

1 **A novel approach to discriminate sedimentary characteristics of**
2 **deltaic tidal flats with terrestrial laser scanner (TLS): Results from**
3 **a case study**

4 JIE WANG*,‡, ZHIJUN DAI*,†, SERGIO FAGHERAZZI‡ and CHUQI LONG*

5 *State Key Laboratory of Estuarine and Coastal Research, East China Normal University,
6 Shanghai 200241, China

7 †Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and
8 Technology, Qingdao 266237, Shandong, China

9 ‡Department of Earth and Environment, Boston University, Boston 02215, Massachusetts, USA

10 Corresponding author: Prof. Zhijun Dai

11 State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500

12 Dongchuan Rd., Minhang District, Shanghai 200241, China

13 Email: zjdai@sklec.ecnu.edu.cn;

14 Tel: +86 21 62233458;

15 Fax: +86 21 62546441

16

Summary of Comments on 2022 Wang et al sed.pdf

Page: 1

Number: 1 Author: John Subject: Sticky Note Date: 10/3/2022 3:07:31 PM

Wang, J., Dai, Z., Fagherazzi, S. and Long, C., 2022. A novel approach to discriminate sedimentary characteristics of deltaic tidal flats with terrestrial laser scanner: Results from a case study. *Sedimentology*, 69(4), pp.1626-1648. <https://doi.org/10.1111/sed.12970>

17 **ABSTRACT**

18 Sediments in deltaic tidal flats regulate physical and chemical processes. Grain size
19 distributions play an important role in determining sediment dynamics and substrate properties.
20 However, it has been challenging to quantify large-scale depositional environments in intertidal
21 flats, due to time-consuming grain size analyses and sparse sedimentary information extracted
22 from scattered sediment samples. In this study, a novel TLS (terrestrial laser scanner)-based
23 method was developed to characterize the substrate the of intertidal flats. We collected surface
24 sediment samples in the Nanhui flats in the Yangtze Delta, China, and the corresponding
25 corrected waveform amplitudes of TLS echoes at fixed sampling sites for a total of 22 months.
26 A negative logarithmic relationship was found between the sediment sand fraction, average
27 grain size, D_{50} , and corrected waveform amplitude of TLS echo in different hydro-
28 meteorological conditions. The mean of average grain size of five sediment sampling sites along
29 a transect was $58.78 \mu\text{m}$ when measured by traditional grain size analysis, and $49.48 \mu\text{m}$ when
30 calculated with the proposed logarithmic equation, the mean with a difference of -7.99%. The
31 mean of the absolute value of the error of average grain size at each site was up to 21.77%,
32 which was relatively high. The mean sand and silt fraction at all sampling sites have lower
33 errors of -9.39% and 5.01%, but the mean of all absolute errors was also as high as 27.28% and
34 21.75%. In addition, the two corresponding errors of the measured and TLS-based calculated
35 D_{50} were -13.32% and 39.83%, respectively. Finally, the spatial distribution pattern of TLS-
36 based calculated average grain size in the entire study area (Nanhui tidal flat) was figured out,
37 it was consistent with the measured pattern with a *RMSE* of $13.83 \mu\text{m}$. These errors could be
38 caused by the accuracy of the TLS waveform amplitude correction and by limits of the method

39 in recognizing different substrates. The effects produced by the presence of microphytobenthos
40 (e.g. cyanobacterial mats or diatom biofilms) or bed forms have not been investigated and may
41 have affected the results. TLS-based grain sizes measurements can rapidly and effectively
42 discriminate sediment characteristics, thus avoiding traditional time-consuming measurements.
43 We expect that the TLS-based method proposed here will have wide applications in wetland
44 restoration and ecological protection projects, especially in inaccessible tidal flats.

45 **Keywords:**

46 Sediments; inversion; tidal flats; terrestrial laser scanner; grain size distribution

47 **1. INTRODUCTION**

48 Deltaic tidal flats develop seaward due to the accumulation of fine-grained sediments
49 discharged by large rivers. Because of their location at the interface between land and ocean,
50 these landforms are subject to the interaction of complex and variable terrestrial and marine
51 processes (Short, 1991; Kane, 2008 & 2012; Coco et al., 2013; Wang et al., 2020). Land
52 reclamation and sea level rise driven by global warming are threatening these important
53 environments. As a result, the long-term geomorphological evolution of deltaic tidal flats has
54 attracted the attention of many researchers in recent years (Donnelly & Bertness, 2001; Jiang
55 et al., 2005; Fitzgerald et al., 2007; Fagherazzi et al., 2012). The substrate of tidal flats is a
56 mixture of siliciclastic sediment (clay, silt and sand) and organic material deposited by
57 vegetation and benthic organisms (Friedrichs, 2001; Maan et al., 2016). Sediment grain size
58 distributions and related sedimentary structures are crucial physical-ecological indicators of

59 intertidal flat environments; for example, intertidal biological communities vary significantly
60 in muddy or sandy environments (Evans, 1965; Herman et al., 2001). Concentrations of alkali,
61 metals, and nutrients also change with grain size in intertidal sediments (Zhang et al., 2002),
62 algae survival and vegetation growths (e.g. seagrass and salt marshes) are also affected by the
63 characteristics of the substrate (Bos et al., 2007; Park & Hwang, 2011). In addition, local
64 sediment dynamics are closely related to grain size on muddy tidal flats (Law et al., 2013). They
65 typically form in locations subject to enhanced siltation; the encroachment of vegetation further
66 support accretion due to accumulation of organic matter (Swales et al., 2004; Beck et al., 2008;
67 van Leeuwen et al., 2010). Therefore, revealing the temporal and spatial characteristics of
68 surface sediments in tidal flats as well as, and changes in grain size distribution can help
69 understanding sediment transport, morphological evolution, and ecological processes taking
70 place in the substrate.

71 Typically, sediment characteristics can be derived from traditional grain size analyses of
72 field samples in the laboratory. Several decades ago, sieving was used for non-cohesive
73 sediments (Konert & Vandenberghe 1997, Munroe & McKinley, 2007), while the diameter of
74 fine sediments was derived from Stokes sedimentation rates in a settling column. The
75 conversion of settling velocity to particle diameter required precise measurements (Komar &
76 Cui, 1984; Flemming, 2007). Sieving and settling columns are time-consuming methods that
77 require a large number of sediment samples.

78 In recent decades, optical methods were developed to determine sediment grain sizes based
79 on the diffraction (or scattering) of a monochromatic laser light (Swithenbank et al., 1976;
80 Gartner et al., 2001). These methods are fast and precise, but are limited by the grain sizes of

81 the collected sediment samples and often underestimate the fine fraction (Beuselinck et al.,
82 1998; Murray, 2002). The laser method is a time-saving and effortless technique, which allows
83 processing of large numbers of samples.

84 Recently, dynamic image analysis which is based on numerous two-dimensional projected
85 images was introduced to measure grain sizes distributions and also determine grain shapes
86 (Tysmans et al., 2006; Sun et al., 2019). The four methods presented above are mainly
87 conducted in the laboratory, and have been used with success to analyze samples collected in
88 rivers, estuaries and along coastlines.

89 In some settings, the collection of bottom sediments can be challenging or dangerous due
90 to muddy substrates, inaccessibility due to tidal creeks and protected areas. This is especially
91 true when sedimentary characteristics need to be studied across a large area. Moreover, a
92 gradually varying topography can present subtle differences in local sedimentary environments;
93 in these cases, methods based on few sediment samples cannot reflect the large-scale
94 depositional variations in a tidal flat. It is therefore necessary to develop new methods that can
95 dynamically detect large-scale sedimentary characteristics and their variations in a tidal flat.
96 These methods can be of help in the restoration of sedimentary environments and related
97 ecosystems.

98 Remote sensing provides new techniques for the analysis of surface sediments. Spectral
99 mixture models were used on Landsat 5 imageries to map the intertidal sediment distribution
100 in the Wash, England (Yates et al, 1993). Airborne Thematic Mapper was also applied to detect
101 the intertidal sediment distribution in the Ribble Estuary, UK (Rainey et al., 2003). This remote
102 sensing technique was less accurate in sandy environments than in muddy ones. The

103 effectiveness of measuring surface grain size of riverine bedforms with airborne images at a
104 resolution of centimeters has been assessed (Carboneau et al., 2004). Although aerial images
105 can provide sediment characteristics with a fine spatial scale, they are costly and only detect
106 the distribution of the median grain size; methods detecting different sediment fractions are not
107 available. The combination of backscattering, roughness and sediment texture, mud-content and
108 median grain size in an intertidal surface in the Netherlands was determined from SAR imagery
109 by van Der Wal et al. (2005). Multi-frequency radar data were also applied for the classification
110 of tidal flat sediments (Gade et al., 2008). Although radar-based detection is not affected by
111 weather conditions, its lower resolution is insufficient to study fine sedimentary characteristics
112 of tidal flats. Hence, unmanned aerial systems, a multispectral camera and four multispectral
113 sensors (covering red, green, red edge and near-infrared bands) were used to explore moisture
114 content and median grain size in three intertidal flats, demonstrating the linkage between
115 sediment composition and spectral characteristics (Fairley et al., 2018). The study of intertidal
116 sediments and related geomorphic processes using remote sensing has received attention in
117 recent years (Choi et al., 2010 & 2011; Tseng et al., 2017; Park, 2019; Kim et al., 2019).
118 However, remote sensing inversion of sediment characteristics is often limited by spatial
119 resolution, atmospheric disturbance, and high cost.

120 To determine the evolution of intertidal landforms, it is crucial to understand the
121 spatiotemporal characteristics of intertidal sedimentary environments at the centimeter scale
122 and their micro-geomorphic processes. To this end, it is urgent to develop a detection
123 technology that is accurate, efficient and less labor intensive.

124 With the development of active and long-range remote sensing technology, laser scanners

125 based on LiDAR (light detection and ranging) have become common. These methods include
126 both terrestrial laser scanning (TLS) and airborne LiDAR scanning (ALS) (Tang et al., 2014;
127 Kashani et al., 2015). TLS rapidly emits anti-interference monochromatic laser beams in
128 succession and obtains high-precision, high-density 3D panoramic information of objects, with
129 advantages of contactless and low risks (Bitelli et al., 2004; Hartzell et al., 2014). Here, a TLS
130 (Riegl VZ-4000) was used to acquire intertidal point data. The instrument provides excellent
131 long-distance measurement capability (up to 4000 m), with unique echo digitization and online
132 waveform processing functions. Therefore, it can acquire long-distance 3D coordinates of
133 intertidal landforms with high resolution and echo information at full waveform. The LiDAR
134 scanner can surmount deficiencies of traditional field measurements in complex terrain
135 providing data with high spatial resolution (Tang et al. 2015).

136 TLS has been widely applied to determine morphological change, vegetation biomass, and
137 biomorphodynamic attributes in coastal and intertidal areas, due to its precision and high spatial
138 resolution (Guarnieri et al., 2009; Owers et al., 2018). Airborne hyperspectral images and TLS
139 data were used to analyze the mineralogical attributes of coastal dunes. Manzo et al. (2015)
140 pointed out that grain size and mineral composition lead to essential differences in the TLS
141 echo. Seasonal trends in the foredune ridges along the North Adriatic Sea coast (Italy) were
142 detected using TLS-derived digital elevation models (Fabbri et al., 2017).

143 The combination of satellite imagery and TLS data has only recently received attention in
144 the study of fluvial and intertidal sediments. TLS could provide analytical information on the
145 threshold for sediment resuspension of bottom sediments (Neverman et al., 2019). Bottom echo
146 residuals from airborne full-waveform bathymetry were isolated, and used to classify sandy and

147 rocky seafloor sediments (Eren et al., 2018). Grain size distributions of river sandbars were
148 accurately estimated using airborne topographic LiDAR in the Rhine River, and compared to
149 distribution derived from photosieving results (Chardon et al., 2020).

150 Therefore, the TLS technology can provide grain size distribution and variations of surface
151 sediments in tidal flats at a very high spatial and temporal resolution. Traditional studies are
152 mostly based on a limited number of sediment samples, and therefore require interpolation to
153 obtain spatial distributions of grain parameters (Wang & Ke, 1997; Yoo et al., 2007; Park et al.,
154 2011; Law et al., 2013). Moreover, historical changes in sediment characteristics were often
155 obtained from sediment cores and sedimentation profiles at low spatial resolution (Baumfalk,
156 1979; Ghinassi, 2007; Yamashita et al., 2009; Watson et al., 2013; Ghinassi et al., 2018a). To
157 determine the temporal evolution of bottom sediments, multispectral images can also be used,
158 but this method is limited by the coarse spatial resolution of the images and the low revisit
159 period (van Der Wal et al., 2005; Fairley et al., 2018). For small-scale areas, the high accuracy
160 and resolution of TLS is ideal for discrimination of sedimentary characteristics. Preliminary
161 studies with this novel method have focused on sediments classification using the physical
162 shape of the grains (Deronde et al., 2008; Engin & Maerz, 2019; Diaz-Gomez et al., 2019;
163 Conesa-García et al., 2020). Burns and Lück-Vogel (2017) explored the relationship between
164 sediment grain size and TLS echo intensity in the laboratory, but they did not apply the method
165 to mixed fractions in the field.

166 Few studies have focused on the use of high-precision TLS to detect sediment grain size
167 and their variations in tidal flats environments. Since the TLS echo information of different
168 sediments is different, the utilization of TLS to reveal grain size characteristics of deltaic tidal

169 flats is theoretically possible. Here, we use TLS to determine the sedimentary characteristics in
170 a specific study area (140m×80m) of the Nanhui tidal flat, which is representative of the
171 wetlands in the Yangtze Delta, China (Dai et al., 2015) (Fig. 1a-1c, Text S1). The Nanhui tidal
172 flat is located in the southern margin of the Yangtze Delta, the open geomorphic system is
173 dominated by strong runoff, tidal dynamics and wave power, and the surface sediments are
174 coarse-grained. The results are compared to surface sediment samples collected in different
175 months. The main objectives of the paper are: (i) quantify the relationship between TLS echo
176 information and sediment grain size; (ii) improve the TLS-based method for sediment inversion
177 in tidal flats; (iii) determine the factors affecting TLS-based results, and in particular the effect
178 of intertidal slopes. Our results introduce a new technique for diagnosing depositional
179 environment in large-scale tidal flats around the world.

180 2. DATA ACQUISITION AND METHODS

181 2.1 Nanhui tidal flat

182 The Nanhui tidal flat is located in the Nanhui Shoal which in the southern margin of the
183 Yangtze Delta, China, the Nanhui Shoal is adjacent to the South Passage and is the fastest
184 growing area in the delta that benefiting from previous abundant sediments transported into the
185 subaqueous delta (Dai et al., 2015; Fan et al., 2017) (Fig. 1b). Around the Nanhui Shoal the tide
186 forcing is semi-diurnal with an average tidal range of 2.7 m, and the mean tidal level in winter
187 is lower than in summer (Wang et al., 2018; Wei et al., 2020). The mainly directions of ebb-
188 flood tidal currents in the Nanhui tidal flat are parallel to local shorelines, and the dominant
189 flood tidal current is directed southeast, the seasonal northeast waves also control the intertidal

190 sedimentary dynamics (Fu et al., 2007; Fan et al., 2017). Over the past two decades, reclamation
191 projects and construction of the Donghai Bridge and the seawall have modified the nearshore
192 hydrodynamics in the Nanhui Shoal (Fig. 1b).

