PREFACE

A passion for theoretical physics: a special issue in memory of Peter G O Freund

To cite this article: Jeffrey A Harvey et al 2021 J. Phys. A: Math. Theor. 54 010301

View the article online for updates and enhancements.

You may also like

- <u>Stellar evolution confronts axion models</u> Luca Di Luzio, Marco Fedele, Maurizio Giannotti et al.
- Operation and performance of the ATLAS semiconductor tracker in LHC Run 2
 The ATLAS collaboration, Georges Aad, Brad Abbott et al.
- Enrico Fermi: a great teacher Boon Leong Lan

IOP ebooks™

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

J. Phys. A: Math. Theor. 54 (2021) 010301 (4pp)

https://doi.org/10.1088/1751-8121/abb512

Preface

A passion for theoretical physics: a special issue in memory of Peter G O Freund

We dedicate this special issue to the memory of our esteemed colleague, inspiring teacher and cherished friend, Peter Freund (figure 1). Peter George Oliver Freund was born on 7 September 1936 in Timişoara, Romania. He obtained his PhD under the supervision of Walter Thirring at the University of Vienna in 1960. He came to the University of Chicago in 1963, where he remained throughout his career. He passed away on 6 March 2018.

Peter's early influential work [1] proposed what became known as the Freund-Harari conjecture, whose far-reaching impact is discussed in the contribution to this special issue by Veneziano [2], see also the review by Peter himself [3]. Dual resonance models (which were ultimately understood to be string theories) appeared soon afterwards, and Peter was among the few theorists at that time who took seriously the extra dimensions required for their consistency. Indeed, extra dimensions figured prominently in much of Peter's subsequent work, including the Cho-Freund paper [4] that helped launch a renaissance in Kaluza-Klein theories, the Freund-Rubin solution [5] that has played an important role in the AdS/CFT correspondence, his Kaluza-Klein cosmological solutions [6], and his work [7] that presaged the heterotic string. His book with Applequist and Chodos on Kaluza-Klein theory [8] became the standard reference on the subject. Many contributions to this special issue are devoted to gravity, string theory or higher dimensions [9–24].

Symmetry was a leitmotif that ran through much of Peter's work. He was an early proponent of supersymmetry, which plays a central role in string theories that incorporate fermion degrees of freedom. The Freund–Kaplansky paper [25] classified the simple graded Lie algebras; and Peter's book on supersymmetry [26] remains to this day a valuable introduction to the subject.

Several contributions to this special issue focus on symmetries of various kinds [27–35].

In his lectures at UC, Peter highlighted Noether's theorem, which is also highlighted here in the contribution by Deser [36]. But Peter was also quick to point out that not all conservation laws come from symmetries. Indeed, the Arafune–Freund–Goebel paper [37] showed that the 't Hooft magnetic charge is a topological invariant. Topology also played a key role in the Eguchi–Freund instanton solution [38].

In later years, Peter became interested in p-adic numbers in physics. The Freund-Witten paper [39] on p-adic string amplitudes and related work [40–42] created significant excitement in the theoretical physics community, briefly recalled here in the contribution by Frampton [43]. Although interest in p-adics then waned, it has recently experienced a renaissance in the context of the AdS/CFT correspondence, largely due to Gubser, who (together with his students) contributed to this special issue [44]. Sadly, this is one of Gubser's final works, since he died shortly afterwards in a tragic mountaineering accident.

Peter's late work [45] with his students on exact S-matrices for integrable perturbations of conformal field theories was also influential. Several contributions to this special issue focus on perturbations of CFTs or integrability [46–50]. The contribution by Witten [51] is a landmark work on tensor models.

Figure 1. Peter G O Freund. Credit: the Freund family.

'Multiple dimensions' was both a dominant theme in Peter's work, and also aptly characterized his other personas. He was a sonorous baritone, who performed in occasional solo recitals. Schubert was a particular favorite of his. He was also a writer, whose works included an acclaimed book [52] on prominent physicists of the 20th century, as well as a novella and numerous short stories. He was a polyglot (including Hungarian, Romanian, German, French and Italian, besides English) and a raconteur par excellence. His knowledge of history and music was encyclopedic; and he had seemingly boundless energy, invariably brimming with irrepressible excitement over new ideas. He was not only a student of Nature's forces, but he was himself a veritable force of Nature.

Peter is survived by his wife Lucy, his daughters Pauline and Caroline, and his five grandchildren, for whom he cared deeply and was very proud.

He is deeply missed by his family, friends, colleagues and students.

