system.

4. To investigate the path planning in the data collection process.

5. To compare the data collected by the designed system with the
ground truth data and historical data collected by human operators.

2. Materials and methods

2.1. Overview

In this robotic system, the leaf detection function was implemented
with a vision system consisting of an Intel® RealSense™ Camera (Intel
Corporation, U.S.), an NVIDIA® Jetson™ TX2 computer (NVIDIA Cor-
poration, U.S.) and a pre-trained object detection algorithm deployed on
TX2. A customized Cartesian manipulator and a control program, with
path planning and velocity control, were used to grasp detected leaves.
The scanning process was completed using a modified version of Leaf-
Spec, which had a more compact size and lighter weight. The system was
designed to be compatible with various mobile platforms. The finalized
system mounted at the back of a research-use tractor, PhenoRover, is
shown in Fig. 2.

For each scanning, the mobile platform stopped at the target plant.
The vision system took a 3D image, recognized the target leaf, and
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Fig. 2. An overview of the main components in the cartesian robotic platform
mounted at the back of a semi-automated ground-based research
vehicle: PhenoRover.
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Fig. 1. An overview of LeafSpec (a), system schematic (b) and collected high-resolution Normalized Difference Vegetation Index (NDVI) heatmap (c) (Wang

et al., 2020).
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obtained its 3D coordinates. The control system, deployed on National
Instruments™ myRIO, generated a path and corresponding velocity
profile for each motor on the manipulator. Finally, the manipulator
followed the path to approach the leaf, grasped the leaf with the
modified LeafSpec device and finished the scanning process. The videos
of the operation stated above are available online (for the indoor test:
https://www.youtube.com/watch?v=1bGeoLFSbjE, for the in-field test:
https://www.youtube.com/watch?v=ZhNJeNjbsCY).

2.2. Vision system

To detect and acquire the coordinates of the target leaf, an Intel®
RealSense™ D435 camera was used to collect positional information.
The Intel® RealSense™ depth camera D435 uses stereo matching to
offer quality depth information.

Two rounds of image collection were conducted in a greenhouse for
training the machine vision model. Each round had around 90 corn
plants of two genotypes (B73xMol7 and P1105AM). Two nitrogen
treatments (low and high) and two water treatments (low and high)
were applied. There were 1138 images collected around the V7 stage
using the Intel® RealSense™ D435 depth camera (approximately 70 to
100 cm from the target corn plant). The data set was then split into a
training set and validation set with the ratio of 4:1 (910 and 228 images
for each). The shape of each image data matrix was (720, 1280, 4),
indicating its spatial resolution by pixel and four channels (R, G, B,
Depth).

An open-source software, LabelMe (https://github.com/wkentar
o/labelme), was used to manually annotate the images to get the
ground truth (the location and growing direction) of every top-collared
leaf within each image (Fig. 3).

A light, fast and accurate Convolutional Neural Network (CNN) ar-
chitecture, Single Shot Multibox Detector (SSD) created at Cornell
University (Liu et al., 2016), was used for the detection task. The original
SSD architecture was modified using a different backbone network, the
SE-ResNet50, which was pre-trained on opensource datasets iNaturalist
2017 and 2018.

During training, the original images were padded to maintain the
aspect ratio and then resized to 500 x 500. During inferencing, the
model would generate the most confident bounding box (Fig. 4) and its
direction (left or right side of the stem). The result allowed the extrac-
tion of the sub-image and its matched depth array. The distance from the
detected collar to the robotic arm could then be calculated by the cor-
responding depth array.
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The mAP (mean Average Precision, a popular metric in measuring
the accuracy of object detectors) on the training set reached 0.706, while
the mAP on the validation set was 0.653. An entire prediction procedure
(including preprocessing, inferencing and postprocessing) took
approximately 0.2 to 0.3 s per image. The process was completed using
the mxnet (v1.5.0) deep learning framework on an NVIDIA® Jetson™
TX2.

