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Abstract 7 

The propagation of tides and riverine floodwater in coastal wetlands is controlled by subtle topographic differences 8 

and a thick vegetation canopy. High-resolution numerical models have been used in recent years to simulate fluxes 9 

across wetlands. However, these models are based on sparse field data that can lead to unreliable results. Here, we 10 

utilize high spatial-resolution, rapid repeat interferometric data from the Uninhabited Aerial Vehicle Synthetic 11 

Aperture Radar (UAVSAR) to provide a synoptic measurement of sub-canopy water-level change resulting from tide 12 

propagation into wetlands.  These data are used to constrain crucial model parameters and improve the performance 13 

and realism of simulations of the Wax Lake wetlands in coastal Louisiana (USA). A sensitivity analysis shows that the 14 

boundary condition of river discharge should be calibrated first, followed by iterative correction of terrain elevation 15 

specified originally by a Digital Terrain Model derived from LiDAR measurements. The calibration of bed friction 16 

becomes important only with the boundary and topography calibrated. With the model parameters calibrated, the 17 

overall Nash-Sutcliffe model efficiency for water-level change increases from 0.15 to 0.53 with the RMSE reduced 18 

by 26%. In areas with dense wetland grasses, the LiDAR signal is unable to reach the soil surface, but the L-band 19 

UAVSAR instrument detects changes in water levels that can be used to infer the true ground elevation. The high 20 

spatial resolution and repeat-acquisition frequency (minutes to hours) observations provided by UAVSAR represent a 21 

groundbreaking opportunity for a deeper understanding of the complex hydrodynamics of coastal wetlands. 22 

   23 

Key points: 24 

• Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) observes large-scale tide propagation 25 
beneath vegetation canopies   26 

• UAVSAR observations are used to calibrate tidal flows in wetlands  27 

• Wetland elevation is spatially corrected with calibration of hydrodynamic simulations 28 

 29 



1. Introduction 30 

Distributary channels in deltaic systems nourish wetlands with flow, sediment and nutrients, contributing to marsh 31 

elevation gain and resilience to sea-level rise (Redfield. 1972; Morris et al., 2002; Fagherazzi et al., 2012; FitzGerald 32 

and Hughes. 2019; Schuerch et al., 2018). Field observations and modeling have been devoted to understand 33 

interactions of flows and sediment transport between channels, tidal flats, and wetlands (Donatelli et al., 2020). Field 34 

data have shown that when tidal and riverine waters propagate from channel to vegetation, vegetation increases flow 35 

resistance, attenuates waves and increases sediment settling (Reed et al., 1999; Nepf and Vivoni, 2000). The presence 36 

of vegetation enhances flows within the channels, which become the main conveyers of water and sediments to the 37 

marsh platform (Temmerman et al., 2005).  In the Wax Lake Delta in Louisiana (USA), the channel-wetland 38 

hydrological connectivity is significant, with 23-54 % of discharge flowing from adjacent channels into wetlands, 39 

demanding detailed analyses of wetland hydrodynamics (Hiatt and Passalacqua, 2015). These findings imply complex 40 

and nonhomogeneous flow pathways within the vegetation. Despite the importance of collecting hydrodynamic data 41 

on the wetland platform, expensive in situ measurements with reduced spatial sampling and resolution hamper 42 

progress in modeling flow in complex coastal wetlands. 43 

Physics-based numerical models explicitly solve hydrodynamics and sediment transport equations to determine 44 

sediment budgets and morphological evolution. Most importantly, numerical models can isolate different driving 45 

processes and provide reliable predictions under different scenarios of climate change and sea level rise.  For the Wax 46 

Lake Delta, numerical model results show that intermediate vegetation height and density are optimal for sediment 47 

deposition (Nardin and Edmonds, 2014). Similarly, Oliver et al., (2020) found that the presence of vegetation could 48 

increase vertical accretion within vegetation patches but reduce sediment retention within the entire delta. Models can 49 

also mimic vegetation establishment, growth, expansion, and mortality and update vegetation parameters in each 50 

simulated time-step interactively (Best et al., 2018).  51 

The reliability of model results depends on careful calibration of model input parameters, particularly topography and 52 

bed roughness, and accurate information of boundary conditions that require synchronous spatial field observations. 53 

Often, numerical models of wetlands use Light Detection and Ranging (LiDAR) data to extract the topography of the 54 

vegetated area (Zhang et al., 2020), which could lead to a positive bias in elevations due to the incapability of laser of 55 

penetrating into the vegetation canopy. This would produce misleading results in marsh models because of the high 56 



sensitivity of marsh species and biomass to subtle topographic differences and inundation depths. LiDAR errors vary 57 

spatially as a function of vegetation cover, and a constant correction in elevation cannot capture this spatial complexity. 58 

The errors are traditionally categorized by vegetation species and adjusted using point-measurements of RTK and total 59 

stations. LiDAR topography can be further refined by relating elevation to aboveground biomass density or using 60 

machine-learning methods (Medeiros et al., 2015; Rogers et al., 2018; Cooper et al., 2019). Alizad et al., (2016) 61 

calibrated a LiDAR Digital Terrain Model (DTM) of the salt marshes in Apalachicola Bay, Florida, USA, by 62 

comparing the biomass distribution obtained from a model to remote sensing data. The modeled biomass was 63 

calculated based on the empirical function between biomass and inundation depth put forward by Morris et al. (2002).  64 

Model calibration is traditionally based on a few of tidal gauges in large channels, which cannot capture complex flow 65 

dynamics within wetlands. The flows on the wetland platform are seldom calibrated due to the challenge of collecting 66 

in-situ measurements beneath the vegetation canopy (Alsdorf et al., 2007). Recent advances in the remote sensing of 67 

hydraulic variables (e.g. inundation extent and water level), provide an opportunity to fuse high-resolution spatial data 68 

into numerical models through calibration (e.g. McCabe et al., 2017; Wiberg et al., 2020). The integration of remote 69 

sensing data and numerical models was indicated as one of the grand challenges in salt marsh morphodynamics 70 

(Fagherazzi et al., 2020).   71 

Spaceborne Interferometry Synthetic Aperture Rader (InSAR) has been successfully applied to estimate water-level 72 

changes in wetlands, especially in fluvial systems, because the interferometric phase change of repeat-pass SAR 73 

backscattering from emergent flooded vegetation is dominated by the water-level change with a high interferometric 74 

coherence (e.g. Alsdorf et al., 2000; Yuan et al., 2015; Oliver-Cabrera & Wdowinski, 2016; Lee et al., 2020; Liao et 75 

al., 2020 ). Based on InSAR-derived water-level change, Jung et al., (2012) calibrated Manning’s bed roughness in a 76 