193 Specifically, the length and width of the entire study area are 140 m and 80 m, respectively,
194 the sites of sediment sampling and TLS observations were located seaward of a reclamation
195 seawall that near a breakwater (Fig. 1c). Sporadic patches of salt marshes (*Spartina alterniflora*
196 and *Scirpus mariqueter*) grow on the east side with a canopy height less than 0.5 m, the intertidal
197 elevation decreases seaward. Tidal forcing and wave power in the Nanhui tidal flat are strong,
198 and the area experienced erosion after the construction of the artificial structures (Wang et al.,
199 2018), as a result, sediments coarsened and are mainly sand and silty sand.

200 **2.2 Multi-period sediment samplings**

201 Surface sediments were regularly collected at fixed sites in the Nanhui tidal flat from
202 January 2017 to July 2019 (Fig. 1b-1c, Table 1). The substrate was sampled in 5 cm squares
203 with a thickness that does not exceed 0.5 cm, to minimize impact and ensure the uniformity of
204 collected sediment properties. Each sediment sample was carefully collected using a thin hard
205 plastic sheet and immediately stored it in a sealed and numbered plastic bag. Three different
206 sets of sediment data were collected:

207 (i) Experimental sites: a total of 20 sediment sampling sites were arranged along 5
208 transects on June 22, 2019, and numbered from s01 to s20 (Fig. 1c, Table 1). The transects
209 spanned different sedimentary substrates, and can therefore reveal potential couplings between
210 sediments and corresponding waveform features of TLS echo. Fig. 1c shows transect 1 to
211 transect 5 from west to east, all sampling sites were distributed on a bare flat with good

212 accessibilities. Only the sediment samples s5, s6, s10 and s11 were located on the outside of
213 the breakwater where the bottom is muddy, the other samples were collected between the
214 seawall and the breakwater, where the bottom sediments are coarse. During the collection and
215 observation period, some visible markers (bottles or bamboo poles) were erected behind each
216 sampling site to mark the position and then to extract the corresponding TLS data.

217 (ii) Monthly sampling sites: samples were taken every month at five fixed intertidal sites
218 (m1 to m5), during the period January 2017 to July 2019 (Fig. 1c, Table 1). The position of
219 these five sampling sites was stable relative to the adjacent seawall, breakwaters and vegetation
220 edges. Each monthly sampling was carried out with the same approach of the above experiment.
221 Due to alongshore sediment transport and the sheltering effect of the breakwater, sites m4 and
222 m5 are muddy, while the other 3 sites have a coarser grain size. Only surface sediments were
223 collected each time. We used the monthly sediment data to explore links between grain
224 parameters and TLS echo on a long-time scale. The two sets of data were combined in the final
225 analysis.

226 (iii) Samples for validation: we utilized additional sediment data collected in 8 months (4
227 in winter and 4 in summer), to determine the reliability of the results. The five locations of the
228 validation data (numbered from v1 to v5) were identical to the monthly sampling for
229 consistency, but the sampling dates were different (Fig. 1c, Table 1). Since the tidal forcing in
230 the Nanhui tidal flat is strong, during high tide the currents erased all substrate disturbances
231 caused by sediment sampling.

232 **2.3 Collection of TLS data**

233 Both 3D coordinates and echo information of point cloud data are acquired by full-

234 waveform TLS, including intensity angle of echoes and waveform characteristics (Hakala et al.,
235 2012). Echo intensity is the backscattered laser signal returned by a reflected objective. The
236 signal is recorded as a dimensionless digit; the full-waveform TLS (Riegl VZ-4000) obtains the
237 complete waveform of one echo pulse after reflection from a specific object (Kashani et al.,
238 2015). The echo waveform is affected by the different physical attributes of an object, and many
239 researches have used this information to classify objects (Bitelli et al., 2004; Brodu & Lague,
240 2012; Koenig et al., 2015).

241 During the observation periods, the TLS (Riegl VZ-4000) was fixed on a tripod and placed
242 on the seawall (the black hexagon in Fig. 1c), the working principles of TLS are illustrated in
243 Text S2. Each observation was conducted during the lowest ebb tide, to ensure the least water
244 accumulation in the intertidal flat and thus dry conditions. Measurements were carried out
245 during fair weather to reduce atmospheric disturbances. The vertical and horizontal resolutions
246 of the Riegl VZ-4000 were set approximatively to 0.004° and 0.03°, and the laser pulse
247 frequency remained the same at 150 kHz. From January 2017 to July 2019, a total of 22 TLS
248 datasets were collected (Table 1). The TLS observations were divided into three groups. (i)
249 Experimental observations: point cloud data on June 22, 2019 were used to relate TLS echo
250 waveform (amplitude and width) to sampled sediments; the same data were also used to
251 describe the relationship between echo intensities and waveform amplitudes. (ii) Monthly
252 observations: TLS coordinates and echo intensity of intertidal sediments were obtained in 13
253 monthly observations. The echo intensities were converted into waveform amplitudes based on
254 the above experimental sites, and the relationship between waveform amplitudes and main
255 sediment grain size parameters analyzed. (iii) Observations used for validation: we used TLS

256 data collected in 8 months, four in winter and four in summer, to verify whether the derived
257 relationships are reliable.

258 **2.4 Measurements of grain size in surface sediments**

259 Sediment samples were pre-treated as showed in [Text S3](#). Dynamic image analysis of
260 Camsizer XT (Retsch Technology) was used to obtain the percentage of different grain size
261 fractions for all sediment samples. We used the moment method formulas ([McManus, 1988](#)) to
262 calculate sediment grain size parameters (average grain size, sorting factor, skewness, and
263 kurtosis in [Text S4, Fig. 2](#)):

$$264 \quad X_{average} = \sum_{i=1}^n X_i * f_i / 100 \quad (1)$$

$$265 \quad \delta = \sqrt{\sum_{i=1}^n (X_i - X_{average})^2 * f_i / 100} \quad (2)$$

$$266 \quad Sk = \sqrt[3]{\sum_{i=1}^n (X_i - X_{average})^3 * f_i / 100} \quad (3)$$

$$267 \quad Ku = \sqrt[4]{\sum_{i=1}^n (X_i - X_{average})^4 * f_i / 100} \quad (4)$$

268 where X_i is the median value of a grain size class, f_i is the percentage of this grain size class,
269 $X_{average}$ is average grain size, δ is sorting factor, Sk and Ku are skewness and kurtosis of
270 the distribution frequency curve of different grain size class. The percentage of different grain
271 sizes can be obtained from the measured grain size parameters. The median grain size (D_{50}) was
272 also calculated as the grain size corresponding to 50% of the frequency cumulative curve. Clay
273 ($0.5\text{-}4\mu\text{m}$), silt ($4\text{-}62.5\mu\text{m}$) and sand ($62.5\text{-}500\mu\text{m}$) fractions were quantified based on sediment
274 classification standards developed by the American Geophysical Union. The sediments in
275 intertidal flats were also classified according to the Shepard nomenclature ([Folk & Ward, 1957](#)).
276 Water content was measured in the sediment samples collected on June 22, 2019 in the Nanhui
277 tidal flat ([Text S4](#)). We first weighed each sediment sample three times with a high-precision

278 electronic balance and took the average value as the final wet weight (W_{wet}). We then put all
279 samples into an oven of 65°C for 48 h, and weighed them again to get dry weight (W_{dry}). Water
280 content in 20 sediment samples (SWC) can be calculated with the following formula:

281
$$SWC = \left[\frac{(W_{wet} - W_{dry})}{W_{wet}} \right] * 100\% \quad (5)$$

282 **2.5 Waveform decompositions and TLS amplitudes**

283 Echo intensities (waveform amplitudes) are affected by multiple factors: distance,
284 incidence angle, reflectivity and atmospheric attenuation (Yoon et al., 2008). Therefore, original
285 echo information needs to be corrected before detecting the properties of different sediments.
286 In the current normalized model of echo correction transmission distance and other parameters
287 are averaged (Höfle & Pfeifer, 2007). In this study, the TLS echo waveform of each sediment
288 sample was processed in the following four steps to obtain amplitude and width.

289 First, the location of sampled sediments was extracted from the TLS point cloud. Points
290 within an area of 10 x 10 cm from the collected sediment sample were extracted, and their echo
291 intensity and waveform features analyzed. Coordinates of each point cloud were converted from
292 internal instrument coordinates to World Geodetic System (WGS1984) and the Wusong Datum
293 (reference to theoretical lowest tidal level in the Yangtze Delta) (Fig. 1d, Fig. 2). Second, signal
294 noise was removed from each waveform (Text S5), based on a threshold value. The threshold
295 was determined using the standard deviation of waveform noise (σ_{noise}) after calculating the
296 median absolute deviation, using the formulas (Persson et al., 2005):

297
$$\sigma_{noise} = \alpha * \text{median}(|f_i(t) - m|) \quad (6)$$

298
$$m = \text{median}(f_i(t)) \quad (7)$$

299 where σ_{noise} is waveform noise, α is 1.4826 (consistency factor for similar to normal

300 distribution), $f_i(t)$ is original waveform amplitude. After calculating waveform noise, we
 301 subtract it from the original waveform. Third, the waveform was decomposed. The emitted laser
 302 pulse signal and echo signal are similar to Gaussian distributions, so that waveform data are
 303 superimposed by a series of Gaussian scattering signals. Therefore, a Gaussian model can be
 304 used to describe echo waveform of the surface sediments (Chauve et al., 2008) (Text S5).

$$305 \quad y = \sum_{i=1}^n A_i * \exp \left[-\frac{(x-\mu_i)^2}{2\sigma_i^2} \right] + b \quad (8)$$

306 where A_i is amplitude of the i Gaussian component, μ_i is the position of the peak of the i
 307 Gaussian component (distance), σ_i is standard deviation (width), n is the number of
 308 Gaussian components and b is the background noise. From the model we can obtain
 309 amplitudes, widths and distances of echo waveforms corresponding to all sediment samples.
 310 Fourth, distance and angle were corrected. Waveform amplitudes after the above decomposition
 311 are related to distance and laser incidence angle, so the amplitude needs to be corrected. The
 312 original TLS echo intensity decreases linearly with increasing distance from TLS (Fig. S1),
 313 therefore, we use this linear correction method (attenuation process) to achieve distance
 314 correction for all echo amplitudes, and reference distance (60 m) is the mean between all
 315 sediment sampling sites and TLS. The method of incident angle correction is similar to distance
 316 correction: the distance is assumed to be constant, the corrected echo amplitudes are inversely
 317 proportional to the cosine of the incident angle, the $\cos \theta_{ref}$ is zero (Text S6, Fig. 2).

$$318 \quad A_{c_diatance} = A * (D/D_{ref}) \quad (9)$$

$$319 \quad A_{c_diatance_angle} = A_{c_diatance} * (\cos \theta_{ref} / \cos \theta) \quad (10)$$

320 In addition, we also calculated intertidal slope in different observation months, to analyze
 321 the seasonal relationships between slope and corresponding fitting parameters and correlations.

322 Substrate slope is defined in formulas 11 and 12 for the monthly observation sites m1 and m5:

323
$$Slope = \sin^{-1} \left| \frac{(Z_{m1} - Z_{m5})}{D} \right| \quad (11)$$

324
$$D = \sqrt{(X_{m1} - X_{m5})^2 + (Y_{m1} - Y_{m5})^2 + (Z_{m1} - Z_{m5})^2} \quad (12)$$

325 where (X_{m1}, Y_{m1}, Z_{m1}) and (X_{m5}, Y_{m5}, Z_{m5}) are the 3D coordinates of site m1 and m5,

326 respectively (Text S7).

327 In this study, echo waveform features were obtained only during the experimental
328 observations, and then used to convert corrected echo intensities observed every month to
329 waveform amplitudes of TLS echoes. We extracted the experimental data of the two corrections
330 to clarify the mutual relationships. The results show a very significant linear increasing trend
331 with correlation coefficient of 0.99 (Fig. S2):

332
$$Intensity_c = 0.012 * Amplitude_c - 0.028 \quad (13)$$

333
$$Amplitude_c = 82.228 * Intensity_c + 14.390 \quad (14)$$

334 where $Intensity_c$ and $Amplitude_c$ is the corrected echo intensity and waveform amplitude,
335 respectively.

336 After analyzing the variations in sediment grain size parameters and TLS echo amplitude
337 characteristics of the Nanhui tidal flat, the relationships between the two data was proposed. So
338 that we calculated the sediment average grain sizes in study area in January 2019 from the TLS
339 echo information, to compare the consistency between the measured and TLS-based calculated
340 results. In addition, also calculated the average grain size in June 2019 to compare their spatial
341 patterns and seasonal variation characteristics

342 **3. RESULTS**

343 **3.1 Grain size distributions**

344 Grain size distributions of surface sediments in the Nanhui tidal flat measured by the
345 Camsizer XT show the presence of spatial gradients. Along the first transect (site s01-s06), the
346 distribution gradually changes from bimodal to unimodal moving offshore, with sand fraction
347 declining (Fig. 3a), and average grain size decreasing from 98.28 μm to 29.46 μm (Table 2).
348 Water fraction of the sediments increased seaward from 20.05% to 33.40% as the grain size
349 became smaller (Table 3). Grain size variations were similar along the other transects (transects
350 s07-s11, s12-s14, s15-s17 and s18-s20) (Fig. 3b-3d). Results indicate that overall sediments
351 were coarser with lower water content near the seawall due to wave breaking and absence of
352 marsh vegetation, while sediments were fine in the lower seaward tidal flat with uniform water
353 content (between 17.89%-27.13%) (Table 2-3). Sediments were also finer along the western
354 side, consistent with a higher elevation and the sheltering effect of the breakwater: the average
355 grain size of transect 18-20 was only 66.54% of transect 7-8 (Table 2).

356 According to the Folk's triangle classification, the substrate is sand at sampling site s01
357 (sand fraction 91.01%), and silt at site s04, with a clay fraction of 6.3% (Fig. 3e). Six of the
358 remaining sites were classified as silty sand and twelve as sandy silt, (Fig. 1c, Fig. 3e). Coarse
359 sediments were located near site s07, while shoreward and near the breakwater the sediments
360 were fine (Table 2). The silt fraction increased in summer (July 2019) with respect to winter
361 (January 2019) (Fig. 3f).

