
A Framework to capture and reproduce the Absolute State of
Jupyter Notebooks

Dimuthu Wannipurage
dwannipu@iu.edu

Cyberinfrastructure Integration
Research Center, Pervasive

Technology Institute,
Indiana University

Bloomington, IN, USA

Suresh Marru
smarru@iu.edu

Cyberinfrastructure Integration
Research Center, Pervasive

Technology Institute,
Indiana University

Bloomington, IN, USA

Marlon Pierce
marpierc@iu.edu

Cyberinfrastructure Integration
Research Center, Pervasive

Technology Institute,
Indiana University

Bloomington, IN, USA

ABSTRACT
Jupyter Notebooks are an enormously popular tool for creating and
narrating computational research projects. They also have enor-
mous potential for creating reproducible scienti�c research artifacts.
Capturing the complete state of a notebook has additional bene�ts;
for instance, the notebook execution may be split between local
and remote resources, where the latter may have more powerful
processing capabilities or store large or access-limited data. There
are several challenges for making notebooks fully reproducible
when examined in detail. The notebook code must be replicated
entirely, and the underlying Python runtime environments must be
identical. More subtle problems arise in replicating referenced data,
external library dependencies, and runtime variable states. This
paper presents solutions to these problems using Juptyer’s standard
extension mechanisms to create an archivable system state for a
running notebook. We show that the overhead for these additional
mechanisms, which involve interacting with the underlying Linux
kernel, does not introduce substantial execution time overheads,
demonstrating the approach’s feasibility.

CCS CONCEPTS
• Software and its engineering ! Software design engineer-
ing; Open source model; • Applied computing ! Enterprise
datamanagement; • Information systems!Datawarehouses.

KEYWORDS
Jupyter Notebooks, Apache Airavata, Reproducible Science

ACM Reference Format:
Dimuthu Wannipurage, Suresh Marru, and Marlon Pierce. 2022. A Frame-
work to capture and reproduce the Absolute State of Jupyter Notebooks.
In Practice and Experience in Advanced Research Computing (PEARC ’22),
July 10–14, 2022, Boston, MA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3491418.3530296

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC ’22, July 10–14, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9161-0/22/07. . . $15.00
https://doi.org/10.1145/3491418.3530296

1 INTRODUCTION
Project Jupyter’s notebook format [14] has revolutionized interac-
tive computing and has become ubiquitous among researchers using
machine learning techniques and in scienti�c computing commu-
nities. Jupyter’s simple-to-use user interfaces, ease of deployment,
rich visualization support, and support for multiple programming
languages have nurtured a large user community with a diverse
set of use cases, from simple Python code execution to complicated
neural network simulations in high-performance computing envi-
ronments. When code execution and visualization are combined
with embedded textual descriptions, the Jupyter ecosystem for com-
puting and data analysis can be viewed as an infrastructure for
providing narration for the computing and data life cycle as stories
[7, 19]. This storytelling is essential for reproducible science [17]
or, even better or re-creatable, or tweakable science [2].

The high user adoption of Jupyter has resulted in a large ecosys-
tem supporting multiple programming languages through kernel
extensions and integration into users’ development environments.
Commercial cloud platform integrations such as Google Colabora-
tory [6] and a GitHub-based notebook repository MyBinder have
fostered user sharing and collaboration of notebooks. Community
support for popular data platforms has also enabled notebook reuse
[13].

Reproducibility is an essential aspect in any science discipline
and sharing someone’s work through a notebook may be meaning-
ful only if others can reproduce their work. While there has been
a signi�cant amount of work done in making Jupyter Notebooks
con�gurable and accessible to resonate with the user’s require-
ments, there has been signi�cantly less work to make notebooks
reproducible across various platforms. We have identi�ed several
areas where reproducing a notebook execution is critical based on
these considerations.

