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Abstract

The alkaline earth metal trimer cluster dianions Beg_ and Mgg_ lie energetically
above their respective monoanions and can therefore decay by electron autodetachment.
Consequently, these dianions possess only short-lived resonance states, and here we

study these states using regularized analytic continuation as well as complex absorbing



potentials combined with a wide a variety of quantum chemistry methods including
CCSD(T), SACCI, EOM-CCSD, CASPT2, and NEVPT2.

For both Beg_ and Mgg_, four low-energy resonance states corresponding to dif-
ferent occupation patterns of the two excess electrons in the two lowest p-o and p-m
orbitals are identified: Two states are dominated by doubly occupied configurations
and can be characterized as showing ¢ and 7 aromatic character. The other two states
correspond to the open-shell singlet/triplet pair.

All dianion states are found to be highly unstable and to posses short lifetimes: They
show resonance positions in the energy range of 2.3 to 4.3 eV above the ground states of
their respective monoanions and broad widths between 1 and 1.5 eV translating into fs
lifetimes. For both Beg_ and Mgg_, the differences between the four states small, but
the triplet states tend to be slightly more stable than the three singlet states. Thus, in
the case of multi-charged ions aromatic character of the excess electrons takes second
stage while Coulomb repulsion takes front and center.

In addition to the two isolated cluster dianions, model stabilization by small water
clusters is explored. Our results show a dramatic drop in resonance position and
width corresponding to a lifetime increase by two orders of magnitude. However, the
“solvated” clusters are still resonances, and a more pronounced perturbation by, say,
yet larger water clusters or a ligand environment providing larger bond dipoles, will
be needed to fully stabilize two excess electrons localized on a small system such as an

alkaline metal trimer.



1 Introduction

Owing to their (ns)? closed-subshell electron configuration, alkaline earth atoms occupy a
middle ground between more typical metals and rare gases. The Bey dimer, for instance,
displays typical rare gas-like behavior in that it is barely bound with respect to dissociation,
yet, akin to typical metal clusters, it possesses two bound anionic states.? In contrast,
the trimer behaves like a typical metal cluster: Its equilateral triangle structure (Dsgp) is
substantially more stable to dissociation than the dimer and it also possesses various anion
states with binding energies of up to 1.38eV.2™*

While the low-energy states of neutral Bes and its anion, Be;, are well-established,?
the situation is less clear for the alkaline earth trimer dianions, Be3~ and Mg; . In a
molecular orbitals picture, the valence s orbitals of the neutral trimers are fully occupied.
Consequently, the two excess electrons of the dianions must occupy orbitals arising from
valence p combinations and the two lowest two are a p-o orbital with @} symmetry and a
p-m orbital with af symmetry. Accordingly, the following four states are possible: A closed-
shell (a})? 'A; state, a closed-shell (a5)? A, state, and open-shell singlet and a triplet states
corresponding to the (a})!(ay)! occupation: YA} and 3AY states (see Fig: 1 for a schematic
representation).

As show in Fig: 1, two states of the dianion show 'A; symmetry, and it will turn out that
these states are very close in energy so that we cannot distinguish them by their energetic
order. We thus use Jablonski-diagram-like state labels S,,, Srr, Sor and T, as indicated
in Fig: 1 that indicate the dominant occupation and increase readability.

The S,, and S, states have been interpreted as o and 7 aromatic, and various properties
of these two states and of the triplet state have been investigated for the isolated dianions® 12
as well as for metal clusters such as NaBe; or NagMgs, which feature the two trimer dianions
as structural units.>%® In this context, the S, state can be characterized a 27 aromatic

system as the bonding p-m as// orbital is doubly occupied. Similarly, the S,, state can be

said to possess o-aromatic character as the bonding p-o a;/ orbital is doubly occupied. In



Figure 1: Schematic occupation diagrams of the ground state of Be; and four low-lying
states of the Bej  dianion assuming D3, symmetry. For Mgs, the inner valence consists of a
(35)® subshell, but all symmetry labels are identical.
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other words, in both cases the two excess electrons form a three-center, two-electron bond.%°

On the other hand, one may simply consider these clusters as isolated dianions—aromatic
or not—and compare their properties to the substantial established knowledge regarding
small multi-charged systems.®® Long-lived small dianions (less than 10 atoms or so) all
follow the same building principles: A neutral or positive core surrounded by two or three
subgroups with high electron affinity. ™ In this way, the two opposite charges can localize
at the periphery of the dianion attaining maximal separation within the small molecular
volume, and their substantial Coulomb repulsion can be overcome.

In contrast, the smallest known dianions with delocalized charge distributions are con-

13715 and aromatic dianions are no exception from this rule. !

siderably larger (tens of atoms)
Therefore, only clusters such as NaBe; or NayBes that contain Bej  building blocks, but
have net charges of zero or one, are expected to be electronically stable, while isolated Be%‘
and Mg3~ dianions are expected to be metastable and to show—regardless of their aromatic

character—short autodetachment lifetimes.

Let us note that the isolated-dianion perspective may explain conflicting results about the
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electronic ground states and equilibrium structures of the isolated dianion (see, for example,
refs. 5-12). Electronically metastable states can be understood as discreet states of an (N +
1)-electron system that is embedded in and interacts with a continuum of states describing
the N-electron system plus a free electron. In computations with finite Gaussian basis sets,
this continuum is discretized and even if compact basis sets are used, the lowest state may
have considerable discretized-continuum character (see e.g. discussion in section 2 of ref.17).
Thus, if standard bound-state methods without regard to the continuum nature of the state
are employed, the results will strongly depend on the electronic structure method and on the
basis set because each method combination will yield a different discreet-state/discretized-
continuum mixture (see for instance ref. 8).