362 **3.2 Waveform amplitude of TLS echoes**

363 Elevation was higher near the seawall and gradually decreased seaward, with the largest

364 elevation difference along each transect between 0.53 m and 0.89 m (Fig. 4a). The original
365 waveform amplitudes after the Gaussian decomposition were between 1300 and 1800, except
366 for the lower values of 838 and 1235 at site s11 and s12, respectively. Overall and along each
367 transect the original amplitude is not related to elevation and grain size (Fig. 4a). After distance
368 and angle corrections, the waveform amplitudes displayed an increasing trend moving offshore,
369 except for sites s06 and s11 (Fig. 4a). The percentage difference between the maximum and
370 minimum amplitude for each transect was 129.79%, 175.76%, 162.74%, 60.58% and 52.10%,
371 respectively. In addition, the elevations of the five sediment sampling sites along each transect
372 were inversely related to the waveform amplitudes after correction (Fig. 4a). These results
373 indicate that the lower the elevation, the finer the sediments, and the greater the corrected
374 waveform amplitude of TLS echo (Fig. 4a).

375 The corrected echo intensities of monthly samples also vary in space (Fig. 4b). The
376 maximum intensity differed from the minimum by 125.95%. The elevations of monthly
377 sampling sites are the same as the transects, and the relationships between elevation, sediment
378 grain size and corresponding waveform amplitude of TLS echoes is consistent with the
379 experimental group (Fig. 4).

380 **3.3 Relationship between corrected waveform amplitude of TLS echoes and grain size**

381 The corrected waveform amplitudes of experimental TLS data varied between 650 and
382 2380, while that of monthly TLS data were mainly concentrated between 1030 and 2550 (Fig.
383 5). The sand fraction decreases when the amplitude increases, in accordance with a logarithmic
384 fitting with a significant correlation ($Sand = -55.38 * \ln(Amplitude_C) + 448.78$, $r = 0.68$ and
385 $p < 0.05$) (Fig. 5a). The 65 data points of both experimental and monthly samples were regularly

386 distributed on both sides of the log-fit curve (Fig. 5a). The silt fraction increases with amplitude,
387 following the equation: $Silt = 54.27 * ln(Amplitude_C) - 344.44$ ($r = 0.65$ and $p < 0.05$) (Fig.
388 5b). The clay fraction was very low in all samples (51 sites had less than 5% clay), thus in the
389 plot the points amplitude versus clay fraction are scattered and the logarithmic relationship
390 between the two variables is not significant (Fig. 5c).

391 The average grain size was between 10 and 130 μm for both experimental and monthly
392 samples; and coarser sediments had smaller standard deviation of waveform amplitudes (Fig.
393 6a). The amplitude and average grain sizes are linked with a negative logarithmic equation
394 ($GS_A = -67.12 * ln(Amplitude_C) + 548.96$, $r = 0.68$ and $p < 0.05$), this relationship was
395 confirmed for both experimental and monthly samples (Fig. 6a-6b). The D_{50} ranged between
396 130 and 170 μm , and also presents a negative logarithmic relationship with amplitude ($GS_D =$
397 $-104.8 * ln(Amplitude_C) + 836.23$, $r = 0.67$ and $p < 0.05$) (Fig. 6c). This relationship is valid
398 for both experimental and monthly samples (Fig. 6d).

399 **3.4 Sediment parameters inversion based on TLS method**

400 Based on the above logarithmic relationships, we calculated three sediment fractions,
401 average grain size and D_{50} of each experimental and monthly sediment sample to determine the
402 difference between laboratory measurements and TLS-based values. The clay fraction in the
403 Nanhui tidal flat is low, so it is not considered here. Overall, TLS-based calculated values are
404 consistent with measurements, and the corresponding Root Mean Square Errors (RMSE) of
405 sand fraction, silt fraction, average grain size and D_{50} are 20.09%, 19.28%, 22.68 μm and 34.56
406 μm , respectively (Fig. 7a-7b); the Mean Absolute Deviation (MAD) are 16.24%, 15.87%, 17.89
407 μm and 28.97 μm . Mean values and standard deviations were also calculated for each monthly

408 sample (Fig. 7e-7h). The mean sand fraction derived from the log regression is 36.66% for the
409 five monthly samples, which underestimates by 9.39% the values measured in the lab (40.46%,
410 Table 4). The sampling site closest to the TLS station has the greatest relative deviation between
411 the two values (Table 4; Fig. 7e). The mean silt fraction is overestimated by 5.01% (Table 4).
412 The standard deviation of the measured values at the seaward sampling sites is higher than the
413 TLS-based values (Fig. 7f). Furthermore, the calculated mean values of average grain size and
414 D_{50} are 7.99% and 13.32% lower than the measured ones (Table 4), the relative deviations of
415 the middle sites are small (Fig. 7g-7h). In general, except for the clay fraction that is low and
416 variable, the new method of estimating surface sediment characteristics from TLS waveform
417 amplitudes is reliable. The mean of measured and TLS-based calculated average grain size of
418 five sediment sampling sites along a transect was 58.78 μm and 49.48 μm , respectively, shows
419 a difference of -7.99%. In addition, the mean of the absolute value of the error of average grain
420 size at each site was up to 21.77%, which was relatively high. Moreover, the mean sand and silt
421 fraction at all sampling sites have lower errors of -9.39% and 5.01%, but the mean of all
422 absolute errors was also as high as 27.28% and 21.75%.

423 **4. DISCUSSION**

424 **4.1 Physical meaning of the coefficients in the inversion equations**

425 The sand fraction in the Nanhui tidal flat gradually decreases seaward, while the silt
426 fraction increases. The clay fraction is only around 5%. The grain size increases shoreward and
427 to the East. Areas with low elevation are characterized by fine-grained sediments carried by
428 tidal currents, due to retention effect of the breakwater. These different sedimentary

429 environments are an excellent test for determining the relationships between sediment
430 parameters and TLS waveform amplitudes (Collin et al., 2010; Medjkane et al., 2018). Sand/silt
431 fractions and average/median grain size showed a significant logarithmic correlation with TLS
432 waveform amplitudes. We also found a significant logarithmic relationship between the
433 corrected waveform amplitudes and waveform widths. This relationship can be used for future
434 sediment classifications (Fig. S3).

435 The determined relationships give us the opportunity to explore sedimentological
436 variations in different seasons. To do that, we separately analyzed the logarithmic fitting
437 equations ($y=a*ln(x)+b$) and their coefficients for 15 monthly sampling data (Table S1). In
438 general, the larger the correlation coefficient, the higher is the absolute value of the parameter
439 a , which means that the logarithm curve declines faster, so that the variations in sediment
440 average grain size is greater in winter (Fig. 8a). At the same time, the parameter b increases
441 with an increase in the correlation coefficient, indicating that coarser grain size distributions
442 yield a better fitting (Fig. 8b). The larger the bottom slope, the smaller is the correlation
443 coefficient, indicating that slope steepening due to erosion in summer produces coarser
444 sediment grain size along the transect (Fig. 8c). The relationship between parameters a and b
445 and intertidal slope reflect above variation differences of coefficients a and b (Fig. 8d-8e). In
446 winter, weaker wave forcing and lower mean tidal levels relative to summer reduce the
447 deposition of fine sediments, leading to smaller variations in grain size along transect m1-m5.
448 Therefore, the parameters a and b in the logarithmic fitting equation are related to seasonal
449 hydrodynamic conditions that control the spatial regularity of the sediment characteristics.
450 Despite seasonal variations, sediment parameters and corrected TLS waveform amplitudes

451 maintain significant logarithmic relationships (Fig. 5-6).

452 **4.2 Validation and possible sources of uncertainty**

453 A subset of monthly sediment samples was used to validate the logarithmic relationships

454 for sand and silt fractions, average grain size and D_{50} . The relationships derived from the

455 validation data compare well to the relationships derived from the experimental and monthly

456 data (Fig. 9a-9d), indicating the effectiveness and robustness of the TLS-based method.

457 Moreover, we compare the sediment parameters derived from the logarithmic equations of the

458 validation data with the values measured in the laboratory (Fig. 9e-9h). The RMSEs of sand

459 fraction, silt fraction, average grain size, and D_{50} are 17.17%, 16.68%, 24.86 μm and 33.06 μm

460 (Fig. 9e-9h), which differ from the values of experimental and monthly collected sediments by

461 -14.57%, -12.85%, 9.60% and -4.33%, respectively. The difference in MAEs is even lower: -

462 7.43%, -9.40%, 13.94% and 0.86% respectively (Fig. 9e-9h); the study results and the

463 validation results are therefore consistent.

464 Previous studies have shown that sandy sediments in the Yangtze Delta have a terrestrial

465 origin with terrigenous detrital minerals (mainly quartz and feldspar); the substrate material of

466 the Nanhui tidal flat is consistent with those data (Cao et al., 2018). Sandy substrates of tidal

467 flats are relatively loose with high porosity, and are eroded by waves during flooding (especially

468 in summer). On the other hand, silty/clay sediments are mainly composed of clay minerals (illite,

469 kaolinite and chlorite etc.), which is widely distributed in the Nanhui tidal flat and the Yangtze

470 Delta. Because fine-grained minerals adhere together, the porosity is smaller, and the

471 backscattering of the near-infrared laser stronger (Burton et al., 2011). Sediments distribution

472 in this tidal flat is dominated by intertidal hydrodynamics and disturbances from the breakwater

473 or marsh vegetation (Fig 1c and Fig. 3a-3d). Differences in echo intensity were also used in
474 other studies of sediments identification and classification (Brennan & Webster, 2006; Tulldahl
475 & Wikström, 2012; Fabbri et al., 2017).

476 Microphytobenthos (e.g. cyanobacterial mats or diatom biofilms) can also alter the
477 properties of sediments with their extracellular polymeric substance (EPS) that adheres to
478 sediment surfaces (De Jorge et al., 1995; Méléder et al., 2005; Andersen et al., 2010). EPS
479 thickness is comparable to the diameter of fine sand (Herlory et al., 2004; Stal, 2010), thus
480 affecting the TLS echo intensity. The effect of microphytobenthos requires further detailed
481 investigations. In our study area, the wave action is strong, favoring coarse bottom sediments
482 with low water content (Zhu et al., 2014; Wei et al., 2020). The tidal flat in study area has been
483 eroded by about 80-100 cm since 2016, and the erosional regime has prevented the formation
484 of microphytobenthos in recent years (Fig. S4-S5; Wang et al., 2018). Therefore, the sediments
485 at study sites are coarse-grained sand or sandy silty sand with a tendency to further coarsening
486 (Fig. 3; Wei et al., 2020). van de Koppel et al. (2001) studied the positive feedback between the
487 development processes of benthic diatoms and the erosion of silty sediments in the Molenplaat
488 tidal flat of Westerschelde Estuary, Netherlands, pointed out when the geomorphic change were
489 dominated by erosion under middle-high bed shear stress, the diatom cover were low. Garwood
490 et al. (2015) also indicated mud biofilms will be mainly preserved in fine sediments (clays or
491 very fine silts) in sediments that collected from the intertidal flat of the Fundy Bay, Canada.
492 Moreover, Mariotti and Fagherazzi (2012) proposed a novel biofilm growth model in shallow
493 coastal areas and found that the biofilm mass was affected by strong tidal forcing and wave
494 power, thus the strong hydrodynamics will greatly restrict its growth.

495 Indeed, the existences of microphytobenthos contribute to the biostabilization of tidal flats
496 by increasing the erosion threshold (Wooldridge et al., 2017; Kim et al., 2021). However, the
497 growth and total mass of microphytobenthos in tidal flats with continuous strong erosion are
498 challenged. In fact, the tidal forcing and wave power in the Nanhui tidal flat are strong, there
499 was no obvious large-scale presence of microphytobenthos during all observation periods in the
500 study area. Therefore, although the effect of the presence of microphytobenthos on the efficacy
501 of this TLS-based method was not verified in the current study, we speculate that its impacts on
502 TLS echo intensity is relatively limited in this studied. But we must carefully recognize that,
503 the specificities of current study area (strong hydrodynamics, coarse-grained sediments, erosive
504 geomorphic processes) and relevant results, in other situations, where biota and bedforms are
505 present and the material is muddier, this TLS-based method maybe not work very well. In the
506 future, more detailed experiments and understanding are required to quantify the different
507 influencing factors, so that it can be applied to other types of tidal flats.

508 Intertidal microtopography (e.g. sand ripples) may also affect TLS measurements. Both
509 microphytobenthos and bedforms could in theory selectively change the TLS echo intensity as
510 a function of grain size. Ripples are only present in non-cohesive sediments, increasing the
511 roughness of the substrate. Microphytobenthos are more common in cohesive bottom sets,
512 giving rise to biofilm patches. This notwithstanding, the relationships between TLS echo
513 intensity and grain size parameters are significant at our study site, indicating that we can still
514 derive important information about bottom grain size, and treat microphytobenthos and
515 bedforms as possible sources of error. More experiments are clearly needed to address the effect
516 of these processes on grain size distribution and reduce the uncertainty of the measurements.

517 Other challenges in detecting surface sediments in tidal flats need to be recognized, such
518 as the influence of vegetation and ponds. A dense vegetation canopy can obstruct the laser beam,
519 thereby reducing the number of echoes bouncing from the substrate (Schmid et al., 2011; Ward
520 et al., 2013; Rayner et al., 2021). The laser signal cannot penetrate ponding water. In these cases,
521 manual samplings are still required to compensate for the absence of TLS data. It is also crucial
522 to establish separate relationships for sediment grain parameters in bare flats and sheltered areas,
523 where vegetation and biofilms are more common.

524 **4.3 Factors controlling waveform amplitude of TLS echo**

525 Robust corrections of waveform amplitudes or echo intensities are critical for the proposed
526 TLS method. Multiple potential influencing factors must be considered, which mainly relate to
527 operation stability of the TLS instrumental sensors, atmospheric conditions (transparency,
528 humidity, etc.), and backscattering characteristics of surface sediments (Hopkinson et al., 2004;
529 Yoon et al., 2008; Hancock et al., 2015). Here, the experimental, monthly and validation TLS
530 observations were all carried out in fair weather, with clear sky and low tidal levels. Hence, the
531 intensity attenuation during atmospheric transmission can be ignored. We only corrected for
532 waveform amplitudes and differences in echo intensities caused by distance and beam angle,
533 and analyzed laser scattering characteristics that are directly associated to the physical
534 organization of intertidal sediments.

535 Because the TLS (Riegl VZ-4000) operates in the near-infrared band, water content will
536 absorb part of the laser energy (Ehret et al., 1993; Hartzell et al., 2014). Both Unmanned Aerial
537 Vehicle images and original TLS point cloud data showed that there are some wet areas in the
538 Nanhui intertidal flat (Fig. 1c-1d). And the actual measurements indicate that water content in

539 the samples was about 17.89%-34.51%. Therefore, in this study we chose sampling sites
540 without water accumulation, and also tried to maintain the same position of the TLS tripod on
541 the seawall for all 22 measurements. Further research is needed to explore the attenuation effect
542 of water absorption in the echo waveform amplitude (Nield et al., 2014). In addition, TLS
543 observation is also restricted by tidal hydrodynamic conditions. As tidal flats are generally
544 affected by wetting and drying, the substrate is only exposed during low tide with the least
545 water accumulation (Choi et al., 2010; Fairley et al., 2018). As a result, the time suitable for
546 observation is relatively short. In the future, it will be necessary to explore the practicality of
547 airborne LiDAR due to its large-scale and long-distance detection capabilities (Lang et al., 2009;
548 Richard et al., 2013; Chardon et al., 2020).

