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The second- and third-order algebraic-diagrammatic construction schemes for the electron propagator for
studies of electron attachment processes [EA-ADC(2) and EA-ADC(3)] have been extended to include the
complex absorbing potential (CAP) method for the treatment of electronic resonances. Theoretical and
conceptual aspects of the new CAP/EA-ADC methodology are studied in detail at the example of the well-
known 2Πg resonance of the nitrogen anion N−

2 . The methodology is further applied to π∗ shape resonances,
for which ethylene is considered as a prototype. Furthermore, the first many-body treatment of the π∗

+ and
π∗
− resonances of norbornadiene and 1,4-cyclohexadiene is provided, which serve as model systems for the

concept of through-space and through-bond interactions for a long time.
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I. INTRODUCTION

During the past few years electronic resonances have
been recognized as key intermediates in multiple con-
texts, including astrochemistry,1 chemical synthesis,2 or
biology.3,4 They can be understood as discrete (N+1)-
electron states with energy Ed embedded in a continuum
of electronic states of an N -electron plus free-electron
system.5,6 Due to the interaction with the continuum,
the energy gets shifted

Er = Ed +∆ (1)

where ∆ is the shift, and Er is the resonance position
above the N -electron parent state. Moreover, the res-
onance is characterized by a finite lifetime τ , which is
inversely related to the decay width

Γ =
~

τ
. (2)

The two resonance parameters Er and Γ are often com-
bined to the complex resonance energy or Siegert energy7

Eres = Er − i
Γ

2
(3)
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as this discrete quantity is key to many theoretical anal-
yses.

One important class of electronic resonances are shape
resonances. They are metastable states possessing elec-
tronic energies above their own continua.8 This means
that an electron may be ejected by means of a one-
electron process, the released energy being transferred
to the outgoing electron as kinetic energy. For this rea-
son, shape resonances are often also referred to as open-
channel resonances. Due to the one-particle nature of
the decay mechanism, shape resonances are usually short-
lived with typical lifetimes in the range of τ ∼ 1 fs, cor-
responding to decay widths of Γ ∼ 0.1 – 1 eV.

Shape resonances occur, for example, in anionic
species, and even their electronic ground state can be
a resonance state. In fact, such situations are very com-
mon. Experimentally, they have been detected in many
unsaturated9–11 as well as saturated11,12 organic com-
pounds using, e.g., electron energy loss (EEL) or electron
transmission spectroscopy (ETS). Besides temporary an-
ions, shape resonances can also be encountered in highly
excited or core-ionized electronic systems.6,8

One of the main difficulties encountered in the theo-
retical treatment of electronic resonances arises from the
basis sets used by quantum chemical standard methods,
which can only represent square-integrable (L2) wave
functions. This condition is however not fulfilled by the
sought Siegert states. Consequently, resonances can gen-
erally not be studied directly with standard quantum
chemical methods: Depending on method and basis set,
the lowest (or any other) state may have considerable res-
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onance character, but it is also possible that the lowest
state has considerable discretized continuum character,
and without any special modifications it is impossible to
say how much discretized continuum character any given
state possesses.

To overcome this issue, different theoretical approaches
have been developed. One possibility to deal with
electronic resonances in the framework of L2-integrable
quantum chemical methods is the complex absorbing po-

tential (CAP) method.13–15 It is motivated by the fact
that resonance states are characterized by discrete com-
plex Siegert energies. These discrete states can be sep-
arated from the embedding continuum by rotating the
spectrum of the Hamiltonian into the complex energy
plane,13,15,16 which can in principle be achieved by dif-
ferent means.17–23

In the CAP method, the Hamiltonian is aug-
mented by a complex one-particle potential, thereby
making all its eigenfunctions L2-integrable.6,13 It has
been combined with a number of electronic struc-
ture methods, among them configuration interaction
(CI),24,25 algebraic-diagrammatic construction (ADC)
for the electron propagator (also termed Dyson-
ADC),5,26,27 Fock-space coupled-cluster theory,28 ADC
for the (N − 1) [or ionization potential (IP)] part
of the electron propagator (IP-ADC),29 symmetry-
adapted cluster-configuration interaction (SAC-CI),30

complex density functional theory,31 different equation-
of-motion coupled-cluster (EOM-CC) schemes,6,32,33 ex-
tended multi-configurational quasi-degenerate second-
order perturbation theory (XMCQDPT2),34 extended
multi-state complete active space second-order pertur-
bation theory (XMS-CASPT2),35 an electron-propagator
(EP) approach based on complete active space self con-
sistent field (CASSCF) reference states (EP-CASSCF),36

and correlated independent particle Fock-space multi-
reference coupled-cluster singles and doubles (CIP-
FSMRCCSD) theory.37

The CAP can in principle be added to the Hamilto-
nian at different stages. For the use in wave function-
based methods, it can already be considered during the
Hartree-Fock (HF) calculation, and this approach has
been followed in the context of EOM-CC methods.6,33

Another possibility is to include it at the post-HF stage.
In ADC or CC methods, for example, a suitable basis
set representation of the CAP may be added to the re-
spective Hamiltonian before diagonalization.6,26,27,32 In
a computationally more feasible approach, the CAP is
applied a posteriori, i.e., the CAP is expanded into a sub-
space of electronic states computed using a standard elec-
tronic structure method. The formalism has first been
used in the context of CI25 and later also together with
SAC-CI,30 XMCQDPT2,34 and XMS-CASPT2.35

Recently, we introduced the new CAP/EA-ADC
method,38 in which we combined the CAP subspace pro-
jection approach with ADC for the (N+1) [or electron
affinity (EA)] part of the electron propagator39–41 (EA-
ADC) exploiting the second-order intermediate state

representation [ISR(2)] formalism. Due to the mod-
ular nature of the subspace projection approach, a
combination with IP-ADC39,40,42–44 as well as with
ADC for N -electron excitations,45–51 usually simply de-
noted as ADC, is straightforward and has been accom-
plished in Q-Chem 5.452 alongside the implementation
of CAP/EA-ADC. In this work, we continue our work on
CAP/ADC methods. While the focus is on CAP/EA-
ADC, the studied computational and conceptual aspects
are equally applicable to CAP/IP-ADC and CAP/ADC.
The paper is structured as follows: after a brief review

of the theoretical aspects in Section II, we present an
in-depth investigation of conceptual and computational
aspects of the new methodology (Sec. IVA). Then we use
CAP/EA-ADC to study anionic shape resonances in the
unsaturated organic molecules ethylene, norbornadiene
(NBD) and 1,4-cyclohexadiene (CHD) (Sec. IVB). We
finally draw conclusions in Section V.

