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Abstract—Real-time streaming communication requires a high
quality-of-service despite contending with packet loss. Streaming
codes are a class of codes best suited for this setting. A key
challenge for streaming codes is that they operate in an “online”
setting in which the amount of data to be transmitted varies
over time and is not known in advance. Mitigating the adverse
effects of variability requires spreading the data that arrives at a
time slot over multiple future packets, and the optimal strategy
for spreading depends on the arrival pattern. Algebraic coding
techniques alone are therefore insufficient for designing rate-
optimal codes. We combine algebraic coding techniques with
a learning-augmented algorithm for spreading to design the
first approximately rate-optimal streaming codes for a range of
parameter regimes that are important for practical applications.

An extended version of this paper is available at: [1].

I. INTRODUCTION

Real-time communication arises in many popular applica-
tions, including VoIP, online gaming, and videoconferencing.
These applications involve a sender transmitting packets of
information to a receiver over a lossy channel. The receiver
must decode the data within a strict playback deadline. In
many scenarios, one cannot retransmit the lost packets because
doing so requires an extra round trip time and can thus
exceed the maximum tolerable latency [2]. Instead, one can
use erasure coding to recover lost packets.

While erasure coding has been well studied, real-time
communication has several unique aspects that require a
new “streaming model,” as was introduced by Martinian and
Sundberg [3]. During each time slot, i, a “message packet,”
denoted as S[i], of size k arrives at a sender. The sender
then transmits a “channel packet,” denoted as X[i], of size
n to a receiver over a burst-only loss channel. The sender
must recover S[i] by time slot (i + τ). An overview of the
model is presented in Figure 1, with the sender, channel, and
receiver appearing in blue. (The component “side information”
is introduced later.) Coding schemes that recover lost symbols
from each message packet τ time slots later have significantly
higher rates than alternatives, such as interleaved maximal
distance separable codes, that recover all lost symbols together
by τ time slots after the first message packet for which the
symbols are lost [3].

Numerous works [4]–[18] have employed tools from alge-
braic coding theory to design optimal streaming codes for var-
ious settings where the sizes of message packets and channel
packets are fixed in advance. These regimes are suitable for
applications that involve sending fixed quantities of data, such
as VoIP when audio packets are sent uncompressed.
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Fig. 1: Overview of the model for streaming codes.

In contrast, many applications, such as videoconferencing,
involve transmitting variable amounts of data. A new stream-
ing model incorporating message packets of varying sizes was
introduced in [19]. Two factors affect the optimal rate in this
setting. First is the sequence of the sizes of all message packets
of a transmission, called the “message packet size sequence.”
Second is the maximum number of time slots the receiver
can wait to decode each message packet under a lossless
transmission, called “lossless delay” and denoted as τL.

The optimal rate for “offline” schemes (which know the
message packet size sequence) exceeds that of “online”
schemes (which cannot access the sizes of message packets for
future time slots) in all but two settings [20]. In one setting
where τL has its maximum possible value, a technique for
spreading the symbols of each message packet over several
channel packets independently of all other message packets
is rate optimal. The other setting, where τL has its mini-
mum possible value (i.e., 0), requires sending the symbols
of each message packet in the corresponding channel packet.
Therefore, information about the sizes of the future message
packets does not help. Rate-optimal constructions, or even
approximately rate-optimal constructions, are not known even
for the offline setting for all remaining parameter regimes.

We consider the setting of τL = 1, which is important since
it is the smallest value for which the symbols of a message
packet can be spread over multiple channel packets. Spreading
helps to significantly mitigate the adverse effect of variability
of the sizes of message packets on the rate [19]. On the other
hand, maintaining a small value of τL is crucial for latency-
sensitive applications, as the delay of τL extra time slots may
be incurred for decoding every message packet.

