
Custos Secrets: a Service for Managing User-Provided Resource
Credential Secrets for Science Gateways

Isuru Ranawaka
Cyberinfrastructure Integration

Research Center,
Indiana University

USA
isjarana@iu.edu

Nuwan Goonasekera
Melbourne Bioinformatics,
University of Melbourne

Australia
ngoonasekera@unimelb.edu.au

Enis Afgan
Department of Biology,

Johns Hopkins University
USA

enis.afgan@jhu.edu

Jim Basney
National Center for Supercomputing

Applications,
University of Illinois

USA
jbasney@illinois.edu

Suresh Marru
Cyberinfrastructure Integration

Research Center,
Indiana University

USA
smarru@iu.edu

Marlon Pierce
Cyberinfrastructure Integration

Research Center,
Indiana University

USA
marpierc@iu.edu

ABSTRACT
Custos is open source software that provides user, group, and re-
source credential management services for science gateways. This
paper describes the resource credential, or secrets, management
service in Custos that allows science gateways to safely manage
security tokens, SSH keys, and passwords on behalf of users. Sci-
ence gateways such as Galaxy are well-established mechanisms for
researchers to access cyberinfrastructure and, increasingly, couple
it with other online services, such as user-provided storage or com-
pute resources. To support this use case, science gateways need to
operate on behalf of the users to connect, acquire, and release these
resources, which are protected by a variety of authentication and ac-
cess mechanisms. Storing and managing the credentials associated
with these access mechanisms must be done using “best of breed”
software and established security protocols. The Custos Secrets Ser-
vice allows science gateways to store and retrieve these credentials
using secure protocols and APIs while the data is protected at rest.
Here, we provide implementation details for the service, describe
the available APIs and SDKs, and discuss integration with Galaxy
as a use case.

CCS CONCEPTS
• Security and privacy ! Access control; Distributed systems se-
curity; Web application security.

KEYWORDS
secrets management, science gateways, Galaxy, cyberinfrastructure,
cybersecurity, open source software, custos

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC ’22, July 10–14, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9161-0/22/07. . . $15.00
https://doi.org/10.1145/3491418.3535177

ACM Reference Format:
Isuru Ranawaka, Nuwan Goonasekera, Enis Afgan, Jim Basney, Suresh
Marru, and Marlon Pierce. 2022. Custos Secrets: a Service for Managing
User-Provided Resource Credential Secrets for Science Gateways. In Practice
and Experience in Advanced Research Computing (PEARC ’22), July 10–14,
2022, Boston, MA, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3491418.3535177

1 INTRODUCTION
Science gateways hide complexities in accessing scienti�c com-
puting and data infrastructure, providing user interfaces that are
more task-oriented and simpler to use [9]. Traditionally, this meant
a graphical user interface in front of one or more HPC clusters.
More recently, with the broader adoption of cloud computing and
specialized services or APIs, science gateways increasingly bro-
ker interactions between multiple third-party services on behalf of
their users as well as managing secure connections to community
accounts on remote HPC resources. This means that users need to
be able to connect their private drop boxes, access their own virtual
machines, or import data securely from their own sources into their
science gateway account. Enabling this necessitates that science
gateways securely manage the secret credentials to those exter-
nal resources on behalf of the users and support seamless access.
However, managing such user secrets is a challenging task because,
unlike passwords that can be one-way encrypted, these secrets
need to be stored in a readable fashion by the gateways framework.
This often means storing unencrypted values in a database. This
introduces systemic risk in the event of a server compromise, as
the data is not encrypted at rest, there is no audit trail of secret
access, and it is not possible to rotate or revoke secrets.

The Galaxy application [8] is a popular open source science
gateway framework used primarily for performing bioinformatics
analyses. Galaxy supports the execution of jobs across numerous
resources, including HPC clusters and clouds, and handles all as-
pects of data staging. The application provides access to hundreds of
domain-speci�c tools, has graphical support for building work�ows,
and facilitates sharing of research objects between users. There
are large production deployments for Galaxy in the United States

https://orcid.org/0000-0002-0139-0640
https://doi.org/10.1145/3491418.3535177
https://doi.org/10.1145/3491418.3535177
https://doi.org/10.1145/3491418.3535177

PEARC ’22, July 10–14, 2022, Boston, MA, USA Ranawaka and Goonasekera, et al.