II. THEORY

A. The Complex Absorbing Potential Method

In this section, a brief review of the CAP method is
presented. A thorough mathematical analysis has been
given in Ref. 13 to where the reader is referred to for
further details.
Augmenting the molecular Hamiltonian with a com-

plex one-particle potential−iηŴ leads to a complex sym-
metric effective Hamiltonian

Ĥ(η) = Ĥ − iηŴ (4)

with a purely discrete spectrum and L2-integrable
eigenfunctions.13 Therein, the parameter η is used to con-
trol the strength of the CAP. The potential function W
must have a non-negative real part,

Re{W (r)} ≥ 0 and Re{W (r)} → ∞ for r → ∞, (5)

but in general, W can be complex, in which case positive
real numbers c0 and c1 must exist so that13

|Im{W (r)}| ≤ c0 + c1 · Re{W (r)}. (6)

In order to rationalize how a CAP works, one may con-
sider its effect in the time-dependent picture, where the
real part of Ŵ appears as imaginary contribution to the
Hamiltonian and absorbs the outgoing electron.5 Any
imaginary part of Ŵ turns into an additional real po-
tential, and can be interpreted as accelerating or slowing
down the outgoing electron while it is absorbed.
In the complete basis set limit, the exact Siegert en-

ergy Er of a resonance is recovered as E(η) in the limit
η → 0+. In practical applications with finite basis sets,
one has to resort to a finite potential strength in order to
absorb the electron within the confinement of the basis
set. However, using finite η values leads to artificial re-
flections at the CAP boundary and by the CAP itself and
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therefore to a perturbation of the resonance wave func-
tion in the bound region of the electronic system. The
goal then is to find the optimal CAP strength so that the
outgoing electron is effectively absorbed while the artifi-
cial reflections are minimized, i.e., to choose η as small
as possible and as large as necessary.
This can be accomplished when considering a Taylor

expansion of the trajectory E(η) about η̃, a CAP strength
for which the error introduced by the L2 basis set is
irrelevant,5,13

E(η) = E(η̃) +

∞∑

n=1

1

n!

dnE(η)

dηn

∣∣∣∣
η=η̃

(η − η̃)n. (7)

Evaluation of this expansion at η = 0,

E(0) = E(η̃)− η̃
dE(η)

dη

∣∣∣∣
η=η̃

+
1

2
η̃2

d2E(η)

dη2

∣∣∣∣
η=η̃

+ · · · ,

(8)
leads to a measure for the error caused by the CAP itself.
Considering the uncorrected trajectory E(η), this error is
given by

|E(η)− E(0)| =

∣∣∣∣η
dE(η)

dη

∣∣∣∣+O(η2) (9)

=

∣∣∣∣
dE(η)

d ln η

∣∣∣∣+O(η2). (10)

The best possible approximation to the exact Siegert en-
ergy is thus found for that η which minimizes the linear
term in expansion (8) or, in other words, at the minimum
of the logarithmic velocity of E(η) in the complex energy
plane.
Consequently, an even better approximation to the ex-

act Siegert energy may be obtained by considering the
corrected trajectory

U(η) = E(η)− η
dE(η)

dη
, (11)

for which the error to be minimized can be written as

|U(η)− E(0)| =
1

2

∣∣∣∣η
2 d2E(η)

dη2

∣∣∣∣+O(η)3 (12)

=
1

2

∣∣∣∣η
dU(η)

dη

∣∣∣∣+O(η3) (13)

=
1

2

∣∣∣∣
dU(η)

d ln η

∣∣∣∣+O(η3). (14)

Now, the best approximation to the exact Siegert en-
ergy E(0) is found at the minimum of the logarithmic
velocity of U(η). The minima of the logarithmic veloc-
ity of the corrected trajectory E(η) and the uncorrected
trajectory U(η) [Eqs. (10) and (14)] can be located at
optimal potential strengths ηopt by means of finite dif-
ferences between eigenvalues of the effective Hamiltonian
Ĥ(η) computed for a series of different CAP strengths η.

One may be tempted to proceed in the same way and
consider even higher-order terms for the trajectory. Yet,

such a strategy does by no means guarantee more accu-
rate results since the basis set error gets more pronounced
with increasing order in Eq. (8).13 In practical applica-
tions, the first-order corrected trajectory (11) has proven
to yield satisfactory results.5,33,53

It should further be noted that results from this formal-
ism are in principle only trustworthy in cases where the
uncorrected and corrected treatments yield rather similar
results.

B. Intermediate State Representation and EA-ADC

In the intermediate state representation (ISR)
approach,40,47,54 a basis of correlated excited states is
constructed by letting an excitation operator ĈJ act on
the N -electron ground state wave function ΨN

0 , followed
by orthogonalization,

{
ĈJ |Ψ

N
0 〉

} Gram
−−−−−→
Schmidt

{
Ψ̃J

}
. (15)

In order to obtain an intermediate state (IS) basis suit-
able for computational schemes for electron attachment,
ĈJ is chosen such that it generates electron-attached
configurations belonging to excitation classes J of one-
particle (1p), two-particle-one-hole (2p-1h), . . . type,

{ĈJ} ≡{c†a, c
†
bc

†
aci, c

†
cc

†
bc

†
acicj , . . . },

a < b < c < . . . , i < j < . . . . (16)

Therein, c†p and cp are creation and destruction operators,
respectively, associated with the HF orbital |ϕp〉.

To derive the EA-ADC(n) working equations, one
starts from the n-th order Møller-Plesset [MP(n)] ground
state wave function. Representing the molecular Hamil-
tonian, shifted by the respective MP(n) ground state en-
ergy EN

0 , within the resulting IS basis leads to the Hermi-
tian ADC matrix of effective interaction M whose matrix
elements can be obtained as

MIJ =
〈
Ψ̃N+1

I

∣∣Ĥ − EN
0

∣∣Ψ̃N+1
J

〉
. (17)

Similarly, the elements of the matrix of effective tran-
sition amplitudes f are given as

fIp =
〈
Ψ̃N+1

I

∣∣c†p
∣∣ΨN

0

〉
, (18)

and furthermore, any one-particle operator D̂ can be ex-
pressed in the IS basis according to

D̃IJ =
〈
Ψ̃N+1

I

∣∣D̂
∣∣Ψ̃N+1

J

〉
. (19)

In ADC schemes, the M, f and D̃ matrices all possess
their own regular perturbative expansions and are char-
acterized by a compact block structure as layed out, e.g.,
in Ref. 41. Eventually, one solves the Hermitian eigen-
value problem

MY = YΩ, Y
†
Y = 1, (20)
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yielding electron attachment energies Ωn as eigenvalues
and the IS representation Yn of the respective electron-
attached states |ΨN+1

n 〉 as eigenvectors. The latter give
access to the connected spectroscopic amplitudes xn ac-
cording to

xn = Y
†
nf , (21)

as well as to the transition matrix elements Tnm(D̂) of

a one-particle operator D̂ between the electron-attached
states |ΨN+1

n 〉 and |ΨN+1
m 〉 as

Tnm(D̂) ≡ 〈ΨN+1
n |D̂|ΨN+1

m 〉 = Y
†
nD̃Ym. (22)

C. Combining Complex Absorbing Potentials with ADC

As mentioned above, there are different routes to intro-
duce a CAP to electronic structure methods. In the case
of ADC, the ISR formalism can be exploited to represent
the CAP within the IS basis according to Eq. (19), which
can then be added to the ADC Hamiltonian (17) before
diagonalization. This results in a complex-symmetric di-
agonalization problem which, as discussed in Section IIA,
has to be solved repeatedly for a series of CAP strengths
η.
Alternatively, the CAP may be added at the stage of

converged ADC states exploiting Eq. (22). One then has
to solve the complex-symmetric eigenvalue problem

(
Ω− iηT(Ŵ )

)
C = CΩ

c (23)

where Ω is the diagonal matrix of (real) eigenvalues of

the non-CAP-augmented ADC matrix M, and T(Ŵ ) is
the transition moment matrix of the absorbing poten-
tial Ŵ according to Eq. (22). Solving Eq. (23) yields
the diagonal matrix Ω

c of complex eigenvalues of the
CAP-augmented ADC Hamiltonian and the correspond-

ing complex eigenvectors Cn = C
(R)
n + iC

(I)
n , where the

superscripts R and I are used to label the real and imag-
inary parts, respectively. The Cn vectors are expansion
coefficients of the CAP/ADC eigenvectors Y

c
n into the

eigenvector basis Y of the non-CAP-augmented ADC
matrix M, i.e., the ISR of a CAP/ADC state can be
computed according to

Y
c
n = YCn =

∑

i

CinYi. (24)

The motivation for this reformulation is that it allows
for projection of the CAP onto a smaller subspace of
electronic states. The projection method is rooted in the
Weisskopf-Fano-Feshbach picture of resonances.55–58 As
discussed above, a resonance can be understood as a dis-
crete state interacting with a continuum. As a result the
resonance is mixed into the continuum, and the energy
range of this mixing is determined by the width. In an
L2 basis set context, the same is true, however, the mix-
ing occurs between the resonance and pseudo-continuum
states.

