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Key Points
1. Marsh formation can be divided in three distinctive phases: preparation phase,
encroachment phase, and adjustment phase.
2. Sediment concentration, settling velocity, sea level rise, and tidal range each comparably
affect restoration outcomes in different ways.
3. Our simulations show that the Unvegetated-Vegetated Ratio (UVVR) also relates to

sediment budget in marsh development.

Abstract

The valuable ecosystem services of salt marshes are spurring marsh restoration projects around the
world. However, it is difficult to determine the final vegetated area based on physical drivers.
Herein, we use a 3D fully coupled vegetation-hydrodynamic-morphological modeling system to
simulate the final vegetation cover and the timescale to reach it under various forcing conditions.
Marsh development in our simulations can be divided in three distinctive phases: a preparation
phase characterized by sediment accumulation in the absence of vegetation, an encroachment
phase in which the vegetated area grows, and an adjustment phase in which the vegetated area
remains relatively constant while marsh accretes vertically to compensate for sea level rise.
Sediment concentration, settling velocity, sea level rise, and tidal range each comparably affect
equilibrium coverage and timescale in different ways. Our simulations show that the Unvegetated-

Vegetated Ratio also relates to sediment budget in marsh development under most conditions.

Plain language summary
The valuable ecosystem services of salt marshes are spurring marsh restoration projects around
the world. Given their important role in shore protection and carbon sequestration, marsh

restoration and expansion projects are becoming more common. However, it is difficult to
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predict the final extension of the vegetated area in a restored marsh and what drivers control
vegetation cover. In this study, a state of the art numerical model was used to simulate marsh
development in a typical configuration used in land reclamation projects. The final vegetation
cover and the timescale to reach it are derived from simulations with various sediment
conditions, tides, and sea level rise. We found that marsh development can be divided in three
distinctive phases: a preparation phase characterized by sediment accumulation in the absence of
vegetation, an encroachment phase in which the vegetated area grows, and an adjustment phase
in which the vegetated area remains relatively constant while marsh platforms rise vertically to
compensate for sea level rise. Sediment concentration, settling velocity, sea level rise and tidal

ranges each plays a role in terms of equilibrium coverage and the time needed to reach it.

1. Introduction
Salt marshes are valuable and unique landforms located at the interface between land and ocean.
Salt marshes are still common along many shorelines, despite a 25% decline of the original
coverage and a current 1~2% rate of loss per year (Crooks et al., 2011; Duarte et al., 2008;
“Secretariat of the Convention on Biological Diversity,” 2007). The most recent estimate of global
marsh area exceeds 5 million Ha (Mcowen et al., 2017). Serving as a natural defense, salt marshes
play an important role in reducing the damage of storms to coastal communities (Moller et al.,
2014; Temmerman et al., 2013; Zhao & Chen, 2014). In the United States, shoreline protection by
marshes against storms are valued up to $5 million per km? (Costanza et al., 2008), and coastal
wetlands were valued at $625 million in protecting against direct flood damages during Hurricane
Sandy (Narayan et al., 2017). Other valuable ecosystem services provided by salt marshes include
nutrient removal, carbon storage, and habitat for flora and fauna (Zedler & Kercher, 2005).

Therefore, salt marshes not only protect coastal communities but also sustain economies and



55

56

57

58

59

60

61

healthy ecosystems. Recognizing the above services, multiple public and private agencies are
attempting to create and sustain marshes (Barbier et al., 2008; Bayraktarov et al., 2016; Seddon et
al., 2020). Restoration practices include shoreline protection, sediment trapping, and thin layer
sediment placement techniques among others (VanZomeren et al., 2018; Wigand et al., 2017).
These techniques are implemented in existing marsh systems to prevent marsh degradation or
promote marsh expansion. Other projects aim at creating new marsh land using engineered