549 **4.4 Application of the new TLS method to study intertidal dynamics**

550 With an interpolation of all experimental sediment samples we obtained the spatial
551 distribution of average grain size in the Nanhui tidal flat in June 2019 (Fig. 10a). A similar
552 distribution was obtained from the TLS data using the logarithmic equations here (Fig. 10b).
553 Both distributions indicate that sediments become gradually finer seaward with the presence of
554 longitudinal subzones. Average grain size patterns are similar in the collected sediments and in
555 the TLS-based inversion map, with a corresponding mean grain size of 66.43 μm and 65.07 μm ,
556 respectively (error of 2.05%) (Fig. 10a-10b). The measured and TLS-based average grain size
557 have a significant correlation ($r = 0.88, p < 0.01$) with a Root Mean Square Error of 13.83 μm .
558 The comparison shows that TLS method tends to overestimate the average grain size of
559 sediments in the high value interval (Fig. 10c). Since the measured distribution is derived
560 through interpolation of 20 sampling points in a grid, the maximum deviation between

561 measured and calculated values is at both ends of the transects (Fig. 10c). The sediment map
562 was also derived from TLS data collected in January 2019 (Fig. 10d). The average grain size
563 was 71.46 μm , which means that sediments are coarser in winter. Frequency distributions also
564 indicate that the sand fraction increases and the silt fraction decreases in winter (Fig. 10e).

565 Although the measured and calculated experimental-monthly sediment grain size
566 parameters were relatively scattered (Fig. 5, 6 and 7a-7d), when revealing the spatial
567 distribution pattern of the sediment average grain size in the study area, this TLS-based method
568 shows acceptable reliability (Fig 10a-10c). Indeed, the experimental-monthly sediment
569 sampling sites are limited and spatially dispersed, and some potential factors will affect the
570 correction effectiveness of the TLS echo amplitude/intensity in our results, which is likely
571 responsible for those scattered data points, also need further studies. In the Nanhui tidal flat,
572 the distribution of sediment grain size parameters and their TLS echo intensities are relatively
573 continuous and smooth. The TLS-based calculated average grain size can alleviate the
574 deficiency that the correlation mentioned above needs to be improved to some extent, so as to
575 reveal the spatial distribution characteristics in the Nanhui tidal flat, but it is necessary to further
576 improve the accuracy.

577 The TLS approach provides new opportunities for the determination of sediment
578 characteristics in tidal environment, but there are still some technical limitations (correction
579 algorithms, presence of biota) that need to be improved, especially in specific micro-
580 topographic areas. The new method does not require repetitive sediment samplings in the field
581 and time-consuming analyses in the laboratory (Flemming, 2007; Ahn, 2012; Park, 2019).
582 Furthermore, traditional methods cannot determine variations in sediment characteristics at

583 high spatial resolution because of the limited number of sampling sites.

584 More detailed laboratory experiments are needed to clarify the effects of different mineral
585 components on laser backscatter characteristics. The parameters of the logarithmic fitting
586 curves are related to the seasonal sedimentary dynamics and morphodynamic processes.
587 Moreover, our proposed method can be used to explore relationships between sediment grain
588 size and other geophysical and environmental processes, such as wave shear stresses, elevation,
589 nutrients and soil carbon pools (Rosser et al., 2005; van Leeuwen et al., 2011; Ghinassi et al.,
590 2018b; Brand et al., 2019; Wiggins et al., 2019).

591 5. CONCLUSIONS

592 The sediment characteristics of deltaic tidal flats are affected by complex terrestrial and
593 oceanic hydrodynamics. In this study, a high-precision full-waveform TLS was used to reveal
594 sediment parameters in the Nanhui tidal flat, Yangtze Delta, China. We collected surface
595 sediment samples from the Nanhui tidal flat and compared their grain size distributions to
596 corresponding corrected waveform amplitudes of TLS echo in different hydrometeorological
597 scenarios, for a total of 22 months. The main results and conclusions are as follows:

598 (1) The sediment sand fraction, average grain size and D_{50} decrease seaward, while the
599 corrected waveform amplitude of TLS echo increases. This spatial variation is consistent with
600 a decrease in elevation in the Nanhui tidal flat. (2) Based on the data, logarithmic equations
601 were constructed to retrieve sediment grain size (fractions, average and D_{50}) from detected TLS
602 waveform amplitudes. The mean of measured and TLS-based calculated sediment average grain
603 size of five monthly sites along the sampling transect was 58.78 μm and 49.48 μm , respectively,

604 besides, the mean D_{50} was 67.32 μm and 58.35 μm . Overall, the errors of mean values of
605 sediment grain size parameters along the transect were small, but the mean of the absolute value
606 of the error at each sampling site were relatively high. (3) The parameters of the proposed
607 logarithmic equations are affected by the spatial regularity of the grain size distributions. In
608 winter, the weaker hydrodynamic conditions and the gentle geomorphic slopes result in higher
609 fitting correlations.

610 We must carefully recognize the specificity of current study area, the Nanhui tidal flat,
611 with strong hydrodynamics and coarse-grained sediments. This TLS-based method maybe not
612 work very well in some tidal flat or wetland, where microphytobenthos (e.g. cyanobacterial
613 mats or diatom biofilms) are present and the substrate is muddier or area sheltered by salt marsh
614 vegetation. In future studies, more specific experiments will be conducted to understand the
615 relationship between TLS waveform amplitude and the sediment physical characteristics, to
616 quantify the different influencing factors, so that it can be applied to other types of tidal tidal
617 flats. Grain size distributions obtained from the new TLS method can be used as indicators of
618 sedimentary dynamics, shedding light on environmental processes affecting biological habitats.

619 **ACKNOWLEDGMENTS**

620 This research presented was supported by Key Projects of Intergovernmental Science and
621 Technology Innovation Cooperation of the Ministry of Science and Technology in China (No.
622 2018YFE0109900), the International Science and Technology Cooperation Foundation Projects
623 of Shanghai Science and Technology Commission (No. 19230712400), the ECNU Academic
624 Innovation Promotion Program for Excellent Doctoral Students (No. YBNLTS2019-008) of

625 Fundamental Research Funds for the Central Universities. Sergio Fagherazzi was partly funded
626 by the USA National Science Foundation award 1637630 (PIE LTER) and 1832221 (VCR
627 LTER). We are really grateful to Dr. Ian Kane, Dr. Massimiliano Ghinassi and three anonymous
628 reviewers for their time and constructive comments and suggestions that significantly helped
629 to improve this manuscript.

630 DATA AVAILABILITY STATEMENT

631 The data that support the findings of this study are available from the corresponding author
632 (Prof. Zhijun Dai) upon reasonable requests. Other data elucidating the findings of this study
633 are provided in supplementary information files.

634 SUPPLEMENTARY INFORMATION

635 The Supplementary Information is available free of charge, which consists of Texts S1-S7,
636 Figures S1-S5 and Tables S1.

637 REFERENCES

638 **Ahn, J.H.** (2012) Size distribution and settling velocities of suspended particles in a tidal
639 embayment. *Water Res.*, 46(10), 3219-3228.

640 **Andersen, T.J., Lanuru, M., Van Bernem, C., Pejrup, M. and Riethmueller, R.** (2010)
641 Erodibility of a mixed mudflat dominated by microphytobenthos and *Cerastoderma edule*,
642 East Frisian Wadden Sea, Germany. *Estuar. Coast. Shelf Sci.*, 87(2), 197-206.

643 **Baumfall, Y.A.** (1979) Heterogeneous grain size distribution in tidal flat sediment caused by
644 bioturbation activity of *Arenicola marina* (Polychaeta). *Netherlands J. Sea Res.*, 13(3-4),

645 428-440.

646 **Beck, M., Dellwig, O., Liebezeit, G., Schnetger, B. and Brumsack, H.J.** (2008) Spatial and
647 seasonal variations of sulphate, dissolved organic carbon, and nutrients in deep pore waters
648 of intertidal flat sediments. *Estuar. Coast. Shelf Sci.*, 79(2), 307-316.

649 **Beuselinck, L., Govers, G., Poesen, J., Degraer, G. and Froyen, L.** (1998) Grain-size
650 analysis by laser diffractometry: comparison with the sieve-pipette method. *Catena*, 32(3-
651 4), 193-208.

652 **Bitelli, G., Dubbini, M. and Zanutta, A.** (2004) Terrestrial laser scanning and digital
653 photogrammetry techniques to monitor landslide bodies. *Int. Arch. Photogramm., Remote
654 Sens. and Spat. Inf. Sci.*, 35(B5), 246-251.

655 **Bos, A.R., Bouma, T.J., de Kort, G.L. and van Katwijk, M.M.** (2007) Ecosystem
656 engineering by annual intertidal seagrass beds: sediment accretion and modification.
657 *Estuar. Coast. Shelf Sci.*, 74(1-2), 344-348.

658 **Brand, E., De Sloover, L., De Wulf, A., Montreuil, A.L., Vos, S. and Chen, M.** (2019) Cross-
659 shore suspended sediment transport in relation to topographic changes in the intertidal
660 zone of a macro-tidal beach (Mariakerke, Belgium). *J. Mar. Sci. Eng.*, 7(6), 172.

661 **Brennan, R. and Webster, T.L.** (2006) Object-oriented land cover classification of lidar-
662 derived surfaces. *Can. J. Remote Sens.*, 32(2), 162-172.

663 **Brodu, N. and Lague, D.** (2012) 3D terrestrial lidar data classification of complex natural
664 scenes using a multi-scale dimensionality criterion: Applications in geomorphology.
665 *ISPRS-J. Photogramm. Remote Sens.*, 68, 121-134.

666 **Burns, J. and Lück-Vogel, M.** (2017) Using LiDAR derivatives to estimate sediment grain

667 size on beaches in False Bay. International Symposium for Remote Sensing of the
668 Environment, Tshwane, South Africa, May 8-12, 2017.

669 **Burton, D., Dunlap, D.B., Wood, L.J. and Flaig, P.P.** (2011) Lidar intensity as a remote sensor
670 of rock properties. *J. Sediment. Res.*, 81(5), 339-347.

671 **Cao, C., Cai, F., Zheng, Y.L., Wu, C.Q., Lu, H.Q., Bao, J.J. and Sun, Q.** (2018) Temporal
672 and spatial characteristics of sediment sources on the southern Yangtze Shoal over the
673 Holocene. *Sci. Rep.*, 8(1), 1-12.

674 **Carboneau, P.E., Lane, S.N. and Bergeron, N.E.** (2004) Catchment-scale mapping of
675 surface grain size in gravel bed rivers using airborne digital imagery. *Water Resour. Res.*,
676 40(7), 1-11.

677 **Chardon, V., Schmitt, L., Piégay, H. and Lague, D.** (2020) Use of terrestrial photosieving
678 and airborne topographic LiDAR to assess bed grain size in large rivers: a study on the
679 Rhine River. *Earth Surf. Process. Landf.*, 45(10), 2314-2330.

680 **Chauve, A., Mallet, C., Bretar, F., Durrieu, S., Deseilligny, M.P. and Puech, W.** (2008)
681 Processing full-waveform lidar data: modelling raw signals. In *International archives of
682 photogrammetry, remote sensing and spatial information sciences 2007*, 102-107.

683 **Choi, J.K., Ryu, J.H., Lee, Y.K., Yoo, H.R., Woo, H.J. and Kim, C.H.** (2010) Quantitative
684 estimation of intertidal sediment characteristics using remote sensing and GIS. *Estuar.
685 Coast. Shelf Sci.*, 88(1), 125-134.

686 **Choi, J.K., Eom, J. and Ryu, J.H.** (2011) Spatial relationships between surface sedimentary
687 facies distribution and topography using remotely sensed data: Example from the
688 Ganghwa tidal flat, Korea. *Mar. Geol.*, 280(1-4), 205-211.

689 **Coco, G., Zhou, Z., Van Maanen, B., Olabarrieta, M., Tinoco, R. and Townend, I.** (2013)

690 Morphodynamics of tidal networks: advances and challenges. *Mar. Geol.*, 346, 1-16.

691 **Collin, A., Long, B. and Archambault, P.** (2010) Salt-marsh characterization, zonation

692 assessment and mapping through a dual-wavelength LiDAR. *Remote Sens. Environ.*,

693 114(3), 520-530.

694 **Conesa-García, C., Puig-Mengual, C., Riquelme, A., Tomás, R., Martínez-Capel, F.,**

695 **García-Lorenzo, R., Pastor, J.L., Pérez-Cutillas, P. and Cano González, M.** (2020)

696 Combining SfM photogrammetry and terrestrial laser scanning to assess event-scale

697 sediment budgets along a gravel-bed ephemeral stream. *Remote Sens.*, 12(21), 3624.

698 **Dai, Z.J., Liu, J.T. and Wen, W.** (2015) Morphological evolution of the south passage in the

699 Changjiang (Yangtze River) estuary, China. *Quat. Int.*, 380, 314-326.

700 **Diaz-Gomez, R., Pasternack, G.B., Guillon, H., Byrne, C.F. and Sandoval Solis, S.** (2019)

701 Can airborne lidar point clouds quantify grain size contributions to ground sediment facies?

702 AGU Fall Meeting Abstracts, EP11C-2137.

703 **De Jorge, V.N. and van Beusekom, J.E.E.** (1995) Wind- and tide-induced resuspension of

704 sediment and microphytobenthos from tidal flats in the Ems estuary. *Limnol. Oceanogr.*,

705 40(4), 776-778.

706 **Deronde, B., Houthuys, R., Henriet, J.P. and Lancker, V.V.** (2008) Monitoring of the

707 sediment dynamics along a sandy shoreline by means of airborne hyperspectral remote

708 sensing and LIDAR: a case study in Belgium. *Earth Surf. Processes Landforms*, 33(2),

709 280-294.

710 **Donnelly, J.P. and Bertness, M.D.** (2001) Rapid shoreward encroachment of salt marsh

711 cordgrass in response to accelerated sea-level rise. *Annu. Rev. Earth Planet. Sci.*, 98(25),
712 14218-14223.

713 **Ehret, G., Kiemle, C., Renger, W. and Simmet, G.** (1993) Airborne remote sensing of
714 tropospheric water vapor with a near-infrared differential absorption lidar system. *Appl.*
715 *optics*, 32(24), 4534-4551.

716 **Engin, I.C. and Maerz, N.H.** (2019) Size distribution analysis of aggregates using LiDAR
717 scan data and an alternate algorithm. *Measurement*, 143, 136-143.