2-D floodplain model of the Atchafalaya River floodplains, reducing the mean absolute error to 5.7 cm in a 64-day 77 

simulation. Water levels derived from radar altimetry can be utilized for calibrations of depth and bed roughness in 78 

poorly gauged areas (Sun et al., 2012; Domeneghetti et al., 2014). The application of radar altimetry measurements, 79 

due to their low accuracy, is limited to large channel systems such as the Amazon River (De Paiva et al., 2013).  80 

However, the long temporal repeat of spaceborne InSAR (days to months) inhibits observation of tidal flows into 81 

wetlands, and thus cannot be used to calibrate coastal numerical models.  82 



Airborne systems such as the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) can fill this gap, 83 

providing repeat-pass differential interferometry for water-level changes within 1-hour time window and with high 84 

accuracy (e.g. Rosen et al., 2006; Fore et al., 2015). The goal of this paper is to use UAVSAR-derived short timescale 85 

water-level change to calibrate hydrodynamic models in tidal wetlands and to assess model sensitivity to boundary 86 

conditions, LiDAR-derived topography and bed roughness. To this end, we develop a 2-D Delft3D hydro-model with 87 

high-spatial resolution (~ 10 m), covering the Wax Lake Delta and adjacent wetlands. We focus our calibration effort 88 

in the western wetland area dissected by meandering channels (Fig. 1). The work presented here introduces a novel 89 

approach to integrate airborne InSAR observations into quantitative models of tidal flow propagation in coastal 90 

vegetated surfaces.  91 

 92 

2. Study site 93 

The Wax Lake Delta is a river-dominated delta located in the Atchafalaya Bay within the greater Mississippi River 94 

Delta. The Atchafalaya River distributes water and sediment into Atchafalaya Bay through the Wax Lake Outlet, 95 

artificially dredged in 1942. The sediment has in time formed the Wax Lake Delta (Robert et al., 2015; Shaw et al., 96 

2013). The delta is about 20 km from the Calumet Gauge (USGS 07381590), and the width of main channel is ~300 97 

m (Fig. 1A).  98 

The low-lying Atchafalaya Bay is affected by a mixed semidiurnal micro-tide, with the mean tidal range of 0.34 m. 99 

The river discharge varies seasonally from 2500 m3/s to more than 5000 m3/s during river floods. A portion of 100 

discharge is diverted along the engineered Gulf Intercostal Waterway (GIWW) that crosses the Wax Lake Outlet 101 

(Swarzenski and Perrien 2015). Extensive heterogeneous plant communities have developed along the two sides of 102 

the main channel. A dendritic network of meandering channels departing form the main stem brings water and 103 

sediment to these vegetated areas. Here we focus on Wax Lake (WL) channel and Hog Bayou (HB) channel in the 104 

western side of the main channel (Fig. 1B). Most research in the Wax Lake Delta focuses on mechanisms controlling 105 

the naturally prograding delta itself, without considering the role of these large-scale wetlands in modulating water 106 

and sediment inputs (Carle et al., 2015; Oliver et al., 2020). 107 



Figure 1. (A) A 10-m resolution vegetation classification map based on Sentinel-2 satellite imagery (Thomas et al., 109 

2019) within the Wax Lake Delta model boundary (white line). The area within black line is the domain used for 110 

comparison with model results and visualization purpose. (B) Cumulative water-level change observed by UAVSAR 111 

from 11:34 to 13:53 (GMT) on 08 May 2015. The system is divided by the dashed line in the upper subdomain of Wax 112 

Lake channel (WL) and the lower subdomain of Hog Bayou channel (HB). The black circle indicates the inlet area of 113 

HB channel. (C) Field observations of water levels (NOAA Amerada Pass 8764227) and river discharge (USGS 114 

Calumet 07381590) on 08 May 2020. The pink band indicates the period of the airborne campaign. 115 

 116 

3. Methods 117 

3.1 UAVSAR Interferometry 118 

UAVSAR is a fully polarimetric (quad-polarization) L-band (wavelength λ=0.2379 m, frequency ν=1.257 GHz) 119 

synthetic aperture radar operated by the U.S. National Aeronautics and Space Administration (NASA) and deployed 120 



on a Gulfstream-3 aircraft.  The system is designed for both polarimetry (PolSAR) and repeat-pass interferometry 121 

(InSAR) (Hensley et al, 2003).  InSAR processing of repeated observations of a surface from a same viewing geometry 122 

enables measurement of surface displacement in the line-of-sight direction (Rosen et al., 2006). Because the 123 

instrument is side looking, the line-of-sight displacement is in general a combination of vertical and horizontal 124 

displacements. Relating the measured displacement to a change in surface elevation requires knowledge of the 125 

horizontal displacement, through either measurement or ancillary information. In flooded wetlands, the backscattered 126 

signal is primarily due to double bounce scattering from the water and vegetation, so the measured surface 127 

displacement is due to change in water level (Lu and Kwoun, 2008; Wdowinski et al., 2013; Liao et al., 2019).  This 128 

study uses repeat-pass UAVSAR data (6 m spatial resolution) acquired in HH polarization mode (Horizontal transmit 129 

and receive) to measure the net change in water level between 11:34 and 13:53 (GMT) on 08 May 2015. The measured 130 

interferometric phase change, Δφ, is converted to elevation change, Δz, by first phase unwrapping to remove the 2π 131 

ambiguities (Chen and Zebker, 2002), converting the unwrapped phase, ΔΦ, to line-of-sight displacement, Δl= ΔΦλ/4π, 132 

then projecting the value into the vertical direction, Δz= Δl/cos(θ), using the incidence angle, θ. The errors of surface 133 

deformation can be controlled within 1 cm for repeat pass SAR observations within hours, making it well suited for 134 

imaging water-level changes in coastal wetlands (Rosen et al., 2006). More details about UAVSAR-derived water 135 

level change maps can refer to Jones et al., (2020) (https://doi.org/10.3334/ORNLDAAC/1823). 136 

 137 

3.2 Hydrodynamic modelling setup  138 

A 2-D hydrodynamic model based on Delft3D was developed to solve flow dynamics. The model domain is a 139 

curvilinear grid of 2600 by 1700 cells, with the size ranging from 100 m2 to 150 m2 in the area of wetlands (Figs. 2B, 140 

