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Metarhizium spp. mediate multiple interactions that are usually
positive with respect to their long-term plant environment, and
negative with respect to short-lived hosts. In particular, their
ability to kill a wide range of insects maximizes protection to the
plants and provides a resource of nitrogen that the fungus
trades with the plant for carbon. Here, we highlight emerging
concepts underlying Metarhizium-plant-insect interactions.
Experiments on model systems have provided detailed
mechanistic knowledge of how these fungi interact with plants
and insects, and a greater understanding of the evolutionary
forces driving these interactions. However, further integration of
studies at the ecological and mechanistic level is needed to
evaluate the importance of Metarhizium’s multitrophic
interactions to the structuring of natural communities.

Address
Department of Entomology, University of Maryland, College Park, MD,
United States

Corresponding author: Raymond J St. Leger (stleger@umd.edu)

Current Opinion in Microbiology 2022, 69:102176

This review comes from a themed issue on Host-Microbe
Interactions: Fungi

Edited by James Brown

For complete overview of the section, please refer to the article
collection, “Host-Microbe Interactions: Fungi”

Available online 22th July 2022
https://doi.org/10.1016/j.mib.2022.102176
1369-5274/© 2022 Elsevier Ltd. All rights reserved.

Metarhizium: a ubiquitous Jack of all trades

The ascomycete genus Metarkizium is among the most
abundant fungi, often reaching 10° colony-forming units
¢! in grassland soils [1,2]. As well as being widely used for
insect pest control, and as models for genetic engineering
projects [1], many are also beneficial root endophytes [2].
Furthermore, Metarhizium forms a monophyletic clade with
Pochonia chlamydosporia, a root-colonizing nematode egg
pathogen that diverged from Metarhizium about 180 MYA
(Figure 1), coincident with the appearance of many other
root-colonizing lineages (2. The Pochonia—Metarhizium
clade arose independently from other insect/nematode
pathogens, probably from saprophytes that first become

endophytes after attraction to roots by exudates, as still
occurs for extant Metarhizium spp [3,4].

P. cdhlamydosporia var. chlamydosporia and var. catenu-
late produce sexual morphs on snail eggs and beetle
larvae, respectively, and assuming sexuality preceded
asexuality, pathogenicity to insects (or mollusks) may be
ancestral to their asexual nematode pathogenicity [2].
Asexual Metarkizium lineages can also be nematocidal
[6]. Based on molecular phylogenies [2,7], the earliest-
derived (basal) Metarhizium lineage is the root- colo-
nizing saprophyte/mushroom pathogen M. marquandii,
consistent with an ancestral Metarhizium lifestyle as soil-
dwelling root colonizers. The oldest sequenced en-
tomopathogen lineages have narrow host ranges to in-
sects that live aboveground, thus separating the fungus
from its ancestral root habitat, for example, the com-
mercially produced locust control agent M. acridum.
Recent intensive and focused sampling has identified
many new Metarkizium species that have narrow host
ranges, and that unlike generalists frequently retain a
sexual cycle [9]. Genomic data suggest that these spe-
cialists have a larger number of rapidly evolving genes
than broad host-range Metarkizium spp, reflecting evo-
lutionary arms races with their specific hosts [2].

With the exception of the independently evolved
tundra-adapted M. frigidum, Metarhizium genotypes with
broad host ranges (the PARB clade, M. pingshaense, M.
anisopliae, M. robertsii, and M. brunneum) have diverged
comparatively recently (Figure 1). Most PARB strains
retain the ancestral root association, and have clonal
population structures with parasexuality within each
biotype potentially combining adaptive mutations that
arise in spores of each lineage into one genome [2]. The
significance of sexual, parasexual, and asexual life his-
tories to Metarhizium biology and evolution has been
recently reviewed [2]. Here, we highlight emerging
general concepts underlying Metarhizium—plant—insect
interactions.

How do Metarhizium spp interact with
insects?

Metarhizium strains with narrow host ranges exhibit less
physiological adaptability than generalists, and require
the specific physical and chemical features of their host
cuticle to stimulate infection processes [2]. Host-range
choices involve transmembrane G-protein-coupled re-
ceptors (GPCRs) that show an expanded repertoire in
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A phylogenomic tree with the estimated time of divergence for sequenced Metarhizium species and related fungi estimated from a multigene
phylogeny compiled from genome sequences [2]. The text indicates major transitions in the evolution of Metarhizium species.

generalists compared with specialists [10,11]. Different
GPCRs have different roles in responding to host-re-
lated recognition signals and differentially activate the
major Hogl-MAPK, SIt2-MAPK, and Fus3-MAPK
signaling cascades [12]. Thus, M. robertsii mediates the
transition from plant symbiont-to-insect pathogen by
modulating production of a membrane protein, Mr-
OPY2 (via alternative transcription start sites), which
activates the SIt2-MAPK pathway that in turn regulates
AFTF1 (appressorial-formation transcription factor 1)
[13]. The transition from cuticle penetration to hemo-
coel colonization is mediated by transcription factors
COH1 and COH2 (colonization of hemocoel 1 and 2).
Penetrating the cuticle requires extensive production of
cuticle-degrading enzymes [2], and is choreographed by
COH2. Once the fungus enters the hemocoel, a reduc-
tion in epigenetic repression upregulates COH1, which
deactivates COH2 turning of genes for cuticle penetra-
tion and upregulating genes for immune evasion and
nutrition [14].