(https://usegalaxy.org/), European Union (https://usegalaxy.eu/),
and Australia (https://usegalaxy.org.au/) that support about 50,000
annual users executing several million jobs each year. There are
more than 150 additional public Galaxy deployments focused on
speci�c scienti�c subdomains that are maintained by universities
and research groups around the world. With the growth in diversity
of uses and evolution of online services, Galaxy users increasingly
need to connect their accounts to private or protected resources.
Examples include connecting their Galaxy workspace to private
resources, such as buckets on Amazon S3 or virtual machines pro-
cured on Jetstream [7], as well as accessing password-protected
data services, such as CloudStor or Basespace. However, Galaxy
has thus far not had a secure mechanism for handling such secrets,
relying on unencrypted user preferences or simply not enabling
support for tools requiring authentication.

Inspired by the Galaxy use case, as part of the Custos Project [11],
we built a secrets management service that science gateways can
use to securely handle user-provided secrets. The Custos project
(https://usecustos.org/) develops open source software and oper-
ates a suite of managed services that help science gateways handle
federated user authentication, identity management, groupmanage-
ment, and now secrets. The Custos Authentication Service brokers
federated user identity between more than 4,500 identity providers
(IdPs) and science gateways via CILogon [1]. The service allows
users to use their home institution or online social identity to access
science gateways while minimizing implementation and manage-
ment details from the science gateway developers. The Groups
Management Service allows users to create groups and manage
group membership, which can be used for resource sharing. The
goal of Custos is to integrate these capabilities into end-to-end
science gateway usage scenarios. A particularly useful scenario is
sharing secrets amongst group members. For example, a professor
can share access to cloud credentials with students without ever
disclosing the secrets in plain text.

The Custos Secrets Service is a managed service that securely
stores and controls access to user tokens, passwords, SSH keys, and
key-value pairs. The Secrets Service is built on top of the HashiCorp
Vault secrets engine and provides highly secured secret storage with
strong encryption algorithms. The Secrets Service can be accessed
via a REST API or Python and Java SDKs. The Secrets Service o�ers
a holistic user experience where authentication, secrets, and group
access controls are uniformly managed.

With the end of support of the Globus Toolkit and X.509 proxy
certi�cates, there is a critical need for science gateways to migrate
from X.509 speci�c approaches like the now-deprecated MyProxy
and migrate to approaches that support multiple modern creden-
tial types. Building on HashiCorp Vault enables management of
multiple types of credentials via widely supported open source soft-
ware. The original use case that motivated MyProxy, namely the
need to bridge from browser-based authentication to non-browser
authentication methods used by HPC clusters and other computa-
tional resources, still exists. However, science gateways now need
a solution that bridges from federated campus (browser-based) au-
thentication, via InCommon, to current methods such as OAuth
tokens and SSH keys rather than X.509 proxy certi�cates.

Figure 1: (a) Sequence diagram for message �ow for storing
secrets in Custos. (b) Implementation and deployment of se-
crets management service.

The overall Custos-managed service is a multi-tenanted deploy-
ment of the open source Custos software operated by the Cyber-
infrastructure Integration Research Center, part of the Pervasive
Technology Institute at Indiana University (IU). The service is de-
ployed on IU’s Intelligent Infrastructure in the data center facilities
on the Bloomington and Indianapolis campuses, providing physical
security and geographically distributed failover. The services have
gone through a security review as well as a penetration testing
procedure by TrustedCI.org sta�.

2 CUSTOS SECRETS SERVICE
ARCHITECTURE

Figure 1 (a) provides a sequence diagram depicting the message
�ow of storing a secret in the Custos Secrets Service. Prior to the
steps shown, a user of a client gateway has authenticated through
Custos and obtained an OAuth2 access token, as described in [11].
First, the Secrets Service authorizes requests using OAuth2 access
tokens obtained in this step. Custos uses these tokens to identify
a particular tenant gateway and the gateway’s user. Second, it
calculates metadata such as timestamps and internal secret IDs.
Third, the secret is stored in a HashiCorp Vault deployment co-
located with the Secrets Service, and the calculated metadata are
stored in a separate co-located database. Finally, the service returns
a querying token to the user of the client gateway.

