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Abstract

The alkaline earth metal trimer cluster dianions Be2−3 and Mg2−3 lie energetically

above their respective monoanions and can therefore decay by electron autodetachment.

Consequently, these dianions possess only short-lived resonance states, and here we

study these states using regularized analytic continuation as well as complex absorbing
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potentials combined with a wide a variety of quantum chemistry methods including

CCSD(T), SACCI, EOM-CCSD, CASPT2, and NEVPT2.

For both Be2−3 and Mg2−3 , four low-energy resonance states corresponding to dif-

ferent occupation patterns of the two excess electrons in the two lowest p-σ and p-π

orbitals are identified: Two states are dominated by doubly occupied configurations

and can be characterized as showing σ and π aromatic character. The other two states

correspond to the open-shell singlet/triplet pair.

All dianion states are found to be highly unstable and to posses short lifetimes: They

show resonance positions in the energy range of 2.3 to 4.3 eV above the ground states of

their respective monoanions and broad widths between 1 and 1.5 eV translating into fs

lifetimes. For both Be2−3 and Mg2−3 , the differences between the four states small, but

the triplet states tend to be slightly more stable than the three singlet states. Thus, in

the case of multi-charged ions aromatic character of the excess electrons takes second

stage while Coulomb repulsion takes front and center.

In addition to the two isolated cluster dianions, model stabilization by small water

clusters is explored. Our results show a dramatic drop in resonance position and

width corresponding to a lifetime increase by two orders of magnitude. However, the

“solvated” clusters are still resonances, and a more pronounced perturbation by, say,

yet larger water clusters or a ligand environment providing larger bond dipoles, will

be needed to fully stabilize two excess electrons localized on a small system such as an

alkaline metal trimer.
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1 Introduction

Owing to their (ns)2 closed-subshell electron configuration, alkaline earth atoms occupy a

middle ground between more typical metals and rare gases. The Be2 dimer, for instance,

displays typical rare gas-like behavior in that it is barely bound with respect to dissociation,

yet, akin to typical metal clusters, it possesses two bound anionic states.1,2 In contrast,

the trimer behaves like a typical metal cluster: Its equilateral triangle structure (D3h) is

substantially more stable to dissociation than the dimer and it also possesses various anion

states with binding energies of up to 1.38 eV.2–4

While the low-energy states of neutral Be3 and its anion, Be−3 , are well-established,3

the situation is less clear for the alkaline earth trimer dianions, Be2−3 and Mg2−3 . In a

molecular orbitals picture, the valence s orbitals of the neutral trimers are fully occupied.

Consequently, the two excess electrons of the dianions must occupy orbitals arising from

valence p combinations and the two lowest two are a p-σ orbital with a′1 symmetry and a

p-π orbital with a′′2 symmetry. Accordingly, the following four states are possible: A closed-

shell (a′1)
2 1A1 state, a closed-shell (a′′2)

2 1A1 state, and open-shell singlet and a triplet states

corresponding to the (a′1)
1(a′′2)

1 occupation: 1A′′

2 and 3A′′

2 states (see Fig: 1 for a schematic

representation).

As show in Fig: 1, two states of the dianion show 1A1 symmetry, and it will turn out that

these states are very close in energy so that we cannot distinguish them by their energetic

order. We thus use Jablonski-diagram-like state labels Sσσ, Sππ, Sσπ and Tσπ as indicated

in Fig: 1 that indicate the dominant occupation and increase readability.

The Sσσ and Sππ states have been interpreted as σ and π aromatic, and various properties

of these two states and of the triplet state have been investigated for the isolated dianions5–12

as well as for metal clusters such as NaBe−3 or Na2Mg3, which feature the two trimer dianions

as structural units.5,6,8 In this context, the Sππ state can be characterized a 2π aromatic

system as the bonding p-π a2′′ orbital is doubly occupied. Similarly, the Sσσ state can be

said to possess σ-aromatic character as the bonding p-σ a1′ orbital is doubly occupied. In
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Figure 1: Schematic occupation diagrams of the ground state of Be−3 and four low-lying
states of the Be2−3 dianion assuming D3h symmetry. For Mg3, the inner valence consists of a
(3s)6 subshell, but all symmetry labels are identical.
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other words, in both cases the two excess electrons form a three-center, two-electron bond.5,6

On the other hand, one may simply consider these clusters as isolated dianions—aromatic

or not—and compare their properties to the substantial established knowledge regarding

small multi-charged systems.13–15 Long-lived small dianions (less than 10 atoms or so) all

follow the same building principles: A neutral or positive core surrounded by two or three

subgroups with high electron affinity.13–15 In this way, the two opposite charges can localize

at the periphery of the dianion attaining maximal separation within the small molecular

volume, and their substantial Coulomb repulsion can be overcome.

In contrast, the smallest known dianions with delocalized charge distributions are con-

siderably larger (tens of atoms)13–15 and aromatic dianions are no exception from this rule.16

Therefore, only clusters such as NaBe−3 or Na2Be3 that contain Be2−3 building blocks, but

have net charges of zero or one, are expected to be electronically stable, while isolated Be2−3

and Mg2−3 dianions are expected to be metastable and to show—regardless of their aromatic

character—short autodetachment lifetimes.

Let us note that the isolated-dianion perspective may explain conflicting results about the
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electronic ground states and equilibrium structures of the isolated dianion (see, for example,

refs. 5–12). Electronically metastable states can be understood as discreet states of an (N +

1)-electron system that is embedded in and interacts with a continuum of states describing

the N -electron system plus a free electron. In computations with finite Gaussian basis sets,

this continuum is discretized and even if compact basis sets are used, the lowest state may

have considerable discretized-continuum character (see e.g. discussion in section 2 of ref.17).

Thus, if standard bound-state methods without regard to the continuum nature of the state

are employed, the results will strongly depend on the electronic structure method and on the

basis set because each method combination will yield a different discreet-state/discretized-

continuum mixture (see for instance ref. 8).