In this paper we aim at computing energies and autodetachment lifetimes of Be3~ and
Mg3~. States metastable to autodetachment are often referred to as temporary or as reso-
nances, and can be characterized by the energy or resonance position, F,., of the temporary
state above its decay products (here Be; or Mg; and a free electron with zero energy)
as well as the resonance width, I, which is inversely related to their lifetime 7 = h/T.
These two resonance parameters are frequently combined into the complex resonance energy
E,es = E,. — iI'/2 because this quantity is central to many theories involving resonance.

Specifically, we study resonance positions and widths of the S,,, Sz, Sor and T, states
of Be3~ and Mg3~ with various quantum chemistry methods, and we discuss the influence of
electron correlation on the resonance parameters in detail. Moreover, we study the complex
potential energy curves of the symmetric breathing mode of the four Beg_ resonances, and we
investigate how model stabilization by two water trimers and two water hexamers impacts

the resonance parameters.



2 Computational Methods

Computational methods for resonances generally combine a continuum method and an elec-
tronic structure method. The continuum method is needed to address the decaying character
of the resonance state, and the electronic structure method should be balanced in two ways:
First, between the N and (NN 4 1)-electron systems as such, and, second, within the calcula-
tion of the (N + 1)-electron system itself: between the decaying (/N + 1)-electron character
and the N-electron plus free electron character of the wavefunction. In other words, the
electronic structure method must be size-extensive and internally size-extensive (c.f. intro-
duction of ref. 18).

Currently three continuum methods are widely used: the complex absorbing potential
(CAP) method,'®?? the regularized analytical continuation (RAC) method,?*?* and the
Hazi-Taylor stabilization method.?*2% While these three methods differ greatly in their basic
ideas and underlying theory, they share the common feature of being two-step compound
methods. In step 1, the electronic Hamiltonian is parameterized and ab initio calculations
are performed for many values of the parameter. In step 2, the behavior of the computed
eigenvalues as function of the parameter is analyzed to find the energy and width of the
temporary state.

Each continuum method imposes somewhat different constraints on the electronic struc-
ture methods and basis sets it can be combined with. Therefore, in the following subsections,
we first briefly describe the continuum methods used and then the specific electronic struc-

ture methods each was combined with.

2.1 Regularized analytic continuation calculations

This RAC method is an extrapolation method belonging to the wider family of analytic

continuation of the coupling constant approaches.?*?42729 In step 1 of the RAC method,



the Hamiltonian is parameterized by adding an artificial attractive potential
H\) = H+\V (1)

where the parameter A determines the strength of the artificial attraction. For electronic
resonances, the most straightforward potential is to scale the nuclear charges by (1 + \)
because this option is readily available in many electronic structure codes. At sufficiently
large values of A the resonance becomes a bound state, and if A is increased further, the
electron binding energy will increase accordingly.

The goal is then to extrapolate the tabulated negative binding energies E,(\) back to
A = 0 (we use the convention that negative binding energies correspond to bound states
consistent with positive E, values corresponding to resonances). However, naive extrapola-
tion of the computed real energies can, at best, yield an approximation for E,.. To obtain
both E,. and I', an extrapolation displaying the correct analytic behavior at threshold is
needed.?”? Specifically, instead of the energy, the momentum x = /—FE()\) is extrapo-
lated, extrapolation of the inverse function, A(k), is numerically superior,3® and consistency
with various threshold laws k(\) can be guaranteed by using tailor-made rational function
approximations, so-called Padé approximants.?3

The simplest and therefore numerically most stable Padé approximant consistent with

all threshold laws is the Padé-[3,1] approximant

2+22 + 4+52 1_'_52
A () = ho ((; + 520:1(232 + 52 ()(14 + ﬁ;;;’ 2)

where \g, o, £, and ¢ are fitting parameters, and the resonance parameters are obtained from

E, = 3% — o* and T = 4a?|3].%* Here, this approximation is used for all RAC calculations.
Furthermore, in step 2 of a RAC calculation, a range of binding energies must be selected

for the fitting procedure. To minimize the dependence of our results on this range, first, an

approximate value of the resonance position EY was obtained from a RAC calculation with



all available data. Then the range of binding energies used in the fitting procedure was
systematically extended from —4FE? to —7E?, and the results (typically 20 to 30 resonance
energies) were averaged, using as weights the inverse of the respective x? values associated
with each fit. Typically, the resonance parameters depend on the data range only weakly
(less than 1%) and the standard deviations are less than 20 meV.

A second consideration regarding the data range is its upper limit, that is, the inclusion
of very small binding energies close to threshold. This issue has been discussed in ref. 23
(c.f. Figure2 of ref. 23). In particular, if long-range stabilizing potentials such as scaled
nuclear charges are used, at threshold, the calculation will converge on Rydberg states,
which render the extrapolation unreliable. This behavior can be suppressed by using fairly
compact basis sets and by discarding the first few negative binding energies. Here, we use
the minimally-augmented correlation-consistent valence triple-¢ (may-cc-pVTZ)3132 for all
RAC calculations, and we accept only binding energies more strongly bound than —0.5eV.

From a method combination point, apart from yielding accurate electron binding energies,
the RAC method places no special requirements on the electronic structure method. At an
increased nuclear charge (for Be, A & 0.2), the four (N + 1)-electron states, Syo, Srrx, Sox
and T,, are stable with respect to the lowest N-electron state (*A}; D, see Figure 1), and
in principle any standard electronic structure method can be employed.

The only issue arising in the context of Be3~ and Mgj  is static correlation, that is, the
multi-configuration character of some of the involved states. Since Be and Mg possess low-
lying unoccupied p-orbitals, all involved states possess a certain degree of multi-configuration
character corresponding to single or double excitation into molecular orbitals deriving from
these p-orbitals. If, for example, coupled-cluster with singles and doubles (CCSD)—or CCSD
with perturbative triples (CCSD(T))—are performed for Be; and Be~ at A &~ 0.2, it turns
out that the D, state is reasonably well described by CCSD—all T1 amplitudes are smaller
than 0.04 and there are only two T2 amplitudes slightly larger than 0.1. Virtually the same

holds true for the S, state and the T, state. Thus, CCSD(T) results for these three states



should be acceptable (c.f discussion in ref. 33). In contrast, CCSD(T) cannot be used for
the S,, and the S, states: The S,, state shows unacceptably large T2 amplitudes, and the
S, state is an open-shell singlet.