2.3. Device modification

Since the original LeafSpec was designed to be operated by hand,
adjustments were implemented to be compatible with the robotic system
(Fig. 5). The manual grasping mechanism was replaced with a stepper
motor, a set of rack and pinion, and a linear guideway. The HSC was
added a 90-degree bend from vertical to horizontal to decrease the
overall height. The weight of the device was reduced from 2.5 kg to 2 kg.
The height was reduced from 150 mm to 95 mm, and the length and
width remained the same. A signal wire was connected to the trigger pin
on the LeafSpec controller from the manipulator controller, myRIO.

Since corn leaves do not have noticeable variance around the roll
axis (Fig. 6), no Degrees of Freedom (DOF) was implemented for the roll
angle. Corn leaves have variance in the pitch angle across their growing
period and have the most variance in the yaw angle even at the same
stage. Therefore, a turntable and a ball joint lock were installed between
the manipulator and the modified device to provide additional DOFs.
The modified LeafSpec device could be rotated around the yaw axis. The
pitch angle of the device was adjusted manually and periodically to
compensate for the angle change through each growing stage of corn
plants.

2.4. Cartesian manipulator system

2.4.1. Manipulator design

For robotic manipulators, Selective Compliant Assembly (SCARA),
cylindrical, polar, jointed (articulated), and Cartesian are commonly
used configurations. Each design has a unique workspace profile. The
choice of manipulator type was determined based on the workspace
requirement, in-field power efficiency, weight and flexibility for scan-
ning motion.

Since the data collection using LeafSpec requires continuous scan-
ning from the start of the leaf to the tip, to scan long leaves or reach
further leaves in a cornfield, a manipulator needs a longer link length.
However, for a manipulator with rotary joints, the increase in link length

Fig. 3. An example of labeled images used for training detection model with right growing direction (green boxes) and left growing direction (red boxes). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. The original image (left) and the predicted most confident bounding box (right) using the SSD detection algorithm developed by Cornell University.
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Fig. 5. An overview of the components of the modified LeafSpec mounted on
the robotic arm.
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Fig. 6. Side-view of the pitch angle (left) and top-view of the yaw angle (right)
of corn leaves.

requires the manipulator to increase its power output exponentially (Lee
and Lee, 1984). Consequently, the increase in power output increases
overall weight, assuming a constant power-to-weight ratio. In contrast, a
Cartesian manipulator only uses linear joints, so the change in link
length does not require a change in motor power. As a result, the Car-
tesian configuration has a much smaller mass than non-Cartesian con-
figurations under the same payload requirement. For the same reason,
the cost of non-Cartesian manipulators, under the same dimension,
power, and precision requirements, is generally higher than the cost of
Cartesian manipulators.

Non-Cartesian manipulators also have less flexibility during config-
uration modification. Non-Cartesian manipulators generally have pre-
determined hardware configurations with corresponding sets of Equa-
tions of Motion (EOM). Therefore, hardware configuration changes
require calculating a new set of EOM and checking for unsolvable poses.
In comparison, the EOM of the Cartesian manipulator has a much
simpler structure. Therefore, under the same power, weight, price, and
flexibility constraints, the Cartesian configuration has a better perfor-
mance compared to non-Cartesian designs for in-field leaf-level HSI of

Fig. 7. Dimension and travel range (in parenthesis) of each axis of the designed
robotic system. (The image was taken at the early stage of the development
with circuits uninstalled at the time.)

corn plants.

The customized Cartesian robot was designed and constructed based
on an existing motion system ACRO (Fig. 7) from OpenBuilds Part Store.
ACRO is a positioning system with two DOFs (X and Y) with dimensions
of 60 x 40 in. (152 x 101 cm). The ACRO system has two stepper motors
along the x-direction and one stepper motor along the y-direction. Both
directions are driven by toothed pulleys and timing belts. The maximum
travel for the x-direction is 120 cm and 80 cm for the y-direction.

The third DOF (Z-axis) of the Cartesian robot was added by attaching
a linear actuator to the mounting plate of the ACRO with a custom
adapter. The installed linear actuator (C-Beam® Double Wide Gantry
Actuator Bundle from OpenBuilds Part Store) (Fig. 7) uses a lead screw
driven by a stepper motor to provide linear motion with a dimension of
100 cm and maximum travel of 80 cm.