2C). The model topography is a 10-m seamless DTM composed of LiDAR datasets (http://ned.usgs.gov/), sonar 141 

transects in channels, and bathymetry elevations derived from diverse source data referred to the NAVD88 vertical 142 

datum (Denbina et al., 2020). We specify river discharge at the Calumet Gauge station (USGS 07381590) (U.S. 143 

Geological Survey. 2016) as the upstream boundary, and tidal water levels at the NOAA Amerada Pass station (NOAA 144 

8764227) (CO-OPS 2018) as the ocean boundary (Fig. 2A). The hourly wind speed (~ 3 m/s) and direction measured 145 

at this NOAA station are uniformly prescribed across the model domain to account for the influence of winds on 146 

hydrodynamics. 147 

http://ned.usgs.gov/


Bed roughness is defined based on a 10-m Sentinel-2 classification map (Thomas et al., 2019) and a look-up table for 148 

the Chezy’s coefficient: ocean (60 m1/2/s), channel water (55 m1/2/s), shoals (45 m1/2/s), marsh (35 m1/2/s) and forest 149 

(8 m1/2/s) (Chow, 1959; Straatsma and Baptist, 2008). The threshold depth for wetting and drying is set as 0.001 m to 150 

keep model stability for very shallow waters. The simulation period is from 05 May 2015 at 00:00 to 09 May 2015 at 151 

00:00, and a time step of 0.2 min is adopted to satisfy all stability criteria for the parallel computation. 152 

Figure 2. (A) Model boundaries setup and elevation data as base map. (B) Zoomed map at Wax Lake channel inlet 154 

for mesh visualization. (C) Map of mesh size.  155 

The analysis is focused within the western wetland (Fig. 1B) in a 2.5-hour window on May 08 from 11:34 to 13:53 156 

when the UAVSAR data were collected. This time window corresponds to spring high tides and river floods, thus is 157 

optimal for water level observations over the wetlands. The Nash-Sutcliffe model efficiency (ME), root mean square 158 

error (RMSE), and frequency curve of difference between model (M) and remote sensing data (D) are used to evaluate 159 

model performance: 160 

  𝑀𝑀𝑀𝑀 = 1 − ∑(𝐷𝐷−𝑀𝑀)2

∑(𝐷𝐷−𝐷𝐷�)2
 , RMSE = �∑ (𝐷𝐷−𝑀𝑀)2

𝑛𝑛
  (1) 161 



where n is the number of observations, and 𝐷𝐷�  is the mean of n values. The value of ME represents the model 162 

performance: ME > 0.65 excellent; 0.5 < ME < 0.65 very good; 0.2 < ME < 0.5 good; and ME < 0.2 poor (Allen et 163 

al., 2007).  164 

3.3 Calibration and validation of river discharge and wetland elevation  165 

The riverine flow from the Wax Lake Outlet debouches seaward crossing the Intercostal Waterway (Fig. 1A). The 166 

GIWW likely modifies the discharge entering the Wax Lake delta and the lower wetlands. As river flows can attenuate 167 

tidal propagation, reducing temporal variations in water level (Sassi and Hoitink, 2013), the river discharge at the 168 

model boundary should be adjusted to account for the discharge diverted in the GIWW. No synchronous discharge 169 

data from USGS is available along the GIWW at the period of the UAVSAR measurements. We therefore validate the 170 

discharge adjustment based on an empirical calculation using water surface slope data derived from remote sensing.  171 

The calibration of the model is performed in two steps (Fig. 3). First, we calibrate the river discharge to match 172 

UAVSAR data at the wetland margins bordering the Wax Lake Outlet (Section 3.2); we then spatially modify the 173 

wetland topography in each cell (Section 3.3) by adding the difference between water-level change estimated by the 174 

model and the UAVSAR observations. If the UAVSAR change is larger than the model result, we decrease the 175 

elevation of that cell. The model is iteratively re-run with the new bathymetry until the elevation correction is 176 

negligible and ME and RMSE are near-constant. 177 

The elevation correction is necessary for two reasons: 1) marsh topography derived from LiDAR data is prone to 178 

errors, because the laser signal cannot penetrate the thick vegetation resulting in an error (see Rosso et al. 2006). This 179 

offset is very high for a wetland that is typically submerged by only few tens of centimeters at high tide, precluding 180 

water flow in several areas. 2) a simple adjustment of local friction would not be able to correct for the error, and 181 

would lead to unrealistic friction values. 182 

The correction in elevation proposed here is empirical, and based on the assumption that lowering the bed elevation 183 

would likely allows for more tidal propagation and for spreading out the water level changes. In facts water level 184 

changes are affected by flow conveyance. To achieve a large change in water depth you need to increase flow 185 

conveyance which can be done by increasing water depth. Note that a change in elevation at one point would 186 

reverberate across the system, changing the flow conveyance along the entire flow path. To address this shortcoming, 187 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JF004639#jgrf20929-bib-0001


we decided to iteratively change the elevation of a small amount, so that the entire system can slowly adjust to the 188 

modification in conveyance. This method is effective only if the iteratively procedure converges, and only if the final 189 

result is realistic (i.e. the system does not present multiple equilibrium points). Here, for simplicity, we chose to modify 190 

the elevation by the change in elevation measured by UAVSAR in 2.5 hr. This choice was arbitrary, and a smaller 191 

change in elevation (e.g. change in elevation measured by UAVSAR in 1 hr) would lead to similar results after several 192 

iterations.                            193 

Finally, the sensitivity of the results to the friction coefficient for the marsh and forest surfaces is evaluated. We 194 

designed 49 scenarios with 7 different friction values (Chézy coefficient) ranging from 8 m1/2/s to 40 m1/2/s for the 195 

marsh and forest respectively, and launch models with different combinations of frictions before and after the 196 

calibration of river discharge and topography. 197 

 Figure 3. Flow diagram of model calibration process using UAVSAR data 199 

The computed river discharge is validated using the empirical Manning’s equation that estimates flow rate in open 200 

channels as a function of water level slope, channel cross section, and bed friction (Chow, 1959): 201 

𝑄𝑄 = 𝐴𝐴𝐴𝐴𝑅𝑅ℎ1/2𝑆𝑆1/2                                                                       (2) 202 



Where Q is flow discharge (m3/s), A is channel cross section (m2), C is Chézy bed roughness (m1/2/s), 𝑅𝑅ℎ is 203 

hydraulic radius (m), S is the water channel slope. The Manning equation is applied to two cross sections of the Wax 204 