How do Metarhizium species interact with
plants?

A pattern of gain and loss of carbohydrate-active en-
zymes is a feature of the Metarhizium clade and reflects
the extent of their ongoing interactions with plants, with
P. chlamydosporia and generalist Metarhizium strains
having the most and specialist Metarhizium spp. and the

endophytic close relation of Metarhizium, Epichloe fes-
tucae, the fewest [2]. P. chlamydosporia is a better plant-
root colonizer than many Metarhizium spp. [15], but even
so its root rather than insect associations that maintain
field populations of M. roberssii [16]. Unlike Metarhizium
spp, P. cdhlamydosporia retains GH6 and GH7 en-
docellulases that may explain why P. dhlamydosporia
more frequently penetrates into plant cells than Me-
tarhizium, which instead usually grows between cortical
root cells [2,17].

The PARB species may have been selected principally
to soil and plant-root habitat rather than host insects.
Specific associations between Merarkizium spp. and
plants have been reported in field studies in Canada and
the United States [18,19], but not in Denmark [20] and
Japan [21]. The most abundant plant and Metarhizium
species differed in these studies, so it remains to be
determined how plant and Metarkizium communities
affect each other, and whether the fungi differ in their
associations with plant species or are ecologically
equivalent. However, experimentally, multiple species
of Metarhizium can colonize the roots of many plant
species, and M. robertsii can also grow systemically in
aboveground tissues [22].

Endophytic colonization by Metarhizium promotes
growth in many plant species [22]. In addition to direct

Current Opinion in Microbiology 69( 2022) 102176

www.sciencedirect.com



Metarhizium, plants and insects Sheng, McNamara and St. Leger 3

entomophagous activities, endophytic M. robertsii also
suppresses insect growth probably by production of
metabolites within plants that deter feeding [22]. M.
robertsii also protects roots from the related fungus Fu-
sarium solani [23] perhaps because it produces volatiles
that repress nematode, fungal, and bacterial competitors
for rhizospheric resources [24,25]. Metarhizium species'
more direct growth-promoting effects include produc-
tion of indole-3-acetic acid (IAA), which stimulates root
development [26], solubilizing rock phosphorus in soil,
making it more accessible to plants [27], and transfer of
nitrogen by hyphae connecting insect cadavers and plant
roots [28]. The benefits to the plant will be conditional
on soil fertility; when carbon and nitrogen sources are
abundant, then nitrogen transfer from Merarhizium to
insects is reduced [28]. A fungus colonizing an insect
presumably has nitrogen in excess of its immediate re-
quirements, and it would clearly increase opportunities
for nutrition if the colonizing endophyte could exploit
diverse insects, which potentially could have selected for
the broad host range characteristic of endophytes [2].

As befits an ancient association, there is evidence that so-
phisticated and subtle signaling underlie plant—Merarkizium
interactions. Colonization by Metarkizium lowers plant
production of several hormones and defense responses,
showing the plant is acutely aware of the fungus, whereas
pathogenic colonization by Fusarium species increases de-
fense responses [29,30]. The net outcome of interactions is
thus likely to be complicated and depend on how colo-
nizing Metarhizium affects the plants' defensive potential to
pathogens, Metarhizium's own interactions with pathogens,
and physiological trade offs. Thus, increased nutrient
content in the plant could increase resistance expression or
conversely make a plant more attractive to pathogens. The
cell wall of M. robertsii may have means to avoid recogni-
tion by both plant [31] and insect immune systems [32],
suggesting commonalities in Metarhizium’s strategy.

Metarhizium as a model for multitrophic
lifestyles

The prolific production of enzymes and secondary me-
tabolites (SMs) by Metarkizium species is linked to their
broad lifestyle options, and an extremely flexible meta-
bolism that enables them to live in various environ-
mental conditions, and in the presence of compounds
lethal to other microbes [2]. The capacity for evolution
of new lifestyles displayed by the Metarkizium clade and
other fungi could depend on them expressing molecules
that act upon a wide range of organisms. M. robertsii, the
opportunistic human pathogen Aspergillus fumigatus and
the plant pathogen Haematonectria haematococca secrete a
range of enzymes on host polymers that are common
toxic components of reptile and invertebrate ve-
noms [33].