2 USE CASES FOR PORTABLE AND
REPRODUCIBLE NOTEBOOKS

2.1 Reproducing Code from Scienti�c
Publications

Software is a critical component of science, and reproducibility
[10, 17, 18], and scholarly articles are increasingly referencing
Jupyter Notebooks with code segments and visualizations. However,
it is very cumbersome if not impossible to reproduce the published
bundle of notebooks and associated code and data. Few challenges
include recreating implicit data and identical runtime environments,

https://doi.org/10.1145/3491418.3530296
https://doi.org/10.1145/3491418.3530296

PEARC ’22, July 10–14, 2022, Boston, MA, USA Wannipurage et al.

including a cascade of runtime library dependencies. Notebook ker-
nels such as IPython rely on local Python virtual environments.
Notebooks also interact with accessible external computational and
data resources that are not easily translatable to shared collabo-
rators. Out-of-band communication with authors of notebooks is
necessary to fully reproduce the combination of data, dependencies,
and runtime environment of the published work. Conducting these
steps is a non-trivial and time-consuming process.

2.2 Sharing Classroom Learning Material
Jupyter Notebooks are a popular mechanism for providing class-
room learning materials. Examples such as [3] allow instructors
to share notebooks, and students can execute them on their lap-
tops during a classroom session. There are several cases when this
process becomes signi�cantly complicated. Students’ laptops will
have various operating system types and versions. Some may have
di�erent Python runtime versions, which may be incompatible with
the instructor’s notebook version. In some cases, instructors might
need to use external data �les as inputs for the code fragments in
the notebook, and these also need to be shipped with the notebook
code.

2.3 Transferring Local Computations to
Between Local and High-Performance
Computing Environments

Researchers have access to a scale of computing power from laptops
to high-end supercomputers and computational clouds. With the
profound usage of Jupyter, it is essential to support notebook porta-
bility across these resources without fragmenting data and code too
much. As an illustrative use case, a researcher might start coding
a notebook on a workstation, but training a higher-order neural
network may necessitate a computer with a powerful GPU, large
memory, and access to large data sets. Potentially, post-processing
analysis may be bought back to a local laptop. In other cases, por-
tions of the notebook may need to be run on a computer containing
data that cannot be easily transferred to another place due to higher
data volume or low network bandwidth. The data may need to re-
main under speci�c security controls in some cases.

These mix and match executions within a single Jupyter Note-
book are not supported in the standard distribution. Some work has
been done in this area [4] to customize the vanilla iPython kernel
and export the code execution to remotely hosted iPython kernel
environments. However, these approaches require from the user a
signi�cant amount of e�ort and expertise in distributed systems. In
addition, these approaches focus on keeping the Python runtime
context synced between external kernel environments but do not
address any data-level dependency with the code fragments in the
notebook. For example, when developing a neural network in a
notebook, we use the training and testing datasets available in the
local disk. Supposing others need to replicate the same environment,
relevant input �les must be manually selected. Then the notebook
code must be updated with relative �le paths and distributed with
the notebook.

2.4 Running on On-Demand or Time-Bound
Computing Infrastructure

Preemptable infrastructures like Amazon Spot Instances [1] or
HPC shared resources with bounded maximum wall time do not
guarantee the complete end-to-end execution of a long-running
notebook. Users may also need to stop the notebook execution
and create a snapshot to resume it from the last checkpoint at
another time by reloading all the data and local context of the
Jupyter session. In such scenarios, having a feature to create a
comprehensive snapshot of the runtime saves time and computing
resource utilization. When Colab Notebooks [6] expire after the
threshold, the platform kills the notebook, and all the local states
are lost unless the user manually serializes and uploads it to Google
Drive. It would be bene�cial to run the notebook from the last
stopped checkpoint even after the original session has expired in
all of these cases.

3 REPRODUCIBILITY OF NOTEBOOKS
Jupyter Notebooks inherently are sharable, but several missing
components hinder the process of reproducing results in a di�erent
environment. Restarting a running notebook in a di�erent environ-
ment can be made possible by �ve essential requirements:

(1) The code within the notebook is portable.
(2) Python runtimes should be identical.
(3) Replicate referenced local data.
(4) External library dependencies should be replicated or in-

stalled if missing.
(5) Python runtime variables should be re-initialized.