Acknowledgments

We are grateful to the many friends and colleagues of Peter who contributed to this special issue. JH acknowledges support from the NSF under grant PHY 1520748; EM acknowledges support from the DOE under grant DE-SC0009924; and RN acknowledges support from a Cooper fellowship.

Jeffrey A Harvey

Enrico Fermi Institute and Department of Physics, University of Chicago, 933 E 56th St., Chicago, IL 60637, United States of America

Emil J Martinec

Enrico Fermi Institute and Department of Physics, University of Chicago, 933 E 56th St, Chicago, IL 60637, United States of America

Rafael I Nepomechie*

Physics Department, PO Box 248046, University of Miami, Coral Gables, FL 33124, United States of America

E-mail: nepomechie@miami.edu

ORCID iDs

Jeffrey A Harvey https://orcid.org/0000-0001-5860-274X Rafael I Nepomechie https://orcid.org/0000-0003-1000-3400

References

- [1] Freund P G O 1968 Finite-energy sum rules and bootstraps *Phys. Rev. Lett.* **20** 235–7
- [2] Veneziano G 2020 A simple observation and its unexpected consequences *J. Phys. A: Math. Theor.* 53 201002
- [3] Freund P G O 2012 Two-component duality and strings The Birth of String Theory ed A Cappelli, E Castellani, F Colomo and P Di Vecchia (Cambridge: Cambridge University Press) pp 122–8
- [4] Cho Y M and Freund P G O 1975 Non-abelian gauge fields as Nambu–Goldstone fields *Phys. Rev.* D 12 1711
- [5] Freund P G O and Rubin M A 1980 Dynamics of dimensional reduction *Phys. Lett.* B 97 233–5 [80(1980)]
- [6] Freund P G O 1982 Kaluza-Klein cosmologies Nucl. Phys. B 209 146
- [7] Freund P G O 1985 Superstrings from 26 dimensions? Phys. Lett. B 151 387–90
- [8] Appelquist T, Chodos A and Freund P G O 1987 *Modern Kaluza–Klein Theories* (Reading, MA: Addison-Wesley)
- [9] Di Vecchia P 2020 The early days of string theory and an N-pion extension of the Lovelace-Shapiro model J. Phys. A: Math. Theor. 53 201001
- [10] Friedan D 2019 A new kind of quantum field theory of (n-1)-dimensional defects in 2n dimensions *J. Phys. A: Math. Theor.* **52** 144001
- [11] Goncharov Y O and Vasiliev M A 2019 Scattering amplitudes as multi-particle higher-spin charges in the correspondence space J. Phys. A: Math. Theor. 52 384006
- [12] Hamada Y, Kiritsis E, Nitti F and Witkowski L T 2019 Axion RG flows and the holographic dynamics of instanton densities J. Phys. A: Math. Theor. 52 454003
- [13] Bergshoeff E A, Gomis J, Rosseel J, Şimşek C and Yan Z 2020 String theory and string Newton-Cartan geometry J. Phys. A: Math. Theor. 53 014001
- [14] Henneaux M, Lekeu V and Leonard A 2020 A note on the double dual graviton J. Phys. A: Math. Theor. 53 014002
- [15] Mezincescu L and Townsend P K 2020 DBI in the IR J. Phys. A: Math. Theor. 53 044002
- [16] Ketov S V 2020 On the equivalence of Starobinsky and Higgs inflationary models in gravity and supergravity J. Phys. A: Math. Theor. 53 084001
- [17] Sen A 2020 Self-dual forms: action, Hamiltonian and compactification J. Phys. A: Math. Theor. 53 084002
- [18] Fairlie D B 2020 Interconnections among nonlinear field equations J. Phys. A: Math. Theor. 53 104001
- [19] Schwarz J H 2020 M5-brane amplitudes J. Phys. A: Math. Theor. 53 291001
- [20] Stelle K 2020 Mass gaps and braneworlds J. Phys. A: Math. Theor. 53 204002

^{*}Author to whom any correspondence should be addressed.

