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Abstract— Live communication is ubiquitous, and frequently1

must contend with reliability issues due to packet loss during2

transmission. The effect of packet losses can be alleviated by using3

erasure codes, which aid in recovering lost packets. Streaming4

codes are a class of codes designed for the live communication5

setting, which encode a stream of message packets arriving6

sequentially for transmission over a packet-loss channel. The7

existing study of streaming codes considers settings where the8

sizes of the message packets to be transmitted are all fixed.9

However, message packets occur with unpredictable and variable10

sizes in many applications, such as videoconferencing. In this11

paper, we present a generalized model for streaming codes that12

incorporates message packets of variable sizes. We show that13

the variability in the sizes of message packets induces a new14

trade-off between the rate and the decoding delay under lossless15

transmission. Moreover, the variability in the sizes of message16

packets impacts the optimal rate of transmission. To address this,17

we introduce algorithms to compute upper and lower bounds on18

the optimal rate for any given sequence of sizes of message pack-19

ets. We then design an explicit streaming code for the proposed20

model. We empirically evaluate the code construction over a live21

video trace for several representative parameter settings, and22

show that the rate of the construction is approximately 90% of23

an upper bound and 5%–48% higher than naively using the24

existing streaming codes.25

Index Terms— Streaming codes, erasure coding, live streaming26

applications, video conferencing, packet loss.27

I. INTRODUCTION28

T
HE information age has heralded widespread demand for29

live communication with high quality-of-service (QoS).30

Such demand is evident in the abundance of popular multime-31

dia live streaming applications, including video conferencing,32

VoIP, and online gaming. These services form an integral part33

of Internet use. Communication for these live streaming appli-34

cations involves encoding a sequence of so-called “message35

packets” for transmission to a receiver over a lossy channel.36

Despite packet losses, each message packet must be decoded37

within a strict playback deadline to avoid degrading the QoS.38

Furthermore, under several settings, the low-latency require-39

ment prohibits using feedback-based retransmission schemes,40

necessitating a proactive coding-based approach to provide41

robustness to packet loss.42
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One natural coding-based approach uses traditional codes, 43

such as block codes, to recover lost packets. However, such 44

coding schemes are ill-suited for the low-delay communication 45

setting of live streaming applications. The loss patterns faced 46

in streaming applications are correlated (i.e., bursty). Never- 47

theless, conventional block codes, such as maximum-distance- 48

separable (MDS) codes, are inefficient for recovering from 49

burst losses within a strict decoding delay for the following 50

reason. Using MDS block codes necessitates recovering all 51

packets lost as a burst simultaneously. As a result, all lost 52

packets must be decoded by the playback deadline of the 53

first lost packet—an unnecessarily stringent requirement for 54

most lost packets. The redundancy sent by the deadline of the 55

final lost packet is wasted, penalizing the rate. Finally, it is 56

possible to convert an MDS code into a burst-correcting code 57

via the standard technique of interleaving. However, such an 58

approach is inapplicable to the live streaming setting, as it 59

would violate the low-delay requirement. 60

Convolutional coding schemes tailored to the live com- 61

munication setting can outperform traditional code construc- 62

tions. Martinian and Sundberg demonstrated this fact in [2] 63

by formalizing the “streaming model” of live communica- 64

tion and introducing specialized codes —called “streaming 65

codes”—with significantly higher rates than traditional block 66

codes. Under the streaming model, a sender communicates 67

a sequence of message packets, each with a strict fixed 68

decoding delay constraint, to a receiver. The message packets 69

are communicated via transmission of a sequence of “channel 70

packets” over a packet loss channel. Subsequent works pro- 71

vided capacity-achieving streaming codes first in the setting 72

of burst-only losses [3] and second in a setting introduced 73

by [4] with both bursty packet losses and arbitrary packet 74

losses [5]–[9]. 75

The model employed in prior works on streaming codes 76

considers the sizes of message packets and channel packets 77

as fixed. However, many live communication settings involve 78

communication with message packets and channel packets of 79

variable sizes. Such a situation often occurs in live video com- 80

munication; wherein video frames are typically compressed 81

prior to transmission to reduce the communication load. The 82

sizes of the compressed frames often exhibit high variability. 83

For example, we demonstrate the variability of compressed 84

frame sizes for a live video trace transmitted by Facebook Live 85

in Figure 1. Variable-sized input data is incompatible with the 86

previously studied streaming model, motivating the need for a 87

new model. 88

In this paper, we present a generalized model for streaming 89

codes that accommodates message packets of variable sizes. 90

The variability in the sizes of the message packets induces a 91
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Fig. 1. Frame size variability in a live video trace collected from the Facebook
Live application (for a 2000 Kbps live video).

new trade-off between the rate of the code and the minimum92

decoding delay (i.e., the delay for decoding a message packet93

when all channel packets are received). Such a trade-off does94

not exist in the existing model of streaming codes. We capture95

this trade-off by introducing a new parameter into the model,96

which we term “lossless-delay.”97

The variability in the sizes of the message packets impacts98

the optimal rate. We capture the dependence by explicitly99

identifying the range of values the optimal rate could take.100

Specifically, we determine the least upper bound and greatest101

lower bound on the optimal rate for arbitrary sequences of102

sizes of message packets. However, the gap between these103

values is wide in many settings, prompting the need to better104

characterize the optimal rate for any specific sequence of105

sizes of message packets. We introduce algorithms to compute106

tighter upper and lower bounds on the optimal rate for any107

given sequence of sizes of message packets.108

We then present a simple explicit construction of streaming109

codes for the proposed model with message packets of variable110

sizes. The construction employs an existing streaming code111

construction presented in [9] as a building block, along with112

several techniques to alleviate the adverse effect of variability113

of sizes of message packets on the rate of the code. We the-114

oretically characterize the rate of the construction when the115

size of each message packet is drawn independently from116

any distribution with finite support. Finally, we empirically117

evaluate the code construction over several representative118

parameter settings for a live video trace collected from the119

Facebook live application and show that it performs well.120

Specifically, the construction exhibits an average rate of 90%121

of an upper bound and improves the rate by 5% to 48% over122

naively using the existing streaming codes.123

II. BACKGROUND AND RELATED WORK124

This section provides an overview of the background of125

streaming codes relevant to this work. First, we will describe126

the previously studied streaming model in which message127

packets have the same fixed size. Second, we will detail a128

sliding-window adversarial channel model which captures the129

worst-case packet loss patterns which occur in transmissions.130

The sliding-window adversarial channel model will be used131

throughout this work. We discuss an upper bound on the132

rate imposed by such a channel under the previously studied 133

setting where all message packets have the same size. Third, 134

we deconstruct a class of optimal code constructions for the 135

previously studied fixed-size streaming model. We highlight 136

aspects of the construction that we leverage later in this work. 137

Fourth, we discuss alternative formulations of the streaming 138

setting, which can form the basis for potential future studies. 139

A. Background 140

The streaming model was first introduced by Martinian 141

and Sundberg in [2]. Under this model, at every time slot, 142

i, the sender receives a message packet, S[i], comprised of 143

k symbols from a finite field Fq for a natural number k. 144

The sender transmits a channel packet, X [i], consisting of n 145

symbols from Fq (for a natural number n) over a packet-loss 146

channel to a receiver. Either X [i] is received, or a unique 147

symbol (i.e., ∗) is received, reflecting a packet loss. Packet 148

losses can occur as isolated bursts of some maximal length, 149

b, separated by guardspaces of successful transmissions. Such 150

loss patterns are useful representations of real-world settings 151

where losses occur as occasional bursts, as can be reflected 152

by the Gilbert model [10]. The rate of the code is naturally 153

defined as k
n . The encoding is causal, meaning that the channel 154

packet X [i] can be any function of S[0], . . . , S[i] but may not 155

depend on any future message packets. The real-time playback 156

deadline for live communication is incorporated by requiring 157

the receiver to recover each message packet, S[i], within a 158

worst-case-delay of τ time slots. In other words, the received 159

channel packets of X [0], . . . , X [i+ τ ] are sufficient to decode 160

S[i].1 Martinian and Sundberg presented an upper bound on 161

the rate of τ
τ+b as well as a rate-optimal code construction for 162

a large class of parameter settings. Later, Martinian and Trott 163

in [3] designed a capacity-achieving code construction for all 164

parameter settings for this streaming model. 165

In certain real-world settings, burst (correlated) and iso- 166

lated (uncorrelated) packet losses both occur. These loss 167

patterns are well-approximated by statistical models like the 168

GE channel model [11]. Yet, constructing coding schemes 169

directly for such statistical models is believed to be hard. 170

An analytically tractable sliding-window adversarial channel 171

model approximating the worst-case conditions of models such 172

as the GE model was introduced by Badr et al. in [4]. The 173

channel model is characterized using three parameters a, b, and 174

w and is referred to as C(a, b, w).2 For every w consecutive 175

channel packets, one burst of no more than b consecutive 176

packets or up to a arbitrary packets may be lost. 177

A generalized streaming model incorporating a C(a, b, w) 178

sliding-window adversarial channel was introduced by Badr 179

et al. in [4]. The authors designed a near-optimal streaming 180

code construction for this streaming model. Badr et al. also 181

showed that τ−a+1
τ+b−a+1 and w−a

w+b−a are upper bounds on the rate 182

when the worst-case-delay is τ < w and τ ≥ w respectively. 183

We will later show that the argument used to prove these 184

bounds extends to the setting where message packets have 185

variable sizes. 186

1In [2], the worst-case-delay parameter was called T rather than τ
2In [4], the parameters (a, b, w) were referred to as (N, B, W ).
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Later, the above upper bound on the rate was attained by187

streaming code constructions designed in the two indepen-188

dent concurrent works [5] and [6]. An alternative explicit189

capacity-achieving streaming code for the model was pre-190

sented by Dudzicz et al. in [7]. These constructions require191

an exponential field size for certain parameter settings.192

A capacity-achieving streaming code and an explicit capacity-193

achieving streaming code with quadratic field size require-194

ments were concurrently designed by Krishnan et al. in [8] and195

Domanovitz et al. in [9]. The design of these streaming codes196

employs the technique of diagonal interleaving to convert the197

problem of constructing a rate-optimal streaming code into198

the more tractable challenge of designing a block code of199

the same rate. To design rate-optimal streaming codes for a200

worst-case-delay of τ and a C(a, b, w) channel, one can design201

a block code which decodes each symbol within τ symbols202

when either a burst of at most b consecutive symbols or up203

to a arbitrary symbols are lost. The technique of first creating204

a block code and then applying interleaving has also been205

employed in several other prior works, including [2]–[4], [12].206

Later in this work, we will leverage existing block codes,207

such as from [5]–[9], as a component of our proposed code208

construction. Specifically, we shall consider systematic rate-209

optimal block codes presented in [9], whose field size require-210

ment is quadratic in the delay parameter τ . Any block code211

designed for the streaming model, including those presented212

in [5]–[8], could likewise be used by our proposed code213

construction. We refer to any such code as a Streaming Block214

Code (SBC). We now highlight a few relevant details for215

such codes, which we will use later in this work. For any216

parameter setting, (τ, a, b), we denote any systematic (n, k)217

SBC where n = (τ + b − a + 1) and k = (τ − a + 1) as218

〈s0, . . . , sτ−a, p0, . . . , pb−1〉. Specifically, s0, . . . , sτ−a are the219

(τ−a+1) systematic symbols and p0, . . . , pb−1 are the b parity220

symbols. For these codes, the ith symbol for i ∈ {0, . . . , n−1}221

is decoded using the first min(i + τ + 1, n) symbols in the222

presence of a single burst loss of b consecutive symbols or the223

loss of a arbitrary symbols.224

We now illustrate how to use interleaving to convert a225

block code into a streaming code. An (n, k) systematic block226

code which maps k systematic code symbols, (s0, . . . , sk−1),227

into n code symbols, (s0, . . . , sk−1, p0, . . . , pn−k−1), will be228

used. In the ith time slot, the sender receives as input the229

message packet S[i] = (S0[i], . . . , Sk−1[i]) comprising k230

symbols, and the channel packet X [i] = (S0[i], . . . , Sk−1[i],231

P0[i − k], . . . , Pn−k−1[i − n + 1]) is sent. The symbol232

Pn−k−1[i − n + 1] is the final symbol of a distinct block233

code (“block”) consisting of (S0[i−n + 1], . . . , Sk−1[i−n +234

k], P0[i−n+1], . . . , Pn−k−1[i−n+1]). This block contains235

a single symbol from each of channel packets X [i − n +236

1], . . . , X [i]. The channel packets X [i − n + 1], . . . , X [i −237

n + k] contain S0[i − n + 1], . . . , Sk−1[i − n + k] respec-238

tively, and X [i − n + k + 1], . . . , X [i] contain P0[i − n +239

1], . . . , Pn−k−1[i − n + 1] respectively. Next, we discuss the240

block which corresponds to message packet S[i]. This block241

comprises (a) symbols of message packets S[i], . . . , S[i+k−1]242

sent in channel packets X [i], . . . , X [i + k − 1], and (b) parity243

Fig. 2. Interleaving example of a (5, 3) block code. The blue boxes labeled
Sj [i] are symbols of message packet S[i], the red boxes labeled Pj [i] are
parity symbols, and the black lines connect the boxes which are part of the
same block. The numbers under the lines indicate the time slots.