718 **Eren, F., Pe'eri, S., Rzhanov, Y. and Ward, L.** (2018) Bottom characterization by using
719 airborne lidar bathymetry (ALB) waveform features obtained from bottom return residual
720 analysis. *Remote Sens. Environ.*, 206, 260-274.

721 **Evans, G.** (1965) Intertidal flat sediments and their environments of deposition in the Wash. *Q.*
722 *J. Geol. Soc. London*, 121(1-4), 209-240.

723 **Fabbri, S., Giambastiani, B.M., Sistilli, F., Scarelli, F. and Gabbianelli, G.** (2017)
724 Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser
725 Scanning (TLS) technology. *Geomorphology*, 295, 436-451.

726 **Fagherazzi, S., Kirwan, M.L., Mudd, S.M., Guntenspergen, G.R., Temmerman, S.,**
727 **D'Alpaos, A., Van De Koppel, J., Rybczyk, J.M., Reyes, E., Craft, C. and Clough, J.**
728 (2012) Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic
729 factors. *Rev. Geophys.*, 50(1), 1-28.

730 **Fu, G., Li, J., Ying, M. and Yu, Z.** (2007) Analysis on Recent Topography evolution of
731 Nanhuizui tidal flat in Yangtze Estuary. *Mar. Sci. Bull.*, 26(2), 105-112.

732 **Fan, D.D., Wu, Y.J., Zhang, Y., Burr, G., Huo, M. and Li, J.** (2017) South Flank of the

733 Yangtze Delta: Past, present, and future. *Mar. Geol.*, 392, 78-93.

734 **Fairley, I., Mendzil, A., Togneri, M. and Reeve, D.E.** (2018) The Use of Unmanned Aerial
735 Systems to Map Intertidal Sediment. *Remote Sens.*, 10(12), 1918.

736 **Flemming, B.W.** (2007) The influence of grain-size analysis methods and sediment mixing on
737 curve shapes and textural parameters: implications for sediment trend analysis. *Sediment.*
738 *Geol.*, 202(3), 425-435.

739 **Folk, R.L. and Ward, W.C.** (1957) A study in the significance of grain size parameters. *J.*
740 *Sediment. Res.*, 27(1), 3-26.

741 **FitzGerald, D.M., Fenster, M.S., Argow, B.A. and Buynevich, I.V.** (2008) Coastal impacts
742 due to sea-level rise. *Annu. Rev. Earth Planet. Sci.*, 36(1), 601-647.

743 **Friedrichs, C.T. and Perry, J.E.** (2001) Tidal salt marsh morphodynamics: a synthesis. *J.*
744 *Coast. Res.*, 7-37.

745 **Gade, M., Alpers, W., Melsheimer, C. and Tanck, G.** (2008) Classification of sediments on
746 exposed tidal flats in the German Bight using multi-frequency radar data. *Remote Sens.*
747 *Environ.*, 112(4), 1603-1613.

748 **Gartner, J.W., Cheng, R.T., Wang, P.F. and Richter, K.** (2001) Laboratory and field
749 evaluations of the LISST-100 instrument for suspended particle size determinations. *Mar.*
750 *Geol.*, 175(1-4), 199-219.

751 **Garwood, J.C., Hill, P.S., MacIntyre, H.L. and Law, B. A.** (2015). Grain sizes retained by
752 diatom biofilms during erosion on tidal flats linked to bed sediment texture. *Cont. Shelf*
753 *Res.*, 104, 37-44.

754 **Ghinassi, M.** (2007) The effects of differential subsidence and coastal topography on high-

755 order transgressive-regressive cycles: Pliocene nearshore deposits of the Val d'Orcia Basin,
756 Northern Apennines, Italy. *Sediment. Geol.*, 202(4), 677-701.

757 **Ghinassi, M., Brivio, L., D'Alpaos, A., Finotello, A., Carniello, L., Marani, M. and Cantelli,**
758 **A.** (2018a) Morphodynamic evolution and sedimentology of a microtidal meander bend
759 of the Venice Lagoon (Italy). *Mar. Pet. Geol.*, 96, 391-404.

760 **Ghinassi, M., D'alpaos, A., Gasparotto, A., Carniello, L., Brivio, L., Finotello, A., Roner,**
761 **M., Franceschinis, E., Realdon, N., Howes, N. and Cantelli, A.** (2018b).
762 Morphodynamic evolution and stratal architecture of translating tidal point bars:
763 Inferences from the northern Venice Lagoon (Italy). *Sedimentology*, 65(4), 1354-1377.

764 **Guarnieri, A., Vettore, A., Pirotti, F., Menenti, M. and Marani, M.** (2009) Retrieval of
765 small-relief marsh morphology from Terrestrial Laser Scanner, optimal spatial filtering,
766 and laser return intensity. *Geomorphology*, 113(1-2), 12-20.

767 **Hancock, S., Armston, J., Li, Z., Gaulton, R., Lewis, P., Disney, M., Danson, F.M., Strahler,**
768 **A., Schaaf, C., Anderson, K. and Gaston, K.J.** (2015) Waveform lidar over vegetation:
769 An evaluation of inversion methods for estimating return energy. *Remote Sens. Environ.*
770 164, 208-224.

771 **Hakala, T., Suomalainen, J., Kaasalainen, S. and Chen, Y.W.** (2012) Full waveform
772 hyperspectral LiDAR for terrestrial laser scanning. *Opt. Express*, 20(7), 7119-7127.

773 **Hartzell, P., Glennie, C., Biber, K. and Khan, S.** (2014) Application of multispectral LiDAR
774 to automated virtual outcrop geology. *ISPRS-J. Photogramm. Remote Sens.*, 88, 147-155.

775 **Herlory, O., Guarini, J.M., Richard, P. and Blanchard, G.F.** (2004) Microstructure of
776 microphytobenthic biofilm and its spatio-temporal dynamics in an intertidal mudflat

777 (Aiguillon Bay, France). Mar. Ecol. Prog. Ser., 282, 33-44.

778 **Herman, P.M., Middelburg, J.J. and Heip, C.H.** (2001) Benthic community structure and
779 sediment processes on an intertidal flat: results from the ECOFLAT project. Cont. Shelf
780 Res., 21(18-19), 2055-2071.

781 **Höfle, B. and Pfeifer, N.** (2007) Correction of laser scanning intensity data: Data and model-
782 driven approaches. ISPRS-J. Photogramm. Remote Sens., 62(6), 415-433.

783 **Hopkinson, C., Chasmer, L., Young-Pow, C. and Treitz, P.** (2004) Assessing forest metrics
784 with a ground-based scanning lidar. Can. J. For. Res., 34(3), 573-583.

785 **Jiang, W., Li, J., Wang, W., Xie, Z. and Mai, S.** (2005) Assessment of wetland ecosystem
786 health based on RS and GIS in Liaohe River Delta. In Proceedings. 2005 IEEE
787 International Geoscience and Remote Sensing Symposium, 2384-2386.

788 **Kane, I.A., McCaffrey, W.D. and Peakall, J.** (2008) Controls on sinuosity evolution within
789 submarine channels. Geology, 36(4), 287-290.

790 **Kane, I.A. and Pontén, A.S.** (2012) Submarine transitional flow deposits in the Paleogene
791 Gulf of Mexico. Geology, 40(12), 1119-1122.

792 **Kashani, A.G., Olsen, M.J., Parrish, C.E. and Wilson, N.** (2015) A review of LiDAR
793 radiometric processing: From ad hoc intensity correction to rigorous radiometric
794 calibration. Sensors, 15(11), 28099-28128.

795 **Kim, B., Lee, J., Noh, J., Bae, H., Lee, C., Ha, H.J., Hwang, K, Kim, D.U., Kwonc, B.O.,**
796 **Ha, H.K., Pierred, G., Delattred, C., Michaud, P. and Khim, J.S.** (2021).
797 Spatiotemporal variation of extracellular polymeric substances (EPS) associated with the
798 microphytobenthos of tidal flats in the Yellow Sea. Mar. Pollut. Bull., 171, 112780.

799 **Kim, K.L., Kim, B.J., Lee, YK. and Ryu, J.H.** (2019) Generation of a large-scale surface
800 sediment classification map using unmanned aerial vehicle (UAV) data: A case study at
801 the Hwang-do tidal flat, Korea. *Remote Sensing*, 11(3), 229.

802 **Komar, P.D. and Cui, B.** (1984) The analysis of grain-size measurements by sieving and
803 settling-tube techniques. *J. Sediment. Res.*, 54(2), 603-614.

804 **Konert, M. and Vandenberghe, J.E.F.** (1997) Comparison of laser grain size analysis with
805 pipette and sieve analysis: a solution for the underestimation of the clay fraction.
806 *Sedimentology*, 44(3), 523-535.

807 **Koenig, K., Höfle, B., Hämerle, M., Jarmer, T., Siegmann, B. and Lilenthal, H.** (2015)
808 Comparative classification analysis of post-harvest growth detection from terrestrial
809 LiDAR point clouds in precision agriculture. *ISPRS-J. Photogramm. Remote Sens.*, 104,
810 112-125.

811 **Lang, M.W. and McCarty, G.W.** (2009) Lidar intensity for improved detection of inundation
812 below the forest canopy. *Wetlands*, 29(4), 1166-1178.

813 **Law, B.A., Milligan, T.G., Hill, P.S., Newgard, J., Wheatcroft, R.A. and Wiberg, P.L.** (2013)
814 Flocculation on a muddy intertidal flat in Willapa Bay, Washington, Part I: A regional
815 survey of the grain size of surficial sediments. *Cont. Shelf Res.*, 60, 136-S144.

816 **Maan, D.C., van Prooijen, B.C., Wang, Z.B. and De Vriend, H.J.** (2015) Do intertidal flats
817 ever reach equilibrium? *J. Geophys. Res.-Earth Surf.*, 120(11), 2406-2436.

818 **Manzo, C., Valentini, E., Taramelli, A., Filippioni, F. and Disperati, L.** (2015) Spectral
819 characterization of coastal sediments using field spectral libraries, airborne hyperspectral
820 images and topographic LiDAR data (FHyL). *Int. J. Appl. Earth Obs. Geoinf.*, 36, 54-68.

821 **Mariotti, G. and Fagherazzi, S.** (2012). Modeling the effect of tides and waves on benthic
822 biofilms. *J. Geophys. Res.: Biogeosci.*, 117(G4).

823 **McManus, J.** Grain size determination and interpretation. In: Tucker, M. (Ed.) *Techniques in*
824 *Sedimentology*, Blackwell, Oxford, 63-85.

825 **Medjkane, M., Maquaire, O., Costa, S., Roulland, T., Letortu, P., Fauchard, C. and**
826 **Davidson, R.** (2018) High-resolution monitoring of complex coastal morphology changes:
827 cross-efficiency of SfM and TLS-based survey (Vaches-Noires cliffs, Normandy, France).
828 *Landslides*, 15(6), 1097-1108.

829 **Méléder, V., Barillé, L., Rincé, Y., Morançais, M., Rosa, P. and Gaudin, P.** (2005) Spatio-
830 temporal changes in microphytobenthos structure analysed by pigment composition in a
831 macrotidal flat (Bourgneuf Bay, France). *Mar. Ecol. Prog. Ser.*, 297, 83-99.

832 **Munroe, D. and McKinley, R.S.** (2007) Commercial Manila clam (*Tapes philippinarum*)
833 culture in British Columbia, Canada: the effects of predator netting on intertidal sediment
834 characteristics. *Estuar. Coast. Shelf Sci.*, 72(1-2), 319-328.

835 **Murray, M.R.** (2002) Is laser particle size determination possible for carbonate-rich lake
836 sediments? *J. Paleolimn.*, 27(2), 173-183.

837 **Neverman, A.J., Fuller, I.C., Procter, J.N. and Death, R.G.** (2019) Terrestrial laser scanning
838 and structure-from-motion photogrammetry concordance analysis for describing the
839 surface layer of gravel beds. *Prog. Phys. Geogr.*, 43(2), 260-281.

840 **Nield, J.M., King, J. and Jacobs, B.** (2014) Detecting surface moisture in aeolian
841 environments using terrestrial laser scanning. *Aeolian Res.*, 12, 9-17.

842 **Owers, C.J., Rogers, K. and Woodroffe, C.D.** (2018) Terrestrial laser scanning to quantify

843 above-ground biomass of structurally complex coastal wetland vegetation. *Estuar. Coast.*
844 *Shelf Sci.*, 204, 164-176.

845 **Park, C.S. and Hwang, E.K.** (2011) An investigation of the relationship between sediment
846 particles size and the development of green algal mats (*Ulva prolifera*) on the intertidal
847 flats of Muan, Korea. *J. Appl. Phycol.*, 23(3), 515-522.

848 **Park, N.W.** (2019) Geostatistical integration of field measurements and multi-sensor remote
849 sensing images for spatial prediction of grain size of intertidal surface sediments. *J.*
850 *Coastal Res.*, 90(SI), 190-196.

851 **Persson, Å., Söderman, U., Töpel, J. and Ahlberg, S.** (2005) Visualization and analysis of
852 full-waveform airborne laser scanner data. *International Archives of Photogrammetry,*
853 *Remote Sensing and Spatial Information Sciences*, 36(3/W19), 103-108.

854 **Rainey, M.P., Tyler, A.N., Gilvear, D.J., Bryant, R.G. and McDonald, P.** (2003) Mapping
855 intertidal estuarine sediment grain size distributions through airborne remote sensing.
856 *Remote Sens. Environ.*, 86(4), 480-490.

857 **Rai, A.K. and Kumar, A.** (2019) Determination of the particle load based on detailed
858 suspended sediment measurements at a hydropower plant. *Int. J. Sediment Res.*, 34(5),
859 409-421.

860 **Rayner, D., Glamore, W., Grandquist, L., Ruprecht, J., Waddington, K. and Khojasteh,**
861 **D.** (2021) Intertidal wetland vegetation dynamics under rising sea levels. *Sci. Total*
862 *Environ.*, 766, 144237.

863 **Rosser, N.J., Petley, D.N., Lim, M., Dunning, S.A. and Allison, R. J.** (2005) Terrestrial laser
864 scanning for monitoring the process of hard rock coastal cliff erosion. *Q. J. Eng. Geol.*

865 Hydrogeol., 38(4), 363-375.

866 **Richard Allen, T., Wang, Y. and Gore, B.** (2013) Coastal wetland mapping combining multi-
867 date SAR and LiDAR. Geocarto Int., 28(7), 616-631.

868 **Schmid, K.A., Hadley, B.C. and Wijekoon, N.** (2011) Vertical accuracy and use of
869 topographic LIDAR data in coastal marshes. J. Coastal Res., 27(6A), 116-132.

870 **Short, A.D.** (1991) Macro-meso tidal beach morphodynamics: an overview. J. Coast. Res., 417-
871 436.

872 **Stal, L.J.** (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment
873 stabilization. Ecol. Eng., 36(2), 236-245.