As a CAP separates the resonance from the continuum
or pseudo-continuum, in principle, only continuum states
in an energy range centered at the resonance energy with
a width corresponding to at most a few resonance widths
can contribute significantly to the resonance. Denoting
this subspace of NP ADC eigenstates as P , Eq. (23) is
cast into

P
(
Ω− iηT(Ŵ )

)
Pc = cω

c, (25)

whereP is the projection matrix projecting on P , and the
quantities denoted by lower-case symbols, i.e., c and ω

c

are the projected counterparts of the full-IS-space quan-
tities C and Ω

c, respectively.
As both the resonance energy and width are a pri-

ori unknown, however, an approximate value for the en-
ergy can often be obtained from compact basis set cal-
culations. Then the obvious computational protocol is
to use a Davidson algorithm (or similar) to converge all
states up to the estimated position as well as states in
a selected—and to be converged—energy window above
this position, and to execute the CAP calculation in this
subspace. Still, the bulk of the final subspace spectrum
consists of discretized continuum states from which the
sought resonance has to be distinguished. Due to its
smaller spatial extent, the latter can usually be identi-
fied as the state with the lowest 〈r̂2〉 or, similarly, 〈Ŵ 〉
expecation value.

D. Dyson Orbitals Within CAP/EA-ADC

While it is convenient to discuss anionic shape reso-
nances and their interactions in terms of molecular or-
bitals, it should be noted that the real temporary anions
correspond to many-particle states that can only be ap-
proximated by a one-particle picture. However, one can
retain a one-particle interpretation in a many-particle
context provided Dyson orbitals are computed.
Especially in the context of electronic structure meth-

ods for electron attachment, the latter have proven to
be a valuable visualization tool.59 It has been shown59

that the real part of a Dyson orbital of a resonance state
provides a proxy for its bound part as it is largest in the
valence region, while the imaginary part provides a proxy
for the outgoing electron being absorbed in the CAP. We
note that the bound part shows a large real and a van-
ishing imaginary part. In contrast, the outgoing part is
represented by a complex wave with similar—but phase
shifted—real and imaginary parts, and the further the
wavefunction penetrates the CAP, the more its ampli-
tude diminishes. Thus, using judicious iso-surface values,
the real and imaginary parts can serve as proxies for the
bound and absorption regions.
Within the projected CAP/EA-ADC approach, Dyson

orbitals |φn〉 can be computed according to

|φn〉 =
∑

p

xpn|ϕp〉. (26)
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The needed spectroscopic amplitudes xn are computed
via Eq. (21) by inserting the ISR of CAP/EA-ADC states
(24), resulting in the real and imaginary parts

x
(R)
n = Y

c(R)†
n f = c

(R)†
n Y

†
f =

NP∑

i

c
(R)
in Y

†
i f (27)

x
(I)
n = Y

c(I)†
n f = c

(I)†
n Y

†
f =

NP∑

i

c
(I)
in Y

†
i f . (28)

Consequently, due to the linearity of Eqs. (27) and (28)
CAP/EA-ADC Dyson orbitals can be computed by linear
combination of the underlying EA-ADC Dyson orbitals.

III. COMPUTATIONAL DETAILS

All results presented in this work were computed using
a development version of the Q-Chem software52 based
on version 5.2.
For the nitrogen molecule, an internuclear distance of

2.074 a0 was assumed. In the remaining cases, molec-
ular geometries obtained for the neutral molecules at
the MP(2)/cc-pVTZ60 level of theory were employed
throughout, being of D2h symmetry in the case of ethy-
lene and cyclohexadiene and C2v symmetry in the case
of norbornadiene.
In the case of N2, the aug-cc-pVQZ basis set60,61

was employed on the nitrogen atoms, and addi-
tional 3s3p3d diffuse functions were added at the
molecular center. The exponents of the addi-
tional functions were: 0.0273200, 0.0136600, 0.0068300
(s); 0.0220100, 0.0110050, 0.0055025 (p); 0.0555000,
0.0277500, 0.0138750 (d). For ethylene, cyclohexadiene
and norbornadiene, two different basis set combinations
were used: i) cc-pVDZ60 on hydrogen atoms and aug-cc-
pVDZ60,61 on carbon atoms, with additional 4p1d diffuse
functions centered at the carbon atoms, the exponents
being 0.0269400, 0.0179600, 0.0119733, 0.0079822 (p) and
0.0755000 (d), denoted “DZ” throughout the remaining
part of this publication; ii) cc-pVTZ60 on hydrogen atoms
and aug-cc-pVTZ60,61 on carbon atoms, with additional
4p1d diffuse functions centered at the carbon atoms,
the exponents being 0.0237933, 0.0158622, 0.0105748,
0.0070499 (p) and 0.0400000 (d), denoted “TZ” through-
out the remaining part of this paper.
In the case of third-order EA-ADC calculations, two

schemes differing by the static self-energy treatment were
used: i) a scheme in which the third-order static self-
energy and corresponding (second-order) ground state
density were used throughout (denoted as “strict” EA-
ADC(3) scheme), and ii) a scheme employing the im-
proved fourth-order static self-energy and corresponding
(improved third-order) ground state density computed
according to the Σ(4+) procedure40 (denoted as “stan-
dard” EA-ADC(3) scheme).

A smooth Voronoi CAP as first introduced in Ref. 53
was employed throughout, the functional form being de-

termined by the molecular geometry and a single onset
(or cutoff) parameter rcut according to

W (r) =

{
0 rWA ≤ rcut

(rWA − rcut)
2 rWA > rcut,

(29)

with rWA being a weighted-average distance according to

rWA(r) =

√∑
α wαr2α∑
α wα

. (30)

Therein, rα = ‖rα‖ = ‖r−Rα‖ is the distance between r

and the coordinates Rα of atom α, and the summations
are carried out over all atoms α. The weight parameter
wα is given as

wα =
1

(
r2α − r2nearest + (1 a.u.)2

)2 , (31)

with rnearest = ‖rnearest‖ = ‖r −Rnearest‖ being the dis-
tance between r and the atom closest to this point in
space. For all calculations presented in this work, an on-
set of rcut=3.5 a0 was used, and the basis set representa-
tion of W (r) was computed by numerical quadrature on
a grid consisting of 974 Lebedev angular and 250 Euler-
MacLaurin radial points as implemented in Q-Chem 5.2.