Lake outlet: one before the intersection with the GIWW (cross section a-a’ in Fig. 4) and one after (cross section b-b’ 205 

in Fig. 4): 206 

𝑄𝑄2
𝑄𝑄1

=  𝐴𝐴2
𝐴𝐴1

𝐶𝐶2
𝐶𝐶1
�𝑅𝑅ℎ2
𝑅𝑅ℎ1

�
1/2

�𝑆𝑆2
𝑆𝑆1
�
1/2

                                                          (3)  207 

Where subscript 1 refers to cross section a-a’, subscript 2 refers to b-b’. We thus obtain the value, Q2, of the discharge 208 

after the GIWW that can be compared to the calibrated discharge.   209 

 The channel slope in Eq. 3 is derived from AirSWOT data (Denbina., 2019). AirSWOT is an airborne Ka-band 210 

synthetic aperture radar that measures water surface elevation in open waters with uncertainty below 0.3 cm/km. The 211 

AirSWOT campaign was conducted at 17:14 (GMT) on 09 May 2015, and more details about the AirSWOT 212 

measurements can be found in Denbina et al., (2021). The comparison allows quantifying the effect of the GIWW on 213 

river discharge.  214 

The new wetland elevations obtained with our method are validated with high-resolution elevation data at 10 long-215 

term sites of the Coastwide Reference Monitoring System (CRMS, https://lacoast.gov/crms/, see locations in Fig.4). 216 

Only four of these sites fall within the UAVSAR footprint, and can therefore be used for the validation.  217 

 218 

4. Results 219 

4.1 Tidal propagation beneath vegetation canopies observed by UAVSAR 220 

https://lacoast.gov/crms/


Figure 4. Water level changes observed by UAVSAR between 11:34 and 13:53 (GMT) on 08 May 2015. The 222 

location of AirSWOT water surface elevation measurements is also indicated, as well as the Coastwide Reference 223 

Monitoring System (CRMS) sites and the cross sections a-a’ and b-b’. 224 

UAVSAR observed water level changes below vegetation canopies across the model domain in a 2.5-hour time 225 

window (Fig. 4). Changes in water levels are lower in the wetland interior, due to tidal propagation, dissipation and 226 

reduced hydraulic connectivity. The zone with more pronounced flooding (large change in water level) extends about 227 

8-10 km from the Wax Lake Outlet mainly to wetlands along the channels, with a width of 200-300 m at both sides of 228 

each channel. UAVSAR cannot measure water level change in unvegetated areas, such as ponds and channels (Fig. 4). 229 

Interestingly, the HB channel has a width similar to the upper WL channel, but features higher water level variations. 230 

There is no clear spatial pattern of water level variations in different vegetation covers (see Fig. 1A and Fig. 4).  231 



 232 

4.2 River discharge dominates the amplitude of water-level change  233 

Figure 5. Comparison of model results before and after the correction of river discharge. Spatial distribution of 235 

modeled water-level changes with (A) initial river discharge measured at USGS Calumet Gauge (Fig. 1C) and (B) a 236 

river discharge reduced by 1100 m3/s. (C,D) Comparison of water-level changes between model results and UAVSAR 237 

data for the entire domain (area shown in A). (E) Model efficiency (negative value indicates very poor performance 238 



that is less meaningful) and (F) RMSE with different river discharges for the entire domain, and for the subdomains 239 

of Wax Lake channel (WL) and Hog Bayou channel (HB), separated by the dashed line in (A). Dash line in (F) is the 240 

error (model-UAVSAR) of the averaged water-level change (dh/dt) at the inlet of the HB channel (black circle in Fig. 241 

1B). The pink band indicates the optimum river discharge adopted after calibration. 242 

Our model results show that imposing the river discharge measured at Calumet in the WL channel underestimates 243 

tide-induced water-level changes along the HB channel. The use of the discharge measured at the Calumet station as 244 

the northern boundary condition gives rise to a uniform flow within the wetlands fed by the WL channel (Fig. 5A), in 245 

disagreement with the UAVSAR observations (Fig. 1B), resulting in poor model performance (Fig. 5C). By lowering 246 

river discharge, the tidal signal becomes more important and yields a distribution of water level variations comparable 247 

to UAVSAR observations, especially in the HB channel (Figs. 5B, 5D). Generally, we find that a lower river discharge 248 

gives better results in the subdomain of the WL channel, increases ME from 0.33 to 0.51, and reduces the RMSE from 249 

1.82 cm to 1.57 cm (Figs. 5E, 5F). A reduced river discharge in the WL channel is likely caused by the intracoastal 250 

waterway, that captures part of the river flow.   251 

Since the RMSE is meaningless with negative values of ME (Eqs.1), we used the averaged value of water-level 252 

changes at the inlet of the HB channel for calibration (Fig. 1B). The difference between water level change estimates 253 

by the model and the UAVSAR observations decreases with reduced river discharges (Fig. 5F). Overall, the optimum 254 

river discharge (initial discharge – 1100 m3/s, about 20 % reduction in river discharge) was determined by evaluation 255 

of ME, RMSE and regional water-level changes. A flow diversion of 1100 m3/s in the GIWW is in accordance with 256 

the average discharge of 800 m3/s measured during peak flows by USGS (Swarzenski and Perrien 2015).  257 

 258 

 259 

 260 

4.3 Iterative modification of LiDAR-derived topography 261 



Figure 6. Modeled water-level changes on the wetland surface using Calumet discharge minus 1100 m3/s with (A) 263 

original DTM and (B) modified DTM after 7 iterations. DTM in (i+1) iteration = DTM in (i) iteration + difference of 264 

water-level changes between model run in iteration (i) and UAVSAR data. (C) Modeled results as a function of 265 

UAVSAR data for the entire domain.  (D) Model efficiency and RMSE as a function of iteration number for the entire 266 

domain (same domain as A), subdomains of Wax Lake channel (WL) and Hog Bayou channel (HB). The pink band 267 

indicates the optimum scenario adopted after 7 iterations. 268 

Despite the improvement in the magnitude of water-level changes at the wetland margin after calibrating the river 269 

discharge (Fig. 5), the model does not accurately capture tidal propagation on the wetland platform (Fig. 6A). This is 270 

probably caused by errors in the LiDAR-derived topography due to the inability of the laser to penetrate a dense 271 

canopy (Hladik and Alber. 2012). According to the Delta-X project datasets (https://deltax.jpl.nasa.gov/), the LiDAR 272 

DTM may have biases of 20 cm and RMSE of 24 cm in the Wax Lake Delta, which can significantly impact reliability 273 



of hydrodynamic models of coastal wetlands, particularly in microtidal systems (Alizad et al., 2020). Instead of 274 

correcting the topography using limited RTK-GPS points, we introduce an approach based on the coupling of 275 

