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A B S T R A C T   

Hyperspectral Imaging (HSI) has been widely adopted in field plant phenotyping activities. Current HSI solutions 
such as airborne remote sensing platforms and handheld spectrometers have been proven effective and have 
become popular in various phenotyping applications. However, the imaging quality of current airborne sensing 
systems still suffers from various noises due to the changing ambient lighting condition, long imaging distance, 
and comparatively low resolution. Handheld leaf spectrometers provide a higher quality of spectral data, but 
they only measure a small spot on the leaf, which cannot represent the whole leaf or canopy very well due to the 
great variation between different locations. In 2018, the Purdue Ag engineers developed a new handheld 
hyperspectral leaf imager, LeafSpec. For the first time, phenotyping researchers were able to collect high- 
resolution hyperspectral leaf images without the impacts of the changing ambient light and leaf slopes. How
ever, the application of LeafSpec was still limited by its low throughput and intensive labor cost in the field 
measurements. The goal of this project was to develop a robotic system that could replace the human operator to 
perform in-field and leaf-level HSI using LeafSpec. The system consisted of a machine-operable version of the 
LeafSpec device, a machine vision system for target leaf detection, and a customized cartesian robotic manip
ulator with five Degrees of Freedom (DOF). In the 2019 field test, the designed system collected data from corn 
plants with two genotypes and three levels of nitrogen treatments with an average cycle time of 86 s. The ni
trogen content predicted by the designed system had an R2 value of 0.7307 against the ground truth. The pre
diction could also differentiate the different nitrogen treatments with P-values of 0.0193 and 0.0102. The 
performance was similar to human operators’. The developers, therefore, conclude that the robotic system has 
the potential of replacing human operators for LeafSpec hyperspectral corn leaf imaging in the field.   

1. Introduction 

The world population is expected to grow by over a third, or 2.3 
billion people by the end of 2050 (Eise and Foster, 2018). The challenge 
is to increase food production and do so in a sustainable way (Bed
dington, 2010). By connecting the genotype to the phenotype, high- 
yielding, stress-tolerant plants can be selected far more rapidly and 
efficiently (Li et al., 2014). Hyperspectral Imaging (HSI) technology has 
been explored and applied in plant phenotyping as both spatial and 
spectral information are obtained in a high-throughput and non-invasive 
way (Gowen et al., 2007). It can also detect the early onset of stresses 
and diseases, which would be beneficial to farmers and growers as it 

would enable earlier interventions to help mitigate against crop loss and 
reduced crop quality (Lowe et al., 2017). As the stress and diseases can 
be detected earlier and more precisely, resources can also be saved. 

There are many solutions for in-field HSI applications, but the data 
quality is affected by various noise factors. Currently, the typical use of 
HSI technology in agriculture is combining a Hyperspectral Camera 
(HSC) with an Unmanned Aerial Vehicle (UAV) or satellite to collect the 
top-view images of plants in the field, with high-throughput, under 
ambient light (Goetz, 2009). For higher resolution, a ground vehicle can 
be used in HSI to collect side-view images of the plants, under ambient 
light, in closer proximity (Goetz, 2009). Although these systems provide 
effective and high-throughput solutions for in-field phenotyping, their 
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signal quality is compromised by various noise factors such as daylight 
variation, weather condition and surface angles of the plant leaves 
(Wang et al., 2020). Alternatively, there are also handheld devices 
equipped with an enclosed imaging chamber and independent lighting 
source to collect HS images at leaf-level to eliminate the in-field noise 
factors stated above. The most common design uses HSC to collect HS 
images of spots on the leaf, known as spectroradiometer (Ge et al., 
2019). However, due to the significant variance of spectrum across the 
leaf (Yuan et al., 2016), taking the entire leaf image with a handheld 
touch-based HSC can provide higher measurement quality. The newest 
whole leaf HSI scanner, LeafSpec (Fig. 1), invented at Purdue University 
in 2018, has achieved such capability (Wang et al., 2020). 