2.4.2. Manipulator control

The manipulator’s control algorithm was deployed on myRIO. The
control program was developed using LabVIEW™ from National In-
struments™. The program included validations of the leaf detection
results, path planning, velocity control of the manipulator, the open/
close of the lightbox of the modified LeafSpec, and the start/end of the
scanning process.

At the beginning of each scanning cycle, the leaf detection algorithm
deployed on TX2 sent a set of coordinates to myRIO. A coordinate
transformation was performed to transform the coordinate set from the
RealSense’s coordinate frame (X, y¢, zc) to the manipulator’s coordinate
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frame (%, yr, ) using the following transformation matrix (Eq. (1)),
where (dx, dy, dz) are the displacements between two coordinate sys-
tems. The (dx, dy, dz) were obtained by measuring the displacement
from the origin of the robotic manipulator’s coordinate frame to the
origin of the RealSense camera’s coordinate frame along the manipu-
lator’s coordinate frame axes.

Xy 1 0 0 dx||x
Y| _ |0 0 1 dy||y
zZ| |0 1 0 dz| |z M
1 000 1 1

where (X, ¥, Zc) are the coordinates in the camera frame and (%, yr, z)
are the coordinates in the manipulator frame.

After the coordinates were transformed, the set of coordinates was
evaluated to determine if it was a valid set. The validations included
determining: (1) if the coordinate set was empty; (2) if the scanning
path, based on the given coordinates, surpassed the boundary of the
workspace. If the validations failed, the control program would request a
new set of coordinates.

To have independent control on each motor simultaneously, the
field-programmable gate array (FPGA) in myRIO was used for control-
ling the five stepper motors (four on the manipulator, one on the device).
The acceleration and deceleration were accomplished by using a trap-
ezoidal velocity profile. In FPGA, such velocity control was implemented
by changing the frequency of the signal generator in each thread ac-
cording to a calculated velocity profile. The implemented control used
open-loop control, assuming there was no skipped step. The upper limit
of acceleration and deceleration of the manipulator were determined by
testing the highest value when there was no step skipped. The step
counter was calibrated after every scan iteration when the manipulator
was rehomed, so the impact of skipped steps was minimal.

2.4.3. Path planning

LeafSpec requires a leaf to be in between its lightbox and camera.
Without path planning, when the system moved the device toward the
target location directly from its home position, LeafSpec would collide

Without Path Planning

/

Stem
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with the target leaf because of the natural curvature of the leaf (Fig. 8).
An insertion angle perpendicular to the target leaf on the x-y plane was
maintained to avoid such collision.

The end position of the approaching process should not be close to
the target plant’s stem to provide clearance for the device. If the end
position was too close, the device would hit the stem at the red region, as
shown in Fig. 9. As a result, the whole plant would be pushed away, and
the leaf would not be successfully grasped for scanning. Therefore, the
end position was set to be away from the stem, but this would cause the
loss of the scanned area. To solve this problem, when LeafSpec grasped
the leaf, the device slid back towards the stem first to allow more area of
the leaf to be scanned.

As shown in Fig. 10, the planned path would approach the target
plant along the row direction and then approach the target leaf while

Fig. 9. Side-view of an example of the modified LeafSpec hitting stem with
hitting region marked (red marked). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of
this article.)

With Path Planning

LeafSpec Top View
Leaf
Motion Path
Stem
Motion Path
Leaf Front View
LeafSpec

Fig. 8. Comparison of motion path with and without path planning in the top and front view: The possible collision happens at the red cross between LeafSpec and
the lower surface of the target leaf when a 90 degrees insertion angle is not implemented. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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N B
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Fig. 10. An example of a planned path for approaching the target plant/leaf
(boxed) using generated waypoints to avoid collision with adjacent plants and
the stem of the target plant. The blue path shows the desired path for the entire
scanning process, and the red points indicate the waypoints generated from the
path planning algorithm. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

keeping the insertion angle around 90 degrees. Next, LeafSpec grasped
onto the leaf at a location about 20 cm away from the stem. Then, it
moved back to the stem to maximize scanning coverage. Finally, the
controller triggered the scanning process.