UAVSAR observations with model simulations to iteratively correct the model DTM. The correction is different at 276 

every point in the domain.  277 

Specifically, we iteratively change the initial DTM by subtracting the difference between the modeled and UAVSAR-278 

observed water-level change. After each modification (iteration) of the DTM, the model is re-run with the updated 279 

DTM until the topography converges to the optimum scenario with tidal propagation and dissipation occurring in the 280 

wetland interior.  The final model results are more realistic, and compare well to UAVSAR observations (Figs. 6A, 281 

6B). The improvement is especially evident in the HB subdomain (Fig. 6C and Fig. 5D). The model performance 282 

increases after each iteration, and the DTM at iteration 7 is chosen as the optimum scenario given insignificant 283 

improvements in overall domain ME and RMSE in later iterations (Fig. 6D). Overall, the water-level change ME 284 

increased from 0.15 to 0.53 after 7 iterations, while the RMSE decreased from 2.16 cm to 1.60 cm; for the WL channel 285 

subdomain, the ME improved from 0.51 to 0.63 with RMSE decreasing from 1.57 cm to 1.35 cm; for the HB channel 286 

subdomain, the ME improved from -0.52 to 0.22, while the RMSE decreased from 3.14 cm to 2.25 cm. The lower ME 287 

value in the HB channel is mainly caused by the spatial resolution of the model which is too low to capture tidal 288 

propagation within the small-scale creeks at the end of the domain (dash red circle in Fig. 6B). Ignoring the area near 289 

the small-scale creeks improves ME from 0.22 to 0.38 and RMSE from 2.25 cm to 2.03 cm. 290 

The DTM correction varies in space and is generally larger along the channel margins (Fig. 7B). The change is about 291 

0.1 m in the WL channel but can reach 0.4 m along the HB channel (positive value indicates a lowering of the 292 

elevation). The modified DTM gives a lower elevation in general, as expected when the LiDAR pulses do not reach 293 

the ground in the presence of dense vegetation.  High-density marshes in the HB channel may cause the higher bias 294 

compared to the forested banks of the WL channel (Fig. 1A). After the river discharge calibration and subsequent 295 

DTM correction based on UAVSAR measurements, the distribution of the error between model and UAVSAR is more 296 

symmetrical and with the centroid shifting toward zero (Fig. 7C).  297 

 298 

  299 



Figure 7. (A) Initial DTM (elevations referred to NAVD 88). (B) Difference in DTM elevation after UAVSAR 301 

correction: positive values indicate a lower elevation. (C) Distribution of the error between model and UAVSAR data 302 

for: initial model (Fig. 5A), after calibration of river discharge (Fig. 5B), and spatial modification of DTM (Fig. 6B). 303 

 304 

4.4 Sensitivity to bed roughness  305 



With initial river discharge and topography, the calibration of bed friction for the marsh and forest little improved the 306 

model performance in terms of ME and RMSE (Tables 1, 2). The forest friction dominates the ME, with less friction 307 

(larger Chézy coefficient) in the forest decreasing the overall model performance (Table 1). The ME is weakly related 308 

to variations in friction coefficients. For instance, model results with the friction combination (marsh: 35 m1/2/s, forest: 309 

8 m1/2/s) display same ME and RMSE values as the case (marsh: 35 m1/2/s, forest: 25 m1/2/s). Overall, a ME < 0.2 in 310 

all simulations indicate a poor model performance (Allen et al., 2007). Therefore, the calibration in bed frictions is 311 

less meaningful without a careful calibration of boundary conditions (river discharge) and initial conditions 312 

(topography). 313 

After modifications of river discharge and topography, the model performance improves (Tables 3, 4). It is interesting 314 

to note that the model with friction scenario (marsh: 35 m1/2/s, forest: 8 m1/2/s) performs best, achieving the highest 315 

ME. This is probably because we calibrated river discharge and topography with these friction values. The modified 316 

topography therefore retains information about the friction distribution, optimizing the model results. The sensitivity 317 

analysis (Table 3) shows the ME ranges from 0.38 to 0.53, and RMSE from 1.6 cm to 1.85 cm. Therefore, the influence 318 

of the friction coefficients on model results increases, and becomes important only after calibration of river discharge 319 

and DTM elevation.  320 

To shed more light on the effect of friction, we compare two scenarios against the final model calibration by increasing 321 

marsh roughness (marsh: 8 m1/2/s, forest: 8 m1/2/s) and decreasing forest roughness (marsh: 35 m1/2/s, forest: 35 m1/2/s) 322 

(Fig. 8). The watershed of the HB channel is characterized by salt marshes, and more friction in the marsh constrains 323 

flows in the channel, increasing variations in water levels along the channel banks (Fig. 8a). With a lower friction in 324 

the forest, variations in water levels decrease near the WL channel but increase farther away (Fig. 8c). Both scenarios 325 

lower the model performance compared to the initial bed friction scenario (Fig. 8b). 326 

 327 

Table 1.  Model efficiency for 49 scenarios of bed friction for marsh and forest surfaces before calibration of 328 
discharge and DTM. Pink color indicates Chézy marsh values ≥ forest values. 329 

Model Efficiency before calibration of discharge and DTM 
Marsh (Chézy friction) 

Fo
re

st
 

(C
hé

zy
 

f
i

ti  (m1/2/s) 8 15 20 25 30 35 40 
8 0.16 0.17 0.17 0.16 0.16 0.16 0.16 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JF004639#jgrf20929-bib-0001


15 0.11 0.13 0.14 0.15 0.15 0.14 0.14 

20 0.08 0.11 0.12 0.12 0.12 0.12 0.12 

25 0.05 0.08 0.1 0.12 0.15 0.16 0.16 

30 0.18 0.18 0.16 0.14 0.11 0.08 0 

35 0.07 -0.02 -0.06 -0.06 -0.08 -0.12 -0.16 

40 -0.02 -0.1 -0.13 -0.14 -0.17 -0.22 -0.22 
 330 

Table 2.  Root-Mean-Square Error for 49 scenarios of bed friction for marsh and forest surfaces before calibration of 331 
discharge and DTM. Pink color indicates Chézy marsh values ≥ forest values. 332 

 333 

RMSE before calibration of discharge and DTM 
Marsh (Chézy friction) 