Although LeafSpec has the capability of taking HS images with high 
data quality, the collection of data is low-throughput and laborious. For 
each image collection, an operator needs to find the top-collared leaf of 
the target plant and then use LeafSpec to grasp gently and scan the leaf 
from the stem to the tip (Wang et al., 2020). This process requires the 
operator to stay focused throughout the measurements. The repeated 
scanning action can cause ergonomic stresses to the arm as well. Besides, 
the leaf scanning environment is typically bushy, moist, and often under 
hot summer weather conditions. Such long-time in-field manual HSI is a 
labor-intensive, slow and error-prone process (Vijayarangan et al., 
2018). It would be ideal to improve the process of operating LeafSpec by 
replacing the human operator with a robotic system. 

Various robotic arm systems have shown the capability of replacing 
human operators in using handheld HSI devices. The 3D perception- 
based collision-free robotic leaf probing technology was developed for 
automated indoor plant phenotyping (Bao et al., 2018). By combining a 
Time of Flight (TOF) camera with an articulated robotic arm, a portable 
spectrometer was shown to be capable of collecting leaf-level HS data in 
a greenhouse (Atefi et al., 2019). The author reported a grasping success 
rate of 78% for maize and 48% for sorghum. These systems are capable 
of automated probing or spectrometer measuring at one point, but not 
imaging an entire leaf. For in-field applications, a gantry robot has been 
used for HSI on plant-level to provide high-throughput data collection 
(Palli et al., 2019). In this imaging setup, there was open space between 
the camera and the plants, causing the HS data quality to be still affected 
by leaf surface slope and ambient light variations. The existing robotic 
solutions for leaf-level data collection were only capable of collecting 
point data in an indoor environment. A robotic system that could 
perform leaf-level HS data collection of an entire leaf in the field was in 
need. 

The goal of this work was to design and implement a robotic system, 
by integrating existing technologies, to test the feasibility of using the 
robotic system to replace the human operator in leaf-level HS data 
collection with LeafSpec in a cornfield. The human operator of LeafSpec 
scans a leaf in three steps: 1) Identifying the top matured/collared leaf 
on the target plant; 2) Moving LeafSpec to the target leaf while avoiding 

the other leaves around it;3) Grasping the leaf with the device to collect 
the HS data. Correspondingly, the five objectives of this work were:  

1. To design a machine vision system that can detect and obtain 3D 
coordinates of corn leaves.  

2. To design a robotic manipulator that can operate LeafSpec to collect 
HS data.  

3. To modify LeafSpec to improve its compatibility with the designed 
robotic system.  

4. To investigate the path planning in the data collection process.  
5. To compare the data collected by the designed system with the 

ground truth data and historical data collected by human operators. 

2. Materials and methods 

2.1. Overview 

In this robotic system, the leaf detection function was implemented 
with a vision system consisting of an Intel® RealSense™ Camera (Intel 
Corporation, U.S.), an NVIDIA® Jetson™ TX2 computer (NVIDIA Cor
poration, U.S.) and a pre-trained object detection algorithm deployed on 
TX2. A customized Cartesian manipulator and a control program, with 
path planning and velocity control, were used to grasp detected leaves. 
The scanning process was completed using a modified version of Leaf
Spec, which had a more compact size and lighter weight. The system was 
designed to be compatible with various mobile platforms. The finalized 
system mounted at the back of a research-use tractor, PhenoRover, is 
shown in Fig. 2. 

For each scanning, the mobile platform stopped at the target plant. 
The vision system took a 3D image, recognized the target leaf, and 

Fig. 1. An overview of LeafSpec (a), system schematic (b) and collected high-resolution Normalized Difference Vegetation Index (NDVI) heatmap (c) (Wang 
et al., 2020). 
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Fig. 2. An overview of the main components in the cartesian robotic platform 
mounted at the back of a semi-automated ground-based research 
vehicle: PhenoRover. 
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obtained its 3D coordinates. The control system, deployed on National 
Instruments™ myRIO, generated a path and corresponding velocity 
profile for each motor on the manipulator. Finally, the manipulator 
followed the path to approach the leaf, grasped the leaf with the 
modified LeafSpec device and finished the scanning process. The videos 
of the operation stated above are available online (for the indoor test: 
https://www.youtube.com/watch?v=1bGeoLFSbjE, for the in-field test: 
https://www.youtube.com/watch?v=ZhNJeNjbsCY). 