For the CAP representation T(Ŵ ) within a given sub-
space of converged EA-ADC eigenstates, the second-
order intermediate state representation [ISR(2)] formal-
ism was used. The number of EA-ADC vectors with
lowest eigenvalues included within the CAP calculations
were: 30 (ethylene anion 2B2g resonance), 30 (cyclohexa-
diene anion 2Au and 2B2g resonances), 50 (norbornadiene
anion 2A2 resonance) and 30 (norbornadiene anion 2B2

resonance). If not stated otherwise, in case of the 2Πg

resonance of the dinitrogen anion the number of sub-
space vectors included was 200 for all considererd EA-
ADC schemes. For each investigated resonance state,
the considered subspace consisted exclusively of vectors
transforming according to the same irreducible represen-
tation within the largest Abelian subgroup of the molec-
ular point group of symmetry.
If not explicitly specified otherwise, trajectories were

computed for real potential strengths η, and resonance
parameters were extracted from the corrected trajectories
according to Eq. (11) at the minimum of the respective
logarithmic velocity (14). In case of the 2A2 resonance of
the norbornadiene anion, the assignment of the stabiliza-
tion point was further supported by considering a series
of molecular geometries along the ring puckering coordi-
nate (see supplementary material for further details).
Finally, Dyson orbital plots were generated using ver-

sion 1.9.4a27 of the VMD software,62 employing input
data obtained by linear combination of Dyson orbitals
computed for EA-ADC(2)/TZ eigenstates of the respec-
tive non-CAP-augmented EA-ADC Hamiltonians as out-
lined in Section IID.
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FIG. 1. Corrected (blue) and uncorrected (orange) complex
energy trajectories for the 2Πg resonance of the dinitrogen
anion computed using standard EA-ADC(3). The resonance
positions are marked with arrows.

IV. RESULTS AND DISCUSSION

The newly developed CAP/EA-ADC methodology was
applied for the computational description of a number
of π∗ shape resonance states. As a first test, different
methodological aspects were investigated at the example
of the well-studied 2Πg resonance state of the dinitrogen

anion N−
2 (Sec. IVA). The applicability of the method

was further evaluated in a study of π∗ resonances in un-
saturated hydrocarbons: ethylene (Sec. IVB1), norbor-
nadiene, and 1,4-cyclohexadiene (Sec. IVB2). The diene
molecules are of particular interest because the properties
of their π∗ resonance states can be directly interpreted by
means of the concept of through-bond and through-space
interactions, which has been an active field of research for
a long time.63,64

A. A First Test: 2
Πg Resonance of the Dinitrogen Anion

The first example studied using the newly developed
methodology needs to be a well understood resonance for
which reliable reference data are available. For this pur-
pose, we use the 2Πg resonance of N−

2 , which has been
subject of extensive studies in the past decades. A compi-
lation of resonance positions and widths computed using
a variety of theoretical approaches can be found in Ref.
65. The most accurate value so far was obtained ana-
lyzing experimental cross sections with a Feshbach pro-
jection formalism based on experimental data.66 In this
study, a resonance position of Er = 2.32 eV and a width
of Γ = 0.41 eV was found, and these values have been
used as a reference since then.
The corrected and uncorrected trajectories computed

using standard CAP/EA-ADC(3) are depicted in Figure
1. At the minimum of the logarithmic velocity, a res-
onance position of Er = 2.327 eV and a decay width
of Γ = 0.307 eV are obtained from the uncorrected
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FIG. 2. Transition matrix T(Ŵ ) of a smooth Voronoi po-
tential in the subspace of the 50 energetically lowest standard
EA-ADC(3) states of N2, ordered by their respective energies.
The best approximation to the 2Πg resonance is provided by
state 2. Direct coupling to this state, indicated by non-zero
off-diagonal elements, is mainly observed within the subspace
of the four lowest states.

trajectory. Using the corrected trajectory, similar val-
ues are found, the resonance position and width being
Er = 2.285 eV and Γ = 0.247 eV, respectively. Thus,
both the uncorrected and corrected treatment yield reso-
nance positions which are in excellent agreement with the
reference value. In case of the resonance width, the value
extracted from the uncorrected trajectory lies somewhat
closer to the reference than the corrected one. How-
ever, when compared to other theoretical approaches,
both computed widths lie well within the usual range
of variation. As an example, one may consider a corre-
sponding CAP/EOM-EA-CCSD study,65 where a similar
behavior was observed for the corrected and uncorrected
resonance widths, which were found to be Γ = 0.364 eV
and Γ = 0.286 eV, respectively.

1. Choice of the Subspace

After this encouraging result, the problem of the choice
of the subspace of EA-ADC states used for the CAP rep-
resentation was addressed. As discussed in Sec. II C,
the Weisskopf-Fano-Feshbach picture of resonances im-
plies that only states close to the position of the reso-
nance in question can be expected to significantly con-
tribute to its description. Figure 2 displays the repre-
sentation of a smooth Voronoi potential within the sub-
space of 50 states at the lower end of the standard EA-
ADC(3) spectrum of N2 as computed according to Eq.
(22). Therein, dark diagonal elements indicate diffuse
pseudo-continuum states, which exhibit a strong interac-
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FIG. 3. Overlaps |ci|
2 of EA-ADC states Yi with the N−

2
2Πg

resonance as computed in the subspace of 200 standard EA-
ADC(3) eigenstates of energy Ei at the uncorrected (orange)
and corrected (blue) complex energy velocity minimum. The
individual states are distinguished as one-particle (1p, pole
strength ≥ 0.5) and two-particle-one-hole states (2p-1h, pole
strength < 0.5).

tion with the (diffuse) potential. Light diagonal elements,
on the other hand, are associated with more compact
resonance states, and indeed, the energetically second-
lowest state (state 2 in Fig. 2) turns out to have the
largest overlap with the 2Πg resonance of N−

2 .

One can now estimate which states will have the
strongest effect on the resonance upon addition of the
CAP by considering the direct couplings, i.e., the off-
diagonal elements belonging to this state. Inspection of
Figure 2 shows that such couplings mainly exist with
states close in energy, i.e., states 1, 3 and 4, which should
consequently be included in the subspace. However, ad-
ditional states could still be involved by means of indirect
or weak direct coupling.

Another perspective on the selected subspace can be
gained from considering the resonance vector in the
largest considered subspace of 200 standard EA-ADC(3)
states of N2. Figure 3 shows a plot of the overlaps
|ci|

2 between the resonance at the stabilization point
and EA-ADC states Yi against the respective state en-
ergies Ei. As already pointed out in the context of
projected CAP/CI,25 the distribution roughly matches a
Breit-Wigner profile. It is thus evident that mainly EA-
ADC(3) states in the energetic vicinity of the resonance
position need to be included in the subspace. Another
conclusion which can be drawn from Fig. 3 is that main
(1p) states are generally more important for the descrip-
tion of the resonance than satellite (2p-1h) states.

Finally, the subspace quality can be assessed by means
of the convergence of the resonance parameters. For this
purpose, trajectories were computed for increasing sub-
space sizes (Figure 4). For small potential strengths, re-
sulting in computed widths Γ close to zero, barely any
difference can be observed between the different trajec-
tories. The variations get more pronounced for stronger
potentials, i.e., at the right edge of Figure 4. In this sys-
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FIG. 4. Corrected (dashed) and uncorrected (solid) standard
CAP/EA-ADC(3) resonance energy trajectories of the 2Πg

resonance of N−

2 computed using different subspace sizes be-
tween 5 and 200.

tem, larger deviations are seen only beyond the stabiliza-
tion point. The resonance parameters extracted from the
corrected and uncorrected trajectories are summarized in
Table I along with the sum of overlaps |ci|

2 for each con-
sidered subspace size, evaluated using the ci coefficients
obtained for the largest subspace of 200 EA-ADC(3) vec-
tors at the respective stabilization point ηopt.

As already implied by Figure 4, nearly no difference
is observed between the smallest and largest subspace
considered in case of the uncorrected treatment. For the
corrected treatment, a more pronounced shift towards
larger decay widths is observed when increasing the sub-
space size used for the CAP representation. However,
the difference between the decay widths computed using
subspace sizes of 5 and 200 is still only 0.03 eV. The res-
onance position, on the other hand, is nearly unaffected.
The faster convergence of the uncorrected resonance pa-
rameters is also reflected in a faster convergence of the
sum of overlaps |ci|

2.