symbols, P0[i], . . . , Pn−k−1[i], sent in channel packets 244

X [i+k], . . . , X [i+n−1]. Specifically, the jth position of the 245

block consists of the jth symbol of the corresponding channel 246

packet for j ∈ {0, . . . , n − 1}. Hence, the block comprises 247

〈S0[j], S1[j + 1], . . . , Sk−1[j + k − 1], P0[j], . . . , Pn−k−1[j]〉. 248

We demonstrate an example of converting a block code into 249

a streaming code with diagonal interleaving for a (5, 3) block 250

code in Figure 2. 251

During time slot i, let i′ = (i − k + 1). The block code 252

〈S0[i
′], . . . , Sk−1[i], P0[i

′], . . . , Pn−k−1[i
′]〉 253

is computed. The parity symbols 254

(P0[i
′], . . . , Pn−k−1[i

′]) 255

are defined before they are sent in channel packets X [i + 256

1], . . . , X [i + n − k] respectively. Consequently, during time 257

slot i, the each value Pj [l] for j ∈ {0, . . . , n − k − 1} is 258

accessible for l ≤ (i−k+1), since it was defined during time 259

slot (l + k − 1) ≤ i. Finally to handle edge conditions, for 260

any z < 0 and j ∈ {0, . . . , k − 1}, Sj[z] is defined to be an 261

arbitrary fixed symbol. 262

B. Other Related Work 263

Several other variants of the streaming model have been 264

studied in the literature. We briefly discuss them below for the 265

sake of completeness. Most of these models involve message 266

packets having fixed sizes. Under a streaming model with mul- 267

tiplexing, a sender receives two streams of message packets 268

as input with two different decoding delays for transmission 269

over a burst-only channel [13], [14]. Under another model, 270

a sender transmits a stream of message packets to two different 271

receivers over two different burst-only channels subject to two 272

different decoding delays [15], [16]. Another variant of the 273

streaming model includes unequal error protection wherein all 274

symbols from each message packet must be recovered in the 275

event of short bursts, but only certain symbols need to be 276
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recovered in the presence of longer bursts [17]. Another setting277

considers average rather than worst-case-delay for decod-278

ing [18]. Various other streaming models incorporate multiple279

channel uses between every message packet [4], [19], [20].280

Another variation of the streaming model stipulates partial281

recovery of certain loss patterns wherein only some of the282

message packets are decoded by their deadlines [21]. The283

setting of streaming over a three-node relay network is studied284

in [22], wherein there is a delay in decoding even under285

lossless transmissions. The notion of two distinct decoding286

delays has also arisen in the context of VoIP in [23], which287

introduces codes with a shorter delay to decode a few random288

packet losses than that of recovering a longer burst of packet289

losses. A different streaming model formulation considers290

a channel which can induce multiple burst losses within291

the worst-case-delay [24]. Diverging from the above models,292

another streaming model considers (1) high and low priority293

message packets, each with a (potentially different) fixed size,294

which occur in a fixed periodic manner, (2) channel packets295

of a fixed size, and (3) unequal error protection [25]. A formal296

study of incorporating message packets with arbitrary variable297

sizes in these models is outside of the scope of this paper and298

is a potential avenue for future work.299

III. A MODEL FOR STREAMING CODES WITH300

MESSAGE PACKETS OF VARIABLE SIZES301

The streaming model discussed in Section II will now be302

generalized to incorporate message packets of variable sizes.303

The variability in the sizes of the message packets induces304

a new trade-off between the optimal rate and the decoding305

delay under a lossless transmission. A new delay parameter306

will be introduced to the model to capture this trade-off. A new307

definition for the rate of a code is included to reflect the308

varying sizes of the message packets and channel packets.309

Under the proposed streaming model, the sender receives310

a message packet, S[i] = (S0[i], . . . , Ski−1[i]), during the311

ith time slot. The message packet consists of ki symbols312

drawn uniformly at random from a finite field, Fq, where ki313

is an arbitrary non-negative integer. A channel packet, X [i] =314

(X0[i], . . . , Xni−1[i]) ∈ F
ni
q , is transmitted to the receiver,315

where ni is an arbitrary non-negative integer. This deviates316

from the prior models (such as in [2]–[9]) where each |S[i]| =317

k and |X [i]| = n for some fixed positive integers k and n. The318

channel packet X [i] is a function of the current and previous319

message packets (i.e., X [i] = Enc (〈S[j] | j ∈ {0, . . . , i)}〉)).320

Encoding is not a function of the symbols of future message321

packets (or their sizes), as the sender does not have access to322

this information.323

The channel packet X [i] is transmitted over the C(a, b, w)324

channel discussed in Section II. The receiver obtains Y [i] ∈325

{X [i], ∗}, where ∗ denotes a dropped packet. Under the326

channel model, for any sliding window of w consecutive327

packets, up to b consecutive packets may be dropped as a328

burst, or up to a packets may be dropped in arbitrary locations.329

In other words, for any time slot i, the packet losses introduced330

by the C(a, b, w) channel satisfy at least one of the following331

two conditions for the window W = {i, . . . , i + w − 1}:332

1) Lose only a burst of length at most b channel packets : 333

∃j ∈ W, ∀l ∈ W \ {j, . . . , j + b − 1},1(Y [l] = X [l]). 334

2) Lose at most a channel packets : 335

a ≥
i+w−1
∑

j=i

1(Y [j] = ∗). 336

Due to the real-time playback deadline, the receiver must 337

decode S[i] within τ time slots. We refer to τ as the 338

“worst-case-delay” parameter and the requirement that S[i] 339

be decoded by time slot (i + τ) as the “worst-case-delay 340

constraint.” More formally, the receiver decodes S[i] as 341

S[i] = Dec
(

〈S[j] | j ∈ {i − τ, . . . , i − 1}〉, 342

〈Y [j] | j ∈ {i, . . . , i + τ}〉, 〈kj | j ∈ {i, . . . , i + τ ′}〉
)

343

where τ ′ ≤ τ is the largest value such that X [i + 344

τ ′] has been received (i.e., Y [i + τ ′] = X [i + τ ′]). 345

In other words, the receiver decodes message packet S[i] 346

using the (a) previously-decoded τ message packets, (S[i − 347

τ ], . . . , S[i− 1]), (b) already received channel packets among 348

(X [i], . . . , X [i+τ ]), and (c) sizes of up to (τ +1) of the mes- 349

sage packets (S[i], . . . , S[i+ τ ]) which may not have been be 350

decoded. In order to inform the receiver about (c) irrespective 351

of which channel packets are lost, the sender adds the sizes 352

of the current message packet and previous b message packets 353

to a small header of each channel packet. 354

Under the previously studied model, the rate is k
n . But 355

k
n is not well-defined in the proposed model. Accordingly, 356

we introduce a suitable definition of rate for the setting of 357

message packets of variable size. To do so, we limit our 358

attention to finite-length sequences of message packets. For 359

an arbitrary non-negative integer, t, consider an arbitrary 360

sequence of t message packets, S[0], S[1], . . . , S[t]. We refer 361

to the corresponding sequence k0, . . . , kt as the “message 362

packet size sequence.” The rate for any code construction is 363

defined as the ratio of the number of symbols of all message 364

packets to the total number of transmitted symbols, 365

Rt =

∑t
i=0 ki

∑t
i=0 ni

. (1) 366

For convenience of notation, we use the convention that t ≥ 2τ 367

and the sizes of each of the final 2τ message packet is 0 368

(i.e., kt−2τ+1 = 0, . . . , kt = 0). This convention can be met 369

by appending 2τ message packets of size 0 to any sequence 370

of message packets to ensure that it meets this convention 371

without altering the rate. 372

The setting in which message packets have variable sizes 373

differs from where message packets all have the same fixed 374

size in the following critical respect. When the sizes of the 375

message packets and channel packets are fixed, there exists an 376

optimal rate code construction in which each message packet, 377

S[i], is sent as a part of the corresponding channel packet, 378

X [i] ([5]–[8]). In other words, there are rate-optimal coding 379

schemes where each message packet S[i] can be decoded 380

without any delay under lossless transmission. However, this 381

is no longer true when the sizes of message packets can vary. 382
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When the message packets have variable sizes, distributing383

symbols of message packets over multiple channel packets can384

lead to a higher rate than sending each message packet within385

its corresponding channel packet. We illustrate this observation386

with a toy example. Consider the length (τ + 1) sequence387

of message packets where the first message packet S[0] is388

of size τ and the next τ message packets have size 0. The389

C(a, b, w) channel for (a = 1, b = 1, w = τ + 1) could drop390

X [0]. Therefore, if S[0] were transmitted as part of channel391

packets X [0], at least τ parity symbols would need to be sent392

in channel packets X [1], . . . , X [τ ] to decode S[0] within the393

worst-case-delay of τ time slots. The rate for such a scheme394

is at most 1
2 . Alternatively, the symbols of message packet395

S[0] could be transmitted evenly over X [0], . . . , X [τ − 1],396

and a parity of the previous τ channel packets sent in X [τ ]397

(i.e., X [τ ] =
∑τ−1

i=0 X [i]). Such a scheme would have a rate398

of τ
τ+1 while satisfying the worst-case-delay constraint.399

As shown above, under the setting where message packets400

have variable sizes, distributing the symbols of a message401

packet over multiple channel packets can lead to a higher rate.402

However, doing so will delay decoding the message packet403

when there are no losses. Thus, the variability in the sizes of404

the message packets induces a new trade-off between the rate405

of the code and decoding delay when all channel packets are406

received. We incorporate this new trade-off into our model407

via a new parameter which we call the lossless-delay, τL.3408

The receiver must be able to decode every message packet,409

S[i], using channel packets X [0], . . . , X [i+ τL] if they are all410

received. In other words,411

S[i] = Dec(L)
(〈

X [j], kj | j ∈ {0, . . . , i + τL}
〉)

.412

The newly introduced parameter τL represents the tolerable413

decoding delay under lossless channel conditions, whereas τ414

reflects the worst-case delay in the presence of packet loss.415

The two parameters (τL, τ) are relevant to settings where416

the transmission is lossless most of the time, and the rare417

worst-case channel conditions are captured via the C(a, b, w)418

channel. In such scenarios, a live streaming application may419

occasionally tolerate a decoding delay of τ time slots but420

benefit from the faster decoding of τL time slots most of the421

time.422

Due to the worst-case-delay constraint, τ , for transmission423

over a C(a, b, w) channel, each S[i] must be decoded with424

X [0], . . . , X [i+τ−b] when X [i+τ −b+1], . . . , X [i+τ ] are425

lost. Therefore, under a lossless transmission setting, each S[i]426

is recoverable from X [0], . . . , X [i+ τ − b]. Consequently, the427

parameter τL is at most (τ−b), leading to τL ∈ {0, . . . , τ−b}.428

Higher values of τL enable the symbols of the message packets429

to be spread over more channel packets, thereby increasing430

both the rate of the code and decoding delay under lossless431

transmission.432

Finally, the parameters (τ, a, b, w) obey certain restrictions.433

Because burst losses are a special case of arbitrary losses,434

a ≤ b. Moreover, if it were the case that b ≥ w (or b > τ ), for435

any time slot, i, the channel packets X [i], . . . , X [i + τ ] could436

3In the conference version of this paper [1], this parameter was called the
“good-window-delay” parameter TG.

all be lost. As a result, it would be impossible to decode S[i] 437

within a delay of τ , resulting in a capacity of 0. Moreover, 438

if b = 0, the channel is lossless, and the capacity is trivially 1. 439

Consequently, we restrict our attention to 1 ≤ a ≤ b < 440

min(τ + 1, w). We consider the setting where τ < w in this 441

paper to reflect the motivating scenario where each message 442

packet must be decoded in the presence of either a single burst 443

of length b (or a arbitrary losses). In contrast, the setting of 444

τ ≥ w requires that each message packet be decoded in the 445

presence of multiple bursts of losses. It is, hence, outside of 446

the scope of this paper. 447

We will refer to input parameters (τ, a, b, w, τL) satisfying 448

the above inequalities (along with 0 ≤ τL ≤ (τ − b)) as valid 449

throughout this work. 450

IV. GENERAL BOUNDS ON RATE FOR STREAMING 451

CODES WITH VARIABLE-SIZE MESSAGES 452

This section discusses general upper and lower bounds on 453

the rate of code constructions for the proposed model. The 454

bounds constitute the least upper bound and greatest lower 455

bound for arbitrary message packet size sequences. Later, 456

Lemma 5 shows that the optimal rate depends on the message 457

packet size sequence and can vary over the entire range 458

between the aforementioned lower and upper bounds on the 459

optimal rate. 460

A. General Upper Bound on the Rate 461

As was discussed in Section II, the rate for streaming codes 462

that satisfy the worst-case-delay constraint τ over a C(a, b, w) 463

channel in the setting where all message packets have a fixed 464

size is at most τ−a+1
τ+b−a+1 . Next, we show that this upper bound 465

on the rate applies under the proposed model with message 466

packets of variable sizes by using a simple extension to the 467

proof techniques used by Badr et al. in [4]. 468

Lemma 1: For any valid inputs (τ, a, b, w, τL), for any 469

streaming code which satisfies the worst-case-delay constraint 470

over the C(a, b, w) channel, the rate is at most 471

R(U) =
τ − a + 1

τ + b − a + 1
. (2) 472

Proof Sketch: In [4], Badr et al. show that any stream- 473

ing code satisfying the worst-case-delay constraint over a 474

C(a, b, w) channel must recover from any erasure channel 475

which periodically introduces a burst of length b followed 476

by a guard space of length (τ − a + 1). Let CP,i be such 477

an erasure channel whose bursts each begin in positions ≡ i 478

mod (τ + b − a + 1), where i mod j is defined for a non- 479

negative integer i and positive integer j as the remainder 480

of i divided by j. Even when the sizes of channel packets 481

vary, CP,0, CP,1, . . . , CP,(τ+b−a) erase on average b
τ+b−a+1 482

fraction of the transmitted symbols. Therefore, there is always 483

some CP,i∗ that erases at least b
τ+b−a+1 fraction of the 484

transmitted symbols. Consequently, the rate cannot exceed 485

R(U). Thus, the upper bound on the rate provided in [4] for 486

fixed-size message packets continues to hold for the model 487

with variable-size message packets as well. � 488

The rate R(U) is attained by the constructions presented 489

in [5]–[9] when the sizes of the message packets are fixed. 490
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Thus, R(U) is the smallest general upper bound on the rate of491