In all coupled-cluster (and all other correlated) calculations the chemical core has been
frozen. Moreover, all single-reference open-shell calculations (for the D, and T,, states)
make use of the spin-unrestricted formalism as spin-contamination is minor for all open-shell
states considered.

We note that similar to calculations for bound states, step 1 of a RAC/CCSD(T) cal-
culation simultaneously provides step 1 data at the restricted or unrestricted self-consistent
field (SCF) levels. The difference is, of course, that a separate step 2 analysis needs to be
executed for both sets for input data. Clearly, one cannot expect SCF resonance energies
to be reliable as such, however, without SCF data providing a baseline, we cannot discuss
correlation effects.

Alternatives to CCSD are complete-active-space self-consistent-field (CASSCF) calcula-
tions followed by second-order perturbation theory (CASPT2) or N-electron valence per-
turbation theory (NEVPT2).3* CASSCF followed by NEVPT2 is highly attractive, as it
naturally describes any multi-configuration character of all relevant states in the CASSCF
step, produces energies of similar quality to CASPT2, and is free of so-called intruded states.
However, as for all CASSCF methods, the need to select an appropriate active space can be
a distinct disadvantage.

For our RAC calculations, we chose an active space of 12 orbitals that is occupied with
six, seven, and eight electrons for Bes, Bes, and Beg_ or the corresponding Mgs species. In
other words, all valence electrons are correlated and the active space essentially corresponds
to the 12 valence orbitals (2s and 2p combinations or 3s and 3p combinations, respectively).

Symmetry-adapted-cluster (SAC) configuration-interaction (SACCI) and the closely re-
lated equation-of-motion coupled-cluster (EOM-CCSD) methods represent a third alterna-

tive. Both methods need a single-configuration reference state (SAC or CCSD step), but



then energy differences with respect to the reference state can be computed for states with
multi-configuration character as long as they are either one-hole states (ionization variants),
one-hole-one-particle states (excitation variants), or one-particle states (attachment variants)
(c.f.35:36).

In the RAC context, the S, state serves as a SAC or CCSD reference state because it
is bound at sufficiently large A. Then, the electron binding energy with respect to the D,
state is computed using the ionization variants of SACCI or EOM-CCSD, while the energy
difference between the S,. and the S, state is computed using the respective excitation
variant. Using the SACCI implementation, it is also possible to compute the energy difference
with respect to the T, state via a so-called spin-flip excitation method. Neither SACCI
nor EOM-CCSD can yield reliable results for the S,, state as the S,, state differs by two

excitations from the reference.

2.2 Complex absorbing potential calculations

In the complex absorbing potential (CAP) method a negative imaginary potential, —inW is

added to electronic Hamiltonian,

~ A

H(n)=H —inW , (3)

where 7 is the CAP strength, and W is normally a real, positive potential that is zero at
the molecule and then starts to grow with some power of the distance to the molecule. %37
Negative imaginary potentials absorb electron density, and a CAP absorbs the outgoing elec-
tron rending the resonance wavefunction square-integrable, provided the CAP is sufficiently
strong to absorb the electron within the limitations of the basis set (finite basis sets are lim-
ited in both position and momentum space). The resonance energy is then obtained directly

as a complex eigenvalue E,.s = E, —iI'/2 of the complex Hamiltonian H (n).

In an actual CAP calculation, a trade-off must be made as n needs to be sufficiently
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large to absorb the electron within the confinement of the basis set, yet too large n values
cause artifacts due to reflections of the outgoing electron at the CAP boundary and by the
CAP itself.?” In other words, in CAP calculations, a sweet spot, 7,,; must be identified.
We identify this sweet spot by following the n trajectory of the resonance eigenvalue and
identifying the point where the second logarithmic derivative makes a minimum.*37 In CAP
parlance, we apply the first-order correction for CAP artifacts and identify stable points on
the corrected trajectories. (Trajectories are supplied in the supporting information).

For the potential W we use a cut-off harmonic potential in the ‘distance-to-the-molecule’
coordinate: 33 In the vicinity of the nuclei W is zero, but from a cut-off radius it grows
quadratically with the distance-to-the-molecule, which is defined as an average heavily bi-

3839 making the CAP isocontours a smoothed

ased toward the distance to the nearest atom,
Voronoi surface that closely follows the molecular shape similar to a van der Waals surface.
Thus, the CAP displays the full, non-Abelian molecular symmetry, Ds,. Similar to our
previous work,*® we chose a fixed cut-off value of 3 Bohr.

The CAP is combined with the extended multi-state CASPT2 (CAP/XMS-CASPT?2)
method, and we followed the procedure established in our previous study.'® Two anion
states 2AY (D,) and %A} (D,) were first calculated at the CASSCF level, employing an
active space identical with the RAC/CASSCF calculations, that is CAS(7e,120). We then
augmented this active space with a set of ny;¢ orbitals, which are eigenfunctions of the
generalized Fock operator built from the CAS(7e,120) density matrix. A projection space
for the CAP calculations is then set up performing state-averaged (SA) CASCI followed by
frozen-core SA-XMS-CASPT24% 42 with an IPEA shift of 0.25 au*® and an imaginary shift
of 0.1 au,** and the actual CAP calculations are done in the generated subspace. %4

From an electronic structure point, the main difference between the RAC and the CAP
is the difference between the CAS orbitals and the CASCI step for (IV + 1) electron states.