2.2. Vision system 

To detect and acquire the coordinates of the target leaf, an Intel® 
RealSense™ D435 camera was used to collect positional information. 
The Intel® RealSense™ depth camera D435 uses stereo matching to 
offer quality depth information. 

Two rounds of image collection were conducted in a greenhouse for 
training the machine vision model. Each round had around 90 corn 
plants of two genotypes (B73xMo17 and P1105AM). Two nitrogen 
treatments (low and high) and two water treatments (low and high) 
were applied. There were 1138 images collected around the V7 stage 
using the Intel® RealSense™ D435 depth camera (approximately 70 to 
100 cm from the target corn plant). The data set was then split into a 
training set and validation set with the ratio of 4:1 (910 and 228 images 
for each). The shape of each image data matrix was (720, 1280, 4), 
indicating its spatial resolution by pixel and four channels (R, G, B, 
Depth). 

An open-source software, LabelMe (https://github.com/wkentar 
o/labelme), was used to manually annotate the images to get the 
ground truth (the location and growing direction) of every top-collared 
leaf within each image (Fig. 3). 

A light, fast and accurate Convolutional Neural Network (CNN) ar
chitecture, Single Shot Multibox Detector (SSD) created at Cornell 
University (Liu et al., 2016), was used for the detection task. The original 
SSD architecture was modified using a different backbone network, the 
SE-ResNet50, which was pre-trained on opensource datasets iNaturalist 
2017 and 2018. 

During training, the original images were padded to maintain the 
aspect ratio and then resized to 500 × 500. During inferencing, the 
model would generate the most confident bounding box (Fig. 4) and its 
direction (left or right side of the stem). The result allowed the extrac
tion of the sub-image and its matched depth array. The distance from the 
detected collar to the robotic arm could then be calculated by the cor
responding depth array. 

The mAP (mean Average Precision, a popular metric in measuring 
the accuracy of object detectors) on the training set reached 0.706, while 
the mAP on the validation set was 0.653. An entire prediction procedure 
(including preprocessing, inferencing and postprocessing) took 
approximately 0.2 to 0.3 s per image. The process was completed using 
the mxnet (v1.5.0) deep learning framework on an NVIDIA® Jetson™ 
TX2. 

2.3. Device modification 

Since the original LeafSpec was designed to be operated by hand, 
adjustments were implemented to be compatible with the robotic system 
(Fig. 5). The manual grasping mechanism was replaced with a stepper 
motor, a set of rack and pinion, and a linear guideway. The HSC was 
added a 90-degree bend from vertical to horizontal to decrease the 
overall height. The weight of the device was reduced from 2.5 kg to 2 kg. 
The height was reduced from 150 mm to 95 mm, and the length and 
width remained the same. A signal wire was connected to the trigger pin 
on the LeafSpec controller from the manipulator controller, myRIO. 

Since corn leaves do not have noticeable variance around the roll 
axis (Fig. 6), no Degrees of Freedom (DOF) was implemented for the roll 
angle. Corn leaves have variance in the pitch angle across their growing 
period and have the most variance in the yaw angle even at the same 
stage. Therefore, a turntable and a ball joint lock were installed between 
the manipulator and the modified device to provide additional DOFs. 
The modified LeafSpec device could be rotated around the yaw axis. The 
pitch angle of the device was adjusted manually and periodically to 
compensate for the angle change through each growing stage of corn 
plants. 

2.4. Cartesian manipulator system 

2.4.1. Manipulator design 
For robotic manipulators, Selective Compliant Assembly (SCARA), 

cylindrical, polar, jointed (articulated), and Cartesian are commonly 
used configurations. Each design has a unique workspace profile. The 
choice of manipulator type was determined based on the workspace 
requirement, in-field power efficiency, weight and flexibility for scan
ning motion. 