2. The Effect of Different EA-ADC Approximation
Schemes

So far only the standard EA-ADC(3) scheme has been
considered. In this section, we examine the performance
of different EA-ADC schemes. Figure 5 displays the cor-
rected (dashed) and uncorrected (solid) trajectories com-
puted using standard and strict EA-ADC(3) as well as
EA-ADC(2). The resonance parameters extracted from
the respective trajectories are summarized in Table II.
In comparison with standard EA-ADC(3), the strict

EA-ADC(3) scheme yields resonance widths closer to the
reference value of Γ = 0.41 eV.66 At the same time, larger
errors of 0.10 eV and 0.15 eV are found for the corrected
and uncorrected resonance positions, respectively. Most
notably, the level of accuracy found for EA-ADC(2) is
comparable to that of standard EA-ADC(3). Especially
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TABLE I. Standard CAP/EA-ADC(3) resonance parameters of the N−

2
2Πg resonance extracted from the uncorrected and

corrected trajectories for different subspace sizes. The quality of the subspace with respect to the largest considered subspace
of 200 EA-ADC(3) vectors may be judged by means of the sum of overlaps |ci|

2.

subspace size Uncorrected Corrected

NP Er [eV] Γ [eV] ηopt
∑

NP

i
|ci|

2 a Er [eV] Γ [eV] ηopt
∑

NP

i
|ci|

2 a

5 2.325 0.302 2.77× 10−3 0.999571 2.286 0.218 5.57× 10−3 0.998796
10 2.326 0.303 2.77× 10−3 0.999660 2.286 0.220 5.53× 10−3 0.999041
20 2.326 0.303 2.76× 10−3 0.999749 2.284 0.225 5.39× 10−3 0.999311
50 2.327 0.306 2.71× 10−3 0.999954 2.284 0.242 5.11× 10−3 0.999885
100 2.327 0.307 2.69× 10−3 0.999999 2.285 0.247 4.99× 10−3 0.999997
200 2.327 0.307 2.69× 10−3 1.000000 2.285 0.247 4.99× 10−3 1.000000

a Evaluated using ci coefficients obtained for subspace size 200 at the respective stabilization point.

TABLE II. Resonance parameters of the N−

2
2Πg resonance extracted from the uncorrected and corrected trajectories computed

using different EA-ADC schemes.

Uncorrected Corrected
EA-ADC scheme Er [eV] Γ [eV] ηopt Er [eV] Γ [eV] ηopt
EA-ADC(2) 2.354 0.303 2.83× 10−3 2.310 0.260 4.96× 10−3

Strict EA-ADC(3) 2.471 0.350 2.74× 10−3 2.422 0.290 5.03× 10−3

Standard EA-ADC(3) 2.327 0.307 2.69× 10−3 2.285 0.247 4.99× 10−3
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FIG. 5. Corrected (dashed) and uncorrected (solid) reso-
nance energy trajectories of the dinitrogen anion 2Πg reso-
nance computed using different EA-ADC schemes.

the resonance position obtained from the corrected tra-
jectory (Er = 2.31 eV) is in excellent agreement with
the reference value of Er = 2.32 eV, showing an error of
only 0.01 eV. While the good performance of the second-
order scheme might seem surprising, it comes not totally
unexpected. As is evident from Fig. 3, the description
of shape resonances mainly builds upon the accurate de-
scription of one-particle states, which, as we have recently
shown,41 can be provided by EA-ADC(2).

3. Extension to Complex Potential Strengths

Within the projected CAP approach, it is straightfor-
ward to extend the methodology to complex potential
strengths η = |η| (cosϑ+ i sinϑ), since only minor modi-
fications of the η-trajectory-generating code are required.
Here, an approach similar to that introduced in the con-
text of CAP/XMCQDPT234 has been followed.

As discussed in Section IIA, the logarithmic velocity
of the (uncorrected or corrected) complex energy of a
resonance state with respect to the potential strength
parameter can be considered a metric for the quality
of the approximation [cf. Eqs. (10) and (14)]. Figure
6 displays plots of these quantities for a section of the
two-dimensional {|η| , ϑ} parameter space as computed
in the subspace spanned by 200 standard EA-ADC(3)
eigenstates. Therein, minima correspond to the best
approximations of the uncorrected and corrected com-
plex energy E(η) and U(η), respectively, with respect
to the exact Siegert energy E(0). The global veloc-
ity minimum for the corrected energy [Figure 6 b)] is
found at virtually the same position as in the case of
real potential strengths. It is located at (|η|opt , ϑopt) =

(4.99 × 10−3,−0.1◦), for which the resonance position
and width are Er = 2.285 eV and Γ = 0.247 eV. In
the uncorrected case [Figure 6 a)], the global minimum
is found at (|η|opt , ϑopt) = (2.66 × 10−3,−16.1◦). How-
ever, nearly no improvement of the resonance parameters
over those computed with a purely real potential strength
is observed. The resonance position of Er = 2.328 eV
is virtually unaffected, and also the resonance width of
Γ = 0.321 eV is only slightly shifted towards the ref-
erence value of Γ = 0.41 eV.66 Another observation is
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FIG. 6. Logarithmic velocity of the a) uncorrected trajec-
tory |E(η)− E(0)| [cf. Eq. (10)] and b) corrected trajectory
|U(η)− E(0)| [cf. Eq. (14)] of the 2Πg resonance of N−

2 eval-
uated for complex potential strengths η = |η| (cosϑ+ i sinϑ).
A subspace of 200 standard EA-ADC(3) states was used.

ethylene 1,4-cyclohexadiene norbornadiene

FIG. 7. Molecular structures of unsaturated hydrocarbons
considered in this study.

that the stabilization point of the uncorrected trajectory
computed for different angles ϑ . 10 ◦ is found at very
similar potential strengths |η|, reflected in a nearly per-
fectly vertical “valley” in Figure 6 a) at |η| ≈ 2.7× 10−3.

Combining these findings, additional accuracy may be
gained by going to complex potential strengths. However,
the treatment using real potential strengths (and thus, a
purely imaginary CAP) yields similarly accurate results,
and therefore this methodology will be used throughout
the remaining part of this study.

B. π
∗ Resonances in Unsaturated Hydrocarbons

Temporary anion π∗ resonances have been commonly
observed in many unsaturated organic molecules.9,11

Much experimental and theoretical work has been de-
voted to these molecules as the π∗ resonances character-

ize the lowest unoccupied “orbitals” and provide there-
fore a proxy for the electron acceptor properties of these
compounds in donor/acceptor reactions.

1. Ethylene

The prototype for unsaturated hydrocarbons is ethy-
lene (Fig. 7), for which a π∗ shape resonance of B2g

symmetry has been experimentally identified.9,67 In these
studies, the resonance position was determined at Er =
1.78 eV in ETS experiments9 and later at Er ≈ 1.8 eV by
elastic electron scattering (ES).67 In the latter work, the
width of this resonance was determined as Γ = 0.7 eV.
A compilation of the various available theoretical res-

onance parameters is given in Ref. 65. Most notably,
CAP/EOM-EA-CCSD calculations yielded a resonance
position of Er = 2.091 eV using the corrected trajec-
tory, while the corresponding decay width is given as
Γ = 0.430 eV.65

Table III summarizes the results obtained using
CAP/EA-ADC. As it has already been observed for the
2Πg resonance of N−

2 , EA-ADC(2) performs extraordi-
narily well with respect to the resonance position. The
value obtained using the triple-zeta basis set agrees per-
fectly with the experimental value of Er = 1.80 eV. The
resonance width, on the other hand, seems to be bet-
ter reproduced by the EA-ADC(3) treatment, where the
differences between strict and standard EA-ADC(3) are
generally not as pronounced as in the case of N−

2 .