Moreover, the one-particle basis set used in the RAC calculations is far more compact. In

contrast to these differences, the difference between NEVPT2 and CASPT2 is minor.
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Owing to various bottlenecks in our current CAP/XMS-CASPT2 code, we were forced
to limit ny severely: For the Sy, S,», and T,, states, we selected five af virtual orbitals
leading to CAS(8e,170) active spaces, and for the S,, state, we selected four @} virtual
orbitals generating a CAS(8¢,160) active space. The respective virtual orbitals were chosen
based on their symmetry and on their energy giving preference to virtual orbitals closer to the
expected resonance position as inferred from compact basis set XMS-CASPT2 calculations
for the state in question.!” In practice, this procedure translates into projection states lying
between 2 and 5eV above the two anion states (see also Figures S1-S4). We note that a
larger number of averaged anion states and active orbitals would be desirable (see discussion
in section 3), however, the computational cost grows too rapidly with n; for our resources.

For the CAP calculations the may-cc-pVTZ set was augmented with a second diffuse
s function (exponent 0.00735), its diffuse p exponent was replaced with 0.014, and four
additional diffuse p functions were added using an even-scaling factor of 1.6, that is, the
smallest p exponent is 0.002136.

Four quantum chemistry packages were used. SAC-CI calculations were performed with
a developers’ version of GAUSSIAN09, Revision B.01.%6 Version 2.1 of the CFOUR pack-
age” was used for CCSD(T) and EOM-CCSD calculations. XMS-CASPT?2 calculations
were performed with the orz program package.?® ORCA version 4.2.1%° was used for the
NEVPT?2 calculations. Moreover, the pair-natural-orbital EOM-CCSD (PNO-EOM-CCSD)

implementation available in ORCA®® was used to study the solvated trimer dianions.

3 Results and Discussion

The goal of this paper is to explore energies and autodetachment lifetimes of Be3~ and Mg3 .
Based on the general behavior of small dianions as well as on the inability of Be or Mg atoms
to bind excess electrons, we do not expect to find any regions in nuclear coordinate space

where either of these dianions can bind both excess electrons. The relevant questions are
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then: “How unstable are the dianions with respect to the monoanion?” and “How long do the
dianions typically live?”. We focus primarily on D3, symmetrical structures at geometries
between the neutral and the anion as the lowest electronic states of both neutral Bes and
Be; are trigonal planar and the same is true for the corresponding Mg species. Moreover,
we investigate the symmetric breathing mode of Bes, Be; , and Be3™~ over a range that covers

some of the structures discussed in ref. 6-11,51.

3.1 Beg)_ resonance states

We begin with a comparison of results obtained at a fixed D, geometry with R = 2.15 A,
a bond length between the minimal bond lengths of Bes and the Be;.? First, we compare
different electronic structure methods keeping the continuum method fixed, then we compare
our RAC and CAP results.

Combing the RAC with various electronic structure methods yields the resonance pa-
rameters listed in Table 1. These positions and widths vary substantially. Even if only the
correlated methods CCSD(T), SACCI, and NEVPT2 are considered, variations are still in
the order of half an eV, which is not entirely unexpected as the system combines two chal-
lenges: On the one hand, computing electron binding energies represents a challenge as such,
and even for “easy” systems, deviations of several tenths of an eV between binding energies
from different electronic structure methods are common. On the other hand, despite most
states possessing one dominating configuration, static correlation effects are present, but
different for each state. Since none of the employed electronic structure methods is perfect,
but rather possesses its own unique strengths and weaknesses regarding these two challenges,
good agreement between methods as different as CCSD(T), SACCI, and NEVPT2 may be
considered at worst suspicious, at best fortuitous.

Trends between different methods can be studied for the S, and the T, state, as
energies of these two states can be obtained with uncorrelated SCF, partially correlated

CASSCF, and all three correlated methods, NEVPT2, CCSD(T), and SACCI. The correlated
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Table 1: RAC resonance energies of the four BeZ~ states for Dgj, symmetry and R = 2.15A.
E, is measured relative to the D, state of Be; computed with the same method at the same
geometry.

E, [eV] T [eV]
See NEVPT2 3.68 2.12
Srr SCF 4.16 2.05

CASSCF 421  1.92
NEVPT2 341 177
CCSD(T) 312 1.42

SACCI 2.90 1.56
Sex  NEVPT2 3.51 1.75
SACCI 2.89 1.63
T, SCF 2.58 1.06

CASSCF 390  1.90
NEVPT2 321  1.56
CCSD(T) 283  1.39
SACCI 251 144

methods agree reasonably well with each other (variations in the order of 0.5eV) and for
both states, NEVPT2 predicts the highest resonance position, SACCI predicts the lowest,
and CCSD(T) is fairly close to the mean of the other two correlated methods. The widths
follow a slightly different order, with NEVPT2 predicting the largest widths, CCSD(T)
predicting the smallest, and SACCI predicting widths slightly larger than CCSD(T).

In particular, the CCSD(T)-NEVPT?2 trend can be compared to the predicted electron
affinities (EA) of these two methods that can be inferred from the potential energy curves
discussed below. According to the high-level multi-reference configuration interaction results
from ref. 3, the 'A} (Sy) ground state of the Bes has a minimal-energy bond length of
2.203 A, the D, ground state of the anion has a minimal-energy bond length of 2.106 A,
and the energy difference between these two structures, the EA, is —1.38eV. The NEVPT?2
bond lengths compare well with these reference values, but the NEVPT2 value of —1.22eV
underestimates the EA. In contrast, the CCSD(T) bond lengths are a bit too long (see

below), but the CCSD(T) EA of —1.35€V is very close to ref. 3.
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As NEVPT2 underestimates the binding energy of the first electron, one may expect that
it would do the same for the second excess electron, which would translate into a too high
E,.. In contrast, CCSD(T) predicts the first electron binding energy quite reliably, and one
may therefore expect that it also predicts the second with similar reliability adding weight
to the trend-derived argument that CCSD(T) probably yields the most reliable resonance
positions.