874 **Sun, Y.M., Cai, Z.Q. and Fu, J.** (2019) Particle morphomics by high-throughput dynamic
875 image analysis. Sci. Rep., 9(1), 1-11.

876 **Swales, A., MacDonald, I.T. and Green, M.O.** (2004) Influence of wave and sediment
877 dynamics on cordgrass (*Spartina anglica*) growth and sediment accumulation on an
878 exposed intertidal flat. Estuaries, 27(2), 225-243.

879 **Swithenbank, J., Beer, J. M., Taylor, D., Abbot, D. and McCreath, G.C.** (1976) A laser
880 diagnostic technique for the measurement of droplet and particle size distribution. Progr.
881 of Astronaut. and Aeronaut., 53, 421-447.

882 **Tang, Z.H., Gu, Y., Dai, Z.J., Li, Y., LaGrange, T., Bishop, A. and Drahota, J.** (2015)
883 Examining playa wetland inundation conditions for National Wetland Inventory, Soil
884 Survey Geographic database, and LiDAR data. Wetlands, 35(4), 641-654.

885 **Tang, Z.H., Li, R.P., Li, X., Jiang, W.G. and Hirsh, A.** (2014) Capturing LiDAR-Derived
886 Hydrologic Spatial Parameters to Evaluate Playa Wetlands. J. Am. Water Resour. Assoc.,

887 50(1), 234-245.

888 **Tseng, K.H., Kuo, C.Y., Lin, T.H., Huang, Z.C., Lin, Y.C., Liao, W.H. and Chen, C.F. (2017)**

889 Reconstruction of time-varying tidal flat topography using optical remote sensing

890 imageries. *ISPRS-J. Photogramm. Remote Sens.*, 131, 92-103.

891 **Tulldahl, H.M. and Wikström, S.A. (2012)** Classification of aquatic macrovegetation and

892 substrates with airborne lidar. *Remote Sens. Environ.*, 121, 347-357.

893 **Tysmans, D., Claeys, P., Deriemaeker, L., Maes, D., Finsy, R. and Van Molle, M. (2006)**

894 Size and shape analysis of sedimentary grains by automated dynamic image analysis. Part.

895 *Part. Syst. Charact.*, 23(5), 381-387.

896 **van de Koppel, J., Herman, P.M., Thoolen, P. and Heip, C. H. (2001)**. Do alternate stable

897 states occur in natural ecosystems? Evidence from a tidal flat. *Ecology*, 82(12), 3449-3461.

898 **van Der Wal, D., Herman, P.M. and Wielemaker-van Den Dool, A. (2005)** Characterisation

899 of surface roughness and sediment texture of intertidal flats using ERS SAR imagery.

900 *Remote Sens. Environ.*, 98(1), 96-109.

901 **van Leeuwen, B., Augustijn, D.C., Van Wesenbeeck, B.K., Hulscher, S.J. and De Vries,**

902 **M.B. (2010)** Modeling the influence of a young mussel bed on fine sediment dynamics on

903 an intertidal flat in the Wadden Sea. *Ecol. Eng.*, 36(2), 145-153.

904 **van Leeuwen, M., Hilker, T., Coops, N.C., Frazer, G., Wulder, M.A., Newnham, G.J. and**

905 **Culvenor, D.S. (2011)** Assessment of standing wood and fiber quality using ground and

906 airborne laser scanning: a review. *For. Ecol. Manage.*, 261(9), 1467-1478.

907 **Wang, J., Dai, Z.J., Wei, W., Ge, Z.P., Pang, W.H., Ma, B.B., Mei, X.F. and Yu, Y.W. (2018)**

908 LiDAR-based recent morphodynamic study of south Nanhui tidal flat, Changjiang Estuary.

909 Oceanogr. Limnol., 49 (4), 754-768. (in Chinese with English abstract)

910 **Wang, J., Dai, Z.J., Mei, X.F. and Fagherazzi, S.** (2020). Tropical cyclones significantly
911 alleviate mega-deltaic erosion induced by high riverine flow. *Geophysical Research
912 Letters*, 47(19), e2020GL089065.

913 **Wang, X. and Ke, X.** (1997) Grain size characteristics of the extant tidal flat sediments along
914 the Jiangsu coast, China. *Sediment. Geol.*, 112(1-2), 105-122.

915 **Ward, R.D., Burnside, N.G., Joyce, C.B. and Sepp, K.** (2013) The use of medium point
916 density LiDAR elevation data to determine plant community types in Baltic coastal
917 wetlands. *Ecol. Indic.*, 33, 96-104.

918 **Watson, E. B., Pasternack, G. B., Gray, A. B., Goñi, M. and Woolfolk, A. M.** (2013) Particle
919 size characterization of historic sediment deposition from a closed estuarine lagoon,
920 Central California. *Estuar. Coast. Shelf Sci.*, 126, 23-33.

921 **Wei, W., Dai, Z.J., Mei, X.F., Gao, S. and Liu, J.P.** (2019). Multi-decadal morpho-sedimentary
922 dynamics of the largest Changjiang estuarine marginal shoal: Causes and implications.
923 *Land Degrad. Dev.*, 30(17), 2048-2063.

924 **Wei, W., Dai, Z.J., Pang, W.H., Wang, J. and Gao, S.** (2020) Sedimentary zonation shift of
925 tidal flats in a meso-tidal estuary. *Sediment. Geol.*, 407, 105749.

926 **Wiggins, M., Scott, T., Masselink, G., Russell, P. and McCarroll, R.J.** (2019) Coastal
927 embayment rotation: Response to extreme events and climate control, using full
928 embayment surveys. *Geomorphology*, 327, 385-403.

929 **Wooldridge, L.J., Worden, R.H., Griffiths, J., Utley, J.E. and Thompson, A.** (2018). The
930 origin of clay-coated sand grains and sediment heterogeneity in tidal flats. *Sediment. Geol.*,

931 373, 191-209.

932 **Yamashita, S., Nakajo, T., Naruse, H. and Sato, T.** (2009) The three-dimensional distribution
933 of sedimentary facies and characteristics of sediment grain size distribution in a sandy tidal
934 flat along the Kushida River estuary, Ise Bay, central Japan. *Sediment. Geol.*, 215(1-4),
935 70-82.

936 **Yates, M.G., Jones, A.R., McGrorty, S. and Goss-Custard, J.D.** (1993) The use of satellite
937 imagery to determine the distribution of intertidal surface sediments of the Wash, England.
938 *Estuar. Coast. Shelf Sci.*, 36(4), 333-344.

939 **Yoon, J.S., Shin, J.I. and Lee, K.S.** (2008) Land cover characteristics of airborne LiDAR
940 intensity data: A case study. *IEEE Geosci. Remote Sens. Lett.*, 5(4), 801-805.

941 **Yoo, J.W., Hwang, I.S. and Hong, J.S.** (2007) Inference models for tidal flat elevation and
942 sediment grain size: a preliminary approach on tidal flat microbenthic community. *Ocean
943 Sci. J.*, 42(2), 69-79.

944 **Zhang, C.H., Wang, L.J., Li, G.S., Dong, S.S., Yang, J.R. and Wang, X.L.** (2002) Grain size
945 effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay,
946 China. *Appl. Geochem.*, 17(1), 59-68.

947 **Zhu, Q., Yang, S.L. and Ma, Y.X.** (2014) Intra-tidal sedimentary processes associated with
948 combined wave-current action on an exposed, erosional mudflat, southeastern Yangtze
949 River Delta, China. *Mar. Geol.*, 347, 95-106.

950

951 **Figure captions**

952 **Fig. 1.** Study area. (a) Location of the Yangtze River in Asia. (b) Three-order bifurcated
953 distributaries of the Yangtze Estuary. The Nanhui tidal flat studied here is located on the
954 southern marginal tidal flat showed in the red rectangle. Artificial reclamation projects
955 (blue dashed curve) and Donghai Bridge near the Nanhui tidal flat are also indicated. (c)
956 Observation station of the Terrestrial Laser Scanner (TLS, Riegl VZ-4000) on the
957 seawall, and the distribution of surface sediment sampling sites. The 20 magenta hollow
958 squares and 5 white dotted lines indicate the transects of the experimental sampling sites,
959 and 5 blue solid squares (m1/v1 to m5/v5) indicate the monthly and validation sampling
960 sites (Table 1). (d) Original intensity of TLS echo, a rectangular area was set to study
961 the relationship between sediment grain size calculated with TLS echo and measured in
962 the laboratory.

963 **Fig. 2.** Flow charts for data processing and analysis. Mainly data processing includes three parts:
964 sediment grain size measurements, corrections of waveform amplitude of TLS echoes
965 and multi-parameter function relationship determinations. Finally, discuss the
966 verifications of those constructed relationships and analyze the potential influencing
967 factors.

968 **Fig. 3.** Frequency distribution of sediment grain size (0-300 μm) of the 20 experimental samples
969 collected on Jun. 22, 2019, the clay fraction of all sediments was low. (a) site: s01-s06;
970 (b) site: s07-s11; (c) site: s12-s17 and (d) site: s18-s20. (e) Folk's triangle classification
971 of experimental sediments, and (f) nomenclature of sediments collected on Jan. 23, 2019
972 (winter, green asterisks) and on Jul. 19, 2019 (summer, blue asterisks), respectively.

973 **Fig. 4.** (a) Original and corrected waveform amplitudes of TLS echo and corresponding
974 elevation at each experimental sediment sampling site, 5 transects were set in Nanhui
975 tidal flat and shown in Fig. 1c. (b) Original and corrected TLS echo intensity and
976 corrected waveform amplitude of each monthly sediment sampling site.

977 **Fig. 5.** Relationships between the corrected waveform amplitudes of TLS echo and three
978 sediment fractions, (a) sand fraction, (b) silt fraction and (c) clay fraction. The
979 logarithmic fitting curves were calculated based on all sediment data that collected in
980 the experimental and monthly sites, and the 95% confidence intervals are also indicated.

981 **Fig. 6.** Fig. 6. Relationships between the corrected waveform amplitudes of TLS echo and the
982 (a) sediment average grain size and (b) sediment D50. The different logarithmic fitting
983 curves and related confidence intervals for experiment and monthly sediments,
984 respectively, are shown in (c) for sediment average grain size and (d) for sediment D50.

985 **Fig. 7.** Comparison of indoor measured and TLS-based calculated sediment parameters (sand
986 fraction, silt fraction, average grain size and D50), calculated results were based on
987 constructed log-fitting equations between the corrected waveform amplitudes of TLS
988 echo and the sediment parameters. (a-d) All experimental and monthly sediment
989 samples; (e-f) at five monthly sampling sites, standard deviations were also indicated.

990 **Fig. 8.** A logarithm fitting equation $y=a*ln(x)+b$ was used to determine relationship the
991 between corrected waveform amplitude and the sediment average grain size, specific
992 results were shown in Table S1. (a-b) Relationship between correlation coefficient (r)
993 and parameters a and b of the logarithm fitting equation. (c-e) Relationship between
994 intertidal slope and correlation coefficient (r), parameter a and parameter b , respectively.

995 **Fig. 9.** (a-d) Logarithmic fittings of validations between the corrected waveform amplitudes of
996 TLS echo and different sediment fraction and grain sizes, the data were collected
997 independently of experimental and monthly samples, and then compared with the study
998 results. (e-f) Comparison of measured and TLS-based calculated sediment parameters
999 (sand fraction, silt fraction, average grain size and D_{50}), calculated results were based
1000 on the above constructed log-fitting equations of study results.

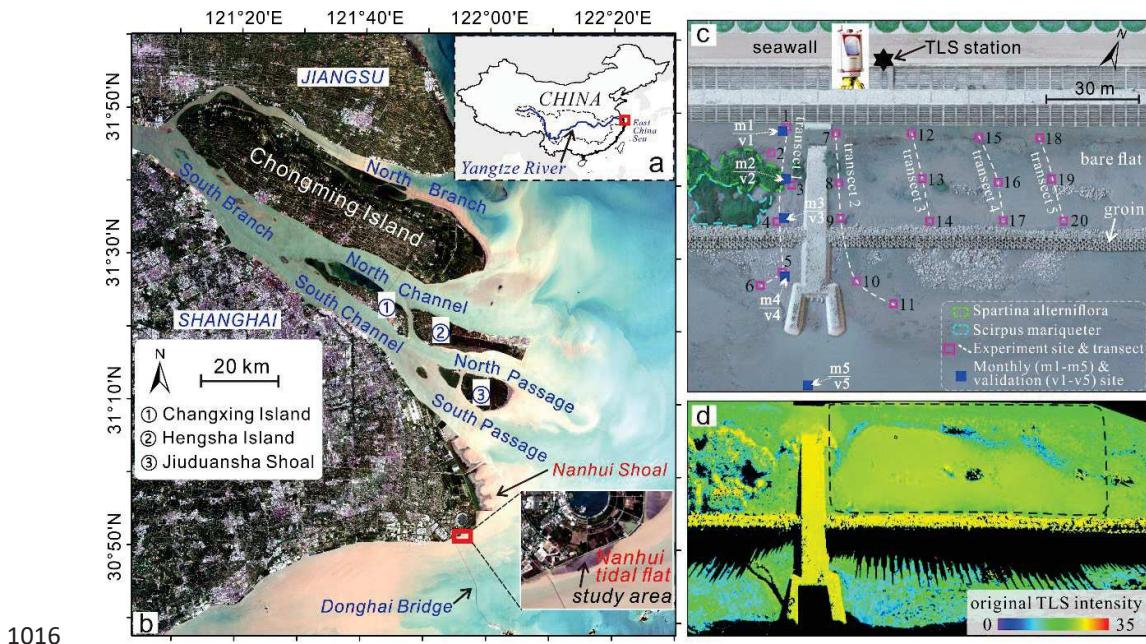
1001 **Fig. 10.** (a-b) The spatial distribution of sediment average grain size in June 2019, that were
1002 derived from indoor measured and TLS-based calculated result, respectively, then a
1003 total of 550 equally spaced points are generated to analyze the difference between the
1004 two. (c) The relationship between measured and TLS-based calculated average grain
1005 sizes. (d) TLS-based calculated average grain sizes in January 2019 and (e) frequency
1006 distribution of TLS-based results in January and June 2019.