The finalized path planning algorithm generated waypoints based on
the procedures mentioned above. Four major waypoints were generated
to control the approaching process, and two major waypoints were
generated to control the scanning. The waypoints one to three repre-
sented the approaching path to the target plant. The 90-degree insertion
angle was determined by waypoints three and four. Waypoint five drove
the path towards the stem for a short distance to compensate for the
coverage lost in Fig. 9. The last waypoint, waypoint six, represented the
end of the scanning path. The expected cycle time of execution of all
waypoints by the Cartesian robotic platform was about 45-50 s.

The waypoint generation was not in the same order as the execution.
The following discussion follows the order of waypoint generation.
Waypoint four was generated first, which was based on the detection
results from the vision system. Since the detection results only returned
the collar location of the target leaf, waypoint four (P4) was calculated
based on Eq. (2).

c08(Bpirc ) c0S(Byaw)
P4 = Pmllar + lin:ﬂrt Cos(gp[u‘h)Sin(gvnw) (2)
—sin(Gpiren)

where
P ouqr is the coordinate set returned by the vision system
linsere is the length between the stem and the insertion point along
the leaf
Oyaw is the yaw angle of the target leaf
Opircn is the pitch angle of the target leaf
Waypoint three was calculated by Eq. (3).
sin(Oyay)
P3 = Py — loper | €OS(Oyarn) 3)
0
where

Loffser s the distance between waypoint four and three
(10 cm used here)

Waypoint five (Ps) was generated by Eq. (4). The variable K in the
equation is an arbitrary number that determines how close the waypoint
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five is to the stem. The higher the value, the closer the waypoint to the
stem.

Cos(apitrh )Cos(eyaw)
P5 - P4 - Kl[nser[ Cos(gpitc'h)Sin(ayaw) (4)
_Sin(epizch)

where
K is an arbitrary number between 0 and 1

The waypoints one and two were generated so that the settling time
in the x-direction from the home position to waypoint three was half of
the settling time in the y- and z-direction. The path after such adjustment
would go around the adjacent plants first and then approach the target
plant to avoid colliding with the adjacent plants.

The waypoint six (Pg) was generated by Eq. (5). The leaf length is a
manual input parameter based on the stage at which corn plants are.

€08 (Bpircn )OS (Oyarw)
P6 = PS + lleaf Cos(gpizch)Sin(ayaw) (5)
—sin(Gpircn)

where
lios is the length of the target leaf from the stem to the tip

2.4.4. Data flow

The structure of the data flow of the overall system is shown in
Fig. 11. The TX2 acquired both RGB and depth images from Intel®
RealSense™ camera. The RGB image was passed through the detection
algorithm to obtain the x and y coordinates (in the camera’s frame) of
the target leaf. The depth image was then matched with the detection
result to obtain the z coordinate of the leaf. The XYZ coordinates were
then sent to myRIO for validation through Transmission Control Pro-
tocol (TCP). If the coordinates were valid, myRIO then calculated the
path and velocity profile. Otherwise, myRIO asked for another coordi-
nate set. MyRIO outputted control signals to the motor driver to drive
the motors on the manipulator and triggered the modified LeafSpec to
start scanning. The scanned results were then sent to smartphones for
preview through Bluetooth.

2.5. Experiment setup

In a typical corn breeding project, nitrogen use efficiency (NUE) and
water use efficiency (WUE) are the most popular and important plant
phenotyping features to be collected, and the plant growth difference is
evaluated under different nitrogen and water stresses. The experiment
for demonstrating the capability of the new robotic system was set up in
such a breeding phenotyping project setup. The experiment was con-
ducted on October 4th, 2019, in the Agronomy Center for Research and
Education (ACRE) field of Purdue University. Two genotypes

Vision System Cartesian Manipulator

| Intel RealSense Camera | | Stepper Motor Driver

Nvidia TX2 K }i myRIO

s

Modified LeafSpec

—13] Controller

Fig. 11. Data flow of the designed system.
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(B73xMo17 and P1105AM) were planted in 41 plots and treated with
three nitrogen treatments (high, medium, low) to have the necessary
nitrogen stress variance. Since water treatments could not be controlled
in the field, no water treatments were applied. The experiment was
performed when the plants reached the V8 stage (each plant had eight
leaves with visible leaf collars). Since the research ground vehicle
PhenoRover was under repair at the time, a customized ground-based
mobile platform (Fig. 12) was built as an alternative. The platform
was moved to the middle of each plot, and one nearby plant was
randomly selected by the leaf detection algorithm deployed on TX2.