These arguments are, of course, anything but watertight, and either experimental or sig-
nificantly more costly computational results from, say, diffusion Monte-Carlo approaches, are
needed to draw final conclusions. Still, the observed trends suggest that all three correlated
methods predict semi-qualitative resonance energies at the very least, if not better.

While SCF and CASSCF are generally unreliable for predicting electron binding ener-
gies,?? and there is no reason to expect that their RAC combinations will predict useful
resonance parameters, they provide the basis to study electron correlation in resonances.
For the S, state, SCF and CASSCF agree closely, and both methods predict significantly
higher resonance positions as well as higher widths than the correlated methods. In other
words, the S, state shows as much static correlation as the D, state, and dynamic electron
correlation stabilizes the S, state as one would expect based on a simple number-of-electrons
argument.

Yet, for the T,, state, SCF and CASSCF differ significantly, with SCF predicting the
smallest width of all methods and a position as low as SACCI whereas CASSCF predicts the
highest position and width. While the T, state apparently shows far less static correlation
than the D, state, dynamic electron correlation again stabilizes the (N + 1)-electron system.
Thus, a single-reference wavefunction definitely has the potential to muddy the water, but
after CASSCF levels the playing field, dynamic correlation always stabilizes the resonance.

Having discussed the effect of electron correlation, we now briefly compare RAC (Table
1) with CAP (Table 2) calculations. Due to the close relationship between CASPT2 and
NEVPT?2, one may expect CAP/CASPT2 and RAC/NEVPT?2 to agree rather well, and this
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Table 2: CAP/XMS-CASPT2 resonance energies of the four BeZ~ states for Ds;, symmetry
and R = 2.15A. E, is measured relative to the D, state of Be; at the same geometry.

E, [eV] [ [eV]

oo 3.64 0.52
Srn 3.87 0.49
Son 3.75% 0.47¢
Tor 3.40¢ 0.41¢
%Only uncorrected results avail-
able.

is indeed true for the resonance positions. However, CAP/CASPT2 predicts significantly
smaller widths than RAC/NEVPT2.

The small widths in our current CAP calculations is in all likelihood unrelated to the
CAP method as such but rather to the projection space employed for setting up the CAP
Hamiltonian (subsection 2.2). In this context, a resonance is best understood as a discrete
state with energy E,; that is embedded in and interacts with a continuum of states, so that
it acquires a width I' (Weisskopf-Fano-Feshbach picture). Thus, I" characterizes not only the
resonance lifetime, but also the energy range over which the discrete state interacts with the
continuum.

In a finite basis set context, the continuum is replaced with a discrete representation of
so-called discretized continuum states, and I" provides a rough measure of the energy range
of states that are needed to describe the resonance wavefunction in a projection formalism.4?
Owing to various bottlenecks in our current CAP/XMS-CASPT2 code, we were forced to
use a roughly 3eV energy window to set up the CAP projection spaces (see subsection 2.2).
While this range comfortably exceeds the resonance widths predicted by the RAC method
by at least a factor of two, the discrete state-continuum interaction is characterized by a
Breit-Wigner distribution, and its tails are expected to contribute significantly. Indeed, all
our subspace vectors contribute appreciably to the resonance at the optimal CAP strength,
while a fully converged subspace is indicated by vanishing contributions at the low and

high energy tails. Therefore, the CAP/CASPT2 calculations are able to reproduce reliable
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resonance positions in very good agreement with RAC/NEVPT2, but the CAP widths are
not fully converged and underestimate the true width.

Regardless of method variations, all four dianion states are predicted to represent short-
lived resonance states with energies in the range of 2.5 to 3.5eV above the ground state of
Be; and lifetimes in the order of 1fs or less. Thus, as isolated entities, all four Be3~ states
are—as expected—exceedingly short-lived, and we predict that these dianion states can only
be observed as Bej  building blocks in a stabilizing environment (see section 1 and 3.4) or,

possibly, as broad resonances in electron scattering from stable states of Bej .

3.2 Mg} resonance states

The corresponding four Mg3~ resonance states have been studied at a fixed Mg-Mg distance
of 3.38 A close to the equilibrium geometry of the Sy, state,® and our results are collected
in Table 3.

The Mg2~ results follow very similar trends as the Be2~ data: While the fully corre-
lated NEVPT2, CCSD(T), and EOM-CCSD (replacing the closely related SACCI, which we
used for Be3~) methods agree reasonably well, SCF and CASSCF results deviate from the
predictions of the former. Focusing on the three correlated methods only, similar to Be3™,
NEVPT2 tends to predict the highest resonance position, while EOM-CCSD predicts the
lowest positions, and the CCSD(T) positions lie between the two.

Based on the comparison with the 2P, resonance states of the atomic anions Be™ and
Mg~,% one may expect the Mg3~ resonances to be more stable than the corresponding Be3~
states. This expectation holds true for the S, the S,., and T, states, but is incorrect for
the S,, state. While there are some slight variations between methods and states, it is fair
to say that in going from Bej~ to Mg3~, the former three states are stabilized by roughly
0.6eV. Their widths also decrease by several tenths of an eV, however, the trend for the
widths is less uniform. In contrast, the S,, of Mg>  is predicted to lie energetically slightly

higher than the S,, in Beg_, yet, at the same time, it is predicted to show a substantially
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Table 3: RAC resonance energies of the four Mg2~ states for Dy, symmetry and R = 3.38 A.
E, is measured relative to the D, state of Mg; computed with the same method at the same
geometry.

E, [eV] T [eV]

See NEVPT2 3.83 1.69
Srx SCF 3.28 1.40
CASSCF 3.44 1.72
NEVPT?2 2.92 1.69
EOM-CCSD 2.45 1.06
CCSD(T) 259  1.02
Ser NEVPT2 2.81 1.17
EOM-CCSD 2.32 1.19
T, SCF 2.74 1.22
CASSCF 3.24 1.31
NEVPT?2 2.62 1.05
CCSD(T) 230  1.02

smaller width indicating a “stabilization” in a lifetime sense.