Requirements 1 and 2 are external states which do not depend
on the execution of the notebook. Requirements 3, 4, and 5 are
internal to the Python runtime and the order of cell execution of
the notebook (Figure 1). If any of the above �ve requirements are
not met, the replicated environment is not identical to the source
environment. In most sharing solutions [23, 24] we can see that
only requirements 1 and 2 are satis�ed but not requirements 3, 4,
and 5.

In this paper, we propose and implement a framework for Jupyter
Notebooks to satisfy all �ve requirements when replicating the state
of a running notebook. In addition to the functional requirements,
our solution is designed to prioritize the ease of use for users so
that they do not have to put any more e�ort into making this work
than running a vanilla notebook environment.

4 A NOVEL APPROACH TO CAPTURE THE
ABSOLUTE STATE OF NOTEBOOKS

To achieve the absolute state capture of a notebook, we primar-
ily utilized the Jupyter Magic Extension support provided by the
IPython kernel. In addition, we made modi�cations to the iPython
kernel to integrate with external services to capture information
that cannot be directly captured from the kernel itself. We did not
focus on steps 1 and 2 in the framework development as they are
tightly coupled with the deployment. Current framework imple-
mentation, which is relevant to the scope of this paper, is available
in the GitHub repository [25].

Recreatable Jupyter Kernel PEARC ’22, July 10–14, 2022, Boston, MA, USA

Figure 1: Components associatedwith the full state of a JupyterNotebook. External states are not associatedwith the execution,
and internal states depend on the code and execution order of the notebook.

4.1 Capturing Data Dependencies
Suppose a Python code in a Jupyter Notebook uses a �le in the local
�le system for reading or writing purposes. In this case, this event
should be captured if we want to replicate the data dependencies.
However, this is a highly complicated task. There may be many
Jupyter session-to-�le system interactions either directly through
the code the user has written or implicit libraries and function calls
of the Python runtime. For example, a simple “pip install” command
might access hundreds of �les in the pip cache, and we should not
consider them as data dependencies for the replication. Assuming
that we have a way to �lter out unwanted �le system events, we
still have the issue of capturing these �le system events. Python
and the iPython kernel do not have any native API to monitor �le
operations, so we must look for alternate ways.

4.1.1 Monitoring Linux Kernel System Calls by the IPython Kernel:
All �le operations are forwarded to the operating system as system
calls regardless of the language-level �le system operation imple-
mentation. To be precise, in Linux, all of these language bindings
invoke the “openat” [15] system call to get the �le descriptor of the
�le. We decided to capture the events from the Jupyter kernel pro-
cess to the Linux kernel and log the invocations targeting “openat”
system calls. We used Linux’s “strace” [16] tool to �lter and log the
“openat” system calls coming through the IPython kernel process,
which is responsible for the target Jupyter Notebook. There is a
one-to-one relationship with a running Jupyter Notebook session
and an IPython kernel process by design, so it is easy to derive �le
operations done by a notebook by capturing the procedures done
by the designated IPython kernel process. Through this method,
we managed to capture all the �le system events coming from
the Jupyter kernel runtime process irrespective of the language
bindings used to access data at the programming language level.

The integration of the IPython kernel tracing framework is per-
formed in two separate steps. In the �rst step, we capture system
calls sent by each IPython kernel and log them into individual
process-speci�c log �les. In the second step, we analyze these logs
�les and identify relevant �le system invocations.

Fig.2 illustrates the �rst stage processes. We developed a process-
tracing server, which can start Linux “strace” subprocesses for
monitoring given process ids. These “strace” sub-processes capture

the “openat” system calls and log them in a speci�ed log �le. When
a user creates a Jupyter Notebook, the Jupyter Notebook Server
initializes a dedicated IPython kernel process to handle requests.
We updated the start method of the IPython kernel to invoke the
process tracing server with its process id as a parameter. The com-
munication between these components is performed through a Unix
socket to minimize the communication overhead. Once the process
tracing server receives the kernel start message, it starts a “strace”
process to trace the IPython kernel process. Dashed arrows in Fig.
2 show the tracing connection created from the “strace” job. Once
the events are captured, the “strace” job writes only the “openat”
system call log to a designated log �le. Dotted arrows in Fig.2 depict
that connection. The “strace” Linux command needs to be executed
as the superuser to access kernel system calls. For this reason, we
separate the IPython kernel and process tracing servers into two
separated entities; IPython kernels run as the regular user and the
tracing service runs as the superuser.