For each scanning, the detection algorithm returned an image
labeled with a box indicating the detected top collar leaf. The manipu-
lator was activated if the detection result was approved by the operator
(automating the approval process is future work). If not, the system
would restart the detection. The flowchart is shown in Fig. 13, where Ny
is the number of detection needed before a correct top-collared leaf is
detected and Nj is the number of scanning the manipulator performed
before the target leaf is successfully scanned. A total of 41 plants were
scanned by the designed system (Fig. 14). The HS raw data were saved
on the local storage of the modified LeafSpec. After the scanning of each
plant, the scanned leaf was cut and saved for nitrogen measurement by a
commercial service company (A&L Great Lakes Laboratories, Inc). The
measured nitrogen concentrations were used as the ground truth in this
experiment.

3. Results
3.1. System performance

During the field experiment, the designed Cartesian robotic platform
scanned 41 plants using the modified LeafSpec. For each scan trial, the
following parameters were recorded: the number of leaf detections trails
executed by the TX2 computer (Ny), the number of actual scanning trials
performed until a successful scan (N;) and the total cycle time (T), from
the execution of the first detection to the manipulator was rehomed.

The distributions of the number of detections and scans needed to
collect HS data of one plant are shown in Fig. 15 and Fig. 16. The vision
system could detect the target leaf and return valid coordinates within
five trials for more than 68% of the time. A detection trial was successful
when the top leaf collar of one plant in the field of view was completely
enclosed by the bounding box with the highest confidence value. The
failed attempts included detecting wrong objects (i.e., recognizing a
folded leaf as a top collar) or detecting no collar. Such results could be
the consequence of daylight changes, high variance in the background
and shadows from the adjacent plants in the field. More in-field plant
images will be helpful to train a more robust machine vision model for
detecting target leaves in the future.

The designed system could perform the data collection using the

LeafSpec Main Controller

Controller Box { Box

Cartesian Modified

Manipulator LeafSpec

Intel RealSense

Camera

Fig. 12. An overview of an alternative mobile solution by mounting the
designed robotic system on a customized wheeled platform with an adjust-
able height.
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Fig. 13. Flowchart of data collection of each corn plant in the robotic system
performance evaluation.

modified device successfully within two trials for 85% of the time based
on correct leaf detection results. A scanning was successful when the
image collected by the device contained a complete leaf without
noticeable ambient light leaking into the imaging chamber. Such check
was based on the spectrum quality it sent to the paired smartphone. In
the manipulator’s failed attempts, the vision system detected the top-
collared leaf with a most confident bounding box, but the designed
system failed to grasp the leaf by hitting or missing the leaves. One
possible reason could be the movement of plant leaves due to the windy
condition in the field. Since the collar detection and manipulator
movement took time, the leaf’s pose could be changed by the wind while
the device was approaching the leaf. Another reason could be the error
from image detection since the bounding box center was not guaranteed
to locate at the leaf collar.

A total of 63 scanning trials were performed to finish scanning all the
41 plants. The cycle time, detection trials, scan trials, and damage
conditions were recorded in Table 1. During the scanning of 41 plants,
three leaves were damaged with different severities by the approaching
and scanning process performed by the designed manipulator. One leaf
had minor damage of broken leaf tissues. The other two leaves had
relatively more severe damage of broken mid-rib. All leaves were
damaged during failed scanning attempts. The average cycle time of the
designed system was 86 s, with the distribution of all recorded cycle time
shown in Fig. 17. The average cycle time of human operators scouting in
the field was 64 s, which was calculated by dividing the total time of one
round of data collection (from when the first plant was imaged to the last
one) by the number of samples collected. The current velocity profile
was limited by the torque delivered by the motors and could be
improved in the future by adopting different motors. Although the
designed system was slower than the human operator, the throughput
could be improved by installing multiple copies of the robotic platform
onto the vehicle to perform scanning at the same time. The variation of
the cycle time mainly comes from the variation of Ny and N; shown in
Fig. 15 and Fig. 16. The relationship can be described by Eq. (6).