3.3 Potential energy curves

For the A/ ground state of Bes (S state) and the D, state of Be;, potential energy curves
(PEC) along the totally symmetric breathing modes (Dg;, symmetry is maintained while the
Be-Be bond length R is changed) can be computed in a straightforward manner. PECs
for the four dianionic states S,,, Syr , Sox, and T, can then be obtained by adding the
respective resonance positions to the D, PEC. However, these four PECs should be taken
with a grain of salt as their widths are large and the three singlet states will be coupled by
Ds;, symmetry-breaking vibrations.®® Nonetheless, the PECs provide a useful quantitative
representation for discussing electron loss processes and relative stabilities.

PECs obtained with CCSD(T) are shown in the left panel of Figure2. In comparison
with the reliable MRCI results from ref. 3, CCSD(T) predicts somewhat longer bond lengths
for Bes and Be; presumably due to a combination of missing static correlation effects and

the small triple-( basis used here. The trend, however, agrees very well: The Be-Be bond
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Figure 2:  Dsj, potential energy curves for Bes (black), Be; (blue), and Be; . The left
and right panels show CCSD(T) and NEVPT2 results, and R is the Be-Be distance. Color
scheme: black: Beg Sy, blue: Be; D, green: Beg_ T,., purple: all Beg_ singlet states (solid:
Srr, dashed: S,,, dotted: S, ).

length in the anion is about 0.1 A shorter than in the neutral. Moreover, as discussed above,
the predicted EA (1.35¢V) agrees well with the value of 1.38eV from ref. 3.

As the resonance positions of both the S;, and T, states changes only slightly (about
0.1eV over the bond length range shown), the dianion PECs follow the D, curve closely,
and the “minimal energy structures”—to the extent that one can define a minimal energy
structure of a resonance—is correspondingly close to the structure of the D, ground state
of the anion.

The corresponding NEVPT2 PECs are shown in the right panel of Figure 2. As discussed
above, the bond lengths predicted at this computational level —2.22 A for the S, and 2.13 A
for the D, state—are much closer to the high quality results from ref. 3. However, the
NEVPT2 EA is 0.16eV too low (see above) suggesting that the dianion PECs are slightly
too high.

Similar to CCSD(T), the PECs of the dianionic resonance states follow the D, curve

closely as the four resonance positions change only very little over the bond length range
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shown: The S,, position changes by roughly 0.6eV, the other three positions by less than
0.2eV. More importantly, all four resonance positions change in an almost linear fashion
with the Be-Be distance and therefore the minima on the dianion PECs are only slightly
shifted with respect to the D, minimum.

Our complex PECs directly contradict the real-valued PEC from ref. 51 that suggest the
presence of two Dy, symmetrical minima with bond-lengths close to 2.078 A and 2.156 A.
We cannot directly comment on these density functional results, but it seems likely that
the two identified minima can be understood in the Weisskopf-Fano-Feshbach picture (see
section 2): One may assume that one minimum corresponds to a state showing essentially
discrete state character, while the other minimum corresponds to a state showing essentially
discretized-continuum state character. In other words, one minimum corresponds to Beg_,
while the other minimum corresponds to Be; and a “free” electron confined by the basis
set. To avoid unwanted discretized-continuum minima, approaches such as RAC, CAP, or

the stabilization method are needed.

3.4 Model stabilization

Having found the isolated dianions Be3~ and Mg>~ to possess only short-lived resonance
states well above the ground states of the respective monoanions, in this section we consider
a Beg_ dianion embedded in a stabilizing environment. Specifically, we investigate the res-
onance position and lifetime of the S, states as its closed-shell single-reference character
enables us to optimize the stabilizing environment for the respective dianion with second-
order many-body perturbation theory (MP2). Such an optimization of a resonance with
standard methods is possible as the environment-stabilized dianions are much lower in en-
ergy than their isolated counterparts and as the sought state lies well below all discretized
continuum states as long as normal basis sets with standard diffuse functions are used.'”
As mentioned in the introduction, stabilization of Be3  and Mg3~ by cations and point

charges has been considered previously.®%® The impact of a full positive charge is, of course,
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drastic, and it is hardly surprising that, for example, the highest occupied orbital of MgsNa~™
shows a large contribution from the Na valence orbitals.® Instead of a cation stabilizing a
dianion, it seems therefore more appropriate to think of anions such as NaBe; and NaMgs
as metal clusters with two excess electrons in their “conduction bands”. The two excess
electrons are distributed throughout the metal cluster, and owing to the single negative net
charge, the cluster anion as such is stable to electron loss.

In contrast, a stabilizing environment would not participate directly in the bonding of the
excess electrons, but rather serve in an auxiliary role, say, an explicit interaction with solvent
molecules or a more implicit one with a polarizable continuum. Of course, distinguishing
direct from indirect participation is anything but straightforward, and where and whether
to draw a clear-cut dividing line is a matter of taste. A reasonable distinction may be the
nature of the bound state of the frozen environment without Be3~ or Mg3  being present: If
the environment can bind an excess electron in a valence state, it can actively participate in
the stabilization as a mixing of dianion and environment valence will occur in the combined
system. If, on the other hand, the environment supports only non-valence states (surface-
bound, cavity-bound, etc.), its role can be characterized as supporting as valence mixing can
be neglected.

Here, we consider a weaker stabilization in the form of two water clusters that point
dangling hydrogen bonds at both lobes of the m-system (see Figure3). Water clusters are
employed as their electrostatic interactions are well-understood, clusters with increasing
total dipole moments are easily constructed, and a well-defined structure is guaranteed by
the internal hydrogen bonds in each cluster.