structures
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Figure 1 Examples of land reclamation projects: A, Yangtze River Mouth, China (© Maxar Technologies
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Bay, USA (Data SIO, NOAA, U.S. Navy, NGA, GEBCO, © TerrainMetrics 2021 © Google 2021). C, Petaluma River Marsh Restoration, USA (© Google 2021). D, coastal expansion
near Groninger Wad, The Netherlands (© GeoBasis-DE/BKG 2021 © Google 2021). E, Model geometry. Cells in yellow are active during simulation, the two orange line signify

where hydrodynamic and sedimentary open boundary conditions were imposed. F, bathymetry after tidal spin ups. Bathymetry for each different tidal range settings were

separately created by a 30 days run where only hydrodynamics affect the bed this is a tidal spin up to adjust bathymetry to the hydrodynamics.
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(Staver et al., 2020); while some studies show that engineered marshes do not always lead to
sediment gains (Fleri et al., 2019), some others indicate that restoration blocks sediment export
while protecting the marsh from wave erosion (Vona et al., 2020). Thus different outcomes can
emerge from restoration projects.
A common configuration of these engineered marsh projects are sea walls or dikes shaping a
rectangular area with an inlet to the ocean or estuary (Fig. 1). This geometry mimics natural inlet
systems, which creates asymmetric tidal velocities leading to net sediment transport from the ocean
into bays (Brown & Davies, 2010; Pingree & Griffiths, 1979). The net sediment transport across
an inlet depends on the morphology and marsh vegetation in the back barrier basin (Elias et al.,
2012; Mariotti & Canestrelli, 2017).

Assessing the likelihood of marsh survival in response to SLR (Sea Level Rise) has been
the focus of research for several decades Click or tap here to enter text.(Fagherazzi et al., 2012;
Mckee & Patrick, 1988; Morris & Haskin, 1990). Sediment supply has been identified as a key
factor to determine marsh survival (Mariotti & Fagherazzi, 2010) as well as success in marsh
restoration (Ganju, 2019). Under different SLR scenarios, reaching marsh equilibrium requires
different sediment supply (Fagherazzi et al., 2013). The ratio between unvegetated and vegetated
area (Unvegetated Vegetated Ratio, UVVR) in a marsh system has been proposed as a simple
metric to assess sediment budgets and resilience against SLR (Ganju et al., 2017). UVVR scales
well with sediment budget that indicates healthy (sediment import) or unhealthy (sediment export)
marshes, and it is easily measurable through satellite images. However, more work is needed to
understand the relationship of UVVR with other parameters that lead to marsh development. The

present work attempts to close this data gap. We simulate marsh development under a wide range
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of scenarios and unravel the link between vegetated marsh surfaces and different forcing
conditions.

The driving forces of marsh development vary from site to site, so controlled long-term studies
are needed that test sediment conditions, tidal range, and SLR. Computer models have the
advantage of comparability and flexibility in studying marsh dynamics. Multiple models have been
developed and applied to study salt marsh landscapes. Many efforts have been made to couple
marsh vegetation and sedimentation processes (Nardin et al., 2016; Nardin & Edmonds, 2014;
Temmerman et al., 2005) as well as morphology and vegetation (D’ Alpaos et al., 2007; Kirwan &
Murray, n.d.; Mariotti & Fagherazzi, 2010; Morris, 2006; Mudd et al., 2004). Mariotti and
Canestrelli (2017) studied an idealized tidal basin with a fully coupled model but applied limited
testing to external forcing (sediment concentration and SLR). Other models that simulated
mangroves or marshes have focused on the channel network (Marciano et al., 2005; van Maanen
et al., 2015). Alizad et al., (2016) developed a model for studying salt marsh development in tidal
estuaries and applied it to Timucuan salt marsh system (northeast Florida). The model calculated
biomass density based on marsh elevation and tidal datum that led to a geospatial accretion in
marsh domain. The elevation change of marsh platform led to a modified bottom friction and
altered tidal dynamics. However, the model did not consider dynamic sediment transport.