Figure 1 (b) depicts the implementation and deployment archi-
tecture of the Custos Secrets Service. Custos provides REST end-
points and Python and Java SDKs to connect to the Custos Se-
crets Service. Custos services are implemented as gRPC services
(https://grpc.io/), and internal communications use gRPC client
stubs. REST endpoints are exposed as public endpoints and im-
plemented using an Envoy Proxy (https://www.envoyproxy.io/),
which provides REST-to-gRPC transcoding. Python and Java SDK
are implemented on top of generated gRPC client stubs; bindings
and SDKs for other programming languages can be generated
(https://grpc.io/docs/languages/). All Custos services are imple-
mented and deployed according to the microservices architecture
following cloud native practices [11]. The Custos microservices are
deployed on a Kubernetes cluster under a Custos namespace. We
use Rancher [2] and helm charts [3] to con�gure and manage the
Kubernetes cluster deployment.

We have chosen Vault for secret storage due to its capabilities
such as providing strong encryption algorithms, �exible deploy-
ment options, secure communication between vault services, and
pluggable data storage. Custos provides gateway-speci�c services
on top of Vault. We have created a highly available Vault service de-
ployment as a part of the Custos deployment with the HashiCorp’s

Custos Secrets: a Service for Managing User-Provided Resource Credential Secrets for Science Gateways PEARC ’22, July 10–14, 2022, Boston, MA, USA

Consul as the database. All Vault APIs are restricted for internal
communications and only Custos Services can communicate with
internal vault servers. External clients are forbidden to directly
communicate with Vault APIs.

Building on Vault, the Custos Secrets Service provides capabili-
ties such as controlled access to secrets for users and user groups.
The service also maintains di�erent levels of isolation to separate
gateway operator-level secrets, user group-level secrets, and indi-
vidual user-level secrets. Furthermore, the Custos Secrets Service
captures essential usage metadata and stores them in a separate
database. This enables logging, auditing, and observability capabili-
ties for gateways without exposing the secrets. The Custos Secrets
Service manages two secret engines for gateways, one for opera-
tional secrets and one for administrative secrets. Administrative
secrets are created inside the Custos Secrets Service to manage
Custos’s internal communications between Keycloak, CILogon or
Vault APIs. These secrets are not visible to end users. Operational
secrets are stored by end users directly within the Custos Secrets
Service.

The Custos Secrets Service provides APIs to store secrets as key
value pairs, generate and store SSH keys, and store certi�cate and
password credentials. These API methods are typically used by
gateway developers (such as Galaxy), not by end users. [5] lists
the REST endpoints. These APIs are designed for general purpose
applications and can be adapted as required. All endpoints support
GET, PUT, POST, and DELETE operations, and each request must
contain metadata related to request routing and authorization.

In addition to basic key-value storage, Custos supports SSH key
generation using Java SSH libraries. Client gateways can request
a new SSH key or store existing SSH keys using the following
endpoint. See [5] for an overview of these methods. The returned
token can be used to fetch the generated or stored SSH keys. Similar
endpoints can be used to store and fetch X509 certi�cates.

In addition to REST endpoints, Custos provides language bind-
ings for Python and Java clients, which are based on generated
gRPC client stubs. [4] describes how to use the Custos Python SDK
to store a secret in Custos. Once authenticated to the Custos services
through “IdentityManagementClient” an access token is obtained
to use with the ResourceSecretManagementClient (“Custos Secrets
Service”) APIs. The Custos Service authorizes the user and executes
relevant secret management methods.

3 GALAXY USE CASES AND INTEGRATION
We demonstrate the utility of the Secrets Service via integration
with the Galaxy application. To address the problems described
in the introduction, we have added integration with the Secrets
Service, which allows sensitive information to be securely passed
between Galaxy and Custos and subsequently made available to
integrated tools or data sources. This allows Galaxy users to provide
a secret in the Galaxy interface and have Galaxy use that secret to
access services requiring authentication. In turn, Galaxy will act
on behalf of the user and automatically handle data retrieval or
storage or, in the future, compute resource procurement and release
(Figure2).

Figure 2: Galaxy integration with Custos to obtain secrets
such as access tokens to integrate with user-provided third-
party services.

Figure 3: (a) User preferences section of the Galaxy user pro-
�le page allowing users to supply and securely store their se-
crets for accessing speci�c services. (b) With secrets stored
for speci�c services, namely AWS S3 and Dropbox.com in
the �gure, a user is able to browse those data repositories
from within Galaxy and import data into their workspace.