Since the data collection using LeafSpec requires continuous scan
ning from the start of the leaf to the tip, to scan long leaves or reach 
further leaves in a cornfield, a manipulator needs a longer link length. 
However, for a manipulator with rotary joints, the increase in link length 

Fig. 3. An example of labeled images used for training detection model with right growing direction (green boxes) and left growing direction (red boxes). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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requires the manipulator to increase its power output exponentially (Lee 
and Lee, 1984). Consequently, the increase in power output increases 
overall weight, assuming a constant power-to-weight ratio. In contrast, a 
Cartesian manipulator only uses linear joints, so the change in link 
length does not require a change in motor power. As a result, the Car
tesian configuration has a much smaller mass than non-Cartesian con
figurations under the same payload requirement. For the same reason, 
the cost of non-Cartesian manipulators, under the same dimension, 
power, and precision requirements, is generally higher than the cost of 
Cartesian manipulators. 

Non-Cartesian manipulators also have less flexibility during config
uration modification. Non-Cartesian manipulators generally have pre- 
determined hardware configurations with corresponding sets of Equa
tions of Motion (EOM). Therefore, hardware configuration changes 
require calculating a new set of EOM and checking for unsolvable poses. 
In comparison, the EOM of the Cartesian manipulator has a much 
simpler structure. Therefore, under the same power, weight, price, and 
flexibility constraints, the Cartesian configuration has a better perfor
mance compared to non-Cartesian designs for in-field leaf-level HSI of 

corn plants. 
The customized Cartesian robot was designed and constructed based 

on an existing motion system ACRO (Fig. 7) from OpenBuilds Part Store. 
ACRO is a positioning system with two DOFs (X and Y) with dimensions 
of 60 × 40 in. (152 × 101 cm). The ACRO system has two stepper motors 
along the x-direction and one stepper motor along the y-direction. Both 
directions are driven by toothed pulleys and timing belts. The maximum 
travel for the x-direction is 120 cm and 80 cm for the y-direction. 

The third DOF (Z-axis) of the Cartesian robot was added by attaching 
a linear actuator to the mounting plate of the ACRO with a custom 
adapter. The installed linear actuator (C-Beam® Double Wide Gantry 
Actuator Bundle from OpenBuilds Part Store) (Fig. 7) uses a lead screw 
driven by a stepper motor to provide linear motion with a dimension of 
100 cm and maximum travel of 80 cm. 

2.4.2. Manipulator control 
The manipulator’s control algorithm was deployed on myRIO. The 

control program was developed using LabVIEW™ from National In
struments™. The program included validations of the leaf detection 
results, path planning, velocity control of the manipulator, the open/ 
close of the lightbox of the modified LeafSpec, and the start/end of the 
scanning process. 

At the beginning of each scanning cycle, the leaf detection algorithm 
deployed on TX2 sent a set of coordinates to myRIO. A coordinate 
transformation was performed to transform the coordinate set from the 
RealSense’s coordinate frame (xc, yc, zc) to the manipulator’s coordinate 

Fig. 4. The original image (left) and the predicted most confident bounding box (right) using the SSD detection algorithm developed by Cornell University.  

Imaging Module

Lighting Module

Stepper Motor

Rack and Pinion

Linear Guideway

Turntable

Ball 

Joint 

Fig. 5. An overview of the components of the modified LeafSpec mounted on 
the robotic arm. 

Pitch 
Angle

Roll 
Axis

Yaw 
Angle

Fig. 6. Side-view of the pitch angle (left) and top-view of the yaw angle (right) 
of corn leaves. 

Fig. 7. Dimension and travel range (in parenthesis) of each axis of the designed 
robotic system. (The image was taken at the early stage of the development 
with circuits uninstalled at the time.) 
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frame (xr, yr, zr) using the following transformation matrix (Eq. (1)), 
where (dx, dy, dz) are the displacements between two coordinate sys
tems. The (dx, dy, dz) were obtained by measuring the displacement 
from the origin of the robotic manipulator’s coordinate frame to the 
origin of the RealSense camera’s coordinate frame along the manipu
lator’s coordinate frame axes. 
⎡

⎢
⎢
⎣

xr
yr
zr
1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0 0 dx
0 0 1 dy
0 1 0 dz
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

xc
yc
zc
1

⎤

⎥
⎥
⎦ (1)  

where (xc, yc, zc) are the coordinates in the camera frame and (xr, yr, zr) 
are the coordinates in the manipulator frame. 