In this work, we use a coupled vegetation-hydrodynamic-morphological model to study the
development of a marsh via vegetation colonization and its relationship with forcing conditions.
The Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System
(Warner et al., 2010) is used, with a newly developed vegetation module (Kalra et al., 2021). We
were able to simulate marsh development in an idealized basin and monitor sediment fluxes and

feedbacks with vegetation through a varying range of sediment, SLR, and tidal conditions. This is
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the first modeling study aimed at predicting the final equilibrium marsh coverage in response to
various forcing conditions. Our results are important for marsh restoration and land reclamation as
we provide the final vegetation coverage and the timescale to reach it for a range of forcing

variables.

2. Methods
First, we introduce the numerical model with a description of the newly developed method to
simulate marsh development. Then, we detail the model domain set-up and modules used for the
simulations. Finally, we present the modifications that we implemented on the hydrodynamic and

vegetation components of the model.

2.1 Model description for marsh development

The modeling framework (COAWST v3.7) has various components responsible for coastal
processes including but not limited to hydrodynamics, sediment transport, vegetation, and terrain
evolution. Details on model coupling can be found in Warner et al (2010). For the application
presented in this work, we adopted the sediment transport and marsh routines presented in Kalra
et al. (2021). Updated model framework can be found in supplemental materials (Fig. S5)

The long-term formation of the marsh is modeled by accelerating the process of deposition and
erosion with a morphological factor of 200 (Ranasinghe et al., 2011; Roelvink, 2006; Warner et
al., 2010). The deposition or erosion caused by the hydrodynamics are multiplied by this factor
and then added to or subtracted from the bed. However, this multiplication only happens at the
interface of water and bed sediment, therefore, the sediment concentration in the water column is
not affected by it. We initialize the model with sufficient bed sediment (10 meters of sediment

layer) to allow for erosion as we are using a large morphological factor.
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2.2 Design of numerical experiments

We design an idealized case that mimics a natural inlet basin in a barrier island system or an
engineering structure built for land reclamation that naturally imports sediment (Fig. 1A~D). We
then adopt realistic values of sea level rise, tidal range, sediment concentration, and grain size
(Table 2 in supplement) and force them at the open boundary (Fig. 1E). Tides were varied in
amplitude only, with uniform period of 12 hours for all simulations so we can relate outcomes to
the effect of tidal range. In each case, only one kind of sediment was simulated. Since we focus
on the colonization and evolution of intertidal marshes in sheltered areas, we do not consider
waves for simplicity.

The domain consists of square grid cells (dx = 200 m in the horizontal) with 10 Sigma layers. The
open boundary is 8§ km wide and 15 m deep, while the inlet is 1.2 km wide (Fig. 1E). The basin
area is 145 km? with a uniform water depth of 2 m and with an additional random elevation of +
0.05 m. Density and porosity of the bed sediment were fixed across experiments while grain size
changes with settling velocity in different simulations (Table 2 in supplement). The four cases of
settling velocity (STLO.1~STLO0.5) each only simulates a single sediment grain-size. Across
scenarios, we simulated five grain sizes including the standard case.

We also specify an area about 1 km wide near the open boundary where sediment
deposition is not allowed (Fig. 1E). This area mimics the surf zone where the flow conditions are
strong enough to maintain sediment in suspension without deposition. Specifically, all settling
fluxes of sediment through vertical layers were set to zero so that grid elements in contact with
this area inherit the sediment concentration at the boundary. By doing this, we allow the
hydrodynamics to develop according to our geometric configuration while sediment

concentrations remained as they were prescribed at the boundary. Settling fluxes were then linearly
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increased to model-calculated values between the end of this area and the inlet. This configuration

allows us to constrain the sediment input and net budget to the system.