streaming codes for arbitrary message packet size sequences.492

B. General Lower Bound on Rate493

Next, we present a general lower bound on the rate. Each494

message packet can always be encoded separately (i.e., trans-495

mitted symbols corresponding to each message packet are kept496

independent of all other message packets) for any message497

packet size sequence. The optimal rate of coding schemes498

encoding message packets separately, thus, serves as a lower499

bound on the optimal rate. Moreover, this bound is tight for500

certain message packet size sequences and therefore is the501

greatest lower bound. For example, it is tight when the worst-502

case-delay is τ , and each message packet of positive size is503

followed by at least τ message packets of size 0. For such504

message packet size sequences, the sender must encode each505

message packet separately.506

Next, we will present a simple code construction with the507

best-possible rate among code constructions that encode each508

message packet separately and identify its rate. For valid509

inputs (τ, a, b, w, τL), the proposed code construction is called510

the “(τ, a, b, τL)-separate encoding scheme.” The scheme is511

presented in two cases.512

Case 1: τL < (a − 1). In this case, since (τL + 1) < a,513

all symbols used to decode a message packet under lossless514

transmission can be lost under lossy transmission. In addition,515

either (a−1−τL) arbitrary channel packets may be lost, or the516

next (b− τL − 1) channel packets may be lost. Consequently,517

the rate is at most 0.5 in this case. We present the scheme first518

using a toy example and then in detail.519

Toy example. An example of the (7, 3, 5, 1)-separate encod-520

ing scheme is shown in Figure 3 for a message packet S[i] =521

(S0[i], . . . , S5[i]). The blue boxes contain the symbols of S[i],522

while the red boxes contain parity symbols for a systematic523

[14, 6] MDS code. The 6 symbols of S[i] are transmitted524

evenly over X [i] and X [i + 1]. The 8 parity symbols are525

transmitted evenly over X [i + 4], . . . , X [i + 7]. The lossless-526

delay constraint is satisfied, since S[i] is transmitted over X [i]527

and X [i+1]. The worst-case-delay constraint is met, since for528

any burst of length 5, or any 3 arbitrary losses, enough symbols529

are received by time slot 7 to decode S[i] using properties of530

the MDS code.531

Detailed description. The symbols of S[i] are sent532

evenly over all channel packets within the lossless-delay533

(i.e., X [i], . . . , X [i + τL]). The ki symbols corresponding to534

S[i] are transmitted evenly over the final (τ − b + 1) packets535

by time slot (i + τ) to cover the case of a burst of length536

b starting in time slot i. Parity symbols are sent over the537

remaining channel packets to ensure at least ki symbols are538

received for a arbitrary losses. For convenience of notation,539

let a′ = (τL + 2 + τ − b). The following terms are used540

〈η, η′〉 =































〈

(τL + 1)(τ − b + 1), if a ≤ a′

(τL + 1)(τ − b − τL + a)
〉

〈

(τL + 1)(τ − b + 1)(τ − a + 1),
(

(τL + 1)(τ − b + 1)(τ − a + 1)+ if a > a′

(τL + 1)(τ − b + 1)(b − τL − 1)
)〉

.
(3)541

Fig. 3. The (7, 3, 5, 1)-separate encoding scheme is shown for a mes-
sage packet S[i] = (S0[i], . . . , S5[i]). The symbols are spread evenly
over channel packets X[i] and X[i + 1], thereby satisfying the lossless-
delay constraint. Additional parity symbols (P0[i], . . . , P7[i]) of a [14, 6]
systematic MDS code are distributed evenly over channel packets X[i + 4],
X[i + 5], X[i + 6], and X[i + 7]. This ensures that at least 6 out of
(S0[i], . . . , S5[i], P0[i], . . . , P7[i]) are received in the event of either a burst
of length at most 5 losses or the loss of any 3 arbitrary channel packets. Thus,
S[i] is decoded within 7 time slots by properties of the MDS code.

We assume that η|ki.
4 The message packet is partitioned 542

evenly into sets of η symbols. For each such set 543

• A [η + η′, η] systematic MDS code is applied, leading to 544

symbols c0, . . . , cη+η′−1, where the final η′ symbols are 545

parity symbols. 546

• The symbols c0, . . . , cη−1 are evenly transmitted over 547

X [i], . . . , X [i + τL]. 548

• The symbols cη, . . . , c2η−1 are evenly transmitted over 549

X [i + b], . . . , X [i + τ ]. 550

• The symbols c2η, . . . , cη′ are sent evenly over X [i + 551

j], . . . , X [i + b − 1], where j = (τL + b − a + 1) if 552

a ≤ (τL + 2 + τ − b) and j = (τL + 1) otherwise. 553

In short, the scheme involves (a) sending S[i] over 554

(τL + 1) channel packets to satisfy the lossless-delay con- 555

straint, (b) sending parity symbols to recover S[i] when 556

X [i], . . . , X [i+ b−1] are lost, and (c) sending parity symbols 557

to recover S[i] when both X [i], . . . , X [i+τL] and (a−τL−1) 558

additional channel packets of X [i + τL + 1], . . . , X [i + τ ] are 559

lost. 560

Remark 1: The rate for the (τ, a, b, τL)-separate encoding 561

scheme for case 1 is η
η′+η . This follows directly from the MDS 562

code employed. 563

The field size requirement is at most that of a [η′ + η, η] 564

Reed-Solomon code. If a ≤ (τL + 2+ τ − b), the requirement 565

is at most (τL + 1)(2τ − 2b− τL + a + 1), which is no more 566

than 2τa. Otherwise, the field size requirement is at most 567

(τL + 1)(τ − b + 1)
(

2(τ − a + 1) + (b − τL − 1)
)

, 568

which is no more than 3a2b. 569

570

Case 2: τL ≥ (a − 1). In this case, τL is large enough that 571

the symbols of S[i] can be distributed over (τL + 1) ≥ a 572

channel packets such that at most ki symbols are lost by 573

making use of a buffer of (b−a) channel packets in which no 574

symbols are sent, as will be described below. This approach 575

leads to a rate of at least 0.5 in this case. We divide the 576

presentation of case 2 into two sub-cases. 577

4It suffices to pad S[i] with strictly fewer than η extra symbols, where
η ≤ τ2 or η ≤ τ3 depending on whether a ≤ (τL + 2 + τ − b). Typically,
η ≪ ki.
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Fig. 4. The (7, 2, 3, 4)-separate encoding scheme is shown for a message
packet S[i] = (S0[i], . . . , S3[i]). The symbols are spread evenly over channel
packets X[i], X[i+1], X[i+3], and X[i+4]. Parity symbols (P0[i], P1[i]) of
a systematic [6, 4] MDS code are spread evenly over channel packets X[i+6]
and X[i + 7]. The lossless-delay constraint is satisfied, since the symbols of
S[i] are sent by time slot X[i + 4]. At most 2 nonempty channel packets
are lost with a burst of length 3 or 2 arbitrary losses. Therefore, at least 4
of (S0[i], . . . , S3[i], P0[i], P1[i]) are received, so S[i] is decoded by time
slot (i + 7).

Sub-case 1: either ((τL + 1) mod b) ∈ {0}∪{a, . . . , b−1}578

or ((τL + 1) mod b) (
⌊

τL+1
b

⌋

+ 1) ≥ a.579

Toy example. An example of the (7, 2, 3, 4)-separate encod-580

ing scheme is shown in Figure 4 for a message packet581

S[i] = (S0[i], S1[i], S2[i], S3[i]). The parity symbols, P0[i],582

and P1[i], are formed using a [6, 4] systematic MDS code.583

The 6 symbols, (S0[i], S1[i], S2[i], S3[i], P0[i], P1[i]) are then584

periodically sent over time slots i through (i + 7) by trans-585

mitting one symbol for each of two consecutive time slots586

followed by not transmitting any symbols for one time slot.587

Specifically, S0[i], S1[i], S2[i], S3[i], P0[i], and P1[i] are sent588

over X [i], X [i+ 1], X [i+ 3], X [i+ 4], X [i+ 6], and X [i+ 7]589

respectively. The lossless-delay constraint is satisfied, as S[i]590

is transmitted over X [i], . . . , X [i + 4] where τL = 4. At least591

4 symbols are received by time slot (i + 7). Hence, S[i] can592

be decoded by properties of the MDS code.593

Detailed description. The symbols of S[i] are periodically594

spread over a channel packets followed by no symbols being595

sent in a buffer of (b − a) channel packet until time slot596

(i + τL). Afterward, a buffer of (b − a) channel packets597

are sent which do not include any symbols corresponding598

to S[i]. Parity symbols are sent in the next a channel pack-599

ets. A similar interleaving approach with empty positions600

(i.e., buffers) was used in [26] and [27], albeit for the streaming601

model with message packets all having the same fixed size,602

where each message packet is sent in its entirety as part of the603

corresponding channel packet, and the parity symbols apply604

to multiple message packets. For convenience of notation, the605

following term is used606

ζ =

(⌊

τL + 1

b

⌋

a + min ((τL + 1) mod b, a)

)

. (4)607

We will assume that ζ|ki.
5 The message packet is partitioned608

into sets of ζ symbols. For each such set:609

• A [ζ + a, ζ] systematic MDS code is applied, leading to610

symbols c0, . . . , cζ+a−1, where the final a symbols are611

parity symbols.612

• For J = {j0, . . . , jζ−1} = {j | j ∈ {i, . . . , i + τL}, j613

mod b < (b−a)} and l ∈ {0, . . . , ζ−1}, cl is transmitted614

in X [jl].615

5It suffices to pad S[i] with up to (ζ − 1 ≤ τ) extra symbols—a quantity
typically negligible compared to ki.

• cζ , . . . , cζ+a−1 are transmitted in X [i + τL + b − 616

a + 1], . . . , X [i + τL + b] respectively. 617

Remark 2: The rate for the (τ, a, b, τL)-separate encoding 618

scheme for case 2 sub-case 1 is ζ
ζ+a . This follows directly 619

from the MDS code employed. 620

The field size requirement is that of a [ζ + a, ζ] Reed- 621

Solomon code. The requirement is at most (ζ + a), which 622

is no more than (τ + 1 + a). 623

Sub-case 2: ((τL + 1) mod b) ∈ {1, . . . , a − 1} and 624

((τL + 1) mod b) (
⌊

τL+1
b

⌋

+ 1) < a. The construction from 625

sub-case 1 applies to this sub-case, but its rate does not 626

attain the greatest lower bound on the rate. The converse 627

proof in sub-case 1 relies on the worst-case losses corre- 628

sponding to either (a0 a burst of consecutive losses over 629

between ((τL + 1) mod b) and b consecutive channel pack- 630

ets, or (b) a arbitrary losses corresponding to a set of 631

((τL + 1) mod b) (
⌊

τL+1
b

⌋

+ 1) channel packets. However, 632

in sub-case 2, both loss scenarios comprise fewer than a arbi- 633

trary losses. Hence, the worst-case a arbitrary losses cannot be 634

limited to just one of these two quantities. In order to design 635

a scheme that leads to the greatest lower bound for this sub- 636

case, we introduce a construction based on a simple integer 637

program (IP) that reflects minimizing the number of symbols 638

sent by a coding scheme while satisfying the lossless-delay 639

and worst-case-delay constraints. The variables of the IP are 640

n
(c)
0 , . . . , n

(c)
τ , which denote the sizes of the (τ + 1) channel 641

packets corresponding to the message packet. 642

IP-based construction 1 Takes as input any valid parameters

and ki and uses integer programming to compute the number

of symbols to be sent in the next (τ + 1) channel packets.

Input: Valid values for (τ, a, b, w, τL) and ki.

Minimize
∑τ

j=0 n
(c)
j subject to:

1) ∀j ∈ {0, . . . , τ}, n(c)
j ≥ 0

2)
(

∑τL

j=0 n
(c)
j

)

− ki ≥ 0.

3) ∀l ∈ {0, . . . , τ}
(

∑l−1
j=0 n

(c)
j

)

+
(

∑τ
j=l+b n

(c)
j

)

−
ki ≥ 0.

4) ∀I ⊆ {0, . . . , τ} such that |I| = a,
(

∑

j∈{0,...,τ}\I n
(c)
j

)

− ki ≥ 0

Output: n
(∗)
i =

(

∑τ
j=0 n

(c)
i

)

.

The constraints of the integer program reflect the require- 643

ments that (1) the size of each channel packet is non-negative, 644

(2) the lossless-delay constraint is met, (3) the worst-case- 645

delay constraint is met for bursts of at most b consecutive 646

channel packets, and (4) the worst-case-delay constraint is met 647

for a arbitrary losses. The objective function reflects minimiz- 648

ing the total number of symbols which are sent. Observe that 649

n
(∗)
i is the total number of symbols sent according to the IP 650

subroutine of IP-based construction 1. For a message packet 651

size sequence k0, . . . , kt, let n
(∗)
0 , . . . , n

(∗)
t be the outputs of 652

IP-based construction 1 applied to each of k0, . . . , kt. For 653

each i where ki > 0, a systematic [n
(∗)
i , ki] MDS code is 654

applied to encode S[i] into c0, . . . , cn(∗)−1. The symbols are 655
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distributed over channel packets X [i], . . . , X [i + τ ] so that656

the number sent for each channel packet X [j] is n
(c)
j . The657

construction is systematic, as the first ki symbols (i.e., S[i])658

are sent over X [i], . . . , X [i+τL]. The following terms will be659

used to express the rate of IP-based construction 1660

〈k(∗), n(∗)〉 =

〈

t
∑

i=0

ki,

t
∑

i=0

n
(∗)
i

〉

. (5)661

Remark 3: The rate for the (τ, a, b, τL)-separate encoding662

scheme for message packet size sequence k0, . . . , kt for case 2663

sub-case 2 is k(∗)

n(∗) . This follows directly from the MDS code664

employed.665

Finally, we note that IP-based construction 1 can be used for666

any parameter settings. We provide explicit constructions for667

case 1 and case 2 sub-case 1 because IP-based construction 1668

is not explicit.669

Next, we use the (τ, a, b, τL)-separate encoding scheme670

described above to provide a general lower bound on the rate.671

Before doing so, we must verify that the (τ, a, b, τL)-separate672

encoding scheme satisfies the lossless-delay constraint and673

worst-case-delay constraint over the C(a, b, w) channel for any674

valid parameters (τ, a, b, τL) and sequence of message packets.675

This is done below.676

Lemma 2: For any valid inputs (τ, a, b, w, τL) and any677

sequence of message packets S[0], . . . , S[t], the (τ, a, b, τL)-678

separate encoding scheme satisfies the lossless-delay con-679

straint τL and the worst-case-delay constraint τ over the680

C(a, b, w) channel.681

Proof Sketch: The proof of Lemma 2 is included in682

Appendix B. �683

Consequently, the rate of the (τ, a, b, τL)-separate encoding684

scheme constitutes a lower bound on the optimal rate. This685

quantity is summarized in Lemma 3.686

Lemma 3: For any valid inputs (τ, a, b, w, τL), the opti-687

mal rate for streaming codes that satisfy the lossless-delay688

constraint and worst-case-delay constraint over the C(a, b, w)689

channel for an arbitrary message packet size sequence is at690

least R(L) =691



















































η
η+η′

if τL < a − 1
ζ

ζ+a if τL ≥ (a − 1) and ((τL + 1) mod b) ∈
{0} ∪ {a, . . . , b − 1} or τL ≥ (a − 1) and

((τL + 1) mod b) (
⌊

τL+1
b

⌋

+ 1) ≥ a
k(∗)

n(∗) if τL ≥ (a − 1) and

0 < ((τL + 1) mod b) < a and

((τL + 1) mod b) (
⌊

τL+1
b

⌋

+ 1) < a.