T. = NyTq+ N, T (6)
where

T4 is the time length of single execution of the detection
Ts is the time length of single execution of the scanning

Although, on average, N; > N;, since Ty;<T; the cycle time is
dominated by the number of scans performed.
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Fig. 15. Distribution of the number of detections needed for each plant.
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Fig. 16. Distribution of the number of scans needed for each plant.

Table 1

In-field experiment results of the designed manipulator.
Parameters Values
Total Plant Scanned 41
Average Ny 5.2
Average N; 1.54
Max Ny 21
Max N 5
Total Damaged Plants 3
Fatal Damaged Plants 2
Average Cycle Time 86s
Average Cycle Time by Human Operators 64s

3.2. Scanning quality analysis

The collected HS raw data were processed using a nitrogen content
prediction model. The model was built and used by the human-operated
LeafSpec version (Wang et al., 2020). The model reads the HS raw data
and outputs predicted nitrogen content. The nitrogen prediction model
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Fig. 17. Distribution of the recorded cycle time for all scanning.

was based on the averaged spectrum across all the pixels on the leaf. This
“traditional” nitrogen prediction model was used in this study solely to
compare the imaging quality between the human-operated version and
the robotic version.

A box diagram was plotted for the relationship between the calcu-
lated nitrogen index and the nitrogen treatments (Fig. 18). T-tests were
performed between different nitrogen treatments. The P-value between
high and medium is 0.0193. The P-value between Medium and Low is
0.0102. The P-values indicate that the data collected by the designed
system can provide enough statistical differences for differentiating
different nitrogen treatments.

A scatter plot, which shows the relationship between the predicted
and ground truth nitrogen content, was plotted (Fig. 19). This chart
contains 38 data points because three sets were lost during the field test
due to memory error. The plot shows that the nitrogen content predicted
based on the data collected by the designed system has a high correla-
tion with the ground truth data. Such correlation indicates the designed
system can collect data with a quality able to reflect ground truth ni-
trogen content.
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Fig. 18. Calculated nitrogen index vs. nitrogen treatments with a P-value of
0.0193 between high and medium and a P-value of 0.0102 between medium
and low.
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Fig. 19. Correlation between predicted nitrogen content (y) and measured
nitrogen ground truth (x) with an R? of 0.7307.

Fig. 19 shows a strong correlation between the calculated nitrogen
content and the measured nitrogen ground truth data. The R? value of
the predicted nitrogen content with respect to ground truth measure-
ment is 0.7307. This prediction performance was compared with the
historical nitrogen content prediction performances by human-operated
LeafSpec in 50 greenhouse and field assays during 2018-2019. The
distribution of the historical nitrogen prediction R? by the human-
operated LeafSpec is shown in Fig. 20. The R? value of 0.7307 by the
robotic system lies in the middle of the 95% interval of the manual
system’s R? distribution. Therefore, it is concluded that the data
collected by the robotic system can provide the HS data quality similar
to the one collected by human operators.

4. Conclusion

In this paper, a Cartesian robotic platform was designed and devel-
oped to replace the human operator in collecting HS images of corn
leaves in the field using LeafSpec, a proximal high-resolution hyper-
spectral leaf imager.

e An object detection machine vision model was trained to detect the

top matured leaf as the target for scanning.

A control program, including velocity control and path planning, was

developed on LabVIEW™ and deployed on myRIO for the Cartesian

manipulator.

The system was successfully tested in a corn phenotyping project at

Purdue’s research farm in fall 2019 and collected images with

accepted quality for all 41 plants, with 86 s cycle time on average.

e The plant nitrogen content prediction based on the HS images
collected by the robotic system has an R? of 0.7307 with the ground
truth measurements, which is comparable with the images collected
by human operators in previous greenhouse and field assays. The
prediction result also shows significant differences between nitrogen
treatments.

Although the current averaged cycle time may not meet the
throughput requirements in all phenotyping activities, there is great
potential to improve the throughput with upgraded hardware and better
control algorithms or multiple manipulators scanning leaves in parallel
at the same time.
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