The second major step analyzes these log �les and captures
relevant �le system operations to create a list of �les that the Jupyter
Notebook accessed. To achieve this, we developed a Jupyter Magic
[11] extension to parse the traced log �le and �lter out relevant
�le operations for further processing (Fig. 3). At any point in the
notebook, users can run the Jupyter Magic line command to invoke
this work�ow and get a list of �les that they directly or indirectly
used in the notebook up to that point. We use a rule-based �lter to
ignore all operations not required to reproduce the notebook state.
Discounted �le operations include those associated with Python
cache �les, Jupyter Notebook checkpoint �les, library �les created
and accessed as byproducts of notebook autosaves, and “pip install”
commands for �ltering relevant �le operations.

These �ltered �les are used as the reference to create the export
of data dependencies for the notebook execution, as explained in
the next section of the paper.

4.2 Determining Dependencies on Optional
Libraries

Python’s runtime ships with a default set of libraries like math, io,
and sys to perform common operations for mathematical, system,
and �le operations. In addition, many out-of-the-box libraries can be
installed from the pipi.org repository [22]. Typically users use these

PEARC ’22, July 10–14, 2022, Boston, MA, USA Wannipurage et al.

Figure 2: The work�ow for capturing the �lesystem calls from a Jupyter Notebook process to the operating system kernel.
When an IPython process is started for a notebook, the process tracing service receives a noti�cation to trace the process and
then logs output into a �le. Each notebook process has a di�erent trace log �le.

Figure 3: Work�ow of processing a trace log �le inside a Jupyter Magic plugin to shortlist the valid list of �les accessed by the
Jupyter Notebook. Trace log p001 is the log �le associated with Notebook 1 that is created as depicted in Fig. 2.

libraries in notebooks either by installing them inside the notebook
using the “pip install” command or using already installed libraries
from the Python library cache of the running machine. However,
each library may have multiple versions that contain some API-
level and performance-related changes, so the code written using
a particular library is somewhat coupled with the version of the
library being used. When we share a notebook containing these
library imports, there is no speci�c way to guide the users on
which libraries and versions need to be installed before running
them. Typically, the approach is to run the shared notebook, and
if there is a missing library in the Python environment, install the
missing one using the “pip install” command. However, it is still not
guaranteed to work properly as we do not know the exact version
of the library that was installed in the author’s environment. For
this reason, syntax errors and performance issues are possible even
though the relevant library is installed in the second system.

Considering the above concerns, deriving the optionally installed
libraries and their versions loaded in a Jupyter notebook session
is critical to reproducing the library dependencies. However, this
needs to be carried out carefully. In Python, the library version
loaded into the notebook’s IPython session depends on the way it
is being bootstrapped. If the notebook was installed in a Python
virtual environment, dependencies are loaded from the virtual envi-
ronment’s context. If, instead, the notebook is executed in the user’s
default environment, libraries are loaded from Python’s global li-
brary cache. The best way to derive the correct library version is
to connect to the speci�c notebook session and get the relevant
library version.

To solve this problem, we developed another Python Magic ex-
tension that can be bundled into the running IPython kernel of
the notebook. According to the IPython Magic framework, all the
extensions receive the local namespace of the running IPython

Recreatable Jupyter Kernel PEARC ’22, July 10–14, 2022, Boston, MA, USA

Figure 4: Magic plugin extensions capture the libraries’ list and their versions imported inside a notebook session.

process. We can �nd all the imported libraries and versions inside
this local namespace using a type-based �lter below.

de f impor t s () :
f o r name , v a l i n l o c a l _ n s . i t ems () :

i f i s i n s t a n c e (va l , t ype s . ModuleType) :
y i e l d v a l . __name__

Next, we �ltered out default libraries shipped with the Python
runtime and captured the externally installed libraries. Once we
get the library names, versions of the loaded library can be derived
using the importlib [21] library.