(6)692

Proof: The (τ, a, b, τL)-separate encoding scheme exhibits693

this rate. This follows directly from the parameters of the MDS694

code used in each case, as is noted in Remark 1, Remark 2,695

and Remark 3. The lossless-delay constraint and worst-case-696

delay constraint over the channel model are also satisfied by697

the code construction, as was shown in Lemma 2. �698

For any valid inputs (τ, a, b, w, τL), as τL increases,699

the quantity R(L), is monotonically non-decreasing and700

approaches the upper bound on the rate of R(U). Whenever701

τL = (τ − b) and either b = a or ((τ + 1) mod b) = a, the702

least upper bound on the rate of R(U) is equal to the greatest 703

lower bound on the optimal rate of R(L). For such parameter 704

settings, the rate of the (τ, a, b, τL)-separate encoding scheme 705

matches the least upper bound on the rate of R(U). In such 706

settings, the (τ, a, b, τL)-separate encoding scheme is also 707

analogous to the scheme presented in [26] for the streaming 708

model with message packets of the same fixed size. 709

We show in Lemma 4 that R(L) is the greatest lower 710

bound on the optimal rate for arbitrary message packet size 711

sequences. 712

Lemma 4: For any valid inputs (τ, a, b, w, τL), R(L) is the 713

greatest lower bound on the optimal rate for arbitrary message 714

packet size sequences for streaming codes that satisfy the 715

lossless-delay constraint and worst-case-delay constraint over 716

the C(a, b, w) channel. 717

Proof Sketch: The proof of Lemma 4 is included in 718

Appendix A. � 719

V. BOUNDS ON RATE FOR SPECIFIC MESSAGE 720

PACKET SIZE SEQUENCES 721

In the proposed model for streaming codes with message 722

packets of varying sizes, the optimal rate for any transmission 723

depends on the specific message packet size sequence. The 724

optimal rate can be as large as R(U) and as small as R(L), 725

as was shown in Section IV. These general bounds are agnostic 726

to the sizes of the message packets and apply to an arbitrary 727

message packet size sequences. In this section, we develop a 728

deeper understanding for the optimal rate of a streaming code 729

for any specific message packet size sequence. We refer to 730

the setting in which the sender and receiver have access to 731

the complete message packet size sequence as the “offline” 732

setting and consider it for the rest of this section. This differs 733

from the setting considered in the rest of this work, which we 734

call the “online” setting, where the sender and receiver do not 735

have access to ki+1, . . . , kt during time slot i. The optimal 736

rate for the online setting for any specific message packet size 737

sequence is not well-defined because there exists a coding 738

scheme which attains the best possible rate, which is that of 739

the offline setting. However, the rate of that coding scheme 740

may not be optimal for other message packet size sequences, 741

as is discussed in detail in [28]. 742

First, we show that the optimal rates for various message 743

packet size sequences can take values over the entire range of 744

[R(L), R(U)]. Naturally, the general upper and lower bounds 745

on the rate, i.e., R(U) and R(L), are inherently loose for many 746

message packet size sequences, motivating the need for tighter 747

bounds. We then present an algorithm to compute an upper 748

bound on the rate for linear encoding schemes by imposing the 749

lossless-delay constraint and worst-case-delay constraint over 750

the channel model for each message packet. We then present 751

an algorithm to compute the best possible rate for a coding 752

scheme that combines block codes such as those presented 753

in [5]–[9] with the separate encoding scheme presented in 754

Section IV-B. The so-computed rate serves as a lower bound 755

on the optimal rate. Finally, we empirically evaluate these 756

upper and lower bounds on the optimal rate. The empirical 757

evaluation demonstrates that the gap between the lower and 758

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 02,2022 at 21:07:05 UTC from IEEE Xplore.  Restrictions apply. 



RUDOW AND RASHMI: STREAMING CODES FOR VARIABLE-SIZE MESSAGES 5831

upper bounds computed by the two aforementioned algorithms759

is a significant improvement over the gap between the bounds760

agnostic to the size sequence.761

Lemma 5: For any valid inputs (τ, a, b, w, τL), the set of762

optimal rates for coding schemes that satisfy the lossless-delay763

constraint and worst-case-delay constraint over any C(a, b, w)764

channel over all possible message packet size sequences are765

dense in
[

R(L), R(U)
]

.766

Proof: Let v ∈
[

R(L), R(U)
]

, and ǫ > 0 arbitrarily.767

We will show that there is a message packet size sequence for768

which the optimal rate is within ǫ of v. Let p, r ∈ Z
+ ∪ {0}769

be chosen so that the quantity R(p,r) = p+r
p

R(L)
+ r

R(U)
satisfies770

|R(p,r) − v| < ǫ. When v ∈
(

R(L), R(U)
)

, the existence of771

such p and r follows from the fact that R(p,r) → v in the772

limit as p
r → R(L)v−R(L)R(U)

R(L)R(U)−R(U)v
. When v = R(L) or v = R(U)

773

it suffices to choose (r = 0, p > 0) and (p = 0, r > 0)774

respectively. Let d be the smallest positive integer for which775

d
R(L) and d

R(U) are both integers. Consider the following776

length (3τ − a + 2) message packet size sequence: k0 = pd,777

kj = rd
τ−a+1 for j ∈ {τ + 1, . . . , 2τ − a + 1}, and kj = 0 for778

j ∈ {1, . . . , τ} ∪ {2τ − a + 2, . . . , 3τ − a + 1}.779

The proof follows from verifying that the optimal rate780

for this message packet size sequence is at most R(p,r) and781

presenting a coding scheme with rate R(p,r), which we will782

show below.783

Upper bound. The lossless-delay constraint and worst-784

case-delay constraint over the C(a, b, w) channel must be785

satisfied for message packet S[0]. This necessitates that As786

such, at least pd
R(L) symbols are sent by time slot τ (Lemma 4).787

The lossless-delay constraint and worst-case-delay constraint788

over the C(a, b, w) channel must be met for the rd symbols789

corresponding to the remaining (τ − a + 1) message packets.790

Thus, at least rd
R(U) additional symbols must be sent due to the791

upper bound on the rate of R(U). A total of at least pd
R(L) +

rd
R(U)792

symbols are sent, leading to an upper bound on the rate of793

R(p,r).794

Achievability. Applying the (τ, a, b, τL)-separate encoding795

scheme to message packet S[0] involves transmitting pd
R(L)796

symbol. The systematic [τ + b − a + 1, τ − a + 1] block797

code, presented in [9] (or alternatively the block codes from798

[5]–[8]), can be applied to message packets S[τ +799

1], . . . , S[2τ − a + 1] by sending each message packet in the800

corresponding channel packet. Afterward, the channel packets801

X [2τ−a+2], . . . , X [2τ+b−a+1] are defined to each contain802

rd
τ−a+1 parity symbols of the block code. The lossless-delay803

constraint and worst-case-delay constraint over the C(a, b, w)804

channel are met by the definition of the (τ, a, b, τL)-separate805

encoding scheme and block codes. This code construction has806

a rate of R(p,r). �807

Hence, the quantities R(L) and R(U) are insufficient for808

understanding the best possible rate for a specific message809

packet size sequence. As such, Lemma 5 motivates the need810

to compute upper and lower bounds on the optimal rate for any811

specific message packet size sequence that can more tightly812

bound the optimal rate. A desirable property for doing so is813

that the upper and lower bounds on rate can likewise range814

from R(L) to R(U). We introduce algorithms to compute upper815

and lower bounds on the optimal rate for any specific message 816

packet size sequence in Sections V-A and V-B to capture this 817

property. 818

A. An Upper Bound on the Optimal Rate for Specific 819

message packet size sequences 820

We now present Algorithm 1, which computes an upper 821

bound on the rate for linear encoding schemes for any given 822

message packet size sequence by imposing the lossless-delay 823

constraint and worst-case-delay constraint over the channel 824

model for each message packet. To do so, Algorithm 1 will 825

make use of an integer program by converting the lossless- 826

delay and worst-case-delay constraints into constraints for the 827

IP. In order to avoid confusion over the term “constraint,” 828

we refer to constraints of the IP as “constraints” and the 829

lossless-delay and worst-case-delay constraints as “require- 830

ments” in this section and Section V-B. Under Algorithm 1, 831

(1) the lossless-delay and worst-case-delay requirements are 832

converted into constraints for an integer program (IP) with 833

a simple minimization objective function, (2) its solution is 834

computed, and (3) its solution is converted into an upper bound 835

on the optimal rate. In Section V-C, we will show empirically 836

that the upper bound on the optimal rate determined by 837

Algorithm 1 can be significantly lower than R(U). 838

Consider any message packet size sequence of an arbitrary 839

length t. Consider any valid inputs (τ, a, b, w, τL). We first 840

model the sizes of the message and channel packets, and 841

the associated parameters will serve as the variables for the 842

IP. Each channel packet, X [i], for i ∈ {0, . . . , t} comprises 843

(X(0)[i], X(1)[i]). Under a lossless transmission, message 844

packets S[0], . . . , S[i] are decoded using X(0)[0], . . . , X(0)
845

[i + τL]. In contrast, X(1)[0], . . . , X(1)[i + τL] are used for 846

decoding only under a lossy transmission. The linear equations 847

corresponding to the symbols of X(1)[i] are in the span of the 848

linear equations corresponding to the symbols of 〈X(0)[j] | 849

j ≤ i〉. Each quantity |X(1)[i]| will be a variable of the IP, 850

whereas there will be (τL + 1) variables corresponding to 851

X(0)[i] defined shortly. The details of how (X(0)[i], X(1)[i]) 852

are defined are only used in in the proof of Theorem 1 and 853

can be found in Appendix C. 854

The symbols of X(0)[i] are partitioned into X
(0)
l [i] for 855

l ∈ {i, . . . , i − τL} for convenience of notation, where 856

each quantity |X(0)
l [i]| will be a variable of the IP. Under 857

a lossless transmission, the symbols sent in channel packet 858

X [j] for j ∈ {0, . . . , τL} used to decode S[0] are called 859

X
(0)
0 [j]. Similarly, for i = 1, . . . , t, the symbols sent in 860

channel packet X [j] for j ∈ {i, . . . , i + τL} that are used to 861

decode S[i] under lossless transmission are labeled as X
(0)
i [j]. 862

Thus, X(0)[i] = 〈X(0)
j [i]j ∈ {i − τL, . . . , i}〉, and hence, 863

∑i
j=i−τL

|X(0)
j [i]| = |X(0)[i]| for any i ∈ {0, . . . , t}.6 864

We next outline how the constraints for the IP reflect 865

the worst-case-delay and lossless-delay requirements of the 866

6For convenience of notation, the edge conditions are handled by modeling
S[−τL], . . . , S[−1], S[t + 1], . . . , S[t + τ ] as message packets of size 0.

Furthermore, variables |X
(0)
j [i]| = 0 whenever at least one of i, j is either

negative or i exceeds t. Similarly, |X(1)[i]| = 0 whenever i is negative or
exceeds t.
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streaming model. For ease of presentation, in this paragraph,867

we assume that the coding scheme is systematic. Under868

a systematic coding scheme, the quantity X
(0)
j [i] for i ∈869

{0, . . . , t}, j ∈ {i−τL, . . . , i} corresponds to |X(0)
j [i]| distinct870

symbols of S[j]. Each of |X(0)
j [i]| and |X(1)[i]| are non-871

negative integers to reflect that each channel packet consists872

of some non-negative quantity of symbols corresponding to873

message packet S[j] for j ∈ {i− τL, . . . , i}, along with some874

non-negative number of parity symbols (constraints #1 and #2875

in Algorithm 1). The lossless-delay requirement is imposed876

through requiring that ki symbols for message packet S[i], for877

each i ∈ {0, . . . , t−τ}, be transmitted over X [i], . . . , X [i+τL]878

(constraint #3).7 In the proof of Lemma 1, it was shown879

that satisfying the worst-case-delay requirement over any880

C(a, b, w) channel necessitates satisfying the worst-case-delay881

requirement over all channels which periodically drop b chan-882

nel packets and allow (τ − a + 1) successful transmissions.883

This implies that for each burst of length b starting in time884

slot i ∈ {0, . . . , t}, S[j], for j ∈ {i− τL, . . . , i+ b− 1}, must885

be decoded by time slot (i+ τ + b− a), while the worst-case-886

delay requirement necessitates that S[j] be decoded by (j+τ)887

(constraint #4). The worst-case-delay requirement is imposed888

for all possible patterns of a losses on every sliding window889

of length (τ + 1). Specifically, under constraint #4 (respec-890

tively #5), for any considered burst of length b (respectively891

a arbitrary losses) beginning in time slot i ∈ {0, . . . , t − b}892

(respectively i ∈ {0, . . . , t − τ}) and terminating in time893

slot i′ ∈ {i, . . . , t}, the following relaxation of the worst-894

case-delay requirement is imposed. For each message packet895

S[j] ∈ {S[i − τL], . . . , S[i′]}, S[i − τL], . . . , S[j] must be896

decoded by time slot (j+τ). This relaxation is more restrictive897

than the relaxation which allows all lost message packets898

to be decoded within τ time slots of the final lost message899

packet. Finally, we consider the relaxation that each X
(0)
j′ [i′]900

is received even if X [i′] is lost for j′ > j. A toy example of901

constraint #4 is shown in Figure 5. An analogous figure could902

be constructed for constraint #5.903

The objective function is to minimize the sum of all vari-904

ables. The summation constitutes a lower bound on the number905

of transmitted symbols. The solution is easily converted into906

an upper bound on the rate since the total number of symbols907

of the message packets is fixed.908

We now present Algorithm 1.909

In Theorem 1, we verify that the output of Algorithm 1 is910

an upper bound on the rate.911

Theorem 1: For any valid inputs (τ, a, b, w, τL) and any912

message packet size sequence k0 . . . kt, the value computed913

by Algorithm 1 is an upper bound on the rate of streaming914

codes that satisfy the lossless-delay requirement and worst-915

case-delay requirement over the C(a, b, w) channel while916

employing linear encoding.917

Proof Sketch: Follows from the high-level descrip-918

tion presented above. The full details are shown in919

Appendix C. �920

7The final τ message packets are of size 0 and, therefore, no lossless-delay
requirement needs to be imposed. For i < 0 or j < 0, as well as i > t and

j ∈ {0, . . . , τL}, |X
(0)
j [i]| = 0 is defined only for edge conditions.