In this paper we aim at computing energies and autodetachment lifetimes of Be2−3 and

Mg2−3 . States metastable to autodetachment are often referred to as temporary or as reso-

nances, and can be characterized by the energy or resonance position, Er, of the temporary

state above its decay products (here Be−3 or Mg−3 and a free electron with zero energy)

as well as the resonance width, Γ, which is inversely related to their lifetime τ = ~/Γ.

These two resonance parameters are frequently combined into the complex resonance energy

Eres = Er − iΓ/2 because this quantity is central to many theories involving resonance.

Specifically, we study resonance positions and widths of the Sσσ, Sππ, Sσπ and Tσπ states

of Be2−3 and Mg2−3 with various quantum chemistry methods, and we discuss the influence of

electron correlation on the resonance parameters in detail. Moreover, we study the complex

potential energy curves of the symmetric breathing mode of the four Be2−3 resonances, and we

investigate how model stabilization by two water trimers and two water hexamers impacts

the resonance parameters.
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2 Computational Methods

Computational methods for resonances generally combine a continuum method and an elec-

tronic structure method. The continuum method is needed to address the decaying character

of the resonance state, and the electronic structure method should be balanced in two ways:

First, between the N and (N +1)-electron systems as such, and, second, within the calcula-

tion of the (N + 1)-electron system itself: between the decaying (N + 1)-electron character

and the N -electron plus free electron character of the wavefunction. In other words, the

electronic structure method must be size-extensive and internally size-extensive (c.f. intro-

duction of ref. 18).

Currently three continuum methods are widely used: the complex absorbing potential

(CAP) method,19–22 the regularized analytical continuation (RAC) method,23,24 and the

Hazi-Taylor stabilization method.25,26 While these three methods differ greatly in their basic

ideas and underlying theory, they share the common feature of being two-step compound

methods. In step 1, the electronic Hamiltonian is parameterized and ab initio calculations

are performed for many values of the parameter. In step 2, the behavior of the computed

eigenvalues as function of the parameter is analyzed to find the energy and width of the

temporary state.

Each continuum method imposes somewhat different constraints on the electronic struc-

ture methods and basis sets it can be combined with. Therefore, in the following subsections,

we first briefly describe the continuum methods used and then the specific electronic struc-

ture methods each was combined with.

2.1 Regularized analytic continuation calculations

This RAC method is an extrapolation method belonging to the wider family of analytic

continuation of the coupling constant approaches.23,24,27–29 In step 1 of the RAC method,
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the Hamiltonian is parameterized by adding an artificial attractive potential

Ĥ(λ) = Ĥ + λV (1)

where the parameter λ determines the strength of the artificial attraction. For electronic

resonances, the most straightforward potential is to scale the nuclear charges by (1 + λ)

because this option is readily available in many electronic structure codes. At sufficiently

large values of λ the resonance becomes a bound state, and if λ is increased further, the

electron binding energy will increase accordingly.

The goal is then to extrapolate the tabulated negative binding energies Eb(λ) back to

λ = 0 (we use the convention that negative binding energies correspond to bound states

consistent with positive Er values corresponding to resonances). However, naive extrapola-

tion of the computed real energies can, at best, yield an approximation for Er. To obtain

both Er and Γ, an extrapolation displaying the correct analytic behavior at threshold is

needed.27–29 Specifically, instead of the energy, the momentum κ =
√

−E(λ) is extrapo-

lated, extrapolation of the inverse function, λ(κ), is numerically superior,30 and consistency

with various threshold laws κ(λ) can be guaranteed by using tailor-made rational function

approximations, so-called Padé approximants.23

The simplest and therefore numerically most stable Padé approximant consistent with

all threshold laws is the Padé-[3,1] approximant

λ[3/1](κ) = λ0
(κ2 + 2α2κ+ α4 + β2)(1 + δ2κ)

α4 + β2 + κ(2α2 + δ2(α4 + β2))
, (2)

where λ0, α, β, and δ are fitting parameters, and the resonance parameters are obtained from

Er = β2 − α4 and Γ = 4α2|β|.24 Here, this approximation is used for all RAC calculations.

Furthermore, in step 2 of a RAC calculation, a range of binding energies must be selected

for the fitting procedure. To minimize the dependence of our results on this range, first, an

approximate value of the resonance position E0
r was obtained from a RAC calculation with
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all available data. Then the range of binding energies used in the fitting procedure was

systematically extended from −4E0
r to −7E0

r , and the results (typically 20 to 30 resonance

energies) were averaged, using as weights the inverse of the respective χ2 values associated

with each fit. Typically, the resonance parameters depend on the data range only weakly

(less than 1%) and the standard deviations are less than 20meV.

A second consideration regarding the data range is its upper limit, that is, the inclusion

of very small binding energies close to threshold. This issue has been discussed in ref. 23

(c.f. Figure 2 of ref. 23). In particular, if long-range stabilizing potentials such as scaled

nuclear charges are used, at threshold, the calculation will converge on Rydberg states,

which render the extrapolation unreliable. This behavior can be suppressed by using fairly

compact basis sets and by discarding the first few negative binding energies. Here, we use

the minimally-augmented correlation-consistent valence triple-ζ (may-cc-pVTZ)31,32 for all

RAC calculations, and we accept only binding energies more strongly bound than −0.5 eV.

From a method combination point, apart from yielding accurate electron binding energies,

the RAC method places no special requirements on the electronic structure method. At an

increased nuclear charge (for Be, λ ≈ 0.2), the four (N + 1)-electron states, Sσσ, Sππ, Sσπ

and Tσπ are stable with respect to the lowest N -electron state (2A′′

2; Dπ see Figure 1), and

in principle any standard electronic structure method can be employed.