Fo
re

st
 (C

hé
zy

 fr
ic

tio
n)
 (cm) 8 15 20 25 30 35 40 

8 2.15 2.15 2.14 2.15 2.15 2.15 2.16 

15 2.22 2.19 2.18 2.17 2.17 2.18 2.18 

20 2.26 2.22 2.21 2.2 2.21 2.21 2.21 

25 2.29 2.26 2.23 2.21 2.17 2.15 2.15 

30 2.13 2.13 2.16 2.18 2.22 2.25 2.35 

35 2.27 2.38 2.42 2.43 2.45 2.48 2.53 

40 2.37 2.47 2.5 2.52 2.54 2.59 2.6 
 334 

Table 3.  Table 1.  Model efficiency for 49 scenarios of bed friction for marsh and forest surfaces after calibration of 335 
discharge and DTM. Pink color indicates Chézy marsh values ≥ forest values. 336 

 337 

Model Efficiency after calibration of discharge and DTM 
Marsh (Chézy friction) 

Fo
re

st
 (C

hé
zy

 fr
ic

tio
n)
 (m1/2/s) 8 15 20 25 30 35 40 

8 0.44 0.5 0.49 0.49 0.51 0.53 0.52 
15 0.46 0.46 0.45 0.43 0.44 0.44 0.46 
20 0.4 0.45 0.48 0.48 0.45 0.48 0.45 
25 0.46 0.43 0.43 0.48 0.45 0.45 0.45 
30 0.47 0.44 0.42 0.41 0.4 0.38 0.37 
35 0.4 0.37 0.36 0.35 0.34 0.33 0.33 
40 0.37 0.35 0.33 0.33 0.32 0.32 0.31 

 338 

Table 4.  Root-Mean-Square Error for 49 scenarios of bed friction for marsh and forest surfaces after calibration of 339 
discharge and DTM. Pink color indicates Chézy marsh values ≥ forest values. 340 



 341 

RMSE after calibration of discharge and DTM 
Marsh (Chézy friction) 

Fo
re

st
 (C

hé
zy

 fr
ic

tio
n)

 (cm) 8 15 20 25 30 35 40 
8 1.76 1.66 1.68 1.68 1.65 1.6 1.63 
15 1.73 1.74 1.75 1.77 1.76 1.76 1.72 
20 1.82 1.75 1.7 1.7 1.74 1.7 1.75 
25 1.73 1.78 1.77 1.7 1.74 1.75 1.74 
30 1.72 1.77 1.79 1.8 1.82 1.85 1.87 
35 1.82 1.87 1.89 1.9 1.91 1.92 1.93 
40 1.87 1.9 1.92 1.93 1.94 1.94 1.95 

 342 

Figure 8. Influence of the bed friction (Chezy's coefficient) of the marsh and forest on water level changes after 344 

calibration of river discharge and DTM. (A, D) marsh (8 m1/2/s) and forest (8 m1/2/s), (B, E) marsh (35 m1/2/s) and 345 

forest (8 m1/2/s), and (C, F) marsh (35 m1/2/s) and forest (35 m1/2/s). (A, B, C) Spatial distribution of modeled water-346 

level changes, and (D, E ,F) the model results as a function of UAVSAR data. 347 

 348 



4.5 Validation of calibrated river discharge and wetland elevations  349 

Figure 9. (A) Water surface elevation (NAVD88) measured by AirSWOT along the Wax Lake Outlet (WLO) 351 

(Denbina et al., 2019). (B) Bathymetric data of cross sections a-a’ and b-b’ in Figure 4 used for the calculation of the 352 

hydraulic radius.  353 

The slope of the water surface calculated by AirSWOT is presented in Fig. 9A (see also Denbina et al., 2019), while 354 

the two cross sections extracted from bathymetric data before and after the GIWW are reported in Fig. 9B. The 355 

geometric values of the two cross sections are: A1 = 3945 m2, 𝑅𝑅ℎ1= 15.40 m, A2= 4041m2, 𝑅𝑅ℎ2 = 15.49 m. The bed 356 

roughness is assumed to be constant along the WLO (C1 = C2). To reduce possible noise in the AirSWOT data, we 357 

calculate the 300-m averaged slope values (S1=4.75 cm/km and S2=2.25 cm/km), and the 500-m averaged slope values 358 

(S1=4 cm/km and S2=2.33 cm/km, Fig. 9A, see also Denbina et al., (2019)). The corresponding value of Q2/Q1 is 0.71 359 

for the 300-m slope and 0.78 for the 500-m slope, which means that the GIWW receives 29% and 22% of the total 360 

river discharge respectively. The calibrated river discharge obtained by reducing of 20% the total discharge at the 361 

Calumet station is therefore reasonable, and well accounts for the flow diversion in the intracoastal waterway.  362 

We collected ground-truth elevation data of all the CRMS sites (n=10) within the model domain and compared them 363 

to the topographic data used in the model (Figs.4, 10). The averaged positive error is 12.65 ± 9.18 cm for 10 CRMS 364 

sites, with a maximum error of 28.43 cm at CRMS-4016. Therefore, ground elevation data indicate a systematic 365 

positive error in LiDAR derived elevations. A positive error in the LIDAR elevation of wetlands is very common, and 366 

is due to the difficult penetration of the signal in the dense grass canopy (see Rosen et al., 2006).  367 

 For the 4 sites (0489, 4779, 4016, 0479) within the UAVSAR area, the DTM correction using our method reduces 368 

the error from 20.27 cm to 6.82 cm. The correction little improves the elevation at CRMS-4779 (Fig. 10); this is 369 



probably due to the very small value of water level change measured by UAVSAR (Fig. 4) and the complex network 370 

of narrow channels not well represented in the modelling mesh. Despite this, our method seems capable of reducing 371 

the elevation error at different locations.    372 

 373 

Figure 10. The initial elevations derived from LiDAR data (n=10, indicated as black dots) and corrected elevations 375 

based on UAVSAR data  (n=4, indicated as red triangle) as a function of ground truth elevations measured at 376 

Coastwide Reference Monitoring System (CRMS) sites. See locations of CRMS sites in Fig.4.  377 

 378 

5. Discussion 379 

UAVSAR repeat-pass interferometry can detect water-level changes beneath vegetation canopies at a time scale of 380 

minutes to hours, making it possible to capture tidal propagation in coastal wetlands. The high-spatial-resolution 381 

observations of water-level change provided by this sensor can be used to calibrate hydrodynamic models. We 382 

developed a high-resolution hydrodynamic model and compared its output with the water-level changes measured by 383 

UAVSAR over a 2.5-hour period during which tidal flow caused water level change in channels and adjacent wetlands. 384 