Algorithm 1 Takes as input any valid parameters and message

packet size sequence and uses integer programming to com-

pute an upper bound on the rate of streaming codes with linear

encoding schemes for the input message packet size sequence.

Input: Valid values for (τ, a, b, w, τL) and message packet size

sequence k0, . . . , kt.

Minimize
∑t+τ

i=0

(

|X(1)[i]| +∑i
j=i−τL

|X(0)
j [i]|

)

subject to:

1) ∀i ∈ {0, . . . , t − τ}, j ∈ {i − τL, . . . , i}, |X(0)
j [i]| ≥

0 and |X(0)
j′ [i′]| = 0 when i′ < 0, i′ > t, or j′ < 0.

2) ∀i ∈ {0, . . . , t + τ}, |X(1)[i]| ≥ 0.

3) ∀i ∈ {0, . . . , t − τ},∑τL

j=0 |X
(0)
i [i + j]| ≥ ki and

∑τL

j=0 |X
(0)
j [i + j]| ≤ ki.

4) ∀i ∈ {0, . . . , t − b + 1}, ∀j ∈ {i − τL, . . . , i + b − 1}
min(j+τ,i+b+τ−a)

∑

z=i+b

|X(1)[z]| −
j
∑

l=i−τL

kl+

j
∑

l=i−τL

∑

z∈{l,...,l+τL}\{i,...,i+b−1}}
|X(0)

l [z]| ≥ 0.

5) ∀i ∈ {0, . . . , t − τ}∀I ⊆ {i, . . . , i + τ} of size |I| =
a, ∀j ∈ {min(I) − τL, . . . ,max(I)},

∑

z∈{min(I)+1,...,j+τ}\I

|X(1)[z]| −
j
∑

l=i−τL

kl+

j
∑

l=i−τL

∑

z∈{l,...,l+τL}\I}
|X(0)

l [z]| ≥ 0.

Output:
�

t
i=0 ki�t+τ

i=0

�
|X(1)[i]|+�i

j=i−τL
|X(0)

j
[i]|
� .

Remark 4: The value computed by Algorithm 1 is also an 921

upper bound on the rate for streaming code constructions in 922

an online setting since the offline setting involves providing 923

the sender and receiver additional information not available in 924

the online setting. 925

Next, we show that the outputs of Algorithm 1 can 926

tightly bound the optimal rate for various message packet 927

size sequences with values ranging from R(L) to R(U). 928

Recall from Lemma 5 that this is a desired property because 929

the optimal rate can likewise range from R(L) to R(U). 930

For any message packet size sequence, (k0, . . . , kt), let 931

Alg
(1)
τ,a,b,w,τL

(k0, . . . , kt) and Optτ,a,b,w,τL
(k0, . . . , kt) denote 932

the output of Algorithm 1 and the optimal rate respectively. 933

Lemma 6: For any valid parameters (τ, a, b, w, τL), for all 934

ǫ > 0 and v ∈ [R(L), R(U)], there exists a sequence of message 935

packet sizes (k0, . . . , kt) such that Alg
(1)
τ,a,b,w,τL

(k0, . . . , kt) = 936

Optτ,a,b,w,τL
(k0, . . . , kt) and |Alg

(1)
τ,a,b,w,τL

(k0, . . . , kt) − 937

v| < ǫ. 938

Proof: We now introduce a message packet size sequence 939

for which the optimal is within ǫ of v. Let p, r ∈ Z
+ ∪ {0} 940

be chosen so that the quantity R(p,r) = p+r
p

R(L)
+ r

R(U)
obeys the 941

inequality |R(p,r) − v| < ǫ. Let d be the smallest positive 942
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Fig. 5. An example of imposing constraint #4 (in Algorithm 1) for j ∈ {i, . . . , i + b − 2}. The quantities iL, ib, and jτ represent (i − τL), (i + b − 1),
and (j + τ) respectively. The gray boxes (time slots i, . . . , ib) are lost in a burst of channel packets X[i], . . . , X[ib]. The symbols in the gray boxes with
thick blue outlines must be recoverable using the symbols inside boxes with double red outlines. This requirement allows for the relaxation that the symbols
inside boxes with purple dashed outlines are treated as received.

integer such that d
R(L) and d

R(U) are integers. Consider the943

message packet size sequence k0 = pd, kj = rd
τ−a+1 for j ∈944

{τ + 1, . . . , 2τ − a + 1}, and kj = 0 for j ∈ {1, . . . , τ} ∪945

{2τ − a + 2, . . . , 3τ − a + 1}.946

The code construction presented in the proof of Lemma 5947

satisfies lossless-delay requirement and worst-case-delay948

requirement over the C(a, b, w) channel and has rate R(p,r).949

Hence, the optimal rate is at least R(p,r).950

The lossless-delay requirement and worst-case-delay951

requirement over the C(a, b, w) channel are both imposed952

under Algorithm 1. As shown in the proof of Lemma 4, these953

requirements are sufficient to show that at least pd
R(L) symbols954

must be sent by time slot τ due to message packet S[0].955

Recall from Section IV that the rate is upper bounded by956

R(U) = τ−a+1
τ+b−a+1 . This holds because all message packets are957

decoded for any lossy channels CP,i for i ∈ {0, . . . , τ +b−a}958

consisting of bursts of length b starting in positions ≡ i959

mod (τ + b − a + 1). Furthermore, at least one such channel960

drops at least b
τ−a+1 fraction of the transmitted symbols.961

Similarly, one can show that at least one such channel drops962

at least b
τ−a+1 fraction of the symbols sent strictly after963

time slot τ . All such periodic packet loss channels CP,i964

are accounted for under Algorithm 1, due to constraint #4.965

Hence, the output of Algorithm 1 reflects that at least rd
R(U)966

additional symbols are sent strictly after time slot τ . The967

output of Algorithm 1 is, thus, at most R(p,r).968

The value computed by Algorithm 1 is an upper bound969

on the optimal rate, which is at least R(p,r). Therefore,970

Algorithm 1 must output R(p,r); this is a tight upper bound on971

the rate for the message packet size sequence, and it is within972

ǫ of v. �973

The value computed by Algorithm 1 is an upper bound on 974

the rate, but the algorithm can be computationally intensive. 975

We now discuss modifications to the algorithm that trade off 976

tightness for runtime. 977

There is a simple linear program (LP) relaxation of 978

Algorithm 1 which uses non-negative real-valued variables 979

|X(0)
i [j]| and |X(1)[i]| rather than integral ones. A solution to 980

this LP can be converted into an upper bound on the rate by 981

setting each variable to be the floor of its previous value. The 982

conversion changes the size of each channel packet by at most 983

(τL +2) which, in practice, is several orders of magnitude less 984

than the average size of the message packets. Finally, Lemma 6 985

would likewise apply to the LP relaxation of Algorithm 1. 986

Remark 5: Modifying Algorithm 1 to solve an LP relaxation 987

of the underlying IP has a negligible impact on its output. 988

It is simple to analyze the runtime of the modified ver- 989

sion of Algorithm 1 that uses an LP relaxation of the IP. 990

For any valid inputs (τ, a, b, w, τL) and message packet size 991

sequence k0 . . . kt, the total number of combined constraints 992

in Algorithm 1 is at most 993

(τL + 2)t + (b + τL + 1)t +

(

τ

a

)

(τL + τ + 1)t 994

≤(b + 2τL + 3 + 2τa+1)t. 995

Consequently, Algorithm 1 with the LP relaxation of the IP 996

runs in poly(τa, t) time. 997

One might want a polynomial-time algorithm to compute a 998

tighter upper bound on the rate than R(U). Therefore, one may 999

run the LP relaxation of Algorithm 1 without constraint #5. 1000

In this case, there are at most (b + 2τL + 3)t constraints, and 1001

the run time is poly(τt). Despite the relaxation, the algorithm 1002
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imposes the lossless-delay requirement and the worst-case-1003

delay requirement over a burst-only channel model which1004

introduces bursts of length b separated by guardspaces of at1005

least (τ − a + 1).1006

Remark 6: Modifying Algorithm 1 to use an LP relaxation1007

of the underlying IP and removing constraint #5 results in1008

a polynomial-time algorithm. Its output is less than or equal1009

to R(U). The modified algorithm imposes more stringent con-1010

straints than computing Algorithm 1 for inputs (τ, 1, b, w, τL).1011

Algorithm 2 Takes as input any valid parameters and a

message packet size sequence and uses integer programming

to compute a lower bound on the optimal rate for the input

message packet size sequence.

Input: Valid (τ, a, b, w, τL) and message packet size sequence

k0 . . . kt−τ .

Minimize
(

∑t−τ
i=0

ei

R(L) + bpi

)

+
(

∑t−τ
i=0

∑i+τL

j=i kj,i

)

subject

to:

1) ∀i ∈ {0, . . . , t − τ}, ei ≥ 0.

2) ∀i ∈ {0, . . . , t − τ}, j ∈ {i, . . . , i + τL}, ki,j ≥ 0.

3) ∀i ∈ {0, . . . , t − τ}, pi ≥ 0.

4) ∀i ∈ {0, . . . t − τ}, ei − ki +
∑i+τL

j=i ki,j = 0.

5) ∀i ∈ {0, . . . , t − τ}, j = τL, . . . , j = 1,
∑i+a−b−j

z=max(i−τ+a,0) pz −
∑τL

z=j ki−z,i ≥ 0

6) ∀i ∈ {0, . . . , t − τ}∑i
z=max(i−τ+a,0) pz −

∑τL

z=0 ki−z,i ≥ 0.

Output:
�t−τ

i=0 ki��t−τ
i=0

ei

R(L)
+bpi

�
+
��t−τ

i=0

�i+τL
j=i

kj,i

� .

B. A Lower Bound on the Optimal Rate for Specific1012

Message Packet Size Sequences1013

We now present Algorithm 2, which computes a lower1014

bound on the optimal rate for offline streaming codes that1015

satisfy the lossless-delay constraint and worst-case-delay1016

constraint over the C(a, b, w) channel. Specifically, under1017

Algorithm 2, an integer program with a simple minimization1018

function is used to determine the minimum number of symbols1019

which need to be transmitted using a combination of two1020

schemes. The solution to this integer program is then converted1021

into a lower bound on the optimal rate. The values computed1022

by Algorithm 2 over various message packet size sequences1023

can vary over [R(L), R(U)]. We will later see in Section V-C1024

that the empirically computed lower bound on the optimal1025

rate determined by Algorithm 2 can be significantly tighter1026

than that of R(L). Specifically, the gap between the output1027

of Algorithm 2 and Algorithm 1 is shown to be small in1028

Section V-C, highlighting the utility of Algorithm 1 empir-1029

ically. A high-rate offline construction (e.g., Algorithm 2) is1030

of interest because it lays the groundwork for designing high-1031

rate online constructions. For example, in a recent work [29],1032

the authors convert an offline rate-optimal construction into1033

an online approximately rate-optimal online construction.1034

Algorithm 2 also outputs an upper bound on the rate for a class1035

of coding schemes which include the online coding scheme1036

that will be presented in Section VI-B. A detailed discussion1037

on the difference between the best possible rate for online and 1038

offline streaming codes is presented in [28]. We first provide 1039

an overview of Algorithm 2 before discussing its technical 1040

details. Finally, we consider the accuracy-runtime trade-off for 1041

the LP relaxation of the algorithm. 1042

Similar to Section V-A, we refer to constraints of an IP 1043

as “constraints” and the lossless-delay and worst-case-delay 1044

constraints as “requirements” for convenience of notation. 1045

Each symbol of each message packet, S[i], is encoded either 1046

as part of a block of the SBC or using the (τ, a, b, τL)-separate 1047

encoding scheme. To reflect this, the number of symbols 1048

corresponding to S[i] encoded using the (τ, a, b, τL)-separate 1049

encoding scheme is denoted ei. For j ∈ {i, . . . , i + τL}, the 1050

variable ki,j will represent the number symbols corresponding 1051

to S[i] sent in X [j] within blocks of the SBC. Finally, pi will 1052

reflect the number of blocks of the SBC whose first position 1053

occurs in channel packet X [i]. 1054

The lossless-delay and worst-case-delay requirements are 1055

satisfied for symbols of message packets encoded using the 1056

(τ, a, b, τL)-separate encoding scheme via the properties of the 1057

(τ, a, b, τL)-separate encoding scheme detailed earlier. There 1058

must be a non-negative quantity of symbols encoded in this 1059

manner (constraint #1 in Algorithm 2). The number of symbols 1060

corresponding to message packet S[i] sent in channel packet j 1061

is non-negative (constraint #2). Similarly, the number of blocks 1062

corresponding to each message packet is non-negative (con- 1063

straint #3). All symbols of message packets not encoded using 1064

the (τ, a, b, τL)-separate encoding scheme must be decoded 1065

within delay τL under lossless transmission (constraint #4). 1066

Finally, under the two considered code constructions, all 1067

symbols of message packets which are not encoded using the 1068

(τ, a, b, τL)-separate encoding scheme must be encoded via 1069

a block of SBC which ensures decoding within the worst- 1070

case-delay requirement under lossy conditions (constraints #5 1071

and #6). Specifically, all symbols of message packet S[i] for 1072

i transmitted in a time slot later than i (not as part of the 1073

(τ, a, b, τL)-separate encoding scheme) must be encoded as 1074

part of blocks whose final parity symbol is transmitted by 1075

time slot (i + τ) (constraint #5). Furthermore, all symbols for 1076

message packet S[i] sent in channel packet X [i] are encoded 1077

via blocks of the SBC which have an open slot in position i 1078

(constraint #6). Figure 6 depicts a toy example of how these 1079

constraints may be applied for a single time slot, i. 1080

The objective function of the IP used under Algorithm 2 1081

is the total number of symbols sent via the solution to the 1082

IP. Minimizing this quantity ensures that the fewest number 1083

of symbols possible are transmitted, thereby maximizing the 1084

rate. The combined number of symbols of all message packets 1085

is divided by total number of transmitted symbols to output 1086

the rate of the corresponding coding scheme. 1087

In Theorem 2, we show that the output of Algorithm 2 is a 1088

lower bound on the optimal rate.8 1089

Theorem 2: For any valid inputs (τ, a, b, w, τL) and any 1090

message packet size sequence k0 . . . kt, Algorithm 2 outputs 1091

8The extra padding symbols needed to employ the (τ, a, b, τL)-separate
encoding scheme is ignored. The padding only negligibly impacts the value
computed when the number of extra padding symbols is small compared to
the size of each message packet, as is typical.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 02,2022 at 21:07:05 UTC from IEEE Xplore.  Restrictions apply. 