The only issue arising in the context of Be2−3 and Mg2−3 is static correlation, that is, the

multi-configuration character of some of the involved states. Since Be and Mg possess low-

lying unoccupied p-orbitals, all involved states possess a certain degree of multi-configuration

character corresponding to single or double excitation into molecular orbitals deriving from

these p-orbitals. If, for example, coupled-cluster with singles and doubles (CCSD)—or CCSD

with perturbative triples (CCSD(T))—are performed for Be−3 and Be2−3 at λ ≈ 0.2, it turns

out that the Dπ state is reasonably well described by CCSD—all T1 amplitudes are smaller

than 0.04 and there are only two T2 amplitudes slightly larger than 0.1. Virtually the same

holds true for the Sππ state and the Tσπ state. Thus, CCSD(T) results for these three states
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should be acceptable (c.f discussion in ref. 33). In contrast, CCSD(T) cannot be used for

the Sσσ and the Sσπ states: The Sσσ state shows unacceptably large T2 amplitudes, and the

Sσπ state is an open-shell singlet.

In all coupled-cluster (and all other correlated) calculations the chemical core has been

frozen. Moreover, all single-reference open-shell calculations (for the Dπ and Tσπ states)

make use of the spin-unrestricted formalism as spin-contamination is minor for all open-shell

states considered.

We note that similar to calculations for bound states, step 1 of a RAC/CCSD(T) cal-

culation simultaneously provides step 1 data at the restricted or unrestricted self-consistent

field (SCF) levels. The difference is, of course, that a separate step 2 analysis needs to be

executed for both sets for input data. Clearly, one cannot expect SCF resonance energies

to be reliable as such, however, without SCF data providing a baseline, we cannot discuss

correlation effects.

Alternatives to CCSD are complete-active-space self-consistent-field (CASSCF) calcula-

tions followed by second-order perturbation theory (CASPT2) or N -electron valence per-

turbation theory (NEVPT2).34 CASSCF followed by NEVPT2 is highly attractive, as it

naturally describes any multi-configuration character of all relevant states in the CASSCF

step, produces energies of similar quality to CASPT2, and is free of so-called intruded states.

However, as for all CASSCF methods, the need to select an appropriate active space can be

a distinct disadvantage.

For our RAC calculations, we chose an active space of 12 orbitals that is occupied with

six, seven, and eight electrons for Be3, Be
−

3 , and Be2−3 or the corresponding Mg3 species. In

other words, all valence electrons are correlated and the active space essentially corresponds

to the 12 valence orbitals (2s and 2p combinations or 3s and 3p combinations, respectively).

Symmetry-adapted-cluster (SAC) configuration-interaction (SACCI) and the closely re-

lated equation-of-motion coupled-cluster (EOM-CCSD) methods represent a third alterna-

tive. Both methods need a single-configuration reference state (SAC or CCSD step), but
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then energy differences with respect to the reference state can be computed for states with

multi-configuration character as long as they are either one-hole states (ionization variants),

one-hole-one-particle states (excitation variants), or one-particle states (attachment variants)

(c.f.35,36).

In the RAC context, the Sππ state serves as a SAC or CCSD reference state because it

is bound at sufficiently large λ. Then, the electron binding energy with respect to the Dπ

state is computed using the ionization variants of SACCI or EOM-CCSD, while the energy

difference between the Sππ and the Sσπ state is computed using the respective excitation

variant. Using the SACCI implementation, it is also possible to compute the energy difference

with respect to the Tσπ state via a so-called spin-flip excitation method. Neither SACCI

nor EOM-CCSD can yield reliable results for the Sσσ state as the Sσσ state differs by two

excitations from the reference.

2.2 Complex absorbing potential calculations

In the complex absorbing potential (CAP) method a negative imaginary potential, −iηW is

added to electronic Hamiltonian,

Ĥ(η) = Ĥ − iηW , (3)

where η is the CAP strength, and W is normally a real, positive potential that is zero at

the molecule and then starts to grow with some power of the distance to the molecule.19,37

Negative imaginary potentials absorb electron density, and a CAP absorbs the outgoing elec-

tron rending the resonance wavefunction square-integrable, provided the CAP is sufficiently

strong to absorb the electron within the limitations of the basis set (finite basis sets are lim-

ited in both position and momentum space). The resonance energy is then obtained directly

as a complex eigenvalue Eres = Er − iΓ/2 of the complex Hamiltonian Ĥ(η).

In an actual CAP calculation, a trade-off must be made as η needs to be sufficiently
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large to absorb the electron within the confinement of the basis set, yet too large η values

cause artifacts due to reflections of the outgoing electron at the CAP boundary and by the

CAP itself.37 In other words, in CAP calculations, a sweet spot, ηopt must be identified.

We identify this sweet spot by following the η trajectory of the resonance eigenvalue and

identifying the point where the second logarithmic derivative makes a minimum.19,37 In CAP

parlance, we apply the first-order correction for CAP artifacts and identify stable points on

the corrected trajectories. (Trajectories are supplied in the supporting information).

For the potential W we use a cut-off harmonic potential in the ‘distance-to-the-molecule’

coordinate:38,39 In the vicinity of the nuclei W is zero, but from a cut-off radius it grows

quadratically with the distance-to-the-molecule, which is defined as an average heavily bi-

ased toward the distance to the nearest atom,38,39 making the CAP isocontours a smoothed

Voronoi surface that closely follows the molecular shape similar to a van der Waals surface.

Thus, the CAP displays the full, non-Abelian molecular symmetry, D3h. Similar to our

previous work,18 we chose a fixed cut-off value of 3 Bohr.

The CAP is combined with the extended multi-state CASPT2 (CAP/XMS-CASPT2)

method, and we followed the procedure established in our previous study.18 Two anion

states 2A′′

2 (Dπ) and 2A′

1 (Dσ) were first calculated at the CASSCF level, employing an

active space identical with the RAC/CASSCF calculations, that is CAS(7e,12o). We then

augmented this active space with a set of nvirt orbitals, which are eigenfunctions of the

generalized Fock operator built from the CAS(7e,12o) density matrix. A projection space

for the CAP calculations is then set up performing state-averaged (SA) CASCI followed by

frozen-core SA-XMS-CASPT240–42 with an IPEA shift of 0.25 au43 and an imaginary shift

of 0.1 au,44 and the actual CAP calculations are done in the generated subspace.18,45

From an electronic structure point, the main difference between the RAC and the CAP

is the difference between the CAS orbitals and the CASCI step for (N + 1) electron states.