2. Dienes: 1,4-Cyclohexadiene and Norbornadiene

In the past decades, there has been a long-standing dis-
cussion among physical organic and theoretical chemists,
as to whether the interactions between ethylenic π-
orbitals of cyclic diene molecules may lead to a “reversal”
of the natural energetic order of the resulting molecular
orbitals. In this context, the concept of through-space

and through-bond interactions was introduced.64

If the molecular system lacks any additional orbitals
that couple with the π-system, the π-type molecular or-
bitals can simply be constructed from suitable linear
combinations of the ethylenic π orbitals, that is, the π
and π∗ orbitals associated with every double bond. This
case is referred to as through-space interaction and results
in a natural energetic ordering of the π-type molecular
orbitals. An example is norbornadiene (Fig. 7), where
the two unoccupied π∗ molecular orbitals can be con-
structed from the ethylenic π∗ orbitals of the two double
bonds: The symmetric “+”-combination π∗

+ minimizes
the number of nodal planes and consequently has a lower
orbital energy than the antisymmetric “−”-combination
π∗
−.
An example for a through-bond interaction is provided

by 1,4-cyclohexadiene (Fig. 7). Since the carbon skeleton
is planar, additional orbitals of π compatible symmetry
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TABLE III. Resonance parameters of the ethylene 2B2g resonance as extracted from the corrected trajectory computed using
different EA-ADC schemes and employing double-zeta (DZ) and triple-zeta (TZ) basis sets as specified in Section III.

DZ TZ
EA-ADC scheme Er [eV] Γ [eV] ηopt Er [eV] Γ [eV] ηopt
EA-ADC(2) 2.029 0.434 4.27× 10−3 1.802 0.353 2.94× 10−3

Strict EA-ADC(3) 2.154 0.538 4.28× 10−3 2.048 0.547 2.99× 10−3

Standard EA-ADC(3) 2.097 0.493 4.25× 10−3 1.971 0.478 2.97× 10−3
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FIG. 8. Electron transmission spectra recorded for norbor-
nadiene (NBD, blue) and 1,4-cyclohexadiene (CHD, orange).
Experimentally determined resonance energies are indicated
by vertical lines. Data digitized from Ref. 68.

can be constructed by linear combination of the four C-H
σ orbitals of the methylene moieties. In particular, the
occupied σ orbital combination of appropriate symmetry
will interact with the π∗

+ orbital resulting in a stabilized
occupied and a destabilized unoccupied combination, and
by this means the π∗

+ orbital will be pushed energetically
above the unaffected π∗

− orbital.
As ethylene, both 1,4-cyclohexadiene and norborna-

diene, cannot bind excess electrons in their unoccu-
pied π∗ molecular orbitals, and all electron-attached
states are temporary anions or resonances. Experimen-
tally, these anions have been identified by ETS,68 and
eventually assigned using high-energy electron impact
measurements69 and comparative ETS studies of 1,4-
dioxane and similar molecular systems.70 The recorded
electron transmission spectra of both diene molecules are
displayed in Figure 8.68

According to these studies, the 2B2g resonance of
the 1,4-cyclohexadiene anion (π∗

+ combination) is indeed
found at a higher energy (Er = 2.67 eV) than the 2Au

state (π∗
− combination) which shows a resonance position

of Er = 1.75 eV. In contrast, for norbornadiene the nor-
mal ordering is preserved: The 2B2 resonance (π

∗
+ combi-

nation) is observed at lower energy (Er = 1.04 eV) than
the 2A2 resonance (π∗

− combination), for which the res-
onance position was determined as Er = 2.56 eV. How-

a)

b)

FIG. 9. a) Real and b) imaginary parts of the normalized
Dyson orbital corresponding to the 2A2 (π∗

−
) shape resonance

of the norbornadiene anion computed at the EA-ADC(2)/TZ
level of theory. Isosurfaces were drawn at function values of
±0.016 (real part) and ±0.011 (imaginary part).

ever, owing to the lack of vibrational resolution in the
electron transmission spectra, no direct conclusion can
be drawn about the widths of these states.
On the theoretical side, a number of studies have been

conducted, most notably using the stabilization tech-
nique combined with Koopmans’ theorem and a multi-
reference CIS approach geared towards recovering orbital
relaxation, but no electron correlation.71,72 These stabi-
lization calculations confirm the reversal of the energetic
ordering of the π∗ orbitals in 1,4-cyclohexadiene. Here,
we study these resonances for the first time at the many-
particle level.
We start with norbornadiene. The real parts of the

normalized Dyson orbitals of the 2A2 and 2B2 resonance
states of norbornadiene as calculated at the CAP/EA-
ADC(2)/TZ level of theory are displayed in Figures 9
and 10, respectively. The weights of the Dyson orbitals
of 0.954 (2A2) and 0.926 (2B2) thereby indicate consider-
able one-electron character of the respective attachment
processes, the relative weights of the real/imaginary parts
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TABLE IV. Resonance parameters of the 2B2 and
2A2 anionic shape resonances of norbornadiene as extracted from the corrected

trajectories computed using different EA-ADC schemes and employing double-zeta (DZ) and triple-zeta (TZ) basis sets as
specified in Section III. The experimentally determined resonance positions are Er(

2B2) = 1.04 eV and Er(
2A2) = 2.56 eV.68

DZ TZ
State EA-ADC scheme Er [eV] Γ [eV] ηopt Er [eV] Γ [eV] ηopt

2B2 (π∗

+) EA-ADC(2) 1.185 0.217 2.41× 10−3 0.955 0.189 6.64× 10−4

Strict EA-ADC(3) 1.577 0.380 1.52× 10−3 1.564 0.410 1.08× 10−3

Standard EA-ADC(3) 1.563 0.362 1.51× 10−3 1.495 0.351 1.06× 10−3

2A2 (π∗

−
) EA-ADC(2) 2.905 1.103 4.25× 10−3 2.586 0.955 2.42× 10−3

Strict EA-ADC(3) 3.647 1.192 1.08× 10−2 3.375 0.983 6.69× 10−3

Standard EA-ADC(3) 3.626 1.186 1.06× 10−2 3.310 0.944 6.39× 10−3

a)

b)

FIG. 10. a) Real and b) imaginary parts of the normalized
Dyson orbital connected with the 2B2 (π∗

+) shape resonance
of the norbornadiene anion computed at the EA-ADC(2)/TZ
level of theory. Isosurfaces were drawn at function values of
±0.0175 (real part) and ±0.0065 (imaginary part).

being 0.625/0.329 (2A2) and 0.802/0.124 (2B2). The
Dyson orbital of the π∗

+ combination (2B2) shows that
even though the CH-units cannot mediate a significant
through-bond interaction, the bridging methylene moiety
is able to do so. Moreover, owing to the puckered ring, a
direct through-space interaction is possible as suggested
by the extended lobes of the Dyson orbitals.