RUDOW AND RASHMI: STREAMING CODES FOR VARIABLE-SIZE MESSAGES 5835

Fig. 6. An example imposing constraints #4, #5, and #6 for time slot i for parameters (τ, a, b, τL) = (7, 2, 3, 4). Blue boxes can hold symbols of message
packets. Red boxes hold parity symbols. Gray boxes contain no symbols. Boxes above time slot j correspond to symbols sent in channel packet X[j]. At least
ki symbols are sent for S[i] consisting of (a) ei symbols sent as part of the (7, 2, 3, 4)-separate encoding scheme (shown at the top), and (b) ki,j symbols
sent in channel packet X[j] for j ∈ {i, . . . , i +4} (constraint #4). There are pi−3 blocks of the SBC for which the final parity symbols are sent during time
slot (i+5). The total number of symbols sent in channel packet X[i] corresponding to message packet S[i−2] (i.e., ki−2,i) is at most pi−3 (constraint #5).
In addition, there are pi−1 and pi blocks of the SBC for which the final parity symbols are sent during time slots (i + 7) and (i + 8) respectively. The
number of symbols of all message packets sent in channel packet X[i] within blocks of the SBC (i.e., (ki−2,i + ki,i)) is at most (pi−3 + pi−1 + pi)
(constraint # 6).

a lower bound on the optimal rate for streaming codes that1092

satisfy the lossless-delay requirement and worst-case-delay1093

requirement over the C(a, b, w) channel.1094

Proof Sketch: Follows from the ideas presented above.1095

A complete proof is included in Appendix D. �1096

We now demonstrate that outputs of Algorithm 2 range1097

from R(L) to R(U). Having outputs vary over all possible1098

values of the optimal rate for various message packet size1099

sequences is a useful property because the optimal rate can1100

likewise range from R(L) to R(U), as was shown in Lemma 5.1101

For any message packet size sequence, (k0, . . . , kt), let1102

Alg
(2)
τ,a,b,w,τL

(k0, . . . , kt) and Optτ,a,b,w,τL
(k0, . . . , kt) denote1103

the output of Algorithm 1 and the optimal rate respectively.1104

Lemma 7: For any valid parameters (τ, a, b, w, τL), for1105

all ǫ > 0 and v ∈ [R(L), R(U)], there exists a1106

sequence of message packet sizes, (k0, . . . , kt), such that1107

Alg
(2)
τ,a,b,w,τL

(k0, . . . , kt) = Optτ,a,b,w,τL
(k0, . . . , kt) and1108

|Alg
(2)
τ,a,b,w,τL

(k0, . . . , kt) − v| < ǫ.1109

Proof: We will introduce a message packet size sequence1110

whose optimal rate is within ǫ of v. Let p, r ∈ Z
+ ∪ {0} be1111

chosen and the quantity R(p+r) = p+r
p

R(L)
+ r

R(U)
defined so that1112

|R(p+r) − v| < ǫ. Let d be the smallest positive integer such1113

that d
R(L) and d

R(U) are integers. Consider the message packet1114

size sequence k0 = pd, kj = rd
τ−a+1 for j ∈ {τ + 1, . . . , 2τ −1115

a+1}, and kj = 0 for j ∈ {1, . . . , τ}∪{2τ −a+2, . . . , 3τ −1116

a + 1}.1117

The code construction presented in the proof of Lemma 51118

satisfies lossless-delay requirement and worst-case-delay1119

requirement over the C(a, b, w) channel and has rate R(p+r).1120

Moreover, the scheme follows from applying the (τ, a, b, τL)-1121

separate encoding scheme to message packet S[0] and blocks1122

of the SBC to message packets S[τ + 1], . . . , S[2τ − a + 1].1123

Thus, the variables of the IP computed by Algorithm 2 1124

could represent this scheme while satisfying all constraints. 1125

Therefore, Algorithm 2 will output a value of at least R(p+r). 1126

As was shown in Lemma 5, R(p+r) is also an upper 1127

bound on the rate. Hence, the value computed by Algorithm 2 1128

is a tight lower bound on the optimal rate. It is also 1129

within ǫ of v. � 1130

Algorithm 2 computes a lower bound on the rate, but 1131

it can be computationally intensive. For any valid inputs 1132

(τ, a, b, w, τL) and message packet size sequence, consider the 1133

LP relaxation of Algorithm 2 which uses non-negative real- 1134

valued variables ei, ki,j , pi for i ∈ {τ +b, . . . , t−(τ +b)}. It is 1135

possible to transform a real-valued solution into an integral one 1136

by setting each variable to be the ceiling of its previous value. 1137

The number of symbols transmitted corresponding to each 1138

message packet increases by at most (τL +3+ b). In practice, 1139

(τL+3+b) is several orders of magnitude less than the average 1140

size of the message packets and leads to a negligible impact on 1141

the tightness of the bound. The total number of constraints for 1142

the LP is at most t(2τL +5). Hence, the number of constraints 1143

is quadratic in the input parameters (and linear in the length 1144

of the message packet size sequence). 1145

Remark 7: Modifying Algorithm 2 to use an LP relaxation 1146

of the underlying IP results in a polynomial-time algorithm 1147

while changing the output only negligibly. 1148

C. Empirical Evaluation of the Bounds on Rate 1149

The general upper and lower bounds on the optimal rate, 1150

R(U) and R(L), are tight for certain message packet size 1151

sequences. Yet the optimal rate for a specific message packet 1152

size sequence varies over the entire range of [R(L), R(U)]. 1153

Thus, R(U) and R(L) can be loose depending on the message 1154
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TABLE I

PARAMETER SETTINGS USED IN THE EMPIRICAL EVALUATION OF THE BOUNDS ON THE OPTIMAL RATE

Fig. 7. Comparison over the parameter settings listed in Table I for the live video trace shown in Figure 1 of the four bounds on the optimal rate for the
offline setting: the greatest lower bound (R(L))), the lower bound computed by Algorithm 2, the upper bound computed by Algorithm 1, and the least upper

bound (R(U)).

packet size sequences. In contrast, the upper and lower bounds1155

on optimal rate computed by Algorithms 1 and 2 can range1156

over all feasible values of the optimal rate, [R(L), R(U)].1157

We evaluate the usefulness of the latter two bounds by1158

empirically evaluating them over the live video trace shown in1159

Figure 1. We show that the gap is small in magnitude and a1160

significant improvement over the gap between R(U) and R(L).1161

We consider the setting of a small worst-case-delay1162

(i.e., τ = 5) and all parameter settings (τ = 5, a, b, τL)1163

where τL takes on its minimum and maximum values of 0 and1164

(τ−b). Algorithms 2 and 1 bound the optimal rate significantly1165

more tightly than R(L) and R(U) for many parameter settings.1166

In the remaining settings, one or both of the lower and upper1167

bounds on the optimal rate of R(L) and R(U) is nearly tight.1168

Specifically, the size of the gap between Algorithms 2 and 11169

is, on average, 65.4% smaller than the gap between R(U) and1170

R(L) over the parameter settings from Table I. Furthermore,1171

the gap between the bounds computed by the two algorithms is1172

less than 0.034 (on average .007) over the parameter settings1173

from Table I, as is shown in Figure 7. The results demonstrate1174

the effectiveness of the algorithms in bounding the optimal1175

rate for the offline setting.1176

VI. EXPLICIT CONSTRUCTION OF STREAMING1177

CODES FOR VARIABLE MESSAGE-SIZES1178

In this section, we present a streaming code construction1179

for any valid inputs (τ, a, b, w, τL) and any message packet1180

size sequence, referred to as the (τ, a, b, τL)-Variable-size1181

Streaming Code (or (τ, a, b, τL)-VSC). We include a toy 1182

example to illustrate the details of the construction concretely 1183

in Section VI-A. We then present the general construction in 1184

Section VI-B. Finally, we determine the field size requirement 1185

of the construction in Section VI-C. 1186

The construction is simple and intuitive. At a high level, the 1187

SBC is leveraged as an underlying component. The adverse 1188

effects of the variability of the sizes of message packets is 1189

alleviated via the following two-step process: 1190

1) The symbols from each message packet are distributed 1191

over the (τL + 1) channel packets within τL time slots. 1192

Blocks of the SBC (existing block codes presented in 1193

Section II) are created to satisfy the worst-case-delay 1194

constraint over a C(a, b, w) channel for τL+1
τ−a+1 fraction 1195

of the symbols of each message packet. The objective of 1196

doing so is to (a) reduce the variability of the sizes of the 1197

channel packets and (b) minimize the number of empty 1198

positions in blocks of the SBC. 1199

2) Additional parity packets are sent to ensure all symbols 1200

not included in any block of SBC are recovered within 1201

the worst-case-delay, τ , over the C(a, b, w) channel. 1202

A. Toy Example 1203

We start by illustrating the details of the code construction 1204

for a simple toy setting with input parameters (τ = 3, 1205

a = 1, b = 2, w ≥ 4, τL = 1) and the specific sequence 1206

of message packets shown in Figure 8. Each message packet 1207
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Fig. 8. An example sequence of message packets. Each message packet, S[i],
has 6 total symbols, S0[i], . . . , S5[i], which are contained in the blue boxes.
The unlabeled gray boxes are empty and contain no symbols. The numbers
under the lines at the bottom indicate the time slots.

Fig. 9. The channel packets sent under the (3, 1, 2, 1)-VSC for the sequence
of message packets from Figure 8. The blue boxes labeled Sj [i] each contain
one symbol of the message packet S[i]. The red boxes labeled Pj [i] each
contain one parity symbol from the interleaved SBC. The yellow boxes labeled
P e

j [4] each contain one parity symbol. The unlabeled gray boxes are empty.

Black lines connect boxes that are part of the same block. The numbers under
the lines at the bottom indicate the time slots.

consists of 6 symbols except for S[5], which contains 0 sym-1208

bols. The channel packets sent under the (3, 1, 2, 1)-VSC for1209

this sequence of message packets are shown in Figure 9.1210

During each time slot, the sender does not have access to1211

the sizes of the future message packets.1212

In the toy example, for i ∈ {3, . . . , 9}, the first 4 symbols1213

of each message packet S[i], that is (S0[i], S1[i], S2[i], S3[i]),1214

are sent in X [i]. The remaining 2 symbols, (S4[i], S5[i]), are1215

sent in X [i + 1]. Next, two blocks of the SBC are created:1216

(a) 〈S0[i − 1], S2[i], S4[i], P0[i], P1[i]〉, and (b) 〈S1[i − 1],1217

S3[i], S5[i], P2[i], P3[i]〉. The parity symbols P0[i] and P1[i])1218

are sent in X [i + 2] and X [i + 3] respectively. Sim- 1219

ilarly, the parity symbols P2[i] and P3[i]) are sent in 1220

X [i + 2] and X [i + 3] respectively. Each of these blocks 1221

is interleaved over channel packets 〈X [i − 1], X [i], X [i + 1222

1], X [i + 2], X [i + 3]〉. Message packet S[5] had 0 sym- 1223

bols, so the blocks 〈empty, S2[6], S4[6], P0[6], P1[6]〉 and 1224

〈empty, S3[6], S5[6], P2[6], P3[6]〉 treat empty as a unique 1225

finite field symbol used for padding. Moreover, no blocks of 1226

the SBC are created corresponding to message packet S[5], 1227

since it is of size 0. As a result, S0[4] and S1[4] are not placed 1228

in any block of the SBC. To ensure that S0[4] and S1[4] are 1229

decoded within the worst-case-delay under lossy conditions, 1230

two additional parity symbols, P e
0 [4] and P e

1 [4], are sent in 1231

channel packets X [6] and X [7] respectively. The quantities 1232

P e
0 [4] and P e

1 [4] are defined to be parity symbols of a [4, 2] 1233

systematic MDS code applied to (S0[4], S1[4]). 1234

The lossless-delay constraint is satisfied for i ∈ {3, . . . , 9}, 1235

since each symbol, Sj [i] for j ∈ {0, . . . , 5}, is transmitted as 1236

part of either X [i] or X [i + 1]. Furthermore, in the presence 1237

of packet loss, all symbols of all message packets besides 1238

(S0[4], S1[4]) are recovered within 3 time slots based on 1239

the properties of the underlying SBC. Since at most one 1240

of ((S0[4], S1[4]), (P e
0 [4], P e

1 [4])) is lost, S0[4] and S1[4] are 1241

decoded by X [7]. Hence, the construction in the toy example 1242

satisfies the lossless-delay constraint and the worst-case-delay 1243

constraint over the C(a, b, w) channel. 1244

B. General Construction 1245

We now discuss the details of the proposed construction 1246

for valid inputs (τ, a, b, w, τL) and an arbitrary sequence 1247

of message packets S[0], . . . , S[t]. The encoding scheme is 1248

systematic, so we will divide the description into two parts: 1249

First, we will detail how the symbols of the message packets 1250

are distributed over the channel packets. Second, we will 1251

explain how parity symbols are created and transmitted. 1252

During time slot i ∈ {0, . . . , t − τ}, let di = ki

τ−a+1 . 1253

As in the existing streaming code constructions for message 1254

packets of a fixed size, we assume that each message packet 1255

has a size which is divisible by (τ − a + 1). The value 1256

(τ − a + 1) is typically negligible compared to the sizes 1257

of the message packets.9 Hence, it has negligible effect on 1258

the rate of the construction. The first di(τ − a − τL + 1) 1259

symbols of S[i] are sent in channel packet X [i]. For each 1260

j ∈ {τ − a − τL + 1, . . . , τ − a}, the next di symbols, 1261

namely (Sjdi
[i], . . . , S(j+1)di−1[i]), are sent in channel packet 1262

X [i+(j−τ+a+τL)]. During time slots i ∈ {t−τ+1, . . . , t}, 1263

the message packet S[i] is known to consist of 0 symbols by 1264

the receiver. Thus, no additional symbols are sent in these 1265

packets. 1266

Parity symbols will be generated as part of blocks of the 1267

SBC and a [2τ − 2b+ a+1, τ − b+1] systematic MDS code. 1268

We now explain how blocks of the SBC corresponding to 1269

message packet S[i] are created for i ∈ {0, . . . , t − τ}. 1270

9For example, consider a 2000 kbps video call recorded at 60 frames per
second with an RTT of 150ms and a maximum tolerable latency of 150 ms.
The maximum possible setting for τ is 6. As such, (τ − a − 1) ≤ 6.
Consequently, (τ −a+1) is 0.14% of the average size of a message packet.
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In total, di blocks of the SBC are created. These blocks will1271