Moreover, the one-particle basis set used in the RAC calculations is far more compact. In

contrast to these differences, the difference between NEVPT2 and CASPT2 is minor.
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Owing to various bottlenecks in our current CAP/XMS-CASPT2 code, we were forced

to limit nvirt severely: For the Sππ, Sσπ, and Tσπ states, we selected five a′′2 virtual orbitals

leading to CAS(8e,17o) active spaces, and for the Sσσ state, we selected four a′1 virtual

orbitals generating a CAS(8e,16o) active space. The respective virtual orbitals were chosen

based on their symmetry and on their energy giving preference to virtual orbitals closer to the

expected resonance position as inferred from compact basis set XMS-CASPT2 calculations

for the state in question.17 In practice, this procedure translates into projection states lying

between 2 and 5 eV above the two anion states (see also Figures S1-S4). We note that a

larger number of averaged anion states and active orbitals would be desirable (see discussion

in section 3), however, the computational cost grows too rapidly with nvirt for our resources.

For the CAP calculations the may-cc-pVTZ set was augmented with a second diffuse

s function (exponent 0.00735), its diffuse p exponent was replaced with 0.014, and four

additional diffuse p functions were added using an even-scaling factor of 1.6, that is, the

smallest p exponent is 0.002136.

Four quantum chemistry packages were used. SAC-CI calculations were performed with

a developers’ version of GAUSSIAN09, Revision B.01.46 Version 2.1 of the CFOUR pack-

age47 was used for CCSD(T) and EOM-CCSD calculations. XMS-CASPT2 calculations

were performed with the orz program package.48 ORCA version 4.2.149 was used for the

NEVPT2 calculations. Moreover, the pair-natural-orbital EOM-CCSD (PNO-EOM-CCSD)

implementation available in ORCA50 was used to study the solvated trimer dianions.

3 Results and Discussion

The goal of this paper is to explore energies and autodetachment lifetimes of Be2−3 and Mg2−3 .

Based on the general behavior of small dianions as well as on the inability of Be or Mg atoms

to bind excess electrons, we do not expect to find any regions in nuclear coordinate space

where either of these dianions can bind both excess electrons. The relevant questions are

12



then: “How unstable are the dianions with respect to the monoanion?” and “How long do the

dianions typically live?”. We focus primarily on D3h symmetrical structures at geometries

between the neutral and the anion as the lowest electronic states of both neutral Be3 and

Be−3 are trigonal planar and the same is true for the corresponding Mg species. Moreover,

we investigate the symmetric breathing mode of Be3, Be
−

3 , and Be2−3 over a range that covers

some of the structures discussed in ref. 6–11,51.

3.1 Be2−3 resonance states

We begin with a comparison of results obtained at a fixed D3h geometry with R = 2.15 Å,

a bond length between the minimal bond lengths of Be3 and the Be−3 .
3 First, we compare

different electronic structure methods keeping the continuum method fixed, then we compare

our RAC and CAP results.

Combing the RAC with various electronic structure methods yields the resonance pa-

rameters listed in Table 1. These positions and widths vary substantially. Even if only the

correlated methods CCSD(T), SACCI, and NEVPT2 are considered, variations are still in

the order of half an eV, which is not entirely unexpected as the system combines two chal-

lenges: On the one hand, computing electron binding energies represents a challenge as such,

and even for “easy” systems, deviations of several tenths of an eV between binding energies

from different electronic structure methods are common. On the other hand, despite most

states possessing one dominating configuration, static correlation effects are present, but

different for each state. Since none of the employed electronic structure methods is perfect,

but rather possesses its own unique strengths and weaknesses regarding these two challenges,

good agreement between methods as different as CCSD(T), SACCI, and NEVPT2 may be

considered at worst suspicious, at best fortuitous.

Trends between different methods can be studied for the Sππ and the Tσπ state, as

energies of these two states can be obtained with uncorrelated SCF, partially correlated

CASSCF, and all three correlated methods, NEVPT2, CCSD(T), and SACCI. The correlated
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Table 1: RAC resonance energies of the four Be2−3 states for D3h symmetry and R = 2.15 Å.
Er is measured relative to the Dπ state of Be−3 computed with the same method at the same
geometry.

Er [eV] Γ [eV]

Sσσ NEVPT2 3.68 2.12

Sππ SCF 4.16 2.05
CASSCF 4.21 1.92
NEVPT2 3.41 1.77
CCSD(T) 3.12 1.42
SACCI 2.90 1.56

Sσπ NEVPT2 3.51 1.75
SACCI 2.89 1.63

Tσπ SCF 2.58 1.06
CASSCF 3.90 1.90
NEVPT2 3.21 1.56
CCSD(T) 2.83 1.39
SACCI 2.51 1.44

methods agree reasonably well with each other (variations in the order of 0.5 eV) and for

both states, NEVPT2 predicts the highest resonance position, SACCI predicts the lowest,

and CCSD(T) is fairly close to the mean of the other two correlated methods. The widths

follow a slightly different order, with NEVPT2 predicting the largest widths, CCSD(T)

predicting the smallest, and SACCI predicting widths slightly larger than CCSD(T).

In particular, the CCSD(T)–NEVPT2 trend can be compared to the predicted electron

affinities (EA) of these two methods that can be inferred from the potential energy curves

discussed below. According to the high-level multi-reference configuration interaction results

from ref. 3, the 1A′

1 (S0) ground state of the Be3 has a minimal-energy bond length of

2.203 Å, the Dπ ground state of the anion has a minimal-energy bond length of 2.106 Å,

and the energy difference between these two structures, the EA, is −1.38 eV. The NEVPT2

bond lengths compare well with these reference values, but the NEVPT2 value of −1.22 eV

underestimates the EA. In contrast, the CCSD(T) bond lengths are a bit too long (see

below), but the CCSD(T) EA of −1.35 eV is very close to ref. 3.
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As NEVPT2 underestimates the binding energy of the first electron, one may expect that

it would do the same for the second excess electron, which would translate into a too high

Er. In contrast, CCSD(T) predicts the first electron binding energy quite reliably, and one

may therefore expect that it also predicts the second with similar reliability adding weight

to the trend-derived argument that CCSD(T) probably yields the most reliable resonance

positions.

