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Predicting Failures in Embedded Systems Using
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Abstract—Users of embedded and cyber-physical systems
expect dependable operation for an increasingly diverse set of
applications and environments. Reactive self-diagnosis techniques
either use unnecessarily conservative guardbands, or do not
prevent catastrophic failures. In this letter, we utilize machine-
learning techniques to design a prediction engine in order to
predict failures on-device in the embedded systems. We evaluate
our prediction engine’s effectiveness for predicting temperature
behavior on a mobile system-on-chip and propose a realizable
hardware implementation for the use-case.

Index Terms—Embedded systems, managed runtime, model
prediction, recurrent neural networks, runtime.

I. INTRODUCTION

THE COMPLEXITY of embedded system platforms and
the applications they support are continuously increas-

ing: they run large and evolving applications on heterogeneous
multi- or many-core processing platforms. Examples include
automated and autonomous driving, smart buildings, industry
4.0, and personal medical devices. Such systems are required
to provide dependable operation for the user while dealing
with a large number of internal and external variabilities,
threats, and uncertainties in their lifetimes.
To provide such dependable operation, self-diagnosis tech-

niques are developed for early detection of degradation and
imminent failures, in order to maximize system life-cycle.
These techniques can be combined with unsupervised platform
self-adaptation to meet performance and safety targets. Self-
diagnosis techniques that are reactive may: 1) not be sufficient
to address catastrophic failures; or 2) take overly conservative
approaches that hinder performance.
For example, consider thermal management of an embedded

system-on-chip (SoC). One technique is to define a temper-
ature threshold and throttle performance [e.g., via dynamic
voltage-frequency scaling (DVFS)] when the threshold is
exceeded. This approach is reactive and must act conser-
vatively to prevent overheating. The conservative frequency
throttling may degrade performance potentially unnecessarily.
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If the temperature behavior could be predicted, a proactive
approach could manage the temperature without sacrificing
performance excessively. However, system dynamics, such as
temperature, can behave nonlinearly, and are hard to predict
without workload knowledge.
Machine learning techniques, such as neural networks, are

useful for identifying complex system dynamics. However,
neural networks are complex and difficult to deploy on power-
constrained embedded systems. In this letter, we propose
a failure prediction technique for embedded systems using
long short-term memory (LSTM), a type of recurrent neu-
ral network (RNN). We demonstrate the effectiveness of our
predictor for predicting temperature behavior with respect to a
threshold on an ODROID-XU3 [9] platform, making it a can-
didate for mitigating overheating failures and implementing
efficient control policies. We specify an implementation that
is realizible in hardware on low-power embedded systems. The
specific contributions are as follows.
1) We propose a method for hardware hazard prediction

called long short-term prediction model.
2) We propose an architecture and hardware implementa-

tion of nonintrusive prediction engine based on long
short-term prediction model to predict temperature
behavior in the embedded systems.

3) We evaluate the predictor using measured temperature
data from an ODROID XU-3.

II. BACKGROUND AND RELATED WORK

When modern SoCs operate near peak performance for
extended periods, power dissipation can increase the tempera-
ture to the point that adversely impacts the chip reliability. If
we can provide proactive thermal management, we can avoid
potentially dangerous execution scenarios. Proaction requires
prediction. A number of strategies have been proposed for on-
chip thermal prediction, and the methods can be classified into
two categories.
The first prediction method builds models based on mea-

sured temperature and power consumption [14], [15], [17],
[19], [21]. The second method builds the prediction model
indirectly using equations, without thermal measurements [4],
[5], [7]. However, there have been many successful appli-
cations of machine learning techniques employed in failure
detection or prediction of large-scale systems. With suf-
ficient sensor input, machine learning models can extract
complex or subtle dynamics, potentially resulting in accurate
predictions when applied to new execution scenarios. Failure
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prediction has been proposed using support vector machines
(SVMs) [3], [10], convolutional neural networks (CNNs) [16],
and a combination of techniques [8].
RNNs are naturally suited for learning temporal

sequences and modeling time series behaviors. RNNs
have been applied to predict various behavior in large-scale
systems [6], [13], [20]. Lima et al. [6] compared an RNN
solution with an LSTM solution and observed that LSTMs
significantly outperform RNNs in terms of accuracy.
In [2], [11], and [18], LSTMs are used in other domains

for time series predictions, such as water quality estima-
tion, stock transaction prediction, mechanical states, etc. The
authors compared the LSTM networks with alternatives, such
as backpropagation neural networks, online sequential extreme
learning machines, and support vector regression machines
(SVRMs), and demonstrated the superiority of LSTMs.