2.3 Simulations

The vegetation routine was modified to represent the development of a tidal marsh and to optimize
model performance (Fig. S5). The model was initiated with a bare flat basin. During the simulation,
a cell is converted to a marsh cell only when it reaches a threshold elevation and gets dry at low
tide for the first time. Then following the parabolic distribution (equation 1 in supplement), the
biomass is updated based on elevation and hydroperiod parameters in each time step. In Table S1
(supplement), we report a list of parameters used in the simulations. A spin-up run was conducted
for each tidal range case (Table S2, Fig. 1F). The goal of the spin-up run is to reach an equilibrium
depth at the inlet so the filling of the basin occurs as a result of sediment import from the ocean.
To simulate SLR, we keep the mean water level unchanged and uniformly decrease the bottom

elevation of the entire domain.

2.4 Optimal UVVR and timescale analysis
Vegetation coverage is calculated with the Unvegetated-Vegetated ratio (UVVR) first proposed
by Ganju et al., (2017). In order to determine the equilibrium UV VR and the time it takes to reach
it, we regress the UVVR-time series with equation 1.

UVVR = E(1 + Ae™bY) (1)

E represents the asymptotic value that UVVR will eventually reach. The percentage of total area
covered by marshes is therefore ﬁ A reflects the curvature of the fitted curve and b controls the

velocity at which the equilibrium is reached. #95 is defined as time (¢) needed to reach 95% of the

equilibrium vegetated area. This method works for most cases as long as the system reaches
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equilibrium. In case of very high SLR (exceeding 25 mm/year), a stable marsh area cannot
establish, and thus these are not included as we are providing an expectation to stable formation

of marsh.

3. Results
First, we examine the evolution of a specific simulation which serves as a standard case (Std).
Then, results from each set of experiments where one of the four independent variables (SLR

rates, sediment input, settling velocity, or tidal range) is varied are presented.

3.1 Standard Case

The Std case adopts SLR, sedimentary conditions, and tidal range (Table 1 in supplement) from
observations near the artificial land-gaining structure at the Yangtze River mouth (Ai et al., 2018).
By analyzing the time series of marsh biomass and UVVR, we find that UVVR reaches a stable
value much earlier than marsh biomass (Fig. 2 & Fig. S4). In the Std case (Table S2), UVVR
variations decrease to less than 1/1000 of its variance after 25 years, while marsh biomass

variations are minimal after 40 years (Fig. S4).

11
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Figure 2. Development of marsh over time. Color zones indicate phases of marsh development. a)
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At the beginning of the simulation, there is a period of rapid import of sand for around 35 tidal
cycles, which is equivalent to about 9 years (area shaded in blue in Fig. 2). The net import of
sediment through the inlet was on average 4516 kg/s. Most sediment enters the bay while a small
fraction fills the inlet as shown in Fig. 2F as well as in Fig. S2A&B. At the end of the preparation
phase, the inlet is slowly filling, the bay is accreting and vegetation starts to colonize the basin
(Fig. S2B). The slow filling of the inlet (0.73 m/year of average inlet bathymetric change) is due
to a reduction in tidal prism, which decreases the flow at the inlet, triggering deposition. The
sediment imported in this period fills the bay and brings the bottom elevation close to the threshold
for vegetation colonization. The UVVR value was high during the first 10 years, meaning there
was little or no land in the suitable elevation range for vegetation. As we can see in Fig. S2-B, at
the end of this period the bottom of the bay is characterized by different depositional areas with
channels dissecting them and supplying sediment from the inlet. The bottom slope in the deep-
water area close to the inlet remains similar to the starting bathymetry, while the flat areas near the
boundaries are silting up. We name this period “Preparation Phase” as it serves the purpose of
preparing suitable areas for marsh colonization. It ends with a significant increase in marsh
biomass per unit area.