These arguments are, of course, anything but watertight, and either experimental or sig-

nificantly more costly computational results from, say, diffusion Monte-Carlo approaches, are

needed to draw final conclusions. Still, the observed trends suggest that all three correlated

methods predict semi-qualitative resonance energies at the very least, if not better.

While SCF and CASSCF are generally unreliable for predicting electron binding ener-

gies,52 and there is no reason to expect that their RAC combinations will predict useful

resonance parameters, they provide the basis to study electron correlation in resonances.

For the Sππ state, SCF and CASSCF agree closely, and both methods predict significantly

higher resonance positions as well as higher widths than the correlated methods. In other

words, the Sππ state shows as much static correlation as the Dπ state, and dynamic electron

correlation stabilizes the Sππ state as one would expect based on a simple number-of-electrons

argument.

Yet, for the Tσπ state, SCF and CASSCF differ significantly, with SCF predicting the

smallest width of all methods and a position as low as SACCI whereas CASSCF predicts the

highest position and width. While the Tσπ state apparently shows far less static correlation

than the Dπ state, dynamic electron correlation again stabilizes the (N +1)-electron system.

Thus, a single-reference wavefunction definitely has the potential to muddy the water, but

after CASSCF levels the playing field, dynamic correlation always stabilizes the resonance.

Having discussed the effect of electron correlation, we now briefly compare RAC (Table

1) with CAP (Table 2) calculations. Due to the close relationship between CASPT2 and

NEVPT2, one may expect CAP/CASPT2 and RAC/NEVPT2 to agree rather well, and this
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Table 2: CAP/XMS-CASPT2 resonance energies of the four Be2−3 states for D3h symmetry
and R = 2.15 Å. Er is measured relative to the Dπ state of Be−3 at the same geometry.

Er [eV] Γ [eV]

Sσσ 3.64 0.52
Sππ 3.87 0.49
Sσπ 3.75a 0.47a

Tσπ 3.40a 0.41a

aOnly uncorrected results avail-
able.

is indeed true for the resonance positions. However, CAP/CASPT2 predicts significantly

smaller widths than RAC/NEVPT2.

The small widths in our current CAP calculations is in all likelihood unrelated to the

CAP method as such but rather to the projection space employed for setting up the CAP

Hamiltonian (subsection 2.2). In this context, a resonance is best understood as a discrete

state with energy Ed that is embedded in and interacts with a continuum of states, so that

it acquires a width Γ (Weisskopf-Fano-Feshbach picture). Thus, Γ characterizes not only the

resonance lifetime, but also the energy range over which the discrete state interacts with the

continuum.

In a finite basis set context, the continuum is replaced with a discrete representation of

so-called discretized continuum states, and Γ provides a rough measure of the energy range

of states that are needed to describe the resonance wavefunction in a projection formalism.45

Owing to various bottlenecks in our current CAP/XMS-CASPT2 code, we were forced to

use a roughly 3 eV energy window to set up the CAP projection spaces (see subsection 2.2).

While this range comfortably exceeds the resonance widths predicted by the RAC method

by at least a factor of two, the discrete state-continuum interaction is characterized by a

Breit-Wigner distribution, and its tails are expected to contribute significantly. Indeed, all

our subspace vectors contribute appreciably to the resonance at the optimal CAP strength,

while a fully converged subspace is indicated by vanishing contributions at the low and

high energy tails. Therefore, the CAP/CASPT2 calculations are able to reproduce reliable
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resonance positions in very good agreement with RAC/NEVPT2, but the CAP widths are

not fully converged and underestimate the true width.

Regardless of method variations, all four dianion states are predicted to represent short-

lived resonance states with energies in the range of 2.5 to 3.5 eV above the ground state of

Be−3 and lifetimes in the order of 1 fs or less. Thus, as isolated entities, all four Be2−3 states

are—as expected—exceedingly short-lived, and we predict that these dianion states can only

be observed as Be2−3 building blocks in a stabilizing environment (see section 1 and 3.4) or,

possibly, as broad resonances in electron scattering from stable states of Be−3 .

3.2 Mg2−
3 resonance states

The corresponding four Mg2−3 resonance states have been studied at a fixed Mg–Mg distance

of 3.38 Å close to the equilibrium geometry of the Sππ state,6 and our results are collected

in Table 3.

The Mg2−3 results follow very similar trends as the Be2−3 data: While the fully corre-

lated NEVPT2, CCSD(T), and EOM-CCSD (replacing the closely related SACCI, which we

used for Be2−3 ) methods agree reasonably well, SCF and CASSCF results deviate from the

predictions of the former. Focusing on the three correlated methods only, similar to Be2−3 ,

NEVPT2 tends to predict the highest resonance position, while EOM-CCSD predicts the

lowest positions, and the CCSD(T) positions lie between the two.

Based on the comparison with the 2Pu resonance states of the atomic anions Be− and

Mg−,53 one may expect the Mg2−3 resonances to be more stable than the corresponding Be2−3

states. This expectation holds true for the Sππ, the Sσπ, and Tσπ states, but is incorrect for

the Sσσ state. While there are some slight variations between methods and states, it is fair

to say that in going from Be2−3 to Mg2−3 , the former three states are stabilized by roughly

0.6 eV. Their widths also decrease by several tenths of an eV, however, the trend for the

widths is less uniform. In contrast, the Sσσ of Mg2−3 is predicted to lie energetically slightly

higher than the Sσσ in Be2−3 , yet, at the same time, it is predicted to show a substantially
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Table 3: RAC resonance energies of the four Mg2−3 states for D3h symmetry and R = 3.38 Å.
Er is measured relative to the Dπ state of Mg−3 computed with the same method at the same
geometry.