1007

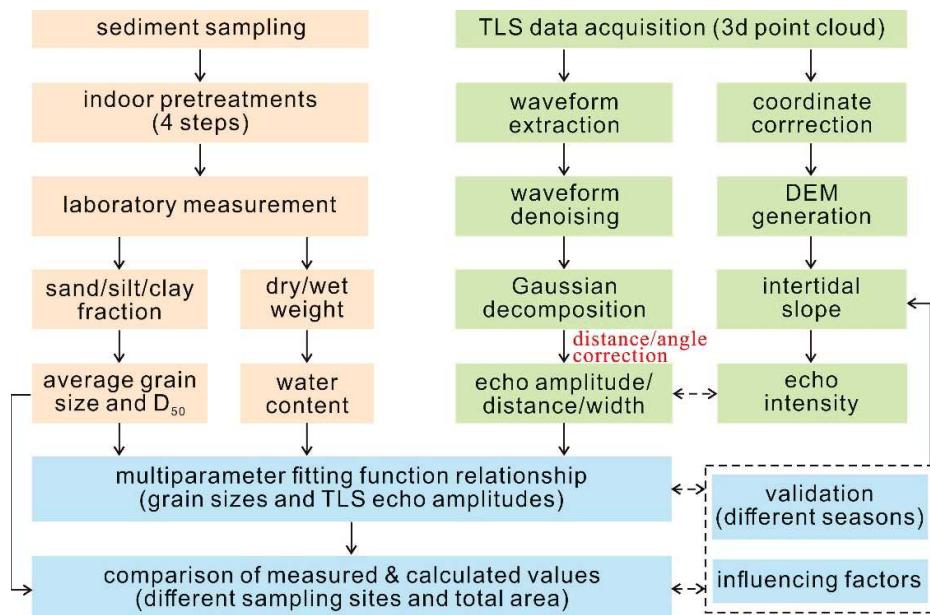
1008 **Table captions**

1009 **Table 1.** Dates of sediment sampling and TLS observation of different data sets.

1010 **Table 2.** Multi-grain size parameters of intertidal surface sediment of the experimental set.

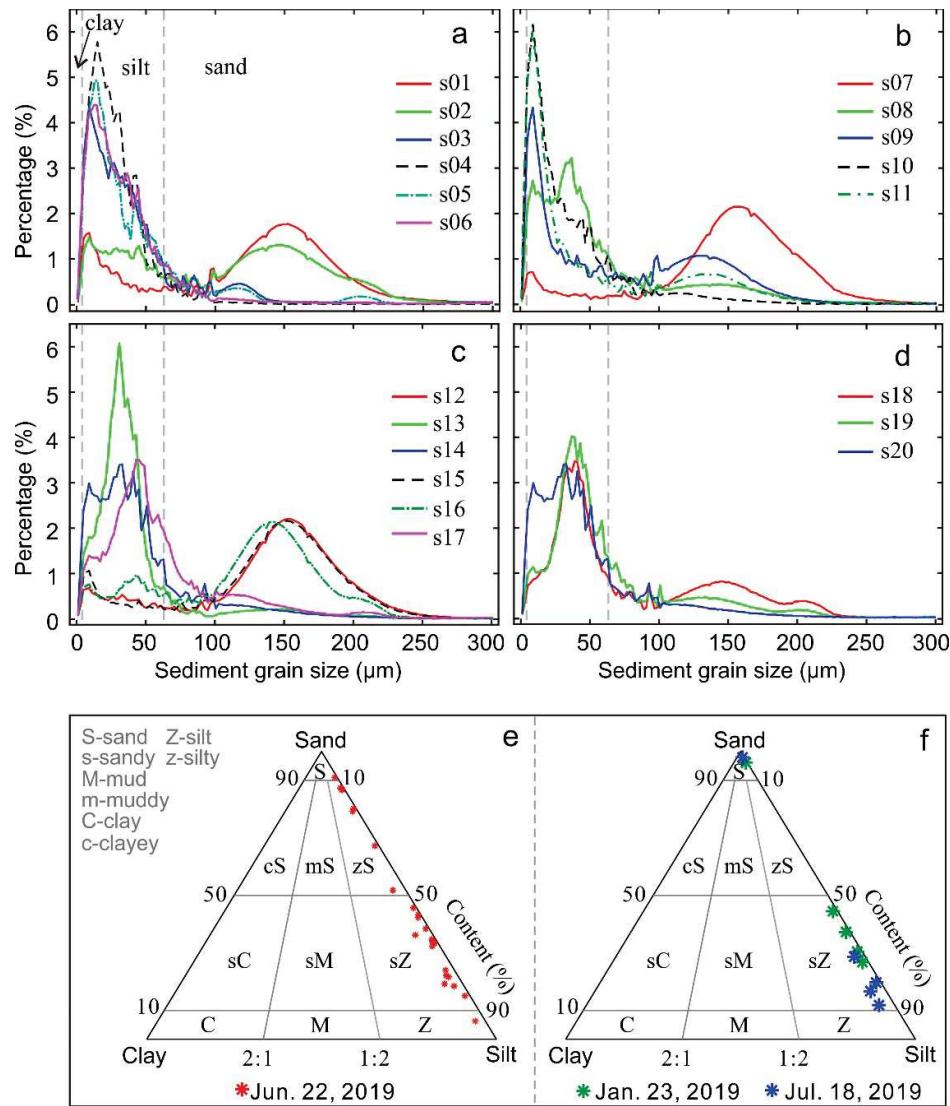

1011 **Table 3.** Measured water content of intertidal surface sediments of the experimental set.

1012 **Table 4.** Comparison of indoor measured and TLS-based calculated three fractions (sand, silt

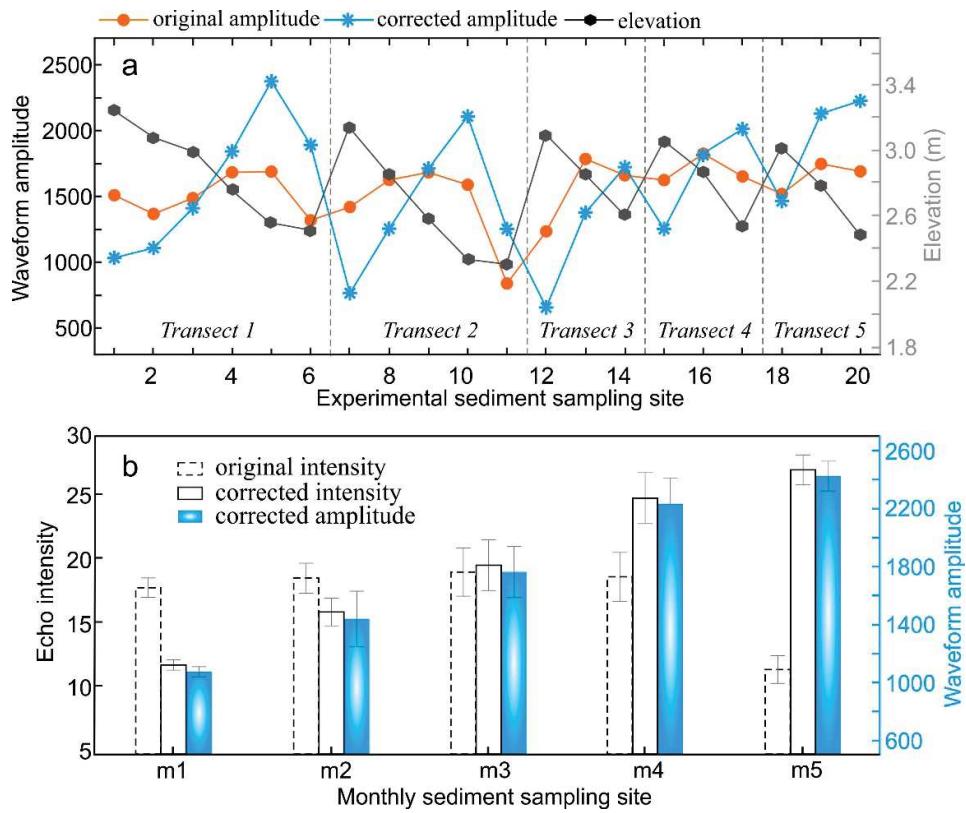

1013 and clay), average grain size and D_{50} of surface sediment at different monthly sampling

1014 sites.

1015

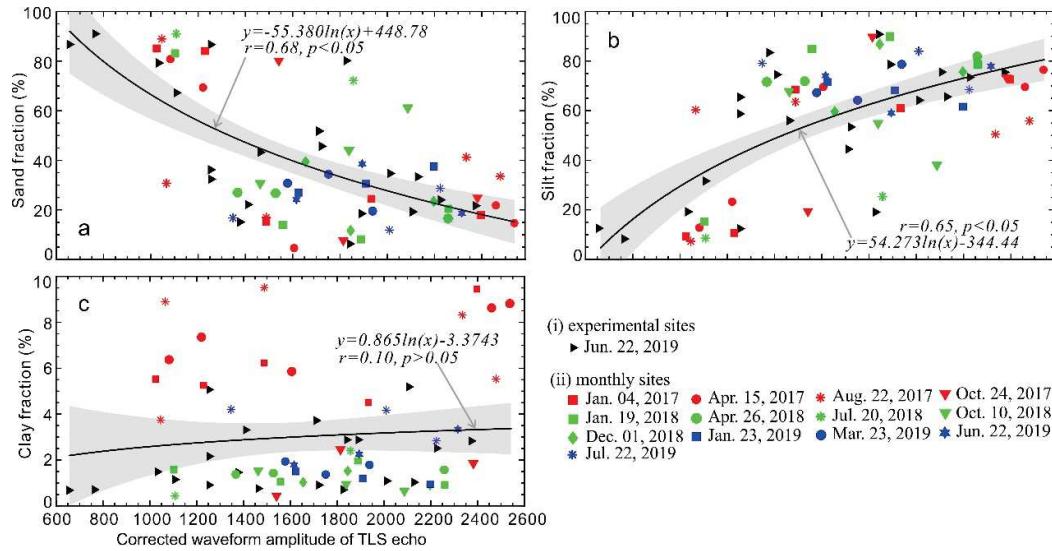


1016 **Fig. 1.** Study area. (a) Location of the Yangtze River in Asia. (b) Three-order bifurcated
 1017 distributaries of the Yangtze Estuary. The Nanhui tidal flat studied here is located on the
 1018 southern marginal tidal flat showed in the red rectangle. Artificial reclamation projects (blue
 1019 dashed curve) and Donghai Bridge near the Nanhui tidal flat are also indicated. (c) Observation
 1020 station of the Terrestrial Laser Scanner (TLS, Riegl VZ-4000) on the seawall, and the
 1021 distribution of surface sediment sampling sites. The 20 magenta hollow squares and 5 white
 1022 dotted lines indicate the transects of the experimental sampling sites, and 5 blue solid squares
 1023 (m1/v1 to m5/v5) indicate the monthly and validation sampling sites (Table 1). (d) Original
 1024 intensity of TLS echo, a rectangular area was set to study the relationship between sediment
 1025 grain size calculated with TLS echo and measured in the laboratory.


1027

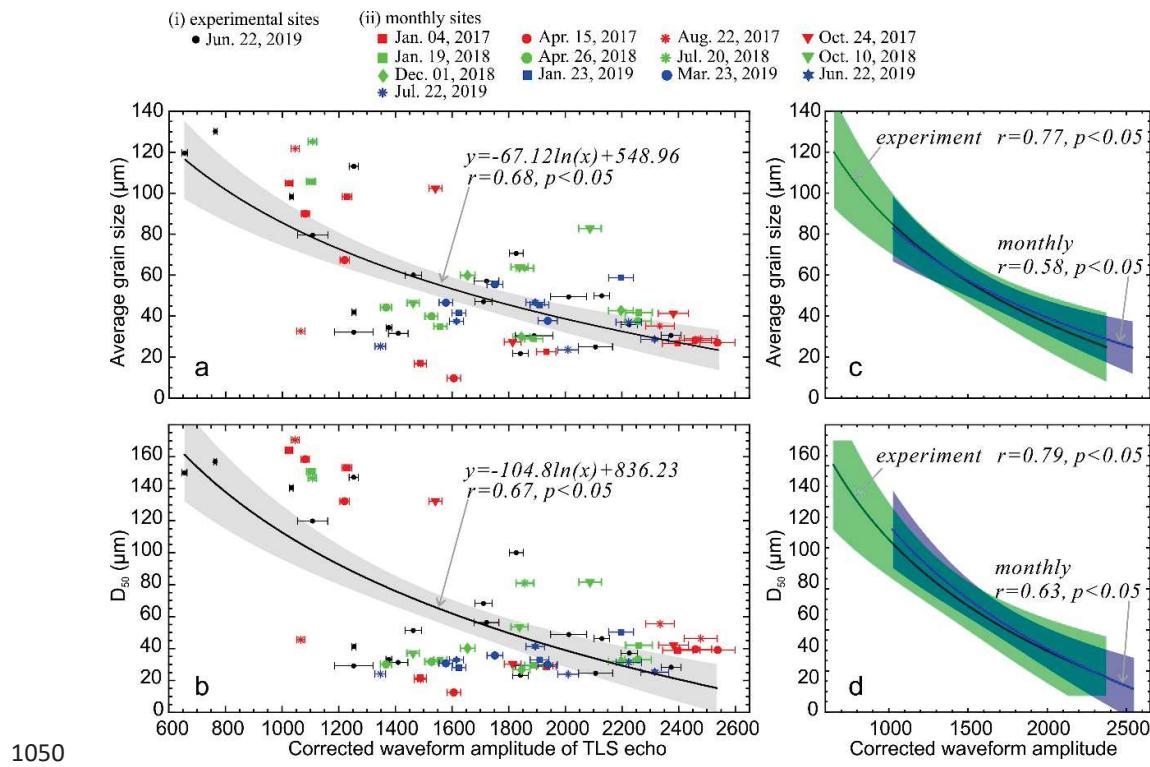
1028 **Fig. 2.** Flow charts for data processing and analysis. Mainly data processing includes three parts:
 1029 sediment grain size measurements, corrections of waveform amplitude of TLS echoes and
 1030 multi-parameter function relationship determinations. Finally, discuss the verifications of those
 1031 constructed relationships and analyze the potential influencing factors.

1032

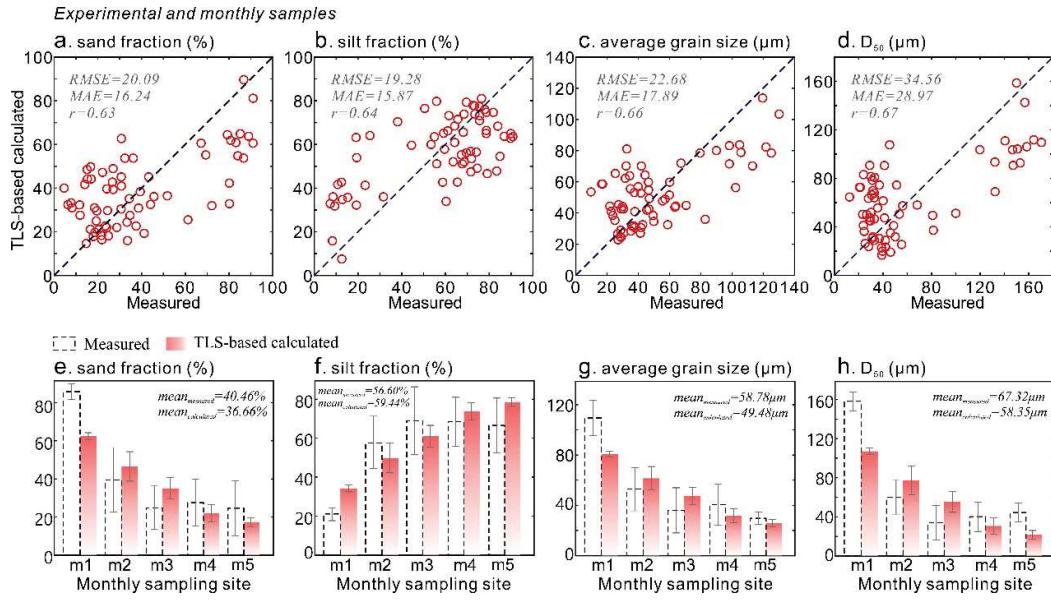

1033 **Fig. 3.** Frequency distribution of sediment grain size (0-300 μm) of the 20 experimental samples
 1034 collected on Jun. 22, 2019, the clay fraction of all sediments was low. (a) site: s01-s06; (b) site:
 1035 s07-s11; (c) site: s12-s17 and (d) site: s18-s20. (e) Folk's triangle classification of experimental
 1036 sediments, and (f) nomenclature of sediments collected on Jan. 23, 2019 (winter, green asterisks)
 1037 and on Jul. 19, 2019 (summer, blue asterisks), respectively.