We first consider the offline setting and decompose the code
design into two distinct challenges. First, how can we best
spread message symbols over channel packets? Second, how
can we send the minimum necessary number of parity symbols
to ensure that each message packet is decoded in time, given
any choice of how to spread message symbols? We use an
integer program offline to determine how to optimally spread
message symbols over channel packets. We then introduce a
building block for constructing a rate-optimal streaming code
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for any given choice of how to spread message symbols over
channel packets. One final challenge remains: how can we
construct a rate-optimal online streaming code?

We address the problem by combining machine learning
with tools from algebraic coding theory. We take a learning-
based approach, relying on a technique similar to empirical
risk minimization to convert the optimal offline solution into
an approximately optimal online one that maximizes the
expected rate. Our proposed method determines how to spread
symbols online, and then the building block construction is
applied.

Our methodology can be viewed as using a “learning-
augmented algorithm”—a topic that has recently surged to
prominence, tackling problems in other domains, such as
caching [21], metric task systems [22], bloom filters [23],
learned index structures [24], scheduling [25], etc. [26]–[30].
However, to the best of our knowledge, the powerful paradigm
of learning-augmented algorithms has not been applied to
design coding schemes until now.

Using machine learning models to perform encoding and/or
decoding has received considerable attention in the recent
past, including for channel coding [31]–[39], decoding with
feedback [40], [41], approximate coded computation [42],
[43], MIMO [44], [45], etc. [46]–[49]. Most of these works
use neural networks to handle encoding and or decoding in
a black-box manner. In contrast, our work applies machine
learning only to a small portion of the problem: to determine
how to spread message symbols to address the uncertainty
in the sizes of the future message packets. We then leverage
tools from classical algebraic coding theory to solve the rest
of the problem. This makes the learning part lightweight and
interpretable and allows for theoretical guarantees on the rate.

II. MODEL AND BACKGROUND

We now present the system model used in this work, which
is built on top of the model of streaming codes for variable-
size messages [19], [20].

A transmission occurs over (t+1) time slots for a positive
integer t. During the ith time slot for i ∈ {0, . . . , t}, the sender
obtains a message packet, S[i] ∈ Fki , where F is a finite field,
and ki ∈ {0, . . . ,m} for a positive integer m. The sender also
receives “side information,” O[i], that captures the differences
between the online and offline settings. In the offline setting,
which assumes knowledge of the future, the side information
is the sizes of the future message packets. In the online
setting, the side information is S independent samples from
the distribution of the sizes of future message packets for a
positive integer S . Let Dk0,...,ki

be the conditional distribution
of ki+1, . . . , kt given k0, . . . , ki. Then,

O[i] =


(ki+1, . . . , kt) if offline〈(
k
(j)
i+1, . . . , k

(j)
t

)
∼ Dk0,...,ki

| j ∈ {0, . . . ,S − 1}
〉 if online.

(1)

During the ith time slot, the sender transmits a channel
packet, X[i] ∈ Fni to a receiver, where ni is a non-negative
integer. The receiver obtains Y [i] ∈ {X[i], ∗}, which reflects

packet reception or packet loss, respectively. When all channel
packets are received, S[i] must be decoded by the receiver by
time slot (i + τL) for a parameter τL ≥ 0. This requirement
is called the “lossless-delay” constraint and represents the
maximum tolerable latency for lossless transmission. Recall
from Section I that our work considers τL = 1. When losses
occur, S[i] must be decoded by time slot (i+τ) for a parameter
τ ≥ τL. This reflects the maximum acceptable latency in the
worst case and is called the “worst-case-delay” constraint.

Our work uses the packet loss model from previous
work [3], [4], [20]. Packets are lost in bursts of up to b
consecutive losses followed by at least τ successful receptions.
Formally, for any i ∈ {0, . . . , t−τ−b+1}, if (Y [i] = ∗) then
∀j ∈ {i+b, . . . , i+b+τ−1} (Y [j] = X[j]) . To ensure that the
worst-case-delay constraint is satisfiable, τ ≥ b. Furthermore,
b > 0 because coding is not needed otherwise. Finally, τ > b,
since τ ≥ (τL + b) [19] and τL = 1 in our work.