Er [eV] Γ [eV]

Sσσ NEVPT2 3.83 1.69

Sππ SCF 3.28 1.40
CASSCF 3.44 1.72
NEVPT2 2.92 1.69
EOM-CCSD 2.45 1.06
CCSD(T) 2.59 1.02

Sσπ NEVPT2 2.81 1.17
EOM-CCSD 2.32 1.19

Tσπ SCF 2.74 1.22
CASSCF 3.24 1.31
NEVPT2 2.62 1.05
CCSD(T) 2.30 1.02

smaller width indicating a “stabilization” in a lifetime sense.

3.3 Potential energy curves

For the 1A′

1 ground state of Be3 (S0 state) and the Dπ state of Be−3 , potential energy curves

(PEC) along the totally symmetric breathing modes (D3h symmetry is maintained while the

Be–Be bond length R is changed) can be computed in a straightforward manner. PECs

for the four dianionic states Sσσ, Sππ , Sσπ, and Tσπ can then be obtained by adding the

respective resonance positions to the Dπ PEC. However, these four PECs should be taken

with a grain of salt as their widths are large and the three singlet states will be coupled by

D3h symmetry-breaking vibrations.54 Nonetheless, the PECs provide a useful quantitative

representation for discussing electron loss processes and relative stabilities.

PECs obtained with CCSD(T) are shown in the left panel of Figure 2. In comparison

with the reliable MRCI results from ref. 3, CCSD(T) predicts somewhat longer bond lengths

for Be3 and Be−3 presumably due to a combination of missing static correlation effects and

the small triple-ζ basis used here. The trend, however, agrees very well: The Be–Be bond
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Figure 2: D3h potential energy curves for Be3 (black), Be−3 (blue), and Be2−3 . The left
and right panels show CCSD(T) and NEVPT2 results, and R is the Be–Be distance. Color
scheme: black: Be3 S0, blue: Be

−

3 Dπ, green: Be
2−
3 Tσπ, purple: all Be

2−
3 singlet states (solid:

Sππ, dashed: Sσσ, dotted: Sσπ).

length in the anion is about 0.1 Å shorter than in the neutral. Moreover, as discussed above,

the predicted EA (1.35 eV) agrees well with the value of 1.38 eV from ref. 3.

As the resonance positions of both the Sππ and Tσπ states changes only slightly (about

0.1 eV over the bond length range shown), the dianion PECs follow the Dπ curve closely,

and the “minimal energy structures”—to the extent that one can define a minimal energy

structure of a resonance—is correspondingly close to the structure of the Dπ ground state

of the anion.

The corresponding NEVPT2 PECs are shown in the right panel of Figure 2. As discussed

above, the bond lengths predicted at this computational level—2.22 Å for the S0 and 2.13 Å

for the Dπ state—are much closer to the high quality results from ref. 3. However, the

NEVPT2 EA is 0.16 eV too low (see above) suggesting that the dianion PECs are slightly

too high.

Similar to CCSD(T), the PECs of the dianionic resonance states follow the Dπ curve

closely as the four resonance positions change only very little over the bond length range
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shown: The Sσσ position changes by roughly 0.6 eV, the other three positions by less than

0.2 eV. More importantly, all four resonance positions change in an almost linear fashion

with the Be–Be distance and therefore the minima on the dianion PECs are only slightly

shifted with respect to the Dπ minimum.

Our complex PECs directly contradict the real-valued PEC from ref. 51 that suggest the

presence of two D3h symmetrical minima with bond-lengths close to 2.078 Å and 2.156 Å.

We cannot directly comment on these density functional results, but it seems likely that

the two identified minima can be understood in the Weisskopf-Fano-Feshbach picture (see

section 2): One may assume that one minimum corresponds to a state showing essentially

discrete state character, while the other minimum corresponds to a state showing essentially

discretized-continuum state character. In other words, one minimum corresponds to Be2−3 ,

while the other minimum corresponds to Be−3 and a “free” electron confined by the basis

set. To avoid unwanted discretized-continuum minima, approaches such as RAC, CAP, or

the stabilization method are needed.

3.4 Model stabilization

Having found the isolated dianions Be2−3 and Mg2−3 to possess only short-lived resonance

states well above the ground states of the respective monoanions, in this section we consider

a Be2−3 dianion embedded in a stabilizing environment. Specifically, we investigate the res-

onance position and lifetime of the Sππ states as its closed-shell single-reference character

enables us to optimize the stabilizing environment for the respective dianion with second-

order many-body perturbation theory (MP2). Such an optimization of a resonance with

standard methods is possible as the environment-stabilized dianions are much lower in en-

ergy than their isolated counterparts and as the sought state lies well below all discretized

continuum states as long as normal basis sets with standard diffuse functions are used.17

As mentioned in the introduction, stabilization of Be2−3 and Mg2−3 by cations and point

charges has been considered previously.5,6,8 The impact of a full positive charge is, of course,
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drastic, and it is hardly surprising that, for example, the highest occupied orbital of Mg3Na
−

shows a large contribution from the Na valence orbitals.5 Instead of a cation stabilizing a

dianion, it seems therefore more appropriate to think of anions such as NaBe−3 and NaMg−3

as metal clusters with two excess electrons in their “conduction bands”. The two excess

electrons are distributed throughout the metal cluster, and owing to the single negative net

charge, the cluster anion as such is stable to electron loss.

In contrast, a stabilizing environment would not participate directly in the bonding of the

excess electrons, but rather serve in an auxiliary role, say, an explicit interaction with solvent

molecules or a more implicit one with a polarizable continuum. Of course, distinguishing

direct from indirect participation is anything but straightforward, and where and whether

to draw a clear-cut dividing line is a matter of taste. A reasonable distinction may be the

nature of the bound state of the frozen environment without Be2−3 or Mg2−3 being present: If

the environment can bind an excess electron in a valence state, it can actively participate in

the stabilization as a mixing of dianion and environment valence will occur in the combined

system. If, on the other hand, the environment supports only non-valence states (surface-

bound, cavity-bound, etc.), its role can be characterized as supporting as valence mixing can

be neglected.