- [21] Bernamonti A, Galli F, Hernandez J, Myers R C, Ruan S-M and Simón J 2020 Aspects of the first law of complexity J. Phys. A: Math. Theor. 53 294002
- [22] Sezgin E 2020 11D supergravity on $AdS_4 \times S^7$ versus $AdS_7 \times S^4$ J. Phys. A: Math. Theor. 53 364003
- [23] Das S R, Kaushal A, Mandal G and Trivedi S P 2020 Bulk entanglement entropy and matrices J. Phys. A: Math. Theor. 53 444002
- [24] Gunaydin M, Kachru S and Tripathy A 2020 Black holes and Bhargava's invariant theory J. Phys. A: Math. Theor. 53 444001
- [25] Freund P G O and Kaplansky I 1976 Simple supersymmetries J. Math. Phys. 17 228
- [26] Freund P G O 1986 Introduction to Supersymmetry (Cambridge: Cambridge University Press)
- [27] Crampé N, Frappat L and Vinet L 2019 Centralizers of the superalgebra osp(1|2): the Brauer algebra as a quotient of the Bannai–Ito algebra J. Phys. A: Math. Theor. **52** 424001
- [28] Kuzenko S M, Schwimmer A and Theisen S 2020 Comments on anomalies in supersymmetric theories J. Phys. A: Math. Theor. 53 064003
- [29] Brink L 2020 Hadronic strings—a revisit in the shade of moonshine J. Phys. A: Math. Theor. 53 091001
- [30] Ananth S, Nicolai H, Pandey C and Pant S 2020 Supersymmetric Yang–Mills theories: not quite the usual perspective J. Phys. A: Math. Theor. 53 174001
- [31] Lu Y and Minahan J A 2020 Notes on anomalies, elliptic curves and the BS-D conjecture J. Phys. A: Math. Theor. 53 024001
- [32] Harvey J A, Hu Y and Wu Y 2020 Galois symmetry induced by Hecke relations in rational conformal field theory and associated modular tensor categories J. Phys. A: Math. Theor. 53 334003
- [33] Bars I and Rosner J L 2020 Duality between hydrogen atom and oscillator systems via hidden SO(d, 2) symmetry and 2T-physics J. Phys. A: Math. Theor. 53 234001
- [34] Duff M 2020 Weyl, Pontryagin, Euler, Eguchi and Freund J. Phys. A: Math. Theor. 53 301001
- [35] Ramond P 2020 The Freund–Rubin coset, textures and group theory *J. Phys. A: Math. Theor.* **53** 341001
- [36] Deser S 2019 Energy in gravitation and Noether's theorems J. Phys. A: Math. Theor. 52 381001
- [37] Arafune J, Freund P G O and Goebel C J 1975 Topology of Higgs fields J. Math. Phys. 16 433
- [38] Eguchi T and Freund P G O 1976 Quantum gravity and world topology Phys. Rev. Lett. 37 1251
- [39] Freund P G O and Witten E 1987 Adelic string amplitudes Phys. Lett. B 199 191
- [40] Freund P G O and Olson M 1987 Non-archimedean strings Phys. Lett. B 199 186–90
- [41] Brekke L, Freund P G O, Olson M and Witten E 1988 Non-archimedean string dynamics Nucl. Phys. B 302 365–402
- [42] Brekke L and Freund P G O 1993 p-adic numbers in physics Phys. Rep. 233 1-66
- [43] Frampton P H 2020 Particle theory at Chicago in the late sixties and p-adic strings *J. Phys. A: Math. Theor.* **53** 191001
- [44] Gubser S S, Jepsen C and Trundy B 2019 Spin in p-adic AdS/CFT J. Phys.: Math. Theor. 52 144004
- [45] Freund P G O, Klassen T R and Melzer E 1989 S-matrices for perturbations of certain conformal field theories Phys. Lett. B 229 243-7
- [46] Hoare B, Levine N and Tseytlin A A 2019 On the massless tree-level S-matrix in 2d sigma models *J. Phys. A: Math. Theor.* **52** 144005
- [47] Guica M 2019 On correlation functions in $J\overline{T}$ -deformed CFTs J. Phys. A: Math. Theor. **52** 184003
- [48] Chakraborty S, Giveon A and Kutasov D 2019 $T\bar{T}$, $J\bar{T}$, $T\bar{J}$ and string theory *J. Phys. A: Math. Theor.* **52** 384003
- [49] Barbon J and Rabinovici E 2020 Remarks on the thermodynamic stability of TT-bar deformations J. Phys. A: Math. Theor. 53 424001
- [50] Nepomechie R I, Pimenta R A and Retore A L 2019 Towards the solution of an integrable $D_2^{(2)}$ spin chain *J. Phys. A: Math. Theor.* **52** 434004
- [51] Witten E 2019 An SYK-like model without disorder J. Phys. A: Math. Theor. 52 474002
- [52] Freund P G O 2007 A Passion for Discovery (Singapore: World Scientific)