Specifically, two Be3 ™ ~water and one Mgz —water clusters are considered: Bes((H20)3)5™,
Mgs((H20)3)3~, and Bes((Hy0)g)5~ (Figure3). For the former two clusters, the stabilizing
environment is provided by two water trimers; for the latter, the stabilizing environment is
provided by two water hexamers.

We emphasize that these clusters are by no means intended to represent realistic micro-
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Figure 3: Structures of the Bes((H0)3)3~ and Bes((H20)g)3 clusters considered as model
solvation environments. Both clusters display D3 symmetry. Mgs((H20)3)3~ looks almost
exactly as Bes((Hy0)3)5™.

solvation or an actual solvation model, but rather a model stabilization of water clusters with
“solvating” hydrogen bonds arranged so as to deliberately point at the m-system. In aqueous
solution, it is highly likely that any alkaline earth metal cluster—regardless of its charge—
will react with water to form solvated atomic dications and reaction products suitable for
the total charge of the original cluster (Hy and OH™ for neutral clusters). In addition, in
water the dianions may autodetach into cavity or surface states. We suppress this pathway
in our calculations by the choice of a rather compact basis set and a structure that fails to
support cavity or surface states once the metal cluster is present.

While our specific clusters should be understood as model systems, let us emphasize
that it may be possible to observe the decay of Be3~ or Mg> in very cold, ice-like water
clusters in the gas phase. For such a system, it is conceivable to detect the resonance as an
excited state of a cluster dianion whose ground state consists of a Be; unit embedded in a
water cluster that also supports a surface or cavity state. Similar scenarios are imaginable
in solution, provided the Be; unit is protected by a polydentate ligand. Then a solvated
electron can be excited into a temporary Beg_ state.

All three clusters considered here, on the other hand, have deliberately been constructed
to serve only in a stabilizing and no other role. All three represent local minima in compact

basis set (MP2/ma-def2-TZVP(-f)*>5¢) model chemistries,'” and all three show essentially
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D3 symmetry. Note that the solvating hydrogen bonds point between two metal atoms cre-
ating an “interlocked” structure. The Cartesian coordinates of these structures are available

in the supporting information.

Table 4: RAC/PNO-EOM-CCSD resonance energies of Sy, states of Bez~ and Mg> in a
model solvation environment.

E, [eV] T [eV]
Be3~ 2.90 1.51
Bes((Hy0)3)3” 1.49  0.102
Bes((H20)¢)5~ 0.525  0.0109
Mg2~ 2.35 1.07

Mgz~ ((H20)3);~ 155  0.229

Resonance positions and widths for the S, states of the isolated and solvated trimers
are collected in Tab.4. Solvation stabilizes the trimer dianions substantially: For example,
in the Be3 ", Bes((H20)3)57, Bes((Hy0)6)35 series, the resonance position drops from about
3 to 1.5 and 0,5eV, and the width decreases (the lifetime increases) by roughly an order of
magnitude in going to a water trimer and yet another order of magnitude by going to water
hexamer environment. Nonetheless, all dianions investigated are still resonance states with
finite lifetimes.

In comparison with clusters such as BegNay and BezNa™, solvating water molecules rep-
resent a much weaker perturbation of the Be%‘ core than the metal cation environment,
as the water cluster model environment stabilizes the excess electrons by hydrogen bond-
ing, essentially a dipole effect. In their frozen geometries, the solvating water trimers and
hexamers support only dipole-bound anion states (in its equilibrium geometry, the water
trimer does not support any anion state), and the frozen non-polar ((H20)s3)2 and ((H2O)g)2
scaffolds support non-valence bound states with binding energies of about 0.6 and 1.6eV
(PNO-EOM-CCSD; aug-cc-pVDZ basis augmented with a (7s7p4d) set at the symmetry
center between the trimers or hexamers respectively-much lower than the electron affinity

of a Nat ion (5.14eV).
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The difference in electron binding energy of the stabilizing units is directly reflected in
the electron binding energies of the corresponding Be3™ clusters: Na't is a cation with a
massive electron affinity, BesNa™ processes only a single negative charge, and the BesNa~™
anion is stable to electron loss. In contrast, both Bes((Hy0)3);~ and Bes((Hy0)g)5™ are
doubly charged anions, and both are still resonance states unstable to electron loss yet in

comparison with isolated Bej  their lifetimes are substantially longer.

4 Summary and Conclusions

We have studied resonance states of the isolated and “solvated” dianions Bej  and Mgj .
Electronic resonances are unstable with respect to electron autodetachment, and the dianion
states considered here are unstable with respect to decay into one of several monoanion states
and a free electron as well as to decay into the neutral and two free electrons. However,
we expect the latter process to be considerably slower than the former as the former is a
straightforward one-electron decay, whereas the latter involves a synchronous two-electron
process and has a much higher threshold.

All quantum chemistry methods for resonance states consist of a combination of a con-
tinuum method with an electronic structure method. Most of our calculations employed the
RAC continuum approach, and unfortunately we were unable to compare the RAC method
fairly with the CAP approach as we were forced to make compromises setting up the projec-
tion subspace for our CAP calculation, which probably impacted the CAP widths. Moreover,
we were unable to compare with stabilization calculations, which are non-trivial for the same
reasons that render setting up a CAP subspace challenging: The lack of a closed-shell refer-
ence or parent state, a high density of states, and large widths. On the other hand, we were
able to compare multiple electronic structure methods and investigate electronic correlation
effects in detail.

Four low-lying states have been identified that correspond to different occupation patterns
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of the two excess electrons in the lowest p-o and p-7 orbitals. For the isolated dianions, all
four states show resonance positions in the range of 2 — 4eV above the ground states of
the respective monoanions and broad decay widths in the 1 — 1.5eV range. In other words,
all four dianion states—regardless of any aromatic character—represent short-lived unstable
species. In fact, our calculations predict the triplet T, state to be the most “stable” dianion
in the sense that it possesses the smallest resonance position and smallest width for both Beg™
and Mg> . Thus, regarding the stability of excess electrons of multi-charged negative ions,
Coulomb repulsion plays the leading role, while aromatic character plays only a supporting
part.