Here, we consider a weaker stabilization in the form of two water clusters that point

dangling hydrogen bonds at both lobes of the π-system (see Figure 3). Water clusters are

employed as their electrostatic interactions are well-understood, clusters with increasing

total dipole moments are easily constructed, and a well-defined structure is guaranteed by

the internal hydrogen bonds in each cluster.

Specifically, two Be2−3 –water and one Mg2−3 –water clusters are considered: Be3((H2O)3)
2−
2 ,

Mg3((H2O)3)
2−
2 , and Be3((H2O)6)

2−
2 (Figure 3). For the former two clusters, the stabilizing

environment is provided by two water trimers; for the latter, the stabilizing environment is

provided by two water hexamers.

We emphasize that these clusters are by no means intended to represent realistic micro-
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Figure 3: Structures of the Be3((H2O)3)
2−
2 and Be3((H2O)6)

2−
2 clusters considered as model

solvation environments. Both clusters display D3 symmetry. Mg3((H2O)3)
2−
2 looks almost

exactly as Be3((H2O)3)
2−
2 .

solvation or an actual solvation model, but rather a model stabilization of water clusters with

“solvating” hydrogen bonds arranged so as to deliberately point at the π-system. In aqueous

solution, it is highly likely that any alkaline earth metal cluster—regardless of its charge—

will react with water to form solvated atomic dications and reaction products suitable for

the total charge of the original cluster (H2 and OH− for neutral clusters). In addition, in

water the dianions may autodetach into cavity or surface states. We suppress this pathway

in our calculations by the choice of a rather compact basis set and a structure that fails to

support cavity or surface states once the metal cluster is present.

While our specific clusters should be understood as model systems, let us emphasize

that it may be possible to observe the decay of Be2−3 or Mg2−3 in very cold, ice-like water

clusters in the gas phase. For such a system, it is conceivable to detect the resonance as an

excited state of a cluster dianion whose ground state consists of a Be−3 unit embedded in a

water cluster that also supports a surface or cavity state. Similar scenarios are imaginable

in solution, provided the Be−3 unit is protected by a polydentate ligand. Then a solvated

electron can be excited into a temporary Be2−3 state.

All three clusters considered here, on the other hand, have deliberately been constructed

to serve only in a stabilizing and no other role. All three represent local minima in compact

basis set (MP2/ma-def2-TZVP(-f)55,56) model chemistries,17 and all three show essentially

22



D3 symmetry. Note that the solvating hydrogen bonds point between two metal atoms cre-

ating an “interlocked” structure. The Cartesian coordinates of these structures are available

in the supporting information.

Table 4: RAC/PNO-EOM-CCSD resonance energies of Sππ states of Be2−3 and Mg2−3 in a
model solvation environment.

Er [eV] Γ [eV]

Be2−3 2.90 1.51
Be3((H2O)3)

2−
2 1.49 0.102

Be3((H2O)6)
2−
2 0.525 0.0109

Mg2−3 2.35 1.07
Mg2−3 ((H2O)3)

2−
2 1.55 0.229

Resonance positions and widths for the Sππ states of the isolated and solvated trimers

are collected in Tab. 4. Solvation stabilizes the trimer dianions substantially: For example,

in the Be2−3 , Be3((H2O)3)
2−
2 , Be3((H2O)6)

2−
2 series, the resonance position drops from about

3 to 1.5 and 0,5 eV, and the width decreases (the lifetime increases) by roughly an order of

magnitude in going to a water trimer and yet another order of magnitude by going to water

hexamer environment. Nonetheless, all dianions investigated are still resonance states with

finite lifetimes.

In comparison with clusters such as Be3Na2 and Be3Na
−, solvating water molecules rep-

resent a much weaker perturbation of the Be2−3 core than the metal cation environment,

as the water cluster model environment stabilizes the excess electrons by hydrogen bond-

ing, essentially a dipole effect. In their frozen geometries, the solvating water trimers and

hexamers support only dipole-bound anion states (in its equilibrium geometry, the water

trimer does not support any anion state), and the frozen non-polar ((H2O)3)2 and ((H2O)6)2

scaffolds support non-valence bound states with binding energies of about 0.6 and 1.6 eV

(PNO-EOM-CCSD; aug-cc-pVDZ basis augmented with a (7s7p4d) set at the symmetry

center between the trimers or hexamers respectively–much lower than the electron affinity

of a Na+ ion (5.14 eV).
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The difference in electron binding energy of the stabilizing units is directly reflected in

the electron binding energies of the corresponding Be2−3 clusters: Na+ is a cation with a

massive electron affinity, Be3Na
− processes only a single negative charge, and the Be3Na

−

anion is stable to electron loss. In contrast, both Be3((H2O)3)
2−
2 and Be3((H2O)6)

2−
2 are

doubly charged anions, and both are still resonance states unstable to electron loss yet in

comparison with isolated Be2−3 their lifetimes are substantially longer.

4 Summary and Conclusions

We have studied resonance states of the isolated and “solvated” dianions Be2−3 and Mg2−3 .

Electronic resonances are unstable with respect to electron autodetachment, and the dianion

states considered here are unstable with respect to decay into one of several monoanion states

and a free electron as well as to decay into the neutral and two free electrons. However,

we expect the latter process to be considerably slower than the former as the former is a

straightforward one-electron decay, whereas the latter involves a synchronous two-electron

process and has a much higher threshold.

All quantum chemistry methods for resonance states consist of a combination of a con-

tinuum method with an electronic structure method. Most of our calculations employed the

RAC continuum approach, and unfortunately we were unable to compare the RAC method

fairly with the CAP approach as we were forced to make compromises setting up the projec-

tion subspace for our CAP calculation, which probably impacted the CAP widths. Moreover,

we were unable to compare with stabilization calculations, which are non-trivial for the same

reasons that render setting up a CAP subspace challenging: The lack of a closed-shell refer-

ence or parent state, a high density of states, and large widths. On the other hand, we were

able to compare multiple electronic structure methods and investigate electronic correlation

effects in detail.