III. CONTRIBUTIONS

We propose a method for predicting runtime behavior in
hardware: the long short-term prediction engine. In this sec-
tion, we describe how our predictor is composed by walking
through our use-case: predicting runtime temperature behav-
ior on an embedded SoC. Our goal is to predict temperature
behavior such that critical thermal scenarios can be detected
in advance and avoided with a solution that can feasibly be
integrated in an embedded SoC. Our SoC consists of four
ARM A15 cores, with shared L2 cache connected via bus.
We measure total power and temperature of the entire core
cluster, as well as per-core utilization. To generate workloads,
we use a synthetic microbenchmark [12] that is configurable.
The microbenchmark is able to stress the architecture in a wide
range and we generated a “general-purpose” workload by exe-
cuting the microbenchmark in phases that exercised different
behavior in these various dimensions. We execute different
sequences on multiple cores to emulate different applications
to train the model and test its performance. The prediction
engine consists of two parts: 1) a short-term binary model;
and 2) a long-term regression model. The short-term binary
model makes precise predictions quickly, useful for subtle
changes, i.e., anticipating violations of a temperature thresh-
old. The long-term regression model can make a prediction
further in advance, useful to predict general behavior in less-
critical scenarios, i.e., predicting temperature trends in a safe
state.

A. Short-Term Binary Model

The short-term binary model is used to predict unwanted
behavior, i.e., constraint violation. In our case, in which, we
have a temperature threshold we do not want to violate, the
short-term binary model is utilized when the measured tem-
perature is nearing the threshold. In this scenario, a slight rise
in temperature will cause a failure (violation of constraint),
thereby, it is important to have a high recall rate. The recall
rate must be tuned carefully to balance accuracy and overhead.
1) Model Definition: Our initial short-term binary model is

defined as follows.
1) Input: Temperature, core utilization, power.

Fig. 1. Temperature data collected from the ODROID XU-3 executing a
combination of synthetic microbenchmarks.

Fig. 2. Temperature data amplified using sliding average amplification. We
focus on data above 85 ◦C (critical temperature).

2) Output: Probability of failure (after boundary limitation,
the model produces a binary result: “0” refers to normal
and number “1” refers to failure).

2) Model Training: Fig. 1 shows the measured temperature
data from the ODROID-XU3.1 We first isolate the data above
the critical point (85 ◦C) to use as the training data. Because
the range of the data is reduced, we amplify the changes of
data to increase its variation. When performing amplification
at runtime, we must consider constraints such as the real-
time hardware implementation and the short failure intervals.
We create a method called sliding average amplification to
efficiently preprocess data in order to increase variation and
applied it on the four features. The method takes local data
(five timesteps) and uses min–max normalization to amplify
the values. The following equations show the calculation of
sliding average amplification. D(t) refers to the feature value
at t and i refers to the number of timesteps defined as local
data

average(t) = 1
n

n∑

i=0

D(t − i) (1)

max(t) = MAX{D(t − i),D(t − i+ 1), . . . ,D(t)} (2)
min(t) = MIN{D(t − i),D(t − i+ 1), . . . ,D(t)} (3)

amplified(t) = D(t) − average(t)
max(t) − min(t)

× 100. (4)

Fig. 2 shows the amplified data along with the original. The
orange curve is the original data and the blue curve is the
amplified data.
3) Improved Loss Function: Our initial binary model still

has a significant issue: it is trained with imbalanced data.
Normal samples (i.e., noncritical temperatures) account for
nearly 99.5 % of the training data. Due to the low ratio of
failure samples (i.e., critical temperatures), the model is highly
confident in identifying critical samples, which is misleading.
We augment the classic binary cross-entropy loss function with
weights in order to increase model sensitivity to normal sam-
ples. y is the predicted value and ŷ is the actual value. The

1Our use-case system, containing the described SoC.
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weight factor α is determined empirically based on the rate of
failure samples in the training data

Loss = −(αy log ŷ+ (1 − α)(1 − y) log(1 − ŷ)) (5)

α = 0.992. (6)

4) Model Structure: We propose the simplest structure of
an RNN prediction model that provides the required accu-
racy in order to minimize the hardware overhead. The LSTM
internal structure is defined in the following equations. x refers
to the input features, h is the output result,W, b are the weights
and bias, and c are the intermediate variables

it = σ (Wxixt +Whiht−1 + bi) (7)

ft = σ (Wxf xt +Whf ht−1 + bf ) (8)

ot = σ (Wx0xt +Wh0ht−1 + b0) (9)

c̃t = tanh(Wxcxt +Whcht−1 + bc) (10)

ct = ft % ct−1 + it % c̃t (11)

ht = o % tanh(ct). (12)

Fig. 3 (black and blue) illustrates the architecture of the
proposed RNN/LSTM model which contains two RNN/LSTM
layers (the RNN and LSTM structure provide comparable
accuracy, shown in Section IV): one fully connected layer and
one binary classification layer based on sigmoid activation.
The input features are time sequences of temperature, per-
core utilization, and power. After calculation of time step t in
the first layer, the result is conveyed to step t+ 1 in the same
layer and the step t in the second layer. At the same time,
step t+ 1 data is added into the next step calculation. In each
RNN/LSTM layer, there are 8 time steps and 64 hidden layers.
In the last time step, the result is passed to a fully connected
layer and a sigmoid layer for classification. The output result
is the failure probability. When the value is greater than 0.9,
we define it as failure and output 1.