Once all the relevant library names and versions are fetched, we
save that metadata in a Python dictionary object where keys are
the library name and values are versions (Fig. 4). This dictionary is
used to export the library dependencies, as described in Section 5.

4.3 Capturing the Notebook’s Runtime Session
The last andmost challenging step to achieve complete reproducibil-
ity of a Jupyter Notebook is to capture the notebook’s runtime ses-
sion. This is an essential feature for checkpointing a notebook and
restarting it in the same or di�erent environment to continue from
the last executed position. This requires serializing the execution
session and reloading it back when it is restarted. A typical running
Jupyter session may include library imports, initialized variables,
and function declarations. If we want to create a snapshot of a
session, we need a way to serialize all these types of entities when
storing the state and deserialize them when restoring to a running
session. In addition, we need to �nd a way to programmatically list
the minimal set of entities that is su�cient to replicate the entire
session.

A local namespace is a dictionary of objects where keys are en-
tity names and values are entities created throughout the notebook
session. These keys consist of variable names, function names, im-
ports, and previous cells’ execution ids. We developed a Jupyter
Magic extension (Fig. 5) to capture this session information us-
ing the local namespace information that the extension receives
from the Jupyter framework. Here we are interested only in the

global variables, function de�nitions, and library imports required
to recreate a session.

The challenge is to derive the subset of these entities from the
local namespace as it represents all the entities as generic key-value
pairs. To �nd this set of entity names, we use the “who” [9] built-in
Jupyter Magic command, which prints the signatures of imports,
functions, and global variables. Once those entities are identi�ed,
we create a minimal version of the local namespace dictionary by
�ltering derived entity names. To export this sub-namespace object,
we serialize it to a binary �le using the “dill” [20] library, which is
capable of serializing most of Python objects into binary format.
However, there may be scenarios where some objects in the sub-
namespace can not be serialized. To address this problem, we do
a binary search on the sub-namespace and perform serialization
tests on each subtree to determine the availability of any possibly
incompatible entity. We remove any incompatible entities from the
sub-namespace object and warn the user if there are any.

Once the sub-namespace object is serialized into byte format, we
use it to build the notebook state bundle as mentioned in Section 5.

5 STRATEGY FOR REPRODUCING STATEFUL
NOTEBOOKS

The previous section discussed how we capture the information to
reproduce the whole notebook state. This section outlines how we
package and export that information to be reproduced in a di�erent
environment. We also discuss how to bootstrap an environment
when we import a notebook state from an exported bundle as
mentioned above.

5.1 Packaging Strategy for Captured States
We use an archiving approach when exporting a notebook state that
uses all of the above-mentioned state capturing techniques. First, all
the �les identi�ed in the data dependency capturing stage are copied
into the root level of the archive directory. To avoid con�icts, each
�le is duplicated with a unique UUID name rather than the original
name. We also create a JSON �le containing UUID-to-absolute-�le-
path mappings; this JSON �le is also copied to the root level of
the archive directory and the data. Library dependencies that we

PEARC ’22, July 10–14, 2022, Boston, MA, USA Wannipurage et al.

Figure 5: Magic Plugin implementation work�ow to capture the variables, imports, and functions in the local namespace of
the Jupyter Notebook session and serialize into a �le.

Figure 6: The structure of the archive �le that contains a serialized stateful Jupyter Notebook

capture (as described in the previous section) are converted into a
JSON format that contains library names and versions; this JSON
�le is also placed in the root level of the archive directory. In the
notebook session capturing stage, we serialize the sub-namespace
dictionary object to a �le; it is also copied into the root level of the
archive directory. Finally, we copied the notebook �le as the last
stage of archive creation. Figure 7 illustrates the contents and �le
structure of the archive.