When the sizes of message packets and channel packets are
fixed, the rate is simply the ratio of their sizes. However, a
more nuanced notion of rate is needed due to the variability
in the sizes of message packets and channel packets. The rate
for a message packet size sequence k0, . . . , kt is defined as

Rt =

∑t
i=0 ki∑t
i=0 ni

. (2)

For any integer i, {0, . . . , i} is denoted by [i]. For conve-
nience of notation, t is taken to be at least 4τ , and ki = 0
for i ∈ [2τ − 1] ∪ {t − 2τ + 1, . . . , t}. This assumption is
satisfied by adding zero padding, which does not affect the
rate. Encoding and decoding depends on the history of the
transmission, which is summarized as follows.

Definition 1 (State): For any t, τ, and i ∈ {2τ, . . . , t}, the
state is denoted Xi = (k0, . . . , ki, X[0], . . . , X [i− 1]).
This section considers systematic codes for clarity, but the
results also hold for general codes. To meet the lossless-delay
constraint, the symbols of S[i] must be sent by time slot (i+
τL) (i.e., in X[i] and X[i+1]). The “policy” of a construction,
as defined below, specifies how to spread the message symbols.

Definition 2 (Policy): The policy of a construction for any
i ∈ [t] and state Xi is the number of symbols of S[i] sent in
channel packet X[i]. The policy is denoted as Fi (Xi) (or fi
for conciseness) and lies in [ki].
For any i > 0, X[i] comprises (a) the first fi symbols of S[i],
(b) the final (ki−1−fi−1) symbols of S[i−1], and (c) pi parity
symbols, denoted as P [i]. The encoding is given by X[i] =

Enc(Xi, S[i− τ ], . . . , S[i− 1], S0[i], . . . , Sfi−1[i], O[i]) (3)
for i ≥ 2τ , and X[i] is empty for i < 2τ . This section assumes
that X[i] is independent of the message symbols of S[i] sent
in X[i + 1] for clarity, although the results hold without this
assumption. The receiver obtains Y [i] ∈ {X[i], ∗} depending
on whether channel packet X[i] is received or dropped.1

1The receiver needs the sizes of the message packets to decode. Thus, a
small header with up to 2

∑i
j=i−b log(kj) ≤ 2(b + 1) log(m) symbols

containing (ki−b, . . . , ki) is added to the header of X[i].
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Fig. 2: Selecting pi+τ by considering each burst starting in time slot j ∈ {i− b+ 1, . . . , i+ 1} (shown with lightning bolts).
Under lossless transmission, S[i] is available in uncoded form.
Otherwise, S[i] is decoded as

Dec (⟨Y [j], kj , fj | j ∈ [i+ τ ]⟩) . (4)

The following notation is used throughout our work. A
vector V has length v, comprises symbols (V0, . . . , Vv−1), and
is a row vector. For any i ≤ j ∈ [v − 1], V j

i = (Vi, . . . , Vj).

III. A BUILDING BLOCK CONSTRUCTION

In this section, we present a rate-optimal construction,
called the “(τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code,” for any given
policies, i.e., choice of how to spread the message symbols
over channel packets. Specifically, for any given ⟨fi | i ∈ [t]⟩,
at least fi symbols of S[i] will be sent in X[i] for each i ∈ [t].

The first 2τ channel packets are empty. For each i ∈ [t] \
[2τ − 1], X[i] comprises (a) the first f ′

i symbols of S[i] for
some f ′

i ≥ fi, (b) the final (ki−1− f ′
i−1) symbols of S[i− 1],

and (c) pi parity symbols called P [i]. Next, we define f ′
i , pi,

and P [i] for any message packet size sequence, k0, . . . , kt.
Defining each f ′

i and pi. For i ∈ [2τ−1]∪{t−2τ+1, . . . , t},
f ′
i = ki = 0. For i ∈ [3τ − 1] ∪ {t − τ + 1, . . . , t}, pi = 0.