After the coordinates were transformed, the set of coordinates was 
evaluated to determine if it was a valid set. The validations included 
determining: (1) if the coordinate set was empty; (2) if the scanning 
path, based on the given coordinates, surpassed the boundary of the 
workspace. If the validations failed, the control program would request a 
new set of coordinates. 

To have independent control on each motor simultaneously, the 
field-programmable gate array (FPGA) in myRIO was used for control
ling the five stepper motors (four on the manipulator, one on the device). 
The acceleration and deceleration were accomplished by using a trap
ezoidal velocity profile. In FPGA, such velocity control was implemented 
by changing the frequency of the signal generator in each thread ac
cording to a calculated velocity profile. The implemented control used 
open-loop control, assuming there was no skipped step. The upper limit 
of acceleration and deceleration of the manipulator were determined by 
testing the highest value when there was no step skipped. The step 
counter was calibrated after every scan iteration when the manipulator 
was rehomed, so the impact of skipped steps was minimal. 

2.4.3. Path planning 
LeafSpec requires a leaf to be in between its lightbox and camera. 

Without path planning, when the system moved the device toward the 
target location directly from its home position, LeafSpec would collide 

with the target leaf because of the natural curvature of the leaf (Fig. 8). 
An insertion angle perpendicular to the target leaf on the x-y plane was 
maintained to avoid such collision. 

The end position of the approaching process should not be close to 
the target plant’s stem to provide clearance for the device. If the end 
position was too close, the device would hit the stem at the red region, as 
shown in Fig. 9. As a result, the whole plant would be pushed away, and 
the leaf would not be successfully grasped for scanning. Therefore, the 
end position was set to be away from the stem, but this would cause the 
loss of the scanned area. To solve this problem, when LeafSpec grasped 
the leaf, the device slid back towards the stem first to allow more area of 
the leaf to be scanned. 

As shown in Fig. 10, the planned path would approach the target 
plant along the row direction and then approach the target leaf while 

Top View

Front View

Without Path Planning With Path Planning

Stem

Stem

Leaf

Leaf

Motion Path

LeafSpec

LeafSpec

Motion Path

Fig. 8. Comparison of motion path with and without path planning in the top and front view: The possible collision happens at the red cross between LeafSpec and 
the lower surface of the target leaf when a 90 degrees insertion angle is not implemented. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 9. Side-view of an example of the modified LeafSpec hitting stem with 
hitting region marked (red marked). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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keeping the insertion angle around 90 degrees. Next, LeafSpec grasped 
onto the leaf at a location about 20 cm away from the stem. Then, it 
moved back to the stem to maximize scanning coverage. Finally, the 
controller triggered the scanning process. 

The finalized path planning algorithm generated waypoints based on 
the procedures mentioned above. Four major waypoints were generated 
to control the approaching process, and two major waypoints were 
generated to control the scanning. The waypoints one to three repre
sented the approaching path to the target plant. The 90-degree insertion 
angle was determined by waypoints three and four. Waypoint five drove 
the path towards the stem for a short distance to compensate for the 
coverage lost in Fig. 9. The last waypoint, waypoint six, represented the 
end of the scanning path. The expected cycle time of execution of all 
waypoints by the Cartesian robotic platform was about 45–50 s. 

The waypoint generation was not in the same order as the execution. 
The following discussion follows the order of waypoint generation. 
Waypoint four was generated first, which was based on the detection 
results from the vision system. Since the detection results only returned 
the collar location of the target leaf, waypoint four (P4) was calculated 
based on Eq. (2). 

P4 = Pcollar + linsert

⎡

⎣
cos(θpitch)cos(θyaw)

cos(θpitch)sin(θyaw)

−sin(θpitch)

⎤

⎦ (2)  

where 

Pcollar is the coordinate set returned by the vision system 
linsert is the length between the stem and the insertion point along 
the leaf 
θyaw is the yaw angle of the target leaf 
θpitch is the pitch angle of the target leaf 

Waypoint three was calculated by Eq. (3). 