The next phase, called herein “Encroachment Phase” and shaded in green in Fig. 2, lasts
about 20 years, and it is characterized by salt marsh colonization. Percent of vegetation coverage
increases from 22% to 59%. Sediment import continues but with a decreasing rate (2193 Kg/s on
average). Through time, the flux of sediment favors an expansion of the salt marshes and promotes
accretion in the area already colonized by vegetation (Fig. 2A&E). In this period, the unvegetated

area near the inlet becomes shallower. As the rate of sediment import drops, the speed of marsh
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expansion decreases (from 1008 m?/day to 183.6 m?/day). Fig. S2-C shows the end bathymetry of
this period, when the entire bay is filled with the exception of the large channels near the inlet.
The system eventually reaches equilibrium in terms of planimetric marsh area, with
dendritic channels dissecting the marsh and an area of deep water around the inlet. In the last phase,
named Adjustment Phase (shaded green area in Fig. 2), the marsh area remains relatively
unchanged while the marsh elevation is increasing to keep pace with SLR. In this phase the marsh
is accreting to compensate SLR. The marsh coverage represented by UVVR in Fig. 2A remains

stable for the last 5~10 years while the platform elevation keeps pace with SLR (Fig. 2D&E).

3.2 Response to SLR, Tidal Range, and Sediment Characteristics

Equation 1 fits well the data with R’ = 0.998 for the Std case. Generally, a lower equilibrium
UVVR is accompanied by a lower timescale to reach equilibrium. When conditions favor a large
marsh area, usually vegetation can reach that coverage faster (Fig. 3A).

The equilibrium UVVR is very high for low input sediment concentration (0.005 kg/m?) and
decreases for higher concentrations. The decrease is more noticeable between 0.05 and 0.1 kg/m?,
suggesting that there might be a minimum sediment supply required to facilitate vegetation
colonization (Fig. 3A). A larger settling velocity means more sediment can deposit in suitable
locations for vegetation colonization during high tide. Therefore, with a high settling velocity, the
equilibrium UVVR decreases and it is accompanied by a small equilibrium time (Fig. 3B). If the
sediment settles even faster than what we simulated here, a limit on the transport might present in
our domain. SLR hinders marsh expansion so equilibrium is reached with a smaller coverage and
with a time delay. However, at low rates of SLR, the time needed to reach equilibrium remains
constant, while at high rates it increases significantly. Despite #95 increasing nonlinearly with SLR,

the equilibrium UVVR grows linearly (Fig. 3C).
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The effect of tidal range is complex. The equilibrium marsh coverage increases when tidal range
increases, while the #95 indicates that there is an optimal interval of tidal ranges for vegetation
development (Fig. 3D). A tidal range too small or too large slows down marsh expansion. In
microtidal environments the tidal prism is small, and this leads to limited fluxes of sediment toward

the marsh.

4. Discussion

Previous studies have shown dependence of marsh development on various external factors such
as sediment availability (DeLaune et al., 1990), land subsidence, or change of tidal water levels
(Cole, 1994). Our results show that within the tested conditions, marsh restoration or land
reclamation projects had optimal spatiotemporal coverage. With a 3D model, we found that short-
term equilibrium was achieved by a rapid initial import of sand and vegetation encroachment:
when the vegetated area is established, marsh accretion follows. This short-term equilibrium where
marshes are able to maintain a constant extent is informative for guiding coastal marsh restoration
and land reclamation.

As mentioned in the previous section, we expect marsh evolution to go through three
phases, and a small tidal range will make the “Preparation phase” especially challenging as it
requires a large amount of sediment flux to prepare the bay for vegetation. Thus, a high vegetation
area could only be reached when the tidal range produces adequate sediment fluxes to go through
the “Preparation phase” and perhaps “Encroachment phase” fast. On the other hand, a large tidal
range not only brings more sediment; it also enlarges the tidal flow and thus bottom shear stress
within a tidal cycle leaving a deposition much harder (Fagherazzi & Priestas, 2010 Fig. 4).. This
leads to a delay in reaching equilibrium, since large amount of sediment flow in and out of the

basin but little actually deposits.
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Marshes tend to maintain smaller area when forced with higher SLR rates. Similar results
were found by Mariotti and Canestrelli (2017) on marsh resilience to SLR, but our results were
somewhat different when describing equilibrium marsh area. First, all SLR rates are constant in
this study, meaning the sediment needed for the existing marshes to keep up with sea level rise
does not change over time. A higher SLR will create more space to be filled in by the same amount
of sediment input if other conditions remain the same. So the only way to keep up with SLR and
maintain a stable marsh area is to focus deposition on a limited area and use the given sediment to
build up vertically.