1038

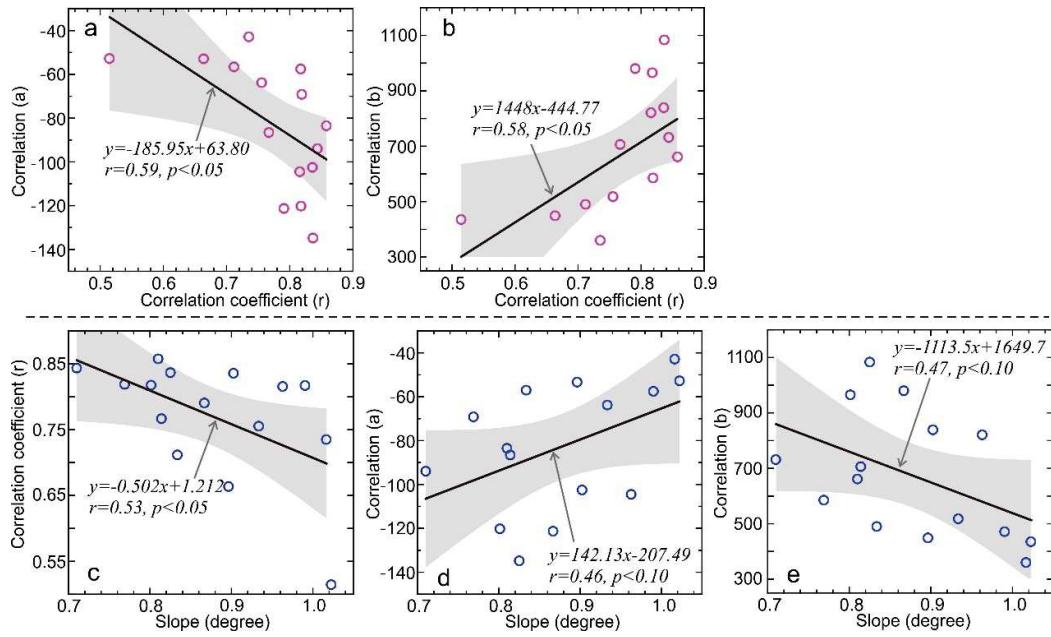
1039 **Fig. 4.** (a) Original and corrected waveform amplitudes of TLS echo and corresponding
 1040 elevation at each experimental sediment sampling site, 5 transects were set in Nanhui tidal flat
 1041 and shown in Fig. 1c. (b) Original and corrected TLS echo intensity and corrected waveform
 1042 amplitude of each monthly sediment sampling site.


1043

1044


1045 **Fig. 5.** Relationships between the corrected waveform amplitudes of TLS echo and three
 1046 sediment fractions, (a) sand fraction, (b) silt fraction and (c) clay fraction. The logarithmic
 1047 fitting curves were calculated based on all sediment data that collected in the experimental and
 1048 monthly sites, and the 95% confidence intervals are also indicated.

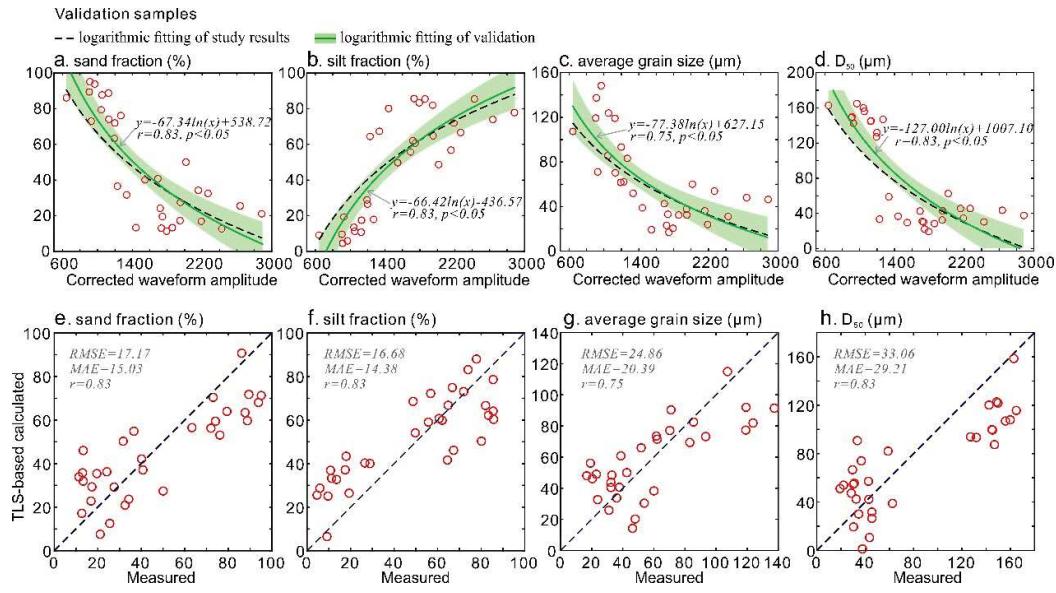
1049

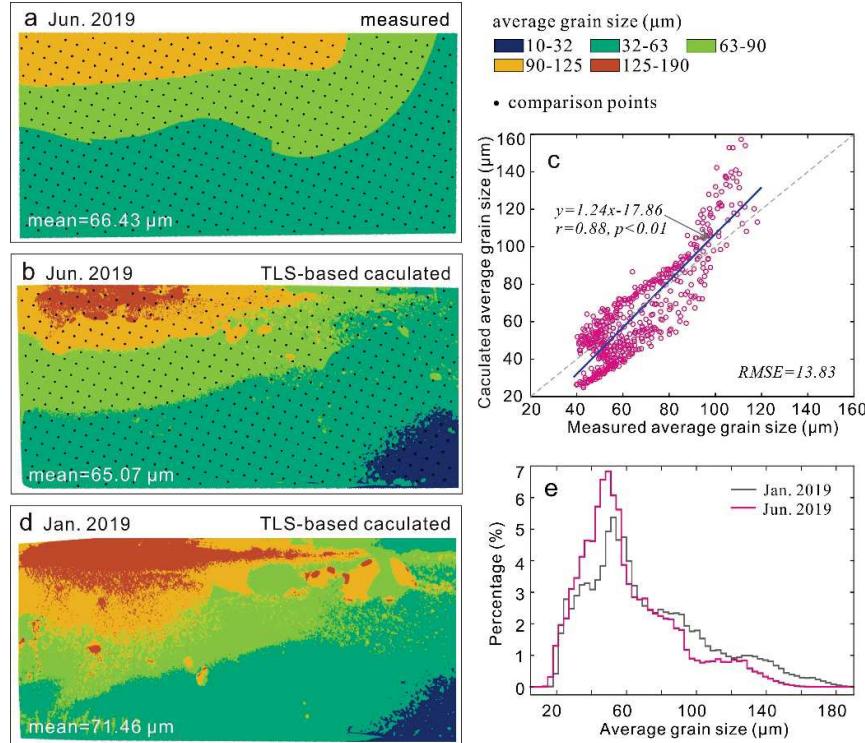


1051 **Fig. 6.** Relationships between the corrected waveform amplitudes of TLS echo and the (a)
1052 sediment average grain size and (b) sediment D₅₀. The different logarithmic fitting curves and
1053 related confidence intervals for experiment and monthly sediments, respectively, are shown in
1054 (c) for sediment average grain size and (d) for sediment D₅₀.

1056

1057 **Fig. 7.** Comparison of indoor measured and TLS-based calculated sediment parameters (sand
1058 fraction, silt fraction, average grain size and D_{50}), calculated results were based on constructed
1059 log-fitting equations between the corrected waveform amplitudes of TLS echo and the sediment
1060 parameters. (a-d) All experimental and monthly sediment samples; (e-f) at five monthly
1061 sampling sites, standard deviations were also indicated.




1062

1063 **Fig. 8.** A logarithm fitting equation $y=a*\ln(x)+b$ was used to determine the relationship between corrected waveform amplitude and the sediment average grain size, specific results
1064 were shown in Table S1. (a-b) Relationship between correlation coefficient (r) and parameters
1065 a and b of the logarithm fitting equation. (c-e) Relationship between intertidal slope and
1066 correlation coefficient (r), parameter a and parameter b , respectively.
1067

1068

1069

1076

1077 **Fig. 10.** (a-b) The spatial distribution of sediment average grain size in June 2019, that were
1078 derived from indoor measured and TLS-based calculated result, respectively, then a total of 550
1079 equally spaced points are generated to analyze the difference between the two. (c) The
1080 relationship between measured and TLS-based calculated average grain sizes. (d) TLS-based
1081 calculated average grain sizes in January 2019 and (e) frequency distribution of TLS-based
1082 results in January and June 2019.

1083 **Table 1.** Dates of sediment sampling and TLS observation of different data sets.

Data set	Date
Experiment	Jun. 22, 2019
	Jan. 04, 2017; Apr. 14, 2017; Aug. 22, 2017; Oct. 24, 2017
Monthly	Jan. 19, 2018; Apr. 26, 2018; Jul. 20, 2018; Oct. 10, 2018; Dec. 01, 2018
	Jan. 23, 2019; Mar. 23, 2019; Jun. 23, 2019; Jul. 22, 2019
Validation	
Winter	Dec. 02, 2016; Feb. 13, 2017; Feb. 5, 2018; Feb. 23, 2019
Summer	May. 13, 2017; Jun. 29, 2018; Aug. 20, 2018; Jul. 18, 2019

1084

1085

1086 **Table 2.** Multi-grain size parameters of intertidal surface sediment of the experimental set.

Site	Sand fraction (%)	Silt fraction (%)	Clay fraction (%)	Average grain size (μm)	D_{50} (μm)	δ	Sk	Ku
s01	79.26	19.25	1.49	98.28	140.56	1.55	1.77	2.34
s02	67.22	31.63	1.15	79.52	119.81	1.48	1.57	2.15
s03	22.14	74.55	3.31	31.61	31.32	1.69	0.58	2.33
s04	6.30	90.82	2.88	21.73	23.24	1.17	0.65	1.74
s05	21.68	75.49	2.83	30.62	28.29	1.67	0.62	2.29
s06	18.48	78.64	2.88	30.45	29.46	1.67	0.69	2.38
s07	91.01	8.28	0.71	130.16	156.89	1.10	1.59	2.12
s08	32.38	65.46	2.16	41.92	41.22	1.56	0.83	2.13
s09	51.79	44.49	3.72	47.07	68.22	1.89	1.49	2.39
s10	19.25	75.56	5.19	24.99	24.57	1.73	0.55	2.33
s11	36.20	58.73	5.07	32.16	29.16	1.95	0.63	2.38
s12	86.75	12.57	0.68	119.58	150.02	1.16	1.56	2.09
s13	15.10	83.45	1.46	34.38	33.13	1.27	0.46	1.98
s14	45.67	53.43	0.91	57.13	56.28	1.35	1.11	1.93
s15	86.68	12.41	0.91	113.10	147.23	1.24	1.68	2.21
s16	80.19	19.10	0.71	70.61	100.00	1.17	1.48	1.99
s17	34.70	64.21	1.09	49.43	48.80	1.29	0.82	1.93
s18	43.25	55.99	0.76	1.34	0.92	1.90	60.07	51.31
s19	33.35	65.62	1.03	1.25	0.90	1.88	49.92	46.23
s20	24.03	73.46	2.51	1.51	0.42	2.13	35.85	37.10

1087 Note: δ is sorting factor; Sk is skewness and Ku is kurtosis of intertidal sediment.

1088

1089 **Table 3.** Measured water content of intertidal surface sediments of the experimental set.

Site	s01	s02	s03	s04	s05	s06	s07	s08	s09	s10
SWC (%)	20.05	20.66	23.28	28.98	32.03	33.40	18.90	27.27	30.30	32.91
Site	s11	s12	s13	s14	s15	s16	s17	s18	s19	s20
SWC (%)	34.51	20.93	23.68	22.97	23.91	17.89	22.34	27.13	25.98	26.16

1090 Note: *SWC* is the sediment water content.

1091

1092 **Table 4.** Comparison of indoor measured and TLS-based calculated three fractions (sand, silt
1093 and clay), average grain size and D_{50} of surface sediment at different monthly sampling sites.

	Site	m1	m2	m3	m4	m5	Mean of all absolute errors	Mean of all sampling sites
Sand fraction	Measured (%)	85.81	39.50	24.83	27.56	24.61	/	40.46
	Calculated (%)	62.38	46.56	35.09	22.04	17.25	/	36.66
	Error (%)	-27.30	17.87	41.32	-20.03	-29.91	27.28	-9.39
Silt fraction	Measured (%)	21.66	57.47	68.92	68.41	66.53	/	56.6
	Calculated (%)	34.23	49.74	60.98	73.77	78.46	/	59.44
	Error (%)	58.03	-13.45	-11.52	7.84	17.93	21.75	5.01
Clay fraction	Measured (%)	3.53	3.03	3.18	2.79	8.86	/	4.28
	Calculated (%)	2.66	2.91	3.09	3.29	5.87	/	3.56
	Error (%)	-24.65	-3.96	-2.83	17.92	-33.75	16.62	-16.69
Average grain size	Measured (μm)	109.48	53.08	35.99	40.69	29.67	/	58.78
	Calculated (μm)	80.65	61.48	47.58	31.76	25.95	/	49.48
	Error (%)	-26.33	15.83	32.20	-21.95	-12.54	21.77	-7.99
D_{50}	Measured (μm)	158.13	59.92	33.93	40.17	44.45	/	67.32
	Calculated (μm)	107.02	77.08	55.38	30.68	21.61	/	58.35
	Error (%)	-32.32	28.64	63.22	-23.62	-51.38	39.83	-13.32

1094

1095