P3 = P4 − loffset

⎡

⎣
sin(θyaw)

cos(θyaw)

0

⎤

⎦ (3)  

where 

loffset is the distance between waypoint four and three 
(10 cm used here)

Waypoint five (P5) was generated by Eq. (4). The variable K in the 
equation is an arbitrary number that determines how close the waypoint 

five is to the stem. The higher the value, the closer the waypoint to the 
stem. 

P5 = P4 − Klinsert

⎡

⎣
cos(θpitch)cos(θyaw)

cos(θpitch)sin(θyaw)

−sin(θpitch)

⎤

⎦ (4)  

where 

K is an arbitrary number between 0 and 1 

The waypoints one and two were generated so that the settling time 
in the x-direction from the home position to waypoint three was half of 
the settling time in the y- and z-direction. The path after such adjustment 
would go around the adjacent plants first and then approach the target 
plant to avoid colliding with the adjacent plants. 

The waypoint six (P6) was generated by Eq. (5). The leaf length is a 
manual input parameter based on the stage at which corn plants are. 

P6 = P5 + lleaf

⎡

⎣
cos(θpitch)cos(θyaw)

cos(θpitch)sin(θyaw)

−sin(θpitch)

⎤

⎦ (5)  

where 

lleaf is the length of the target leaf from the stem to the tip 

2.4.4. Data flow 
The structure of the data flow of the overall system is shown in 

Fig. 11. The TX2 acquired both RGB and depth images from Intel® 
RealSense™ camera. The RGB image was passed through the detection 
algorithm to obtain the x and y coordinates (in the camera’s frame) of 
the target leaf. The depth image was then matched with the detection 
result to obtain the z coordinate of the leaf. The XYZ coordinates were 
then sent to myRIO for validation through Transmission Control Pro
tocol (TCP). If the coordinates were valid, myRIO then calculated the 
path and velocity profile. Otherwise, myRIO asked for another coordi
nate set. MyRIO outputted control signals to the motor driver to drive 
the motors on the manipulator and triggered the modified LeafSpec to 
start scanning. The scanned results were then sent to smartphones for 
preview through Bluetooth. 

2.5. Experiment setup 

In a typical corn breeding project, nitrogen use efficiency (NUE) and 
water use efficiency (WUE) are the most popular and important plant 
phenotyping features to be collected, and the plant growth difference is 
evaluated under different nitrogen and water stresses. The experiment 
for demonstrating the capability of the new robotic system was set up in 
such a breeding phenotyping project setup. The experiment was con
ducted on October 4th, 2019, in the Agronomy Center for Research and 
Education (ACRE) field of Purdue University. Two genotypes 

1

2

3 4

6

5

Insertion 
Angle

Fig. 10. An example of a planned path for approaching the target plant/leaf 
(boxed) using generated waypoints to avoid collision with adjacent plants and 
the stem of the target plant. The blue path shows the desired path for the entire 
scanning process, and the red points indicate the waypoints generated from the 
path planning algorithm. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Vision System

Intel RealSense Camera

Nvidia TX2

Cartesian Manipulator

myRIO

Stepper Motor Driver

Modified LeafSpec

Controller

Computer

Smartphone

Fig. 11. Data flow of the designed system.  
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(B73xMo17 and P1105AM) were planted in 41 plots and treated with 
three nitrogen treatments (high, medium, low) to have the necessary 
nitrogen stress variance. Since water treatments could not be controlled 
in the field, no water treatments were applied. The experiment was 
performed when the plants reached the V8 stage (each plant had eight 
leaves with visible leaf collars). Since the research ground vehicle 
PhenoRover was under repair at the time, a customized ground-based 
mobile platform (Fig. 12) was built as an alternative. The platform 
was moved to the middle of each plot, and one nearby plant was 
randomly selected by the leaf detection algorithm deployed on TX2. 