Four low-lying states have been identified that correspond to different occupation patterns
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of the two excess electrons in the lowest p-σ and p-π orbitals. For the isolated dianions, all

four states show resonance positions in the range of 2 – 4 eV above the ground states of

the respective monoanions and broad decay widths in the 1 – 1.5 eV range. In other words,

all four dianion states—regardless of any aromatic character—represent short-lived unstable

species. In fact, our calculations predict the triplet Tσπ state to be the most “stable” dianion

in the sense that it possesses the smallest resonance position and smallest width for both Be2−3

and Mg2−3 . Thus, regarding the stability of excess electrons of multi-charged negative ions,

Coulomb repulsion plays the leading role, while aromatic character plays only a supporting

part.

Potential energy curves along the D3h symmetry conserving breathing mode were studied

for Be2−3 . It turns out that the resonance position of the four dianions changes only slowly and

almost linearly with the Be–Be bond length. Therefore, the four dianion PECs essentially

follow the Dπ state of Be−3 . However, the four states are much broader than their respective

energy differences, and symmetry-breaking vibrations will couple the three singlet states.

Having identified all low-energy states of Be2−3 and Mg2−3 as short-lived resonances, we

investigated the influence of a stabilizing environment on the Sππ state. Adding two water

trimers above and below the Be2−3 and Mg2−3 planes respectively, where each water cluster

points three dangling hydrogen-bond towards a metal-metal bond, leads to a reduction of

the resonance positions to about 1.5 eV and a substantial increase in lifetime (by factors of

15 and 5 for Be2−3 and Mg2−3 ). Replacing the water trimers with water hexamers almost

stabilizes Be2−3 : Its position is as low as 0.5 eV and its width is a mere 10meV. Our studies

thus show that—as one may expect—a strongly perturbing environment is needed to stabilize

two excess electrons on a small cluster without electron-affine substructures.
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5 Supporting Information

Included: η-trajectories associated with the CAP calculations; Cartesian coordinates of

Be3((H2O)3)
2−
2 , Be3((H2O)6)

2−
2 , and Mg3((H2O)3)

2−
2 .
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S2 Cartesian coordinates for model solvation

Be3((H2O)3)
2−
2

Be -0.001128 -0.000025 1.214306

Be 1.048223 -0.002427 -0.601122

Be -1.048157 0.003428 -0.601729

O 0.051563 -3.475770 -1.697414

O -1.512858 -3.469815 0.794340

O 1.424754 -3.475679 0.899962

O -0.049684 3.476103 -1.697423

O -1.425268 3.476263 0.898245

O 1.511957 3.468528 0.796203

H -0.734800 3.609741 -1.015892

H 1.275878 3.598005 -0.141288

H -0.494028 3.595699 1.163119

H 0.736119 -3.609357 -1.015332

H 0.493274 -3.595708 1.163677

H -1.275131 -3.598992 -0.142780

H -1.460002 -2.493353 0.866292

H -0.033422 -2.499064 -1.686232

H 1.468961 -2.499730 0.815634

H -1.469942 2.500345 0.813826

H 1.458579 2.492082 0.867963

H 0.035071 2.499368 -1.686142

S3



Mg3((H2O)3)
2−
2

Mg -0.001205 0.000094 1.706632

Mg 1.476520 -0.011426 -0.846913

Mg -1.475932 0.011718 -0.848637

O -0.024368 -4.112653 -1.682586

O -1.483258 -4.105149 0.833566

O 1.423598 -4.134317 0.841000

O 0.026656 4.112692 -1.682205

O -1.424306 4.134323 0.839597

O 1.482457 4.104640 0.835659

H -0.692305 4.187303 -1.024859

H 1.275863 4.169930 -0.117060

H -0.494136 4.197848 1.131915

H 0.693828 -4.187158 -1.024401

H 0.493104 -4.198038 1.132216

H -1.275460 -4.170330 -0.118891

H -1.567072 -3.142955 0.961880

H -0.077795 -3.149960 -1.822729

H 1.582626 -3.173406 0.864377

H -1.583479 3.173426 0.862683

H 1.565930 3.142405 0.963941

H 0.080039 3.149984 -1.822297

S4



Be3((H2O)6)
2−
2

Be 0.001683 -0.000151 1.201369

Be 1.048033 -0.000007 -0.612828

Be -1.045514 -0.000688 -0.612196

O 1.411487 -3.334470 0.891737

O 0.076891 -3.339334 -1.689819

O -1.498856 -3.333022 0.760577

O -1.409968 3.333253 0.891884

O 1.500109 3.334396 0.760049

O -0.076651 3.339361 -1.690003

O 1.561295 -6.192949 0.660228

O -1.337664 -6.185048 1.042969

O -0.221014 -6.197184 -1.659632

O 1.336196 6.186301 1.042692

O 0.218756 6.197571 -1.659595

O -1.562771 6.191473 0.660951

H -0.470094 3.336404 1.159047

H -0.774965 3.351148 -1.006508

H 1.259899 3.350746 -0.186821

H 0.471703 -3.336798 1.159218

H -1.258936 -3.349533 -0.186362

H 0.775484 -3.351753 -1.006637

H -0.076640 -2.373470 -1.779635

H 1.574983 -2.369991 0.803474

H -1.493682 -2.366399 0.935923

H 1.495837 2.367769 0.935409

H 0.077732 2.373655 -1.779964

S5



H -1.572641 2.368590 0.803834

H 0.378636 6.240761 1.215508

H 0.844046 6.249068 -0.913807

H -1.232586 6.251311 -0.253982

H 1.230694 -6.252430 -0.254581

H -0.846134 -6.248189 -0.913670

H -0.380111 -6.240442 1.215484

H -0.232123 -5.255691 -1.909432

H 1.773735 -5.248512 0.769714

H -1.542307 -5.240472 1.165761

H 1.541797 5.241920 1.165358

H -1.774218 5.246808 0.770461

H 0.230647 5.256110 -1.909478

S6