B. Long-Term Regression Model

The long-term regression model is used to predict behav-
ior in the normal state. In this state, temperature varies in
a large range depending on how the system is being exer-
cised. Our goal is to predict the temperature sufficiently in
advance to make runtime decisions in order to avoid critical
states completely while also optimizing performance. In order
to proactively avoid critical states without unnecessarily sacri-
ficing performance, it is necessary to ensure that the prediction
engine can be applied during normal execution. As the system
state is noncritical, precision can be sacrificed for universal-
ity. To this end, we build a regression model for long-term
prediction.
1) Model Definition:
1) Inputs: Temperature, power, per-core utilization.
2) Outputs: Temperature.
2) Model Training: In this case, we utilize a larger range of

training data (60 ◦C—85 ◦C). We observe temperature varia-
tion generally due to change in core utilization and operating
frequency. We categorize training workloads as follows: uni-
core, multicore, and shifting. We execute combinations of

Fig. 3. Integrated model structure. The structures are shared between the
short-term binary model and the long-term regression structure, depending on
which is active. Functionality and structure specific to the short-term binary
model is in blue, and specific to long-term regression model is in red.

synthetic benchmarks to compose our workloads. The bench-
marks vary in instructions-per-cycle (IPC), utilization, and
cache miss rate, exercising the processor in a wide range.
For unicore workloads, we first run each benchmark on

one core to emulate stable workload state. Then, we combine
multiple benchmarks and start them one by one to emulate
changing workload state on one core. For multicore workloads,
we assign different benchmarks on different cores and start
them simultaneously. For shifting workloads, we assign the
same benchmarks on different cores and start them at different
times.
Raw data collected from the ODROID-XU3 does not ini-

tially appear stable, making filtering essential.2 After trying
several filters to smooth the raw data and considering the
hardware feasibility, we conclude that the data preprocessed
by recursion average filter produces the most accurate model.
Filter sizes of each input are determined empirically.
3) Model Structure: LSTM has the nature of storing long-

term memory, therefore, to deal with the long-term cases,
we choose LSTM structure for our model. Compared to a
short-term model, increased historical data is needed to ensure
precision when predicting a large temperature range far in
advance. This leads to increased model time step and exe-
cution time. Therefore, we apply a stateful LSTM theory in
the cell structure, fitting output cell state as the initial state. In
this way, the structure can remember long-term memory and
better adapt.
Fig. 3 (black and red) illustrates the architecture of the

proposed LSTM model. The input features are time sequences
of temperature, per-core utilization, and power. After calcula-
tion of step t, the cell state is recycled to next term calculation.
There are 8 time steps in the LSTM layer and 64 hidden lay-
ers in each cell. We need 16 previous steps for prediction,
therefore, the cell state will be passed for initialization every
second iteration.

C. Hardware Implementation Framework

To integrate the short- and long-term models, we specify
a single shared-hardware implementation that supports all of
Fig. 3. A judgement module receives temperature values from

2Data is stored in a userspace buffer, sampled from sensors via kernel
drivers every 5 ms.
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Fig. 4. Sample prediction of one workload. Binary events (i.e., experiencing
critical temperature) are predicted and observed.

the sensor and decides which model to activate. If temperature
is ≥85 ◦C, the short-term prediction model is activated and its
weights are loaded into the model structure. If it is <85 ◦C,
the long-term prediction model is activated.
To reduce the structural overhead, the core LSTM and fully

connected layers are partially shared, composed with the least
common parameters (LSTM: 8 time steps, 64 hidden layers;
fully connected: 4 hidden layers). The excess time steps can
be stored in a state buffer and fed back (Fig. 3).
Using the LSTM implementation of Chang et al. [1], we

calculate 12960 FFs, 7201 LUTs, and 16 BRAM overhead.
The LSTM hardware is 20 times faster than the Zync ZC7020
ARM-based hard-core processor (4.4 µs per inference), 44
times more power efficient than a software implementation
with the Zync ZC7020 (performance-per-watt).

IV. EVALUATION

We evaluate the effectiveness of both our short-term binary
model and long-term regression model separately, using addi-
tional measured data from the ODROID-XU3. The measured
data consists of the model input data measured at 5 ms
intervals. We perform sensitivity analyses of LSTM/RNN
models for different parameters and structures.