For all i = 2τ, . . . , (t − 2τ), we define pi+τ to be as small
as possible while ensuring that S[i] is decoded by time slot
(i+ τ) under any lossy transmission. Specifically, pi+τ =

max
j∈{i−b+1,...,i+1}

(
0,1[j + b− 1 ≥ i+ 1] (ki − fi)+

1[j ≤ i]fi+
i∑

l=j

(kl−1 − f ′
l−1) +

i−1∑
l=j

f ′
l −

i+τ−1∑
l=j+b

pl

)
,

(5)

as is illustrated in Figure 2. We then use pi+τ to define
f ′
i = max (fi, pi+τ ) . (6)

Constructing parity symbols. The parity symbols are defined
analogously to those of the construction from [20] (which
builds on the construction from [5]). For i ∈ {2τ, . . . , t− τ},
the message symbols sent in X[i] are partitioned into (a)
symbols of S[i] that are recovered during time slot (i + τ)
under a lossy transmission, and (b) symbols of S[i − 1]
and S[i] that are recovered by time slot (i − 1 + τ) under
a lossy transmission. The two components are of sizes ui

and vi and are denoted as U [i] and V [i], respectively. Thus,
X[i] = (U [i], V [i], P [i]), where

U [i] = S
pi+τ−1
0 [i] (7)

V [i] =
(
S
ki−f ′

i−1
pi+τ [i], S

ki−1−1
f ′
i−1

[i− 1]
)

(8)

P [i] = U [i− τ ] + P (v)[i]. (9)

Each symbol of P (v)[i] is a linear combination of the sym-
bols of (V [i− τ ], . . . , V [i− 1]), where the linear equations
are chosen using a (2mτ) × (2mτ) Cauchy matrix, A, as
follows. Let W [i] be a length 2mτ vector where positions
2m(j mod τ), . . . , (2m(j mod τ) + 2m− 1) comprise V [j]
followed by (2m − vj) 0’s for j ∈ {i − τ, . . . , i − 1},
as is illustrated in Figure 3. Finally, we define P (v)[i] =
W [i]A(i), where A(i) is A restricted to columns 2m(i mod
τ), . . . , (2m(i mod τ) + pi − 1).
Decoding. For i ∈ [t], S[i] is decoded (a) from X[i] and X[i+
1] if there are no losses, and (b) by solving a system of linear
equations corresponding to the symbols of S[i− τ ], . . . , S[i−
1], Y [i], . . . , Y [i+ τ ] after a burst (shown in Figure 4).

Next, we show that the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code
meets the lossless-delay and worst-case-delay constraints.

Lemma 1: For any parameters (τ, b) and message packet
size sequence k0, . . . , kt, and policy fi for i ∈ [t], the
(τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code satisfies the lossless-delay
constraint and worst-case-delay constraint.

Proof sketch: The lossless-delay constraint is met by
sending S[i] over X[i] and X[i+ 1]. For any burst of length
b starting in time slot i, P [i+ b], . . . , P [i+ τ − 1] are used to
recover V [i], . . . , V [i + b − 1]. Then U [j] is recovered using
P [j + τ ] for j ∈ {i, . . . , i + b− 1}. As such, S[i], . . . , S[i +
b− 1] are recovered by time slots (i+ τ), . . . , (i+ b− 1+ τ)
respectively. A complete proof is included in [1].

Next, we provide a lower bound on the number of parity
symbols sent by any streaming code that satisfies the lossless-
delay and worst-case-delay constraints.