For each scanning, the detection algorithm returned an image 
labeled with a box indicating the detected top collar leaf. The manipu
lator was activated if the detection result was approved by the operator 
(automating the approval process is future work). If not, the system 
would restart the detection. The flowchart is shown in Fig. 13, where Nd 
is the number of detection needed before a correct top-collared leaf is 
detected and Ns is the number of scanning the manipulator performed 
before the target leaf is successfully scanned. A total of 41 plants were 
scanned by the designed system (Fig. 14). The HS raw data were saved 
on the local storage of the modified LeafSpec. After the scanning of each 
plant, the scanned leaf was cut and saved for nitrogen measurement by a 
commercial service company (A&L Great Lakes Laboratories, Inc). The 
measured nitrogen concentrations were used as the ground truth in this 
experiment. 

3. Results 

3.1. System performance 

During the field experiment, the designed Cartesian robotic platform 
scanned 41 plants using the modified LeafSpec. For each scan trial, the 
following parameters were recorded: the number of leaf detections trails 
executed by the TX2 computer (Nd), the number of actual scanning trials 
performed until a successful scan (Ns) and the total cycle time (Tc), from 
the execution of the first detection to the manipulator was rehomed. 

The distributions of the number of detections and scans needed to 
collect HS data of one plant are shown in Fig. 15 and Fig. 16. The vision 
system could detect the target leaf and return valid coordinates within 
five trials for more than 68% of the time. A detection trial was successful 
when the top leaf collar of one plant in the field of view was completely 
enclosed by the bounding box with the highest confidence value. The 
failed attempts included detecting wrong objects (i.e., recognizing a 
folded leaf as a top collar) or detecting no collar. Such results could be 
the consequence of daylight changes, high variance in the background 
and shadows from the adjacent plants in the field. More in-field plant 
images will be helpful to train a more robust machine vision model for 
detecting target leaves in the future. 

The designed system could perform the data collection using the 

modified device successfully within two trials for 85% of the time based 
on correct leaf detection results. A scanning was successful when the 
image collected by the device contained a complete leaf without 
noticeable ambient light leaking into the imaging chamber. Such check 
was based on the spectrum quality it sent to the paired smartphone. In 
the manipulator’s failed attempts, the vision system detected the top- 
collared leaf with a most confident bounding box, but the designed 
system failed to grasp the leaf by hitting or missing the leaves. One 
possible reason could be the movement of plant leaves due to the windy 
condition in the field. Since the collar detection and manipulator 
movement took time, the leaf’s pose could be changed by the wind while 
the device was approaching the leaf. Another reason could be the error 
from image detection since the bounding box center was not guaranteed 
to locate at the leaf collar. 

A total of 63 scanning trials were performed to finish scanning all the 
41 plants. The cycle time, detection trials, scan trials, and damage 
conditions were recorded in Table 1. During the scanning of 41 plants, 
three leaves were damaged with different severities by the approaching 
and scanning process performed by the designed manipulator. One leaf 
had minor damage of broken leaf tissues. The other two leaves had 
relatively more severe damage of broken mid-rib. All leaves were 
damaged during failed scanning attempts. The average cycle time of the 
designed system was 86 s, with the distribution of all recorded cycle time 
shown in Fig. 17. The average cycle time of human operators scouting in 
the field was 64 s, which was calculated by dividing the total time of one 
round of data collection (from when the first plant was imaged to the last 
one) by the number of samples collected. The current velocity profile 
was limited by the torque delivered by the motors and could be 
improved in the future by adopting different motors. Although the 
designed system was slower than the human operator, the throughput 
could be improved by installing multiple copies of the robotic platform 
onto the vehicle to perform scanning at the same time. The variation of 
the cycle time mainly comes from the variation of Nd and Ns shown in 
Fig. 15 and Fig. 16. The relationship can be described by Eq. (6). 

Tc = NdTd + NsTs (6)  

where 

Td is the time length of single execution of the detection 
Ts is the time length of single execution of the scanning 

Although, on average, Nd > Ns, since Td≪Ts the cycle time is 
dominated by the number of scans performed. 

90 -180 cm

152 cm

182 cm

Main Controller 

Box

LeafSpec 

Controller Box

Modified 

LeafSpec

Intel RealSense 

Camera

Cartesian 

Manipulator

Fig. 12. An overview of an alternative mobile solution by mounting the 
designed robotic system on a customized wheeled platform with an adjust
able height. 