We found that the accuracy of the LiDAR-derived topography and of the river discharge used as a boundary condition 385 

are important for the overall model performance, whereas the calibration of bed friction becomes regionally important 386 

only with boundary conditions and DTM calibrated. 387 

5.1 Model calibration and measurements uncertainty  388 

A calibrated model should reproduce tidal and riverine fluxes at the boundaries, because very small errors in water 389 

levels amplitude and phase can change flow patterns within the model domain (Abbott and Skovgaard, 1978; Cunge, 390 

2003). Pellettier (1987) showed that uncertainty of discharge measurements at river stations could be as high as 20% 391 

of the observed value. Calibration of numerical models of natural river streams (e.g. Po River in Italy, Domeneghetti 392 

et al., 2012) can produce unrealistic Manning’s coefficients, to compensate for the uncertainty of discharge 393 

measurements (Horritt and Bates, 2002). In our study area, potential sources of uncertainty include errors in the river 394 

discharge at the northern boundary due to interaction of the Wax Lake Outlet with the GIWW, the disconnection with 395 

adjacent wetlands east and west of the model domain, and poor spatial information on hydrological connectivity from 396 

small-scale creeks (Hiatt and Passalacqua, 2015).  397 

High river floods can attenuate tidal flows, leading to small temporal variations in water level (Sassi and Hoitink, 398 

2013; Van de Kreeke and Brouwer, 2017). As a first step, the incoming river flow is calibrated to yield a comparable 399 

instantaneous water-level change at the wetland margin. We found that lowering the river discharge at the boundary 400 

does increase variations in water level, particularly in lower marshes, however the overall model performance as 401 

measured by the parameters ME and RMSE show little improvement (Fig. 5).The hydrodynamic model performance 402 

can be significantly improved with a 2-D spatial comparison with measured water-level changes during a tidal cycle. 403 

Correcting the DTM using the measured water-level change had a much larger impact on model performance. It is 404 

important to note that the calibration of the wetland DTM and friction coefficient are meaningful only if the correct 405 

tidal signal is present at the wetlands margin and at the inlet of the tidal channels.  406 

A summary of previous studies at different sites show that the averaged LiDAR elevation error in salt marshes is 18 407 

cm with a standard deviation of 14 cm. This error is likely to result in misleading hydrodynamic modeling outcomes 408 

(Alizad et al., 2020; Buffington et al., 2012). In Wax Lake Delta, we directly refine the wetland DTM by coupling a 409 

hydrodynamic model and UAVSAR data. The model performance in terms of water-level changes substantially 410 



improves the DTM adjustment. The high positive LiDAR bias (~ 0.4 m) in the marsh and the low bias in the forest 411 

(Fig. 11) indicates the necessity of DTM adjustment especially for marshes, in low-lying micro-tidal coastal deltas.   412 

In the forest area (Site 1, in Fig. 11) the average DTM elevation is between 0.4 and 0.6 m (NAVD88 datum, positive 413 

values indicate a higher elevation) and the changes in water levels measured by UAVSAR are small (~0.1m in 2.5hr). 414 

Our topographic calibration increases the elevations of the platform, but only slightly (less than 0.1m). Interestingly, 415 

the correction yields a more uniform topography reducing the size of patches in the original DTM that are probably 416 

caused by tree crowns (Fig. 11E). In the marsh area (Site 2, Fig. 11) the elevation of the marsh at the channel banks is 417 

unrealistically high (above 0.8 m), likely due to the thick grass canopy that prevents the LiDAR signal from reaching 418 

the ground. In the model simulations, these areas are unrealistically dry. Note that the elevations are higher in the 419 

marsh than in the forest in the original DTM, in disagreement with studies on vegetation patterns in the delta (Fig. 11J) 420 

(Morris et al., 2005). The topographic error is confirmed by the large change in water level (Fig. 11I) that would be 421 

impossible in a place with such low water levels. The correction proposed by our methodology reduces the elevations 422 

by up to 0.4 m (Fig. 11L), creating a more uniform and realistic topography (Fig. 11K). The correction is more 423 

pronounced in the marsh area, which is more prone to LiDAR errors (compare Fig. 11F and 11L). After calibration, 424 

the marsh site becomes slightly lower than the forest one (compare Figs.11E and 11K), in agreement with the 425 

vegetation zonation of the delta.         426 



Figure 11. Comparison between Site 1 (forest dominated area near the Wax Lake channel) and Site 2 (marsh dominated 428 

area near the Hog Bayou channel). (A, G) Aerial photograph of forest and marsh derived from Google Earth. (B, H) 429 

Land classification from Sentinel-2 imagery. (C, H) Water level changes in 2.5hr obtained with UAVSAR. (D, J) 430 

Initial DTM (NAVD88, positive values indicate a higher elevation). (E, K) DTM after modification. (F, L) Change in 431 

DTM elevations after calibration, positive values indicate a lower elevation. 432 

 433 



5.2 Limitations of the proposed method 434 

SAR derived hydraulic variables have already been utilized to calibrate the bed friction of different landscapes, on the 435 

assumption that errors in boundary conditions and initial topography have little influence on model results. For 436 

instance, the Manning’s coefficients of the main channel and floodplains of the Po River in Italy were calibrated with 437 

radar altimetry (ERS-2 and ENVISAT water level data) in a 2-D hydraulic model (Domeneghetti et al., 2014). InSAR 438 

water-level change data were also used to calibrate the Manning’s coefficients in a model of the central Atchafalaya 439 

floodplain (Jung et al., 2012).  440 

In our system, wetland friction affects the regional water flow, but its calibration did not improve the model 441 

performance after the correction of river discharge and topography (Tables 3, 4). This might be because the calibration 442 

of discharge and topography contains information of bed friction, and the initial friction setup can mildly influence 443 

the accuracy of the calibration of other parameters. Note that the friction coefficients used in the sensitivity analysis 444 

cover a very large range (from 8 to 40 m1/2/s) and yet they hardly affect ME and RMSE (tables 1,4). Another option 445 

would be to keep the wetland elevation constant, and change the friction coefficient locally in an iterative way, as we 446 

did for elevation. However, this would lead to very large spatial variations in friction, which are unrealistic for these 447 

homogeneous vegetation covers, and friction values very likely outside of the range reported in the literature. Our 448 

results are consistent with previous findings suggesting that friction is an inherent physical parameter; therefore, a 449 

calibration exclusively based on the adjustment of the friction coefficient could produce unrealistic model results 450 