Lemma 2: Consider any τ, t, b, and any streaming code that
satisfies the lossless-delay and worst-case-delay constraints.
Suppose for l ∈ [t], the construction sends p†l parity symbols
and uses policy fl. For any i ∈ {3τ, . . . , t} and j ∈ {i− τ −
b+ 1, . . . , i− τ + 1}, the number of parity symbols satisfies

−fj−1−1[j+b−1 = i−τ ]
(
ki−τ−fi−τ

)
+

i−τ∑
l=j−1

kl ≤
i∑

l=j+b

p†l .

(10)
Proof sketch: Suppose X[j], . . . , X [j + b − 1] are lost.

Due to the worst-case-delay constraint, S[j − 1], . . . , S[i− τ ]
must be recovered by time slot i. Thus,

∑i−τ
l=j−1 kl message

symbols must be decoded, while fj−1 symbols of S[j − 1]
are received in X[j − 1] and, if X[i − τ + 1] is received,
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Fig. 3: Defining W [i] by placing the symbols of V [j] in positions 2m(j mod τ), . . . , (2m(j mod τ) + vj − 1) for j ∈ {i −
τ, . . . , i− 1}. The remaining positions are filled with 0’s.(
ki−τ − fi−τ

)
symbols of S[i − τ ] are received. By the

independence of message packets, the remaining message
symbols received in X[j+b], . . . , X [i] contain no information
about S[j − 1], . . . , S[i− τ ]. Enough parity symbols must be
received in X[j + b], . . . , X [i] to recover the lost symbols of
S[j− 1], . . . , S[i− τ ]. A complete proof is included in [1].

We show the rate of the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code
matches that of any streaming code with policy fi for i ∈ [t].

Lemma 3: For any τ, t, b, and message packet size sequence
k0, . . . , kt, the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code matches
the rate of any streaming code with policy fi for i ∈ [t] that
satisfies the lossless-delay and worst-case-delay constraints.

Proof sketch: Under the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread
Code,

∑t
l=0(kl+pl) symbols are sent. Consider any streaming

code that satisfies the lossless-delay and worst-case-delay
constraints , and, for each i ∈ [t], employs policy fi and sends
p†i parity symbols. The code sends

∑t
l=0

(
kl + p†l

)
symbols.

We show by induction on i = 0, . . . , t that
∑i

l=0 pl ≤∑i
l=0 p

†
l . The base case holds for l < 3τ because p0 =

0, . . . , p3τ−1 = 0. In the inductive hypothesis, for all j < i:
j∑

l=0

pl ≤
j∑

l=0

p†l . (11)

The inductive step for i ≥ 3τ holds when pi ≤ p†i . Other-
wise, there is a burst starting in j∗ ∈ {i−τ−b+1, . . . , i−τ+1}
so that the number of parity symbols sent over X[j∗ +
b], . . . , X [i] (i.e.,

∑i
l=j∗+b p

†
l ) is at least

∑i
l=j∗+b pl. Com-

bining this with Eq. (11) (i.e.,
∑j∗+b−1

l=0 pl ≤
∑j∗+b−1

l=0 p†l )
concludes the proof. A complete proof is included in [1].

IV. OFFLINE-OPTIMAL STREAMING CODES

In this section, we design the first rate-optimal offline
construction for the setting of τL = 1. We build the con-
struction in two steps for an arbitrary message packet size
sequence, k0, . . . , kt. First, we design an integer program
(IP) to use constraints to model satisfying the lossless-delay
constraint and Lemma 2. The IP determines an optimal policy
for each time slot (i.e., ⟨fi | i ∈ [t]⟩) by setting the objective
function to minimize the total number of parity symbols
transmitted, which maximizes the rate. Second, we employ
the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code given the polices.

Next, we introduce Algorithm 1 to determine an optimal
policy, fi, for each time slot i ∈ [t] and then verify that the
(τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code is rate optimal.

Theorem 1: For any (τ, b, t) and message packet size se-
quence k0, . . . , kt, suppose Algorithm 1 outputs ⟨fi | i ∈ [t]⟩.
Then the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code is rate optimal.