For purposes of brevity, we will focus on SMs as ex-
emplars of molecules known to have targets in hosts
belonging to different kingdoms [2]. Of the known in-
fection-promoting factors, many are toxins that directly
target the most conserved cellular components such as
the cytoskeleton (e.g. cytochalasins) or cellular mem-
branes (e.g. destruxins), and potentially could function
against diverse hosts. Many biosynthetic pathways have
been uncovered by Metarhizium genome sequences with
generalist  Metarhizium species usually possessing a
greater potential for the production of SMs than spe-
cialist strains, or indeed almost all other ascomycetes
[34]. The core genome of Metarkizium species is re-
presented by about 60% of the genes in the whole
genome, with the remainder consisting of variably re-
presented genes [10]. This pan-genome typifies species
that colonize multiple environments and have multiple
ways of exchanging genetic materials. Some SM gene
clusters such as destruxins that are exclusive to broad
host-range Metarhizium were probably acquired by hor-
izontal gene transfer (HGT) from other fungi [35].
Several HGT-acquired genes encoding proteins in-
volved in breaching cuticular barriers also contributed to
host-range expansion, implicating HG'T both from close
fungal relatives and from bacteria, plants, and insects as a
mechanism for global plasticity and the emergence of
new pathogenic fungi [36]. Another characteristic of
generalist Metarkizium strains is that they have lost re-
peat-induced point mutation along with sexuality, al-
lowing extensive gene duplications and subsequent
functional divergence [2]. Thus, duplication and diver-
gence of a polyketide (Pk) gene cluster in Metarhizium
species produced Pks2 and Pksl involved in infection-
structure formation and conidial pigmentation, respec-
tively [37]. Similar duplication events followed acquisi-
tion of a terpenc synthase gene by HGT from a
bacteria [38].

Pathways identified in genomes include those responsible
for other known Merarhizium chemistries and pathways
with candidate products not yet known in Metarhizium.
Experimental studies have validated some predictions
based on genomic sequence data, for example, certain
Metarhizium species produce ergot alkaloids (but only
during insect colonization) [39]. Some other pathways in
Metarhizium genomes are so unique that the molecules
they produce cannot yet be predicted [34]. Work-arounds
to quickly remedy this deficiency include using transcrip-
tional regulation as a guide to gene-cluster functionality, for
example, identifying gene clusters specifically expressed in
iron-deficient conditions [40].

Many capabilities appear unique to Metarkizium isolates
but may preadapt them for various habitats, for example,
Metarhizium’s unique ability to hydrolyze the en-
vironmentally dangerous nonylphenol [41]. Likewise,
scientists looking for compounds for the treatment of
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skin disorders found that Metarhizium produces 2-hy-
droxytyrosol, a powerful inhibitor of phenoloxidases, and
previously only known as a synthetic compound [42].
These unusual chemistries likely evolved in Metarhizium
to defend against the melee of toxic melanizing reactions
produced by insect defenses. M. robertsii has many
adaptations to resist this toxicity, including producing a
metalloprotease that degrades host phenoloxidases [43].

Conclusions

From the perspective of Metarhizium, its beneficial as-
sociations with plants and virulence to insects are simply
means of establishing a nutritional relationship with
these hosts [2]. Recent studies have aimed to identify
additional general concepts underlying Merarkiziu-
m—insect—plant interactions through a detailed knowl-
edge of mechanistic aspects. To date, most of these
studies have focused on highly controlled interactions
between single (insect, fungal, and plant) species in the
laboratory. These have been extremely valuable for as-
sessing the role of fungal, insect, and plant components,
and the concomitant signaling pathways involved in
Metarhizium interactions with plants and insects, but
they may lack ecological realism. Additional studies are
required that provide insight into the effect of interac-
tions by different Metarkizium species or strains in a
community context. The extent to which individual
Metarhizuim strains can specialize to particular plants has
not been determined, but interactions between Me-
farhizium species and plants seem ubiquitous, and con-
nect with many other ubiquitous soil organisms
increasing the complexity of interactions in as yet poorly
understood ways. It is also likely that individual
plant—-Metarhizium combinations have independently
evolved idiosyncratic interactions that will necessarily
add to a huge diversity of possible outcomes. Quantita-
tive effects will also need to be considered when trying
to find general patterns; thus, studies have focused on
how densities of Metarhizium impact insects feeding on
plants, and comparable studies are needed on disecase
resistance of plants. Only when these studies are per-
formed will we have a comprehensive view of the impact
of Metarhizium—plant—insect interactions on natural eco-
systems, and be in a position to realize the full potential
of Metarhizium strains in plant protection (Figure 2).
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