A. Short-Term Binary Model Evaluation

1) Evaluation Metrics: The output of the short-term binary
model is a binary classification. We evaluate the model by
average precision score (AP) and F1-score. The average
precision score summarizes a precision–recall curve as the
weighted mean of precision achieved at each recall thresh-
old, with the increase in recall from the previous threshold
used as the weight

AP =
∑

n

(Rn − Rn−1)Pn (13)

where Pn and Rn are the precision and recall at the nth thresh-
old. F1-score is a measure of a test’s accuracy and is defined
as the weighted harmonic mean of the precision and recall of
the test. F1-score conveys a balance between precision (P) and
recall (R)

F1 = 2 × P × R
P+ R

. (14)

2) Evaluation Results: The model can predict up to 8 steps
(40 ms) ahead. The F1-score is 0.43 and the AP score is
0.78. The latency of short-term binary model is 0.088 ms
(based on execution in Python, no hardware acceleration).
Fig. 4 shows the prediction result of one dataset. The orange
shows measured failures and the blue shows predicted failures.
Observe that there are a number of mispredicted failures (false
positives). This is preferable to false negatives (nonpredicted

(a)

(b)

(c)

(d)

(e)

Fig. 5. Sensitivity analysis of model structure. (a) Comparison for number
of network layers. (b) Comparison for number of time steps considered in the
network. (c) Comparison for number of neurons. (d) Comparison for number
of decimal places (precision) used in the model. (e) Comparison for various
degrees of prediction (i.e., how many steps in advance). One time step in our
case is 5 ms.

failures), as we are trying to anticipate and potentially avoid
undesirable system state. In fact, in the experiment shown in
Fig. 4, the recall value is 1, which means that all measured
failures are predicted—i.e., we have no false negatives.

a) Model structure tradeoffs: To ensure the practical
utility of our hardware predictor in low-power embedded
systems, it is important to balance precision and complexity.
Considering the feasibility constraints, we explore the impact
of several hyper-parameters and layer structures on the model
performance. Parameters include RNN type, model structure,
number of hidden neurons, decimal digits, and number of
time steps. We evaluate the RNNs and LSTMs based on AP,
F1, recall (performance), runtime, and degree of prediction.
Fig. 5 shows how different hyperparameters affect the model
performance. The left y-axes measure AP score, F1-score, and
recall score. The right y-axes measure the time it takes to gen-
erate one prediction. The solid lines refer to the model with
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Fig. 6. LSTM prediction accuracy for 64-step (320 ms) prediction, compared
to measured behavior.

LSTM layers and the dotted lines refer to the model with
RNN layers. Fig. 5(a) shows how the number and type of lay-
ers affect the performance. It indicates that LSTM has better
accuracy. Prediction time increases with the number of lay-
ers. Therefore, it is best to apply 2-layer LSTM. Fig. 5(b)
shows how the number of previous timesteps affects the
performance. After five timesteps, the accuracy plateaus and
prediction time increases, therefore, using five timesteps is the
best choice. Fig. 5(c) shows how the number of neurons affects
the performance. Accuracy pleateus beyond 32 neurons, thus
we choose 32 neurons in the network. Fig. 5(d) shows how
the decimal digit influences performance. Two digits is the
minimum number to maintain accuracy. Fig. 5(e) shows how
accuracy degrades as the prediction moves further in advance.

B. Long-Term Regression Model

For the regression model, we use mean absolute error
(MAE) to evaluate the accuracy, where yi is the predicted
temperature k steps in advance (Pi), and ŷi is the measured
temperature at step i+ k (Mi+k)

MAE = 1
n

n∑

i=1

|Pi − Mi+k|. (15)

Fig. 6 shows a sample time plot of one experiment. The
orange dashed line shows the measured temperature 64 steps
(320ms) in advance. The latency of the long-term regres-
sion model is 0.108 ms (no hardware acceleration). The blue
is the predicted temperature in realtime. The MAE achieved
by the predictor for 320 ms in advance is 0.018. The high-
est accuracy achieved by existing prediction methods is 0.024
MAE [17], and the longest prediction step is 500 ms [4], which
we improve by 25% and 36%, respectively.

V. CONCLUSION

We proposed a new LSTM-based method for hardware
hazard prediction called long short-term prediction engine.
The prediction engine uses two models to provide prediction
of both urgent and normal conditions, which have different
prediction requirements. The integrated model is trained and
tested on data collected on the ODROID-XU3 platform. The
short-term model makes precise binary prediction near crit-
ical conditions 40 ms in advance, and reaches 0.78 average
precision score. The long-term model outputs temperature val-
ues up to 320 ms in advance with an MAE of 0.018. We
simplify the structure of the network and hyperparameters to

find one suited for hardware realization, sharing parts of the
network and automatically switching between the two models
according to the temperature.
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