Algorithm 1 Computes ⟨fi | i ∈ [t]⟩ leading to an offline rate-
optimal (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code.
Input: (τ, b, t, k0, . . . , kt)
Minimize

∑t
i=0 p

(IP )
i subject to

• ∀i ∈ [t], f (IP )
i ≥ 0, f

(IP )
i ≤ ki, p

(IP )
i ≥ 0.

• ∀i ∈ {3τ, . . . , t− τ}, j ∈ {i− τ − b+ 1, . . . , i− τ + 1},

− f
(IP )
j−1 − 1[j + b− 1 = i− τ ]

(
ki−τ − f

(IP )
i−τ

)
+

i−τ∑
l=j−1

kl

≤
i∑

l=j+b

p
(IP )
l .

Output: ⟨fi | i ∈ [t]⟩

Proof sketch: At a high level, no scheme can send fewer
than

∑t
i=0 p

(IP )
i parity symbols (Lemma 2 and the minimality

of the IP), and the
(
τ, b, t,

〈
p
(IP )
i | i ∈ [t]

〉)
−Spread Code

sends at most
∑t

i=0 p
(IP )
i parity symbols (Lemma 3). A

complete proof is included in [1].
Although Algorithm 1 applies to the entire message packet

size sequence, it is trivial to modify the algorithm to apply
to the remainder of a transmission after channel packets
X[0], . . . , X [l] have been sent for an arbitrary l ∈ [t]. This
involves adding constraints for all j ∈ [l] (a) f

(IP )
j = fj and

(b) p(IP )
j = pj . We call the modified algorithm “Algorithm 2.”

Corollary 1: For any (τ, b, t), message packet size se-
quence k0, . . . , kt, and l ∈ [t], suppose that for all j ∈
[l], policy fj was used and pj parity symbols were sent
in X[j], and Algorithm 2 outputs ⟨fi | i ∈ [t]⟩. Then the
(τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code attains the best possible
rate given the prior transmission of X[0], . . . , X [l].

V. LEARNING-BASED ONLINE STREAMING CODES

We now present an online code construction, dubbed the
“(τ, b, t)−Spread ML Code,” whose expected rate is within ϵ
of the online-optimal-rate. The construction uses a learning-
based approach to specify the policy for spreading the symbols
of S[i], denoted f

(ϵ)
i , for each i ∈ [t], and then applies the(

τ, b, t,
〈
f
(ϵ)
i | i ∈ [t]

〉)
−Spread Code .

Recall from Eq. (1) that the side information is S samples
the distribution of the sizes of the future message packets (i.e.,〈
(k

(j)
i+1, . . . , k

(j)
t ) ∼ Dk0,...,ki

| j ∈ {0, . . . ,S − 1}
〉
). We use

a similar technique to empirical risk minimization over the S
samples to set f

(ϵ)
i to the value leading to lowest expected
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Fig. 4: An example of how the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spread Code recovers a burst of length b starting in time slot (i+ 1).
number of symbols being sent by a rate-optimal offline code.
Specifically, for any i = 0, . . . , t, j ∈ [S − 1] and l ∈ [ki], let

zi,j,l =
t∑

r=i

p(IP )
r ,

where p
(IP )
i , . . . , p

(IP )
t are variables used by the IP of Algo-

rithm 2 given X[0], . . . , X [i− 1], and f
(IP )
i = l. Then

f
(ϵ)
i = arg min

l∈[ki]

1

S − 1

∑
j∈[S−1]

zi,j,l. (12)

The key observation to interpret the choice of f
(ϵ)
i is that

the number of parity symbols sent corresponding to message
packet S[i], namely pi+τ , is monotonically non-decreasing as
f
(ϵ)
i increases. Smaller values of f

(ϵ)
i lead to smaller values

of pi+τ to exploit the parity symbols sent before time slot
(i+τ). This strategy is effective when the next several message
packets are likely small. Thus, a small P [i + τ ] ensures that
the next several message packets are recovered when some of
X[i+2], . . . , X [i+τ−1] are lost. In contrast, larger values of
f
(ϵ)
i promote larger values of pi+τ , which is suitable when the

next several message packets are likely to be large. A large
P [i+τ ] is still useful even if a burst starts after receiving S[i].