The computed resonance parameters of norbornadiene
are collected in Table IV. Both positions agree amaz-
ingly well with the experimental ETS values.68 Our cal-
culations thus confirm that the π∗ resonances follow the
expected natural ordering. The resonance position of
the π∗

+ (2B2) state predicted by CAP/EA-ADC(2)/TZ
is Er = 0.955 eV, considerably lower than that of the
π∗
− (2A2) state: Er = 2.586 eV. Regarding the widths,

a)

b)

FIG. 11. a) Real and b) imaginary parts of the normal-
ized Dyson orbital connected with the 2B2g (π∗

+) shape reso-
nance of the 1,4-cyclohexadiene anion computed at the EA-
ADC(2)/TZ level of theory. Isosurfaces were drawn at func-
tion values of ±0.0175 (real part) and ±0.0040 (imaginary
part).

CAP/EA-ADC yields higher values for the 2A2 state
than for the 2B2 state. Although no definite experimen-
tal data is available in this case, this trend is consis-
tent with the shape of the recorded electron transmis-
sion spectrum,68 where a broader peak is observed for
the higher-lying spectral feature (see Figure 8).

We now turn to 1,4-cyclohexadiene. Its two π∗ res-
onances show 2B2g and 2Au symmetry, and the Dyson
orbitals associated with these two states as calculated
at the CAP/EA-ADC(2)/TZ level of theory are dis-
played in Figures 11 and 12, respectively. As for nor-
bornadiene, both considered attachment processes are
characterized by a predominant one-electron character,
as suggest the weights of the Dyson orbitals of 0.922
(2B2g) and 0.914 (2Au). In this case, the relative weights
of the real/imaginary parts are 0.880/0.042 (2B2g) and
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a)

b)

FIG. 12. a) Real and b) imaginary parts of the normal-
ized Dyson orbital corresponding to the 2Au (π∗

−
) shape res-

onance of the 1,4-cyclohexadiene anion computed at the EA-
ADC(2)/TZ level of theory. Isosurfaces were drawn at func-
tion values of ±0.0175 (real part) and ±0.0038 (imaginary
part).

0.877/0.036 (2Au). As expected, for 1,4-cyclohexadiene
the energetic order of the resonance states is reversed.
Here, the π∗

+ (2B2g) state is strongly affected by through-
bond interactions, and one additional nodal plane ap-
pears due to the interaction with the π-like CH-σ combi-
nations at the methylene moieties. By contrast, the an-
tisymmetric π∗

− combination (2Au) is simply a mixture
of the two ethylenic π∗ orbitals.

The computed resonance positions and decay widths
of 1,4-cyclohexadiene are summarized in Table V. Again,
the agreement with the experimental resonance positions
is excellent: for the 2B2g (π∗

+) state the computed posi-
tion is 2.651 eV while the experimental value is 2.67 eV,
and for the 2Au (π∗

−) state the computed position is
Er = 1.735 eV while the experimental value is 1.75 eV.68

Thus, again, the CAP/EA-ADC(2)/TZ calculations con-
firm the expected energetic order with a lower π∗

− state
for through-bond systems. Regarding widths, as for nor-
bornadiene, vibrational bands were not resolved in the
ETS experiment, and a direct comparison with the com-
puted width is not possible. However, the recorded spec-
trum reveals considerably narrower bands than those ob-
served in the norbornadiene spectrum (Figure 8) suggest-
ing narrower widths, and this trend is confirmed by the
calculated CAP/EA-ADC widths.

V. SUMMARY AND CONCLUSIONS

An in-depth investigation of various theoretical and
conceptual aspects of our recently introduced subspace-
projected CAP/EA-ADC method38 has been presented.
For this purpose, our guinea pig is the well-studied 2Πg

resonance of the dinitrogen anion N−
2 . We study, in par-

ticular, the problem of the choice of the subspace used to
represent the CAP. As a rule of thumb, the subspace may
be composed using an energy criterion, i.e., electronic
states within a range of a few resonance widths around
the expected resonance position should be included. In
case of the 2Πg resonance of N−

2 , for example, a sub-
space composed of all states within ±5 eV around the
resonance position was found to be sufficient to achieve
satisfactory results.
All considered CAP/EA-ADC schemes were shown to

provide satisfactory results. The resonance positions
computed using EA-ADC(2) and standard EA-ADC(3)
are in excellent agreement with the experimental val-
ues. The corresponding resonance width is best re-
produced by strict EA-ADC(3), but also standard EA-
ADC(3) and EA-ADC(2) perform reasonably well. Fur-
thermore, we extended the methodology to complex po-
tential strengths. However, only a slight improvement of
the resonance parameters computed using standard EA-
ADC(3) was observed.
In order to further investigate the performance of

CAP/EA-ADC, we applied the methodology to π∗ reso-
nances of unsaturated hydrocarbons. Using ethylene as
a prototype for this class of molecules, the same behavior
as for the 2Πg resonance of N−

2 was observed: The reso-
nance position is best reproduced by CAP/EA-ADC(2)
using a triple-zeta basis set whereas CAP/EA-ADC(3)
provides the best resonance widths. However, all em-
ployed EA-ADC schemes yield satisfactory results.
By applying our CAP/EA-ADC methods to the π∗

+

and π∗
− resonances of the anions of the medium-sized or-

ganic dienes norbornadiene and 1,4-cyclohexadiene, the
first many-body treatment of these systems is provided.
The same performance of CAP/EA-ADC(2) as seen for
N−

2 and ethylene was observed also for these systems.
The experimentally determined resonance positions are
perfectly reproduced when a diffuse triple-zeta basis set
is employed. Because of the lack of vibrational resolution
in the experimental electron transmission spectra, no di-
rect comparison of the computed widths with experimen-
tal values is possible. However, the computed values are
generally consistent with the spectral shape, i.e., in case
of the norbornadiene anion, a larger width was found for
the 2A2 (π∗

−) resonance than for the 2B2 (π∗
+) one. Simi-

larly, for both the 2B2g (π∗
+) and 2Au (π∗

−) resonances
of the 1,4-cyclohexadiene anion, the computed widths
are smaller than for the respective resonance states of
the norbornadiene anion, again being consistent with the
shape of the recorded experimental spectra.
Our results also confirm the order of the π∗ reso-

nances in these diene systems. In case of norbornadi-
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TABLE V. Resonance parameters of the 2B2g and 2Au anionic shape resonances of 1,4-cyclohexadiene as extracted from the
corrected trajectories computed using different EA-ADC schemes and employing double-zeta (DZ) and triple-zeta (TZ) basis sets
as specified in Section III. The experimentally determined resonance positions are Er(

2B2g) = 2.67 eV and Er(
2Au) = 1.75 eV.68

DZ TZ
State EA-ADC scheme Er [eV] Γ [eV] ηopt Er [eV] Γ [eV] ηopt

2B2g (π∗

+) EA-ADC(2) 2.922 0.096 1.97× 10−3 2.651 0.078 1.37× 10−3

Strict EA-ADC(3) 3.253 0.163 2.00× 10−3 3.185 0.229 1.63× 10−3

Standard EA-ADC(3) 3.203 0.147 1.98× 10−3 3.091 0.177 1.54× 10−3

2Au (π∗

−
) EA-ADC(2) 1.974 0.178 1.24× 10−3 1.735 0.127 8.64× 10−4

Strict EA-ADC(3) 2.359 0.232 4.77× 10−3 2.289 0.240 3.35× 10−3

Standard EA-ADC(3) 2.311 0.215 4.80× 10−3 2.203 0.205 3.35× 10−3

ene, the π∗
+ (2B2) resonance appears at lower energy

than the π∗
− combination 2A2, showing the expected ener-

getic ordering of the π∗ orbitals implied by predominant
through-space interaction. On the contrary, a reversed
energetic ordering of the π∗ orbitals is observed for 1,4-
cyclohexadiene. Owing to through-bond interactions of
the ethylenic π∗ orbitals with suitable linear combina-
tions of the occupied C-H σ orbitals at the methylene
moieties, the π∗

+ combination is pushed above the π∗
−

combination. As a result, the π∗
+ (2B2g) resonance is

found at a considerably higher energy than the π∗
− (2Au)

resonance.