Fig. 13. Flowchart of data collection of each corn plant in the robotic system 
performance evaluation. 
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3.2. Scanning quality analysis 

The collected HS raw data were processed using a nitrogen content 
prediction model. The model was built and used by the human-operated 
LeafSpec version (Wang et al., 2020). The model reads the HS raw data 
and outputs predicted nitrogen content. The nitrogen prediction model 

was based on the averaged spectrum across all the pixels on the leaf. This 
“traditional” nitrogen prediction model was used in this study solely to 
compare the imaging quality between the human-operated version and 
the robotic version. 

A box diagram was plotted for the relationship between the calcu
lated nitrogen index and the nitrogen treatments (Fig. 18). T-tests were 
performed between different nitrogen treatments. The P-value between 
high and medium is 0.0193. The P-value between Medium and Low is 
0.0102. The P-values indicate that the data collected by the designed 
system can provide enough statistical differences for differentiating 
different nitrogen treatments. 

A scatter plot, which shows the relationship between the predicted 
and ground truth nitrogen content, was plotted (Fig. 19). This chart 
contains 38 data points because three sets were lost during the field test 
due to memory error. The plot shows that the nitrogen content predicted 
based on the data collected by the designed system has a high correla
tion with the ground truth data. Such correlation indicates the designed 
system can collect data with a quality able to reflect ground truth ni
trogen content. 

Fig. 14. Field demo of approaching (left), insertion (middle) and scanning (right).  

Fig. 15. Distribution of the number of detections needed for each plant.  

Fig. 16. Distribution of the number of scans needed for each plant.  

Table 1 
In-field experiment results of the designed manipulator.  

Parameters Values 

Total Plant Scanned 41 
Average Nd  5.2 
Average Ns  1.54 
Max Nd  21 
Max Ns  5 
Total Damaged Plants 3 
Fatal Damaged Plants 2 
Average Cycle Time 86 s 
Average Cycle Time by Human Operators 64 s  

Fig. 17. Distribution of the recorded cycle time for all scanning.  

Fig. 18. Calculated nitrogen index vs. nitrogen treatments with a P-value of 
0.0193 between high and medium and a P-value of 0.0102 between medium 
and low. 
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Fig. 19 shows a strong correlation between the calculated nitrogen 
content and the measured nitrogen ground truth data. The R2 value of 
the predicted nitrogen content with respect to ground truth measure
ment is 0.7307. This prediction performance was compared with the 
historical nitrogen content prediction performances by human-operated 
LeafSpec in 50 greenhouse and field assays during 2018–2019. The 
distribution of the historical nitrogen prediction R2 by the human- 
operated LeafSpec is shown in Fig. 20. The R2 value of 0.7307 by the 
robotic system lies in the middle of the 95% interval of the manual 
system’s R2 distribution. Therefore, it is concluded that the data 
collected by the robotic system can provide the HS data quality similar 
to the one collected by human operators. 

4. Conclusion 

In this paper, a Cartesian robotic platform was designed and devel
oped to replace the human operator in collecting HS images of corn 
leaves in the field using LeafSpec, a proximal high-resolution hyper
spectral leaf imager.  

• An object detection machine vision model was trained to detect the 
top matured leaf as the target for scanning.  

• A control program, including velocity control and path planning, was 
developed on LabVIEW™ and deployed on myRIO for the Cartesian 
manipulator.  

• The system was successfully tested in a corn phenotyping project at 
Purdue’s research farm in fall 2019 and collected images with 
accepted quality for all 41 plants, with 86 s cycle time on average.  

• The plant nitrogen content prediction based on the HS images 
collected by the robotic system has an R2 of 0.7307 with the ground 
truth measurements, which is comparable with the images collected 
by human operators in previous greenhouse and field assays. The 
prediction result also shows significant differences between nitrogen 
treatments. 

Although the current averaged cycle time may not meet the 
throughput requirements in all phenotyping activities, there is great 
potential to improve the throughput with upgraded hardware and better 
control algorithms or multiple manipulators scanning leaves in parallel 
at the same time. 
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