To show that the (τ, b, t)−Spread ML Code is approxi-
mately rate optimal, we analyze the number of extra symbols
it sends compared to an optimal scheme as follows.

Definition 3 (Regret): The regret, Rki,...,kt

(
f
(ϵ)
i

)
, for the

message packet size sequence k0, . . . , kt is the number of extra
symbols sent under Algorithm 2 when f

(ϵ)
i is used instead of

the best offline policy, f ′
i .

The number of extra symbols sent compared to an optimal
offline scheme is

∑t
i=0 Rki,...,kt

(
f
(ϵ)
i

)
, as is verified in [1].

Next, we bound the expected regret of the (τ, b, t)−Spread
ML Code from spreading message symbols for any time slot.

Lemma 4: For any (τ, b, t), S ≥
√

ln( 8m
2

ϵ ) 2
√
2m3

ϵ samples
from the side information, where m is the maximum size of
a message packet, i ∈ [t], k0, . . . , ki−1, and f ′

i ∈ [ki],

Eki+1,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt

(f ′
i)
]
≤ ϵ. (13)

Proof sketch: If ki = 0, fi = f
(ϵ)
i . Otherwise, replicating

f
(ϵ)
i symbols ensures Rki,...,kt

(
f
(ϵ)
i

)
≤ m. Consequently,

Eki+1,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)]
≤ m

Varki+1,...,kt

(
Rki,...,kt

(
f
(ϵ)
i

))
≤ m2.

At a high level, the empirical mean over the S samples from
the side information accurately approximates the expected
regret for each policy (Hoeffding bound [50]). The best policy
over the samples is suitable. A full proof is shown in [1].

Finally, we show that the expected online-optimal-rate,
denoted as “R(E,Opt),” is within ϵ of the expected rate of the
(τ, b, t)−Spread ML Code, denoted as

R(E) = Ek0,...,kt

[ ∑t
i=0 ki∑t

i=0 ki + pi

]
. (14)

Theorem 2: For any (τ, b, t) and for S ≥
√
ln( 8m

2

ϵ ) 2
√
2m3

ϵ

samples from the side information, where m is the maximum
size of a message packet, (R(E,Opt) −R(E)) < ϵ.

Proof sketch: By Lemma 3, there exists some online
(τ, b, t, ⟨f ′

i | i ∈ [t]⟩)−Spread Code with optimal expected
rate. In expectation, the (τ, b, t)−Spread ML Code sends at
most

t∑
i=0

Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i) ≤ ϵ

t∑
i=0

1[ki > 0],

more symbols than the optimal code does, leading to
(R(E,Opt) −R(E)) < ϵ. A full proof is shown in [1]

More generally, any criteria for spreading message symbols
with a sufficiently small expected regret is suitable.

Corollary 2: Theorem 2 holds when any criteria for spread-
ing message symbols is substituted for Eq. (12) if the criteria
satisfies Eq. (13) for all k0, . . . , kt, i ∈ [t], and f ′

i ∈ [ki].

VI. CONCLUSION

Inspired by the growing field of learning-augmented algo-
rithms, this work introduces a new methodology for construct-
ing online streaming codes that combines machine learning
with algebraic coding theory tools. The approach is to (a)
isolate the component that can benefit from machine learning,
(b) solve the offline version of the problem by integrating
optimization with algebraic coding theory techniques, and (c)
convert the offline scheme into an online one using a learning-
based approach. This strategy is applicable beyond the setting
considered in this paper, including numerous other settings for
real-time streaming communication.
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