In conclusion, CAP/EA-ADC methods can be consid-
ered reliable and computationally cost-efficient tools for
the description of electronic resonances. Especially the
good performance of CAP/EA-ADC(2) invites the study
of shape resonances in larger molecular systems.

SUPPLEMENTARY MATERIAL

See supplementary material for molecular geometries
of all studied compounds and plots of CAP trajectories.
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4I. Bald, R. Čuŕık, J. Kopyra, and M. Tarana, “Dissociative
electron attachment to biomolecules,” in Nanoscale Insights into

Ion-Beam Cancer Therapy, edited by A. V. Solov’yov (Springer
International Publishing, Cham, 2017) pp. 159–207.

5R. Santra and L. S. Cederbaum, Phys. Rep. 368, 1 (2002).
6T.-C. Jagau, K. B. Bravaya, and A. I. Krylov, Annu. Rev. Phys.
Chem. 68, 525 (2017).

7A. J. F. Siegert, Phys. Rev. 56, 750 (1939).
8J. M. Herbert, “The quantum chemistry of loosely-bound elec-
trons,” in Reviews in Computational Chemistry Volume 28

(John Wiley & Sons, Ltd, 2015) Chap. 8, pp. 391–517.
9K. D. Jordan and P. D. Burrow, Acc. Chem. Res 11, 341 (1978).

10V. Balaji, L. Ng, K. D. Jordan, M. N. Paddon-Row, and H. K.
Patney, J. Am. Chem. Soc. 109, 6957 (1987).

11K. D. Jordan and P. D. Burrow, Chemical Reviews 87, 557
(1987).

12M. Allan and L. Andric, J. Chem. Phys. 105, 3559 (1996).
13U. V. Riss and H.-D. Meyer, J. Phys. B: At. Mol. Opt. Phys. 26,
4503 (1993).

14U. V. Riss and H.-D. Meyer, J. Chem. Phys. 105, 1409 (1996).
15U. V. Riss and H.-D. Meyer, J. Phys. B: At. Mol. Opt. Phys. 31,
2279 (1998).

16S. Kopelke, K. Gokhberg, V. Averbukh, F. Tarantelli, and L. S.
Cederbaum, J. Chem. Phys. 134, 094107 (2011).

17N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge
University Press, 2011).

18J. D. Morgan and B. Simon, J. Phys. B: At. Mol. Phys. 14, L167
(1981).

19N. Moiseyev, Phys. Rep. 302, 212 (1998).
20B. Simon, Phys. Lett. A 71, 211 (1979).
21C. W. McCurdy and T. N. Rescigno, Phys. Rev. Lett. 41, 1364
(1978).

22W. P. Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982).
23A. F. White, M. Head-Gordon, and C. W. McCurdy, J. Chem.
Phys. 142, 054103 (2015).

24T. Sommerfeld, U. V. Riss, H.-D. Meyer, L. S. Cederbaum,
B. Engels, and H. U. Suter, J. Phys. B: At. Mol. Opt. Phys.
31, 4107 (1998).



CAP/EA-ADC 14

25T. Sommerfeld and R. Santra, Int. J. Quantum Chem. 82, 218
(2001).

26R. Santra and L. S. Cederbaum, J. Chem. Phys. 117, 5511
(2002).

27S. Feuerbacher, T. Sommerfeld, R. Santra, and L. S. Cederbaum,
J. Chem. Phys. 118, 6188 (2003).

28Y. Sajeev, R. Santra, and S. Pal, J. Chem. Phys. 122, 234320
(2005).

29N. Vaval and L. S. Cederbaum, J. Chem. Phys. 126, 164110
(2007).

30M. Ehara and T. Sommerfeld, Chem. Phys. Lett. 537, 107 (2012).
31Y. Zhou and M. Ernzerhof, J. Phys. Chem. Lett. 3, 1916 (2012).
32A. Ghosh, N. Vaval, and S. Pal, J. Chem. Phys. 136, 234110
(2012).

33T.-C. Jagau and A. I. Krylov, J. Phys. Chem. Lett. 5, 3078
(2014).

34A. A. Kunitsa, A. A. Granovsky, and K. B. Bravaya, J. Chem.
Phys. 146, 184107 (2017).

35Q. M. Phung, Y. Komori, T. Yanai, T. Sommerfeld, and
M. Ehara, J. Chem. Theory Comput. 16, 2606 (2020).

36S. Das, Y. Sajeev, and K. Samanta, J. Chem. Theory Comput.
16, 5024 (2020).

37S. Basumallick, S. Bhattacharya, I. Jana, N. Vaval, and S. Pal,
Mol. Phys. 118, e1726521 (2020).

38A. M. Belogolova, A. L. Dempwolff, A. Dreuw, and A. B. Trofi-
mov, J. Phys. Conf. Ser. 1847, 012050 (2021).

39J. Schirmer, A. B. Trofimov, and G. Stelter, J. Chem. Phys.
109, 4734 (1998).

40A. B. Trofimov and J. Schirmer, J. Chem. Phys. 123, 144115
(2005).

41A. L. Dempwolff, A. M. Belogolova, A. B. Trofimov, and
A. Dreuw, J. Chem. Phys. 154, 104117 (2021).

42A. L. Dempwolff, M. Schneider, M. Hodecker, and A. Dreuw, J.
Chem. Phys. 150, 064108 (2019).

43A. L. Dempwolff, A. C. Paul, A. M. Belogolova, A. B. Trofimov,
and A. Dreuw, J. Chem. Phys. 152, 024113 (2020).

44A. L. Dempwolff, A. C. Paul, A. M. Belogolova, A. B. Trofimov,
and A. Dreuw, J. Chem. Phys. 152, 024125 (2020).

45J. Schirmer, Phys. Rev. A 26, 2395 (1982).
46A. B. Trofimov, G. Stelter, and J. Schirmer, J. Chem. Phys.
117, 6402 (2002).

47J. Schirmer and A. B. Trofimov, J. Chem. Phys. 120, 11449
(2004).

48A. Dreuw and M. Wormit, WIREs Comput. Mol. Sci. 5, 82
(2015).

49A. Dreuw, “The algebraic-diagrammatic construction scheme
for the polarization propagator,” in Quantum Chemistry and

Dynamics of Excited States (John Wiley & Sons, Ltd, 2020)
Chap. 5, pp. 109–131.

50M. Wormit, D. R. Rehn, P. H. P. Harbach, J. Wenzel, C. M.
Krauter, E. Epifanovsky, and A. Dreuw, Mol. Phys. 112, 774
(2014).

51P. H. P. Harbach, M. Wormit, and A. Dreuw, J. Chem. Phys.
141, 064113 (2014).

52E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao,
N. Mardirossian, P. Pokhilko, A. F. White, M. P. Coons, A. L.
Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson, I. Kali-
man, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu,
S. C. McKenzie, A. F. Morrison, K. D. Nanda, F. Plasser, D. R.
Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu, B. Alam, B. J. Albrecht,
A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Barton,
K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist,
H. G. A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty,
A. D. Chien, K. D. Closser, V. Cofer-Shabica, S. Dasgupta, M. de
Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P.-T.
Fang, S. Fatehi, Q. Feng, T. Friedhoff, J. Gayvert, Q. Ge, G. Gid-
ofalvi, M. Goldey, J. Gomes, C. E. González-Espinoza, S. Gula-
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