encode systematic symbols of channel packets X [i − (b −1272

a)], . . . , X [i+ τ − b] into parity symbols, which are then sent1273

in channel packets X [i + τ − b + 1], . . . , X [i + τ ]. Finally, for1274

the remaining values of i, namely i > (t − τ), no blocks of1275

the SBC are created.1276

Systematic symbols of various message packets (or unique1277

padding symbols) occupy the first (τ − a + 1) positions of1278

the blocks of the SBC which are placed in channel packets1279

X [i − (b − a)], . . . , X [i + τ − b]. Parity symbols are sent in1280

the final b positions (i.e., in channel packets X [i + τ − b +1281

1], . . . , X [i + τ ]). The symbols S(τ−a−τL)di
[i], . . . , Ski−1[i]1282

of S[i] are distributed evenly over X [i], . . . , X [i + τL] and1283

will occupy the positions of the blocks of the SBC for the1284

respective channel packets. There are (τ − a− τL) remaining1285

positions of each block of the SBC, namely in X [j] for j ∈1286

{i−(b−a), . . . , i−1, i+τL+1, . . . , i+τ−b}. These positions1287

of the SBC are filled by symbols of the corresponding message1288

packets (i.e., block position j is filled with the next symbol1289

of S[j] sent in channel packet X [j] which has not already1290

been allocated to blocks of the SBC). If no such symbols are1291

available to fill any position of the SBC, the empty position1292

is treated as a unique padding symbol.1293

Specifically, for each l ∈ {0, . . . , di − 1}, there are b parity1294

symbols of the block of the SBC: (Plb[i], . . . , P(l+1)b−1[i]).1295

They will be transmitted over channel packets X [i + τ − b +1296

1], . . . , X [i + τ ] respectively. The lth block consists of1297

〈Szi,l,i−(b−a)
[i − (b − a)], . . . , Szi,l,i−1

[i − 1],1298

S(τ−a−τL)di+l[i], . . . , S(τ−a)di+l[i],1299

Szi,l,i+τL+1
[i + τL + 1], . . . , Szi,l,i+τ−b

[i + τ − b],1300

Plb[i], . . . , P(l+1)b−1[i]〉,1301

where Szi,l,h
[h] for h ∈ {i − (b − a), . . . , i − 1, i + τL +1302

1, . . . , i + τ − b} represents the first symbol from S[h] which1303

has not yet been placed in a block of the SBC. If no such1304

symbol exists, then Szi,l,h][h] is defined to be a unique padding1305

symbol (which is not transmitted). For j ∈ {0, . . . , b − 1},1306

Plb+j [i] is computed during time slot (i + τ − b) and sent1307

during time slot (i + τ − b + j).1308

Finally, we explain how the remaining symbols of the1309

message packets which are not placed in blocks of the SBC1310

are encoded as part of a [2τ −2b+a+1, τ− b+1] systematic1311

MDS code. These symbols are Sri+1[i], . . . , S(τ−a−τL)di−1[i],1312

where ri = min
(

(τ − a − τL)di,
∑

j∈Ji
dj

)

, for Ji = {i −1313

τ + b, . . . , i − τL − 1, i + 1, . . . , i + (b − a)} (i.e., the set1314

of time slots for which there is at least one open posi-1315

tion of blocks of the SBC in channel packet X [i]). Then1316

Sri+1[i], . . . , S(τ−a−τL)di−1[i] are referred to as the “excess”1317

symbols Se[i]. Excess symbols arise if and only if (ri + 1) <1318

(τ − a − τL)di. The quantity of excess symbols is defined1319

as ei = |Se[i]|. We zero pad Se[i] to ensure divisibility by1320

(τ−b+1) (although the padding symbols are not transmitted).1321

The extra symbols are referred to as pad[i]. Hence, (τ −1322

b + 1)|(ei + pad[i]). Symbols of S[i] are only included in1323

blocks of the SBC corresponding to time slots at or before1324

(i + b − a). Hence, Se[i] is determined during time slot1325

(i + b − a). For each j ∈ {0, . . . , ei−1
τ−b+1}, the symbols 1326

Se
j(τ−b+1)[i], . . . , S

e
(j+1)(τ−b+1)−1[i] are encoded as part of 1327

a [2τ − 2b + a + 1, τ − b + 1] systematic MDS code to 1328

create parity symbols P e
j(τ−b+a)j [i], . . . , P

e
(j+1)(τ−b+a)−1[i]. 1329

Then these parity symbols are sent in channel packets X [i + 1330

b−a+1], . . . , X [i+τ ] respectively. Finally, for the remaining 1331

values of i, namely i > (t− τ), there are no symbols of S[i], 1332

so there are no symbols of Se[i]. 1333

In short, the symbols (S(τ−a−τL)di
[i], . . . , Ski−1[i]) are 1334

encoded as part of the di blocks of the SBC corresponding 1335

to time slot i. In total, there are ri open positions in these 1336

blocks. Of the remaining symbols, S0[i] . . . , S(τ−a−τL)di−1[i], 1337

the first ri are encoded as part of the blocks corresponding to 1338

time slots j ∈ Ji. The remaining symbols of S[i] are encoded 1339

using as part of blocks of a [2τ − 2b+ a + 1, τ − b + 1] MDS 1340

code. 1341

We now verify that the (τ, a, b, τL)-VSC meets the con- 1342

straints of the proposed streaming model. 1343

Theorem 3: For any valid inputs (τ, a, b, w, τL) and 1344

sequence of message packets S[0], . . . , S[t], the (τ, a, b, τL)- 1345

VSC satisfies the lossless-delay constraint and the worst-case- 1346

delay constraint over a C(a, b, w) channel. 1347

Proof: We first show that the (τ, a, b, τL)-VSC meets 1348

the lossless-delay constraint. Recall that the symbols of 1349

S0[i], . . . , S(τ−a−τL)di−1[i] are sent in X [i], and the symbols 1350

of S(τ−a−τL)di
[i], . . . , Ski−1[i] are transmitted evenly over 1351

X [i + 1], . . . , X [i + τL]. Thus, under a lossless transmission, 1352

S[i] is received within delay τL. 1353

In order to show that the (τ, a, b, τL)-VSC meets the worst- 1354

case-delay constraint over a C(a, b, w) channel, we show that 1355

every symbol s′ of S[i] is decoded within delay τ over the 1356

channel. 1357

Case 1: s′ is a part of S(τ−a−τL)di
[i], . . . , Ski−1[i]. There- 1358

fore, it is placed in a block of the SBC in which the final 1359

parity symbol is sent in X [i + τ ]. Hence, by the properties of 1360

SBC, s′ is recovered over a C(a, b, w) channel within τ time 1361

slots. 1362

Case 2: s′ is a part of S0[i], . . . , S(τ−a−τL)di−1[i] and is 1363

placed in a block of the SBC corresponding to a different 1364

message packet. Hence, s′ is transmitted within X [i] and, 1365

by the properties of SBC, s′ is recovered over the C(a, b, w) 1366

channel within τ time slots. 1367

Case 3: s′ is part of Se[i]. Either X [i] is received or at least 1368

(τ − b + 1) of X [i + b − a + 1], . . . , X [i + τ ] are received. 1369

Therefore, either s′ is received as part of X [i], or sufficiently 1370

many code symbols are received from a [2τ − 2b+ a +1, τ − 1371

b + 1] systematic MDS codeword to recover s′ within τ time 1372

slots. � 1373

Next, in Section VII, we analyze the rate of the (τ, a, b, τL)- 1374

VSC. Later, in Section VIII, we empirically evaluate the rate 1375

of the (τ, a, b, τL)-VSC when the sizes of message packets 1376

correspond to a video trace. 1377

C. Field Size Requirement 1378

The field size requirement for the (τ, a, b, τL)-VSC must 1379

meet two constraints: (1) the field size requirement for the 1380

underlying SBC, and (2) the field size requirement for the 1381

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 02,2022 at 21:07:05 UTC from IEEE Xplore.  Restrictions apply. 



RUDOW AND RASHMI: STREAMING CODES FOR VARIABLE-SIZE MESSAGES 5839

[2τ − 2b + a + 1, τ − b + 1] systematic MDS code. The field1382

size requirement for the SBC from [9] is O(τ2). The field1383

size requirement for a [2τ − 2b + a + 1, τ − b + 1] systematic1384

MDS is at most (2τ − 2b + a + 1). Overall, the former field1385

size requirement dominates the latter, leading to a field size1386

requirement of O(τ2).1387

VII. ANALYSIS OF THE RATE OF THE (τ, a, b, τL)-VSC1388

As with any code construction which adapts to the specific1389

message packet size sequence, the rate for the construction1390

proposed in Section VI depends on the message packet size1391

sequence. For concreteness, we will analyze the class of inputs1392

where the size of each message packet is drawn independently1393

from any discrete distribution D with finite support. For any1394

valid inputs (τ, a, b, w, τL), we characterize the asymptotic rate1395

of the (τ, a, b, τL)-VSC as the length of the message packet1396

size sequence becomes sufficiently long in terms of the mean1397

of D in Theorem 4. We then provide an easily-computable1398

lower bound on the rate of the (τ, a, b, τL)-VSC in terms of1399

the mean and variance of D in Lemma 9.1400

We begin with some notation. A distribution D with mean1401

µ and maximum value d is called an admissible distribution1402

if it (1) has finite support, (2) consists only of non-negative1403

elements, and (3) consists solely of elements divisible by1404

(τ − a + 1). Recall (from Section IV-A) that the rate is1405

never more than R(U) = τ−a+1
τ+b−a+1 . Furthermore, recall from1406

Section VI-B that Se[i] is used to denote the excess symbols1407

in the VSC construction for S[i] for i ∈ {0, . . . , t − τ}.1408

The excess symbols are the symbols that are not placed in1409

blocks of the SBC. Recall that ei denotes the number of such1410

symbols, and pad[i] refers to the number of padding symbols1411

to ensure that (τ − b+1)|(ei + pad[i]). Let ec
i = (ei + pad[i])1412

denote the “padded excess,” and ec = E[ec
i ] be called the1413

expected padded excess. The value ec
i is uniquely determined1414

by (kmax(0,i−τ), . . . , ki+τ ). Therefore, by the independence1415

of the sizes of the message packets, the ec
i are identically1416

distributed for i ∈ {2τ, . . . , t − 2τ}.1417

Next, we identify the expected number of symbols in a1418

channel packet under the (τ, a, b, w, τL)−VSC.1419

Lemma 8: For any valid inputs (τ, a, b, w, τL), and sequence1420

of t > 4τ message packets whose sizes are drawn indepen-1421

dently from an admissible distribution D with mean µ and1422

maximum value d, for all i ∈ {2τ, . . . , t − 2τ}, the expected1423

number of symbols in channel packet X [i] is given by1424

µc = E[ni] =

(

µ

R(U)
+ ec τ − b + a

τ − b + 1

)

. (7)1425

Proof Sketch: Follows from the definition of the1426

(τ, a, b, τL)-VSC. The proof involves counting the number1427

of symbols of each X [i], for i ∈ [t], corresponding to the1428

(a) symbols of S[i], (b) symbols of the previous τL message1429

packets, (c) parity symbols corresponding to blocks of the1430

SBC, and (d) parity symbols corresponding to the padded1431

excess. A complete proof is included in Appendix E. �1432

Using Lemma 8, we identify the asymptotic rate in terms1433

of Eq. (7) as follows.1434

Fig. 10. The rate for the (τ, a, b, τL)-VSC as a percent of the upper bound
on the rate for the online setting computed by Algorithm 1 and the value
computed by Algorithm 2 for a live video trace over the parameter settings
included in Table II.

Theorem 4: Consider any valid inputs (τ, a, b, w, τL), δ, 1435

ǫ > 0, and sequence of t ≥
(

36τbd
√

2
ǫµc

√

ln
(

4τ
δ

)

+ 180dbτ
µcǫ

)

1436

message packets whose sizes are drawn independently from 1437

an admissible distribution D with mean µ and maximum value 1438

d. With probability at least (1−δ), the rate of the (τ, a, b, τL)- 1439

VSC construction, Rt, satisfies |Rt − µ
µc
| < ǫ. 1440

Proof Sketch: Recall from Eq. (1) that, the rate, Rt, equals 1441�t
i=0 ki�
t
i=0 ni

=
1

t+1

�t
i=0 ki

1
t+1

�
t
i=0 ni

. At a high level, the proof follows by 1442

analyzing the rate of convergence of (a) the mean number of 1443

symbols of the message packets and (b) the mean number 1444

of symbols of the channel packets and then applying the 1445

union bound. We show (a) and (b) with simple applications 1446

of concentration bounds. A complete proof is included in 1447

Appendix F. � 1448

Theorem 4 establishes the rate of the (τ, a, b, τL)-VSC for a 1449

randomly generated message packet size sequence as a func- 1450

tion of the expected padded excess, ec, and the mean size of 1451

message packets, µ. In turn, ec is a function of the distribution 1452

D. For certain distributions, computing the exact value of ec
1453

may require a high computational complexity. In Lemma 9, 1454

we provide an upper bound on expected excess. Further- 1455

more, the expected padding is upper bounded by (τ − b + 1456

a−1)—a term which is typically several orders of magnitude 1457

smaller than the average size of a message packet. Combining 1458

these two bounds provides an easily-computable upper bound 1459

on ec and a corresponding lower bound on the rate for 1460

(τ, a, b, τL)-VSC. 1461

Lemma 9: Consider valid inputs (τ, a, b, w, τL), ǫ, δ > 0, 1462

and any sequence of
(

18bd
√

2
ǫµc

√

ln
(

4τ
δ

)

+ 180dbτ
µcǫ

)

message 1463

packets whose sizes are drawn independently from any admis- 1464

sible distribution D with maximum size d, mean µ, and 1465

variance σ2. With probability at least (1 − δ) the rate, Rt, 1466
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Fig. 11. Comparison of the (τ, a, b, τL)-VSC to a baseline streaming code and the (τ, a, b, τL)-separate encoding scheme. The baseline is a streaming code
designed for the setting where message packets have fixed sizes (with necessary adjustments to account for the variability of the sizes of message packets).
The comparison ranges over the parameter settings listed in Table II and represents: (a) rate and (b) percent improvement in rate provided by VSC over the
other two schemes.