Galaxy supports a notion of user preferences as key-value pairs
that gather arbitrary user settings and can be made available else-
where in Galaxy (see Figure 3). These settings can now include
secrets such as API access keys for a cloud provider, a username
and password for an online database, or an expiring service account
token that can be automatically renewed. Once the user provides
secrets, they use the relevant tool in Galaxy and select an appropri-
ate value from the drop-down menu that is automatically populated
from their preferences. Meanwhile, Galaxy automatically handles
the retrieval of the necessary values from Custos and supplies it to
the service using secure protocols.

To enable this, we have enhanced the Galaxy user preference
mechanism to read from and write speci�c properties to Custos. In
Galaxy, user preference properties are annotated with a type in the
appropriate con�guration �le. We have enhanced the “password”
type to use the Secrets Service as the data store, making it a se-
cure �eld. We have also introduced a new type of user preference
property called “secret.” The key di�erence is that the type “pass-
word” results in the client UI rendering a password �eld, with the
password value being accessible to the client. However, the type
“secret” introduces an additional layer of security by making the
�eld write-only for the client, meaning that the unencrypted value
cannot be retrieved by the client, and is available only to Galaxy’s
backend code.

A second place where we have integrated the Secrets Service is
with Galaxy’s �le sources. File source is an abstraction in Galaxy
that enables it to interface with external �le systems and �le sys-
tem–like databases. File sources allow a user to browse data reposi-
tories as well as import and export data. Many data sources require
login credentials for a particular �le system. We have enhanced �le
sources to be able to directly access the values from Custos Secrets,
enabling access to private repositories.

PEARC ’22, July 10–14, 2022, Boston, MA, USA Ranawaka and Goonasekera, et al.

4 RELATEDWORK
Credential management systems include MyProxy, Java Keystore,
LDAP implementations, and HashiCorp Vault. MyProxy is an X.509
credential management system that is primarily used in grid com-
puting. XSEDE uses MyProxy as a main credentialing mechanism
for users with an approved computational allocation. MyProxy
manages only X.509 credentials, hence, an alternative credential
management system is required to handle credentials such as SSH
keys and OAuth tokens such as SciTokens [12]. Besides, MyProxy
does not have any user credentials to shared community accounts
mapping, which is required by many science gateway use cases.
OAuth for MyProxy (OA4MP) provides an OAuth 2.0 interface to
MyProxy but is still X.509 speci�c without support for SSH keys
and other needed credential types. The Java Keystore is a popular
mechanism for storing locally accessed keys. OpenLDAP is another
solution for managing credentials. However, science gateways need
to handle heterogeneous credentials types. HashiCorp Vault is an
open source product to secure, store, and control access tokens,
and to protect secrets and other sensitive data. The HashiCorp
Vault should have its own deployments for applications. For exam-
ple, WLCG work�ows use HashiCorp Vault for managing security
tokens [6].

5 CONCLUSION AND FUTUREWORK
The Custos project has enabled a cross-gateway software collab-
oration in which we can develop core open source software that
integrates the best available providers or services, such as CILogon,
Keycloak, and Vault, into a single framework that encapsulates
end-to-end science gateway use cases.

Using this approach, we have integrated Custos with other sci-
ence gateway systems, notably the HathiTrust Research Center’s
Analytics Gateway [10]. The Custos collaboration enables us to
collectively tackle new use cases, such as securely integrating user-
provided resources as described here. Going forward, our primary
e�orts will be to increase awareness of these features in the Galaxy
community and expand the availability of these services to other
interested gateways and potentially other types of cyberinfrastruc-
ture.

ACKNOWLEDGMENTS
This work was in part supported by the NSF grants 1840003 and
2005506, and NIH grant U24HG006620.

REFERENCES
[1] Jim Basney, Heather Flanagan, Terry Fleury, Je�Gaynor, Scott Koranda, and Benn

Oshrin. 2019. CILogon: Enabling Federated Identity and Access Management for
Scienti�c Collaborations. PoS ISGC2019 (2019), 031. https://doi.org/10.22323/1.
351.0031

[2] Steve Buchanan, Janaka Rangama, and Ned Bellavance. 2020. Deploying and
using Rancher with Azure Kubernetes service. In Introducing Azure Kubernetes
Service. Springer, 79–99.