(Cunge.2003).  451 

Another possible approach would be to lower or elevate the entire topography of a fixed amount, to correct for possible 452 

vegetation biases in the LiDAR data, and then calibrate the friction coefficient. A uniform decrease of 20cm in 453 

elevation would increase the flow on the wetland surface, increasing the temporal change in water depth (Fig. S1B), 454 

but it would concentrate less flow near the channels, reducing the change in water depth near the HB channel, where 455 

UAVSAR data show high values of water level change. On the other hand, a uniform increase in elevation would 456 

concentrate the flow in the channels (Fig. S1C), but it would reduce the flow on the wetland surface, with large area 457 

completely dry even at high tide. We therefore conclude that the wetland elevation needs to be selectively adjusted as 458 

a function of local hydrodynamic data.  This is also evident in Figure 11, which shows higher LiDAR elevations in 459 



the marsh with respect to the forest, when in reality it should be the opposite (the forest is typically located at higher 460 

elevations).            461 

In practice, we suggest to set an initial bed friction coefficient for each geomorphic class based on roughness tables, 462 

then carefully calibrate boundary conditions and topography based on UAVSAR data, and lastly calibrate bed 463 

roughness within a meaningful range. The complexity and nonlinear interactions between different parameters, such 464 

as bed friction, elevation and discharge, demand a comprehensive method to optimize the model performance with 465 

multiple parameters calibrated simultaneously in a physical way. The topography correction method adjusting 466 

elevation at each model cell by the difference in water level changes between model and UAVSAR may have 467 

limitations when applied to other systems. 1) The method empirically relates elevation error to water level change, 468 

without solving the physical functions between water level change, elevation and friction. 2) Changes in bed elevation 469 

at one cell would affect tide propagation and water level changes at cells downstream; therefore the empirical method 470 

may produce unrealistic results for a patchy and irregular topography. All the calibrations are based on a sole parameter 471 

of water level change derived from UAVSAR, however it is unknown whether this calibration would influence the 472 

model performance with respect to other parameters, such as water level and flow velocity. Future research may 473 

involve multiple hydraulic parameters for model calibration, e.g. a combination of water level change (UAVSAR) and 474 

water surface slope (AirSWOT).  475 

As the water level changes little (~ 10 cm) during this 2.5-hour time window, here we set constant values of bed 476 

friction for the marsh and forest, by assuming that it includes the friction caused by vegetation canopy (Zhang et al., 477 

2020). However, hydraulic models in rivers show that the effective friction is proportional to the bed elevation variance 478 

and inversely proportional to depth (Rodríguez et al., 2020). Models that require high accuracy can integrate remote 479 

sensed vegetation parameters, defining a wetland friction variable in space and time (Fagherazzi et al., 2020). The 2.5-480 

hour UAVSAR campaign was conducted during river flood and high-water levels. When the vegetation is submerged, 481 

large-scale sheet flow becomes important, and the relative difference in friction between the channels and platform 482 

decreases (Temmerman et al., 2005; Fagherazzi et al., 2012). Similarly, the relative difference in friction between the 483 

marsh and forest would also decrease with increasing water depths. Future research can use consecutive UAVSAR 484 

observations covering a full tidal cycle to explore the sensitivity of bed friction to different vegetation species and 485 

submergence depths. 486 



Our model fails to capture water level variations in the lower HB channel (Fig. 4B) most likely due to the coarse mesh 487 

grid resolution that do not fully resolve the small-scale creeks (see area in the red dotted circle in Fig. 6B). A 488 

discontinuous channel with a width of one cell does not allow the correct propagation of the tidal and riverine signal, 489 

decreasing water fluxes and affecting water levels.  As a result, the model performs better in the upper subdomain 490 

(WL channel). Future research should evaluate the influence of bathymetric resolution on tidal propagation from the 491 

main Wax Lake Outlet to the small creeks. The acquisition time of the UAVSAR data is also important. During low 492 

river discharge and neap tides, the calibration can be very challenging due to the small magnitude of water level 493 

changes and the limited accuracy of wetting and drying schemes utilized by numerical models. Even during high 494 

riverine flow and with the wetlands inundated, the water-level change is only in the range of ~5 cm/hr. For systems 495 

with larger tidal ranges (e.g. the Fly River delta, Canestrelli et al., 2010, or the Yangtze delta, Zhang et al., 2018), the 496 

large temporal variations in water levels can be more easily detected by UAVSAR, expanding the application of this 497 

technology.  498 

 499 

6. Conclusions 500 

UAVSAR can detect water level changes beneath vegetation canopies with high spatial and temporal resolution. We 501 

presented here the first comparison between UAVSAR observations of tide-induced water level change and numerical 502 

simulations with a hydrodynamic model. The following results were obtained from our analysis: 503 

1) A comparison between model results and UAVSAR data indicates that small errors in bathymetry (up to 20 504 

cm) have a strong effect on the hydrodynamics of the wetland platform. This result is of general validity for 505 

microtidal areas, and was never highlighted before for lack of distributed hydrodynamic data on the marsh 506 

platform. 507 

2) State-of-the-art topographic data of wetlands obtained for example from LiDAR are therefore inadequate for 508 

modeling purposes, because they are often affected by vertical errors in the order of centimeters caused by 509 

the dense vegetation cover.  510 

3) A correction of the topography is possible by combining UAVSAR data and a high-resolution numerical 511 

model that solves the platform hydrodynamics. This coupling is necessary because only a numerical model 512 

can convert the hydrodynamic information collected by UAVSAR in elevation. 513 



4) The topographic correction is spatially distributed (resolution of 10 m) and physically based: at every point 514 

of the mesh the elevation is improved by iteratively solving the hydrodynamics and comparing it to UAVSAR 515 

data. This correction is therefore superior to previous corrections that were either uniform in space (e.g. 516 

lowering the marsh of a fixed amount) or based on ancillary data not directly linked to platform 517 

hydrodynamics (e.g. vegetation biomass).      518 

In conclusion, our results demonstrate significant improvement in parametrizing a hydrodynamic model. In particular, 519 

we were able to correct wetland topography, which traditionally requires labor-intensive campaigns to collect sparse 520 

in-situ measurements. We provided a general framework for model calibration that adjusts river discharge and LiDAR-521 

derived wetland topography based on the UAVSAR data. The calibration enables realistic tidal propagation in the 522 

wetlands, with the model efficiency improving from 0.15 to 0.53 and the RMSE decreasing by 26%. Our novel 523 

approach using airborne remote sensing to calibrate hydraulic variables will substantially improve the reliability and 524 

accuracy of model simulations, and thus advance our understanding of hydrodynamics in coastal wetlands. 525 
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