Marsh systems respond to SLR through sediment fluxes (Ganju et al. 2017). Degrading marshes
showed evidence of co-evolving UVVR and sediment budget i.e., the more negative the sediment
budget, the higher is UVVR. Also, SLR amplified net sediment export in an engineered tidal marsh
site (Fleri et al., 2019). Ganju et al. (2017) only studied degrading marshes, but here we focus on
a forming marsh and determine the relationship between UVVR and sediment fluxes.

In a forming marsh, sediment surplus decreases in time from high initial values to a value around
0.05 kg m™ year™!, while UVVR is also decreasing due to vegetation encroachment (Fig. 4a). The
four time steps (10, 20, 30 and 40 years) in each set of experiments represent a variety of systems
at different stages of marsh development (Fig. 4). Systems that evolved closer to equilibrium
maintain a lower sediment budget because the system is in the “Adjustment phase.” These systems
generally keep up with SLR, and the net sediment import goes to vertical accretion of the marshes.
On the other end of the spectrum, systems that are just starting vegetation colonization import
sediment at a significantly higher rate than older ones. Overall, the sediment budget scales well
with UVVR in most cases. Combining our results with Ganju et al (2017), a higher UVVR leads

to greater sediment flux with importing fluxes in forming marshes and exporting in degrading
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Most models of marsh evolution are vertically integrated and tend to exaggerate bottom friction.
This problem could be significant as vegetation produces vertically variant momentum extraction
as well as turbulence across the water column (Beudin et al., 2017; Marjoribanks et al., 2014;
Sheng et al., 2012). In our 3D hydrodynamics, velocity tends to be higher near the surface and
lower at the bottom while sediment concentration appeared the opposite. Crucial parameters like
sediment flux, deposition, or erosion are often products of multiplying velocity derived variables
(bottom stress, turbulence, or flow speed itself) and sediment concentration. Not resolving vertical
variance leads to potential overestimates of these parameters. Models that couple morphology and
biology either simulate a transect over a long period of time or use a simplification of the
hydrodynamics to determine the two-dimensional structure of a salt marsh, typically focusing on
the channel network. The study carried out by Mariotti and Canestrelli (2017) only investigated
two variables: sediment input and SLR, while not addressing the important effect of tidal range

and settling velocity of different sediments.

5. Conclusion
Marsh restoration projects have been carried out for decades with little comprehensive
understanding of what controls the final vegetation coverage and the time needed to reach that
coverage. Our results close this gap by providing the final vegetation cover (UVVR) and the
timescale to reach equilibrium under a variety of forcing conditions. SLR inhibits marsh expansion,
thus leading to a lower final vegetation coverage and a longer equilibrium time to obtain that
coverage. SLR rates higher than 25 mm/year might behave differently than what has been shown
here and can be addressed in future studies. Restoration projects with more sediment supply and

fine sediments are more likely to succeed in a short timeframe. The equilibrium marsh coverage
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increases with tidal range but only moderate tides (1~2 meters) favor fast colonization. UVVR
related well with sediment budget in forming marshes. High UVVR coincides with rapid sediment
import, while low UVVR indicates marshes approaching equilibrium that need limited amount of
sediment to keep up with SLR. We also identified three phases of marsh development : a
Preparation Phase characterized by abiotic deposition, an Encroachment Phase in which vegetation
colonizes the intertidal area, and an Adjustment Phase where the vegetated area is constant and
accretion balances SLR.

These results can help predict future restoration outcomes and provide important data for coastal
defense or land reclamation. By using our results, it is possible to determine at what stage a marsh
restoration is by looking at sediment fluxes and UVVR, what would be the final outcome of the

restoration, and the equilibrium timescale.
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