To simplify the process, all of the operations mentioned above
are integrated into a single Jupyter Magic command so that the
user can invoke it inside the notebook �le. Upon invocation, the
custom Magic code internally invokes the state capturing magic
commands described earlier, creates the archiving directory based
on the data retrieved from those invocations, creates the archive
�le using the zip tool, and provides a link for the user to download
it through the browser. This archived zip �le can be later used to
recreate the same state of the notebook in a di�erent environment.

5.2 Recreating a Stateful Notebook from an
Exported Archive

To recreate a notebook environment from an exported archive, we
need to execute the following steps.

(1) Unarchive the exported archive �le.
(2) Parse the File Metadata JSON �le and copy data �les into

designated locations provided in the values of the JSON.

(3) Parse the Libraries JSON �le and install those dependencies
with versions using “pip install” commands.

(4) Start the IPython kernel and initialize a session to the ex-
ported notebook �les.

(5) Run a Jupyter magic command to parse the serialized session
and merge it with the local namespace of the notebook.

All of these steps can be performed in any notebook environment,
including bare metal, cloud, and containerized platforms. We have
developed a single script to accept the archive �le with the notebook
runtime to reproduce the archived environment. However, there
may be issues when placing data �les in Step 2 if the notebook is
running in a di�erent operating system that does not follow the
�le system structure of the source environment. For example, a
notebook archive created on a Linux computer may fail at Step 2
on a computer running a Windows operating system.

Considering these scenarios, we recommend using a container-
ized environment when reproducing a notebook to make the ini-
tialization process independent of the host’s �le system. Both state-
recording and state-replicating notebook environments can be boot-
strapped from a one-line command to make the process as simple
as possible for the user. To facilitate state recording and recreate
a notebook, we have developed a container image that bundles a
Jupyter runtime [5], a tracing server, and a python installation.

To start a notebook environment in state recording mode, users
can run the command:

docker run ��cap�add=SYS_PTRACE � i t �p 8 8 8 8 : 8 8 8 8
dimuthuupe / i p y k e r n e l : 1 . 0

Recreatable Jupyter Kernel PEARC ’22, July 10–14, 2022, Boston, MA, USA

Figure 7: CPU time and total time towrite a single�le in vari-
ous sizes using the notebook’s Python runtime in tracing on
and o� scenarios

To recreate an environment from a state archive:
docker run ��cap�add=SYS_PTRACE � i t �p 8 8 8 8 : 8 8 8 8
�v <ARCHIVE_FILE > : / opt /ARCHIVE . z i p dimuthuupe / i p y k e r n e l : 1 . 0

6 PERFORMANCE ANALYSIS
We use an external Linux “strace” process to capture �le opera-
tions performed by the notebook process to export the �le list
required to reproduce an identical environment. However, running
an “strace” process along with the notebook to capture system calls
may have performance implications because recording the oper-
ating system’s system calls will cause them to block or wait. We
record only “openat” system calls at the design level to mitigate the
impact. However, there may still be a performance hit as everything
from a mounted disk to a network socket in Linux is represented as
a �le. We may be capturing unwanted events that will eventually
a�ect the notebook’s overall performance.

We performed various stress tests on strace-enabled and dis-
abled environments to evaluate this impact. We ran IO intensive,
CPU intensive, and mixed workloads to identify areas a�ected by a
bottleneck. All the performance tests were carried out on a work-
station with 32 GB memory, 16 cores and disk write speed of 1GB/s.
To keep both environments consistent, we ran both notebooks as
Docker containers.

To enable and disable stracing, the container distribution of
the kernel accepts the environment variable ENABLE_TRACE as a
runtime con�guration.

6.1 Running IO-intensive workloads
6.1.1 Single file write performance: In this experiment, we carried
out a test to measure the performance impact from tracing system
calls for a single �le write. To simulate this scenario, we ran the
following Python code fragment with various �le sizes to measure
the time it took to write a �le into the disk with random characters.
We captured CPU time and overall wall time for each run as metrics.
CPU time is the time the code spends in the CPU, including the
Linux kernel, and wall time is the total time it takes to run, including
the CPU time and system call overheads (Fig. 7).

with open (" random . da t " , "wb ") as ou tpu t :
ou tpu t . w r i t e (np . random . by t e s (F ILE_SIZE))