Potential energy curves along the D3, symmetry conserving breathing mode were studied
for Be%‘. It turns out that the resonance position of the four dianions changes only slowly and
almost linearly with the Be-Be bond length. Therefore, the four dianion PECs essentially
follow the D, state of Be;. However, the four states are much broader than their respective
energy differences, and symmetry-breaking vibrations will couple the three singlet states.

Having identified all low-energy states of Be; and Mg3~ as short-lived resonances, we
investigated the influence of a stabilizing environment on the S, state. Adding two water
trimers above and below the Beg_ and Mgg_ planes respectively, where each water cluster
points three dangling hydrogen-bond towards a metal-metal bond, leads to a reduction of
the resonance positions to about 1.5eV and a substantial increase in lifetime (by factors of
15 and 5 for Be;  and Mg3~). Replacing the water trimers with water hexamers almost
stabilizes Be2™: Its position is as low as 0.5eV and its width is a mere 10meV. Our studies
thus show that—as one may expect—a strongly perturbing environment is needed to stabilize

two excess electrons on a small cluster without electron-affine substructures.
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5 Supporting Information

Included: n-trajectories associated with the CAP calculations; Cartesian coordinates of

Bes((H20)3)57, Bes((H20)5)5™, and Mgs((H20)3)5™
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Figure S1:  The n-trajectories of the Be;™ Si., calculated with CAP/XMS-CASPT2,
CAS(7,12)+7nyirt, nvirt = D, seven roots, R(Be-Be) = 2.15 A.
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Figure S2:  The n-trajectories of the Be;~™ S,,, calculated with CAP/XMS-CASPT2,
CAS(7,12)+nyir, nyire = 4, seven roots, R(Be-Be) = 2.15 A.
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Figure S3:  The n-trajectories of the Bei~ S, calculated with CAP/XMS-CASPT2,
CAS(7,12)+nyiri, Nyire = D, seven roots, R(Be-Be) = 2.15 A.
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Figure S4: The 7-trajectories of the Be2~ T, calculated with CAP/XMS-CASPT2,
CAS(7,12)+nyir, Nyire = D, seven roots, R(Be-Be) = 2.15 A.
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S2 Cartesian coordinates for model solvation

Be;((H20)3)5~

Be -0.001128 -0.000025 1.214306
Be 1.048223 -0.002427 -0.601122
Be -1.048157 0.003428 -0.601729
0 0.051563  -3.475770  -1.697414
0 ~1.512858  -3.469815 0.794340
0 1.424754 -3.475679 0.899962
0 ~0.049684 3.476103  -1.697423
0 ~1.425268 3.476263 0.898245
0 1.511957 3.468528 0.796203
H ~0.734800 3.609741  -1.015892
H 1.275878 3.598005 -0.141288
H ~0.494028 3.595699 1.163119
H 0.736119  -3.609357  -1.015332
H 0.493274 -3.595708 1.163677
H ~1.075131  -3.598992  -0.142780
H -1.460002 -2.493353 0.866292
H -0.033422  -2.499064  -1.686232
H 1.468961  -2.499730 0.815634
H -1.469942 2.500345 0.813826
H 1.458579 2.492082 0.867963
H 0.035071 2.499368 -1.686142
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Mgs((H20)3)3

Mg -0.001205 0.000094 1.706632
Mg 1.476520 -0.011426 -0.846913
Mg -1.475932 0.011718 -0.848637
0 -0.024368 -4.112653 -1.682586
0 -1.483258 -4.105149 0.833566
0 1.423598 -4.134317 0.841000
0 0.026656 4.112692 -1.682205
0 -1.424306 4.134323 0.839597
0 1.482457 4.104640 0.835659
H -0.692305 4.187303 -1.024859
H 1.275863 4.169930 -0.117060
H -0.494136 4.197848 1.131915
H 0.693828 -4.187158 -1.024401
H 0.493104 -4.198038 1.132216
H -1.275460 -4.170330 -0.118891
H -1.567072 -3.142955 0.961880
H -0.077795 -3.149960 -1.822729
H 1.582626 -3.173406 0.864377
H -1.583479 3.173426 0.862683
H 1.565930 3.142405 0.963941
H 0.080039 3.149984 -1.822297
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Be;((H20)6)3~

Be 0.
Be 1.
Be -1
0 1
0 0
0 -1
0 -1
0 1
0 -0
0 1
0 -1
0 -0
0 1
0 0
0 -1
H -0
H -0
H 1
H 0
H -1
H 0
H -0
H 1
H -1
H 1
H 0

001683

048033

.045514

.411487

.076891

.498856

.409968

.500109

.076651

.561295

.337664

.221014

.336196

.218756

.562771

.470094

. 774965

.259899

.471703

.258936

. 775484

.076640

.574983

.493682

.495837

077732

.000151

.000007

.000688

.334470

.339334

.333022

.333253

.334396

.339361

.192949

.185048

.197184

.186301

.197571

.191473

.336404

.351148

.350746

.336798

.349533

.351753

.373470

.369991

.366399

.367769

.373655

0

0

0

-1

.201369
.612828
.612196
.891737
.689819
. 760577
.891884
.760049
.690003
.660228
.042969
.659632
.042692
.659595
.660951
.159047
.006508
.186821
.159218
.186362
.006637
. 779635
.803474
.935923
.935409

. 779964
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.572641

.378636

.844046

.232586

.230694

.846134

.380111

.232123

.773735

.542307

.541797

. 774218

.230647

.368590

.240761

.249068

.2b1311

.252430

.248189

.240442

.255691

.248512

.240472

.241920

.246808

.256110

.803834
.215508
.913807
.253982
.2564581
.913670
.215484
.909432
.769714
.165761
.165358
. 770461

.909478
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