[3] CNCF. 2022. Helm. Retrieved April 8, 2022 from https://helm.sh/
[4] Custos. 2022. Python SDK. Retrieved April 8, 2022 from https://cwiki.apache.

org/con�uence/display/CUSTOS/Use+Custos+Python+SDK
[5] Custos. 2022. REST Endpoints. Retrieved April 8, 2022 from https://cwiki.apache.

org/con�uence/display/CUSTOS/Use+Custos+REST+Endpoints
[6] Dave Dykstra, Mine Altunay, and Jeny Teheran. 2021. Secure Command Line

Solution for Token-based Authentication. In EPJ Web of Conferences, Vol. 251.
EDP Sciences, EDP Sciences, France, 02036. https://doi.org/10.1051/epjconf/
202125102036

[7] David Y Hancock, Jeremy Fischer, John Michael Lowe, Winona Snapp-Childs,
Marlon Pierce, Suresh Marru, J Eric Coulter, Matthew Vaughn, Brian Beck, Nirav
Merchant, et al. 2021. Jetstream2: Accelerating cloud computing via Jetstream.
In Practice and Experience in Advanced Research Computing. 1–8.

[8] Vahid Jalili, Enis Afgan, Qiang Gu, Dave Clements, Daniel Blankenberg, Jeremy
Goecks, James Taylor, and Anton Nekrutenko. 2020. The Galaxy platform for ac-
cessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic
acids research 48, W1 (2020), W395–W402.

[9] Katherine A Lawrence, Michael Zentner, Nancy Wilkins-Diehr, Julie A Wernert,
Marlon Pierce, Suresh Marru, and Scott Michael. 2015. Science gateways today
and tomorrow: positive perspectives of nearly 5000 members of the research
community. Concurrency and Computation: Practice and Experience 27, 16 (2015),
4252–4268.

[10] Isuru Ranawaka, Samitha Liyanage, Dannon Baker, Alexandru Mahmoud, Juleen
Graham, Terry Fleury, Dimuthu Wannipurage, Yu Ma, Enis Afgan, Jim Basney,
Suresh Marru, and Marlon Pierce. 2021. Science Gateway Integration Examples
with the Custos Security Service. In 8th International Workshop on HPC User
Support Tools (HUST). Zenodo, 9 pages. https://doi.org/10.5281/zenodo.5749727

[11] Isuru Ranawaka, Suresh Marru, Juleen Graham, Aarushi Bisht, Jim Basney,
Terry Fleury, Je� Gaynor, Dimuthu Wannipurage, Marcus Christie, Alexan-
dru Mahmoud, et al. 2020. Custos: Security middleware for science gate-
ways. In Practice and Experience in Advanced Research Computing. 278–284.
https://doi.org/10.1145/3311790.3396635

[12] Alex Withers, Brian Bockelman, Derek Weitzel, Duncan Brown, Je� Gaynor, Jim
Basney, Todd Tannenbaum, and Zach Miller. 2018. SciTokens: Capability-Based
Secure Access to Remote Scienti�c Data. In Proceedings of Practice and Experience
on Advanced Research Computing (Pittsburgh, PA, USA) (PEARC ’18). ACM, New
York, NY, USA, Article 24, 8 pages. https://doi.org/10.1145/3219104.3219135

https://doi.org/10.22323/1.351.0031
https://doi.org/10.22323/1.351.0031
https://helm.sh/
https://cwiki.apache.org/confluence/display/CUSTOS/Use+Custos+Python+SDK
https://cwiki.apache.org/confluence/display/CUSTOS/Use+Custos+Python+SDK
https://cwiki.apache.org/confluence/display/CUSTOS/Use+Custos+REST+Endpoints
https://cwiki.apache.org/confluence/display/CUSTOS/Use+Custos+REST+Endpoints
https://doi.org/10.1051/epjconf/202125102036
https://doi.org/10.1051/epjconf/202125102036
https://doi.org/10.5281/zenodo.5749727
https://doi.org/10.1145/3311790.3396635
https://doi.org/10.1145/3219104.3219135

	Abstract
	1 Introduction
	2 Custos Secrets Service Architecture
	3 Galaxy Use Cases and Integration
	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