6.1.2 Multiple file write performance: We then ran the same logic
of writing �les parallelly across 16 cores to measure the perfor-
mance of parallel �le writes (Fig. 8). This experiment fully utilizes

Figure 8: CPU time and total time to write 16 parallel �les (1
per CPU core) in various sizes using the notebook’s Python
runtime in tracing on and o� scenarios

Figure 9: CPU time and total time run parallel counters (1
per CPU core) in various sizes using the notebook’s Python
runtime in tracing on and o� scenarios

CPU, memory, and disk IO, including multi-core executions, in-
memory bu�er creation, and parallel disk writes.

6.2 Running CPU Intensive workloads
To measure how the system performed when the CPU is fully
utilized, we ran static counters on each CPU core parallelly using
the following code fragment and measured the time taken for all
the counters to �nish (Fig. 9).

d e f f (x) :
c oun t e r = 1
whi l e True :

coun t e r = coun t e r + 1
i f coun t e r > COUNTER_SIZE :

break
Poo l (p s u t i l . cpu_count ()) . map (f , range (p r o c e s s e s))

6.3 Observations
We have analyzed three test scenarios: IO intensive, mixed (both
IO and CPU), and CPU intensive operations to measure the impact
of tracing the Jupyter notebook kernel process using the “strace”
program to capture �le operations. Among the three scenarios,
we observed that IO intensive operations are the least a�ected by
strace, while CPU intensive operations are the most a�ected in
terms of the CPU time spent. However, measuring the total time
to complete these operations, which is the real time between start
and end, shows that signi�cantly less cost is paid by the tracing
enabled setup than a non-tracing environment. It is very clear that
tracing a�ects CPU time, but because the proportion of CPU time
to the total time is very low (the majority of total time is governed
by the system call overhead), the impact of the CPU time does not
signi�cantly a�ect the �nal overall performance.

PEARC ’22, July 10–14, 2022, Boston, MA, USA Wannipurage et al.

7 CONCLUSION & FUTUREWORK
This paper presents the framework-level concepts needed to im-
plement a fully reproducible Jupyter Notebook environment and
the results of a performance analysis of possible bottleneck scenar-
ios. Currently, the proof of concept implementation of the frame-
work supports Docker-based executions in single-user mode. Even
with this limitation, our approach is potentially bene�cial for long-
running notebooks, especially on HPC resources: Users can pause
running notebooks at some point and resume in a di�erent envi-
ronment with zero con�guration changes. In the future, we plan to
integrate this framework as a secure multi-tenanted service on the
Jetstream2 [8] cloud computing system with the scaling support of
JupyterHub [12]. Integrating with Apache Airavata components,
we plan to facilitate seamless remote execution of machine learning
models on Jetstream2’s GPU resources coupled with analysis on
local resources all within a single notebook session.

REFERENCES
[1] Amazon. 2022. Amazon Spot Instances. https://aws.amazon.com/ec2/spot
[2] ReScience C. 2022. Reproducible science is good. replicated science is better.

https://rescience.github.io/
[3] Julien Chastang, Rich Signell, and Jeremy Fischer. 2018. A unidata jupyterhub

server: An online pyaos resource for students and educators. In 98th American
Meteorological Society Annual Meeting, AMS.

[4] Renato LF Cunha, Lucas C Villa Real, Renan Souza, Bruno Silva, and Marco AS
Netto. 2021. Context-aware Execution Migration Tool for Data Science Jupyter
Notebooks on Hybrid Clouds. In 2021 IEEE 17th International Conference on
eScience (eScience). IEEE, 30–39.

[5] Dimuthu. 2022. Customized IPython Kernel Docker Image to capture Notebook
state. https://hub.docker.com/r/dimuthuupe/ipykernel

[6] Google. 2022. Colaboratory. https://research.google.com/colaboratory/
[7] Brian Granger and Fernando Pérez. 2021. Jupyter: Thinking and storytelling

with code and data. Authorea Preprints (2021).

[8] David Y Hancock, Jeremy Fischer, John Michael Lowe, Winona Snapp-Childs,
Marlon Pierce, Suresh Marru, J Eric Coulter, Matthew Vaughn, Brian Beck, Nirav
Merchant, et al. 2021. Jetstream2: Accelerating cloud computing via Jetstream.
Practice and Experience in Advanced Research Computing (2021), 1–8.

[9] IPython. 2022. IPython "who" Magic Command. https://ipython.readthedocs.io/
en/stable/interactive/magics.html#magic-who

[10] Caroline Jay, Robert Haines, and Daniel S Katz. 2020. Software must be recognised
as an important output of scholarly research. arXiv preprint arXiv:2011.07571
(2020).

[11] Jupyter. 2022. Developing Custom Magic Extensions for Jupyter Notebooks.
https://ipython.readthedocs.io/en/stable/con�g/custommagics.html

[12] Jupyter. 2022. JupyterHub. https://jupyter.org/hub
[13] Jupyter. 2022. Kernels. https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
[14] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,

Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational work�ows. Vol. 2016.

[15] Linux. 2022. Openat System Call. https://linux.die.net/man/2/openat
[16] Linux. 2022. Strace - Process tracing command. https://man7.org/linux/man-

pages/man1/strace.1.html
[17] National Academies of Sciences Engineering, Medicine, et al. 2019. Reproducibil-

ity and replicability in science. (2019).
[18] Roger D Peng. 2011. Reproducible research in computational science. Science

334, 6060 (2011), 1226–1227.
[19] Fernando Perez and Brian E Granger. 2015. Project Jupyter: Computational

narratives as the engine of collaborative data science. Retrieved September 11,
207 (2015), 108.

[20] Python. 2022. Dill: Python Object Serialization Library. https://pypi.org/project/
dill

[21] Python. 2022. Importlib Library. https://docs.python.org/3/library/importlib.html
[22] Python. 2022. Pypi Repository. https://pypi.org
[23] David M. Rosenberg and Charles C. Horn. 2016. Neurophysiological analytics

for all! Free open-source software tools for documenting, analyzing, visualizing,
and sharing using electronic notebooks. (2016).

[24] Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-Cheng
Huang, Rob Knight, Niema Moshiri, Mai H Nguyen, Sara Brin Rosenthal, Fer-
nando Pérez, et al. 2019. Ten simple rules for writing and sharing computational
analyses in Jupyter Notebooks. , e1007007 pages.

[25] SciGaP. 2022. Framework to reproduce Jupyter Notebook Environments. https:
//github.com/SciGaP/iPython-Kerner-Changes

https://aws.amazon.com/ec2/spot
https://rescience.github.io/
https://hub.docker.com/r/dimuthuupe/ipykernel
https://research.google.com/colaboratory/
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-who
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-who
https://ipython.readthedocs.io/en/stable/config/custommagics.html
https://jupyter.org/hub
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://linux.die.net/man/2/openat
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://pypi.org/project/dill
https://pypi.org/project/dill
https://docs.python.org/3/library/importlib.html
https://pypi.org
https://github.com/SciGaP/iPython-Kerner-Changes
https://github.com/SciGaP/iPython-Kerner-Changes

	Abstract
	1 Introduction
	2 Use Cases for Portable and Reproducible Notebooks
	2.1 Reproducing Code from Scientific Publications
	2.2 Sharing Classroom Learning Material
	2.3 Transferring Local Computations to Between Local and High-Performance Computing Environments
	2.4 Running on On-Demand or Time-Bound Computing Infrastructure

	3 Reproducibility of Notebooks
	4 A Novel Approach to Capture the Absolute State of Notebooks
	4.1 Capturing Data Dependencies
	4.2 Determining Dependencies on Optional Libraries
	4.3 Capturing the Notebook’s Runtime Session

	5 Strategy for Reproducing Stateful Notebooks
	5.1 Packaging Strategy for Captured States
	5.2 Recreating a Stateful Notebook from an Exported Archive

	6 Performance analysis
	6.1 Running IO-intensive workloads
	6.2 Running CPU Intensive workloads
	6.3 Observations

	7 Conclusion & Future Work
	References