TABLE II

THE PARAMETER SETTINGS USED IN THE EMPIRICAL

EVALUATION OF THE (τ, a, b, τL)-VSC

of the (τ, a, b, τL)-VSC construction is at least1467

Rt ≥
R(U)

1 + τ−b+a
τ−b+1R(U)

(

σ√
2µ

+ τ−b
µ

) − ǫ. (8)1468

Proof Sketch: Follows from using Jensen’s inequality to1469

show an upper bound on the expected excess. The upper bound1470

is then applied to Theorem 4. A complete proof is included1471

in Appendix G. �1472

As expected, as σ
µ decreases, the above quantity approaches1473

the upper bound on the rate of R(U).1474

VIII. EMPIRICAL EVALUATION OF THE (τ, a, b, τL)-VSC1475

The optimal rate under the proposed streaming model1476

depends on the specific message packet size sequence. Sim-1477

ilarly, the rate of a streaming code construction can depend1478

on the specific message packet size sequence. In order to1479

fairly evaluate the effectiveness of the (τ, a, b, τL)-VSC, it is1480

therefore necessary to empirically evaluate the code over a1481

realistic message packet size sequence. We do so in this section1482

by assessing the rate of the (τ, a, b, τL)-VSC over several1483

representative parameter settings for a real-world live video1484

trace.1485

In the simulation, the proposed (τ, a, b, τL)-VSC construc-1486

tion and a baseline are evaluated over a live video trace1487

uploaded to Facebook Live through Open Broadcast Software1488

(OBS) [30] at a bitrate of 2000 Kbps. Table II shows the1489

parameter settings used in simulations. The parameter settings 1490

included are either considered by existing streaming code 1491

literature or are used to reflect the low-latency constraints of 1492

live communication. For all parameter settings, the maximal 1493

and minimal values of the lossless-delay, namely τL = (τ −b) 1494

and τL = 0, are included to illustrate the trade-off between 1495

the rate and the decoding delay under lossless transmission. 1496

The empirical comparison of the performance of 1497

(τ, a, b, τL)-VSC to the upper bound on the rate computed 1498

by Algorithm 1 and to the value computed by Algorithm 2 1499

is demonstrated in Figure 10.10 Recall that Algorithm 2 1500

outputs the best possible rate for coding schemes in the 1501

offline setting which encode symbols using a combination 1502

of (a) blocks of the SBC and (b) the (τ, a, b, τL)-separate 1503

encoding scheme. Therefore, the output of Algorithm 2 is an 1504

upper bound on the rate of the (τ, a, b, τL)-VSC, which uses 1505

the same combination of encoding schemes but operates in 1506

an online setting. Over the considered parameter settings, the 1507

(τ, a, b, τL)-VSC exhibits a rate of 85.1% to 95.1% of the 1508

upper bound on the rate computed by Algorithm 1, with an 1509

average of 90.1%. Furthermore, the (τ, a, b, τL)-VSC does 1510

slightly better relative to the upper bound when τL = (τ − b) 1511

than it does when τL = 0. This property is in addition 1512

to the fact that the rate for the (τ, a, b, τL)-VSC improves 1513

as τL increases, which we will discuss subsequently. Over 1514

the considered parameter settings, the (τ, a, b, τL)-VSC 1515

exhibits a rate of 89.1% to 97.5% of the value computed by 1516

Algorithm 2, with an average of 94.3%. 1517

The closeness of the comparisons to Algorithms 1 and 2 1518

reflects the (small) penalty on the rate for considering a 1519

restricted class of coding schemes. The gap between the rate of 1520

the (τ, a, b, τL)-VSC and the value computed by Algorithm 2 1521

reflects an upper bound on the cost of operating in an online 1522

setting for the restricted class of coding schemes. 1523

10 [31] and [32] were used in the computation of the LP solution for the
modified version of Algorithm 1 using an LP relaxation.
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Next, the (τ, a, b, τL)-VSC is compared to the (τ, a, b, τL)-1524

separate encoding scheme and a baseline which is an adapted1525

version of existing streaming codes that are rate-optimal when1526

all message packets have the same fixed size. The changes to1527

the baseline are mandatory modifications to account for the1528

variability of the sizes of the message packets. A detailed1529

description of the baseline is provided in Appendix H.1530

Figure 11a compares the rates of the three code constructions1531

directly, while Figure 11b shows the percent improvement of1532

the (τ, a, b, τL)-VSC over the baseline and the (τ, a, b, τL)-1533

separate encoding scheme. The (τ, a, b, τL)-VSC outperforms1534

the (τ, a, b, τL)-separate encoding scheme over all parameter1535

settings except for (τ = 40, a = 8, b = 31, τL = 9), where1536

the rate of the (τ, a, b, τL)-separate encoding scheme is 97%1537

of an upper bound on the rate. Moreover, the (τ, a, b, τL)-VSC1538

improves the rate between 5% and 48% over the baseline.1539

Increasing τL leads to a higher rate for the (τ, a, b, τL)-VSC.1540

Such a result is expected, as the distribution of each message1541

packet over multiple channel packets under the (τ, a, b, τL)-1542

VSC alleviates the variability in the sizes of the channel1543

packets. Thus, fewer parity symbols are needed to recover1544

from packet losses.1545

IX. CONCLUSION1546

In this work, we present a model for streaming codes1547

that captures the requirements of live streaming applications1548

that send sequences of messages of varying sizes, such as1549

videoconferencing. We show that variability in the sizes of1550

messages leads to several unique challenges for streaming1551

codes. Examples include a new trade-off between the rate1552

and the decoding delay under lossless transmission and the1553

achievable rate being a function of the message size sequence.1554

We present integer programming-based algorithms to compute1555

upper and lower bounds on the rate of streaming codes for any1556

given message size sequence. We show that they significantly1557

improve general bounds that do not take the sequence into1558

account. We also present an explicit construction for streaming1559

codes under varying message sizes. We theoretically prove1560

that the construction meets the latency requirements for any1561

message size sequence under a sliding window channel model1562

with arbitrary and burst losses. We also empirically evaluate1563

the proposed construction on a Facebook Live video trace for1564

a wide variety of channel settings. We show that the proposed1565

construction attains a rate of 85% − 95% of an upper bound1566

and 5%–48% higher than naively using the existing streaming1567

codes.1568

Videoconferencing applications are becoming the mainstay1569

of communication over the Internet. Streaming codes that can1570

support varying message sizes well can help such applications1571

improve the quality-of-service. Many questions remain open1572

for streaming codes with varying message sizes. For instance,1573

how to convert high-rate offline streaming codes into online1574

ones. In addition, several additional constraints explored under1575

the fixed-size setting, such as correlations between the sizes1576

of the messages, unequal error protection across messages,1577

and varying latency constraints on different messages, are1578

interesting future directions to explore under the variable-size1579

setting. Several such constraints are equivalent to restricted1580

variants of the proposed model. As such, the fundamental 1581

principles introduced in this work are well-suited for designing 1582

and evaluating new communication schemes for such restricted 1583

models. 1584

APPENDIX A 1585

PROOF OF LEMMA 4 1586

Proof: The optimal rate of streaming codes that satisfy 1587

the lossless-delay and worst-case-delay constraint over the 1588

C(a, b, w) model is no more than R(L), as was shown in 1589

Lemma 3. In order to show that R(L) is the greatest lower 1590

bound on rate, it suffices to show for at least one message 1591

packet size sequence that the optimal rate is at most R(L). 1592

We do so in this proof. 1593

Consider the following length (τ + 2b) message packet 1594

size sequence: ki = 0 for i ∈ {0, . . . , b − 1, b + 1595

1, . . . , τ + 2b − 1} and kb = (τL + 1)(τ − b + 1596

1)
(⌊

τL+1
b

⌋

a + min ((τL + 1) mod b, a)
)

(τ − a + 1). 1597

The proof is divided into two cases to match the two cases 1598

of the construction. In both cases, we show that meeting the 1599

lossless-delay constraint and worst-case-delay constraint over 1600

the C(a, b, w) requires sending at least kb

R(L) symbols. Hence, 1601

the rate of any streaming code that satisfies the lossless-delay 1602

and worst-case-delay constraint over the C(a, b, w) model is 1603

at most R(L) for the considered message packet size sequence. 1604

The proof will make use of the fact that S[b] cannot be decoded 1605

unless at least kb symbols are received. 1606

Case 1: τL < (a − 1). 1607

At least kb symbols must be sent over X [b], . . . , X [b + τL] 1608

to meet the lossless-delay constraint. At least kb symbols must 1609

be sent over X [2b], . . . , X [b+ τ ] to meet the worst-case-delay 1610

constraint when X [b], . . . , X [2b − 1] are lost. 1611

The average number of symbols per channel packet over 1612

X [b], . . . , X [b + τL] is at least kb

τL+1 . The average number of 1613

symbols per channel packet over X [2b], . . . , X [b + τ ] is at 1614

least kb

τ−b+1 . 1615

By definition, (τL + 1) ≤ (τ − b + 1). 1616

When a ≤ (τL + 1 + τ + 1 − b), a arbitrary losses can 1617

result in a loss of (1) kb symbols in X [b], . . . , X [b + τL], 1618

and (2) at least kb

τ−b+1 (a − τL − 1) symbols in (a − τL − 1) 1619

adversarially chosen channel packets among X [2b], . . . , X [b+ 1620

τ ]. Thus, at least kb

τ−b+1(a− τL − 1) additional symbols must 1621

be sent. Let us combine these kb

τ−b+1 (a − τL − 1) symbols 1622

with the at least kb symbols sent in X [b], . . . , X [b + τL] and 1623

at least kb symbols sent in X [2b], . . . , X [b+τ ]. In total, at least 1624

kb

(

2 + a−τL−1
τ−b+1

)

= kb

R(L) symbols are transmitted. 1625

When a > (τL + 1 + τ + 1 − b), (b − τL − 1) > 1626

(τ − a + 1). Hence, due to arbitrary losses, X [b], . . . , X [b + 1627

τL], X [2b], . . . , X [b + τ ] may all be lost. Thus, it is possible 1628

that only (τ − a + 1) arbitrary packets of X [b + τL + 1629

1], . . . , X [2b − 1] to be received. 1630

As such, any (τ + 1 − a) channel packets of X [b + τL + 1631

1], . . . , X [2b−1] must contain at least kb symbols. Therefore, 1632

the channel packets X [b + τL + 1], . . . , X [2b− 1] contain on 1633

average at least kb

τ−a+1 symbols. At least (b − τL − 1) kb

τ−a+1 1634

symbols are sent over X [b + τL + 1], . . . , X [2b− 1]. In total, 1635

at least kb

(

2 + b−τL−1
τ−a+1

)

symbols are transmitted. 1636
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Case 2: τL ≥ (a − 1).1637

Sub-case 1: either ((τL + 1) mod b) ∈ {0}∪{a, . . . , b−1}1638

or ((τL + 1) mod b) (
⌊

τL+1
b

⌋

+ 1) ≥ a.1639

At least kb symbols must be sent over X [b], . . . , X [b + τL]1640

to satisfy the lossless-delay constraint. We will show in1641

several sub-cases that at least a

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
kb1642

symbols could be lost by time slot (b + τL). At least1643

kb symbols must be received. Therefore, at least1644

kb
a

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
parity symbols are1645

transmitted. In total, kb

R(L) symbols are sent. A final sub-case1646

will handle the remaining parameter settings and follows1647

from showing the correctness of IP-based construction 1.1648

Sub-sub-case ((τL + 1) mod b ≥ a):1649

All channel packets of one of1650

(

X [b] , . . . , X [2b − 1]
)

, . . . ,1651

(

X
[

b +
(

⌊τL

b

⌋

− 1
)

b
]

, . . . , X
[

b +
⌊τL

b

⌋

b − 1
]

)

,1652

(

X
[

b +
⌊τL

b

⌋

b
]

, . . . , X [b + τL]
)

1653

could be dropped as part of a single burst. There are1654
(⌊

τL

b

⌋

+ 1
)

quantities, and at least kb symbols are sent1655

over X [b], . . . , X [b + τL]. By the pigeonhole principle,1656

at least one such quantity contains at least kb

⌊ τL+1

b ⌋+1
=1657

akb

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
symbols.1658

Sub-sub-case ((τL + 1) mod b ≡ 0):1659

All channel packets of one of1660

(

X [b] , . . . , X [2b − 1]
)

, . . . ,1661

(

X
[

b +
⌊τL

b

⌋

b
]

, . . . , X
[

b +
(

⌊τL

b

⌋

+ 1
)

b − 1
]

)

1662

could be dropped as part of a single burst. There are1663
(⌊

τL

b

⌋

+ 1
)

= τL+1
b such quantities. By the pigeon-1664

hole principle, at least one contains at least kb

⌊ τL+1

b ⌋ =1665

a

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
kb symbols.1666

Sub-sub-case 0 < (τL + 1) mod b < a and1667

((τL + 1) mod b)
(⌊

τL+1
b

⌋

+ 1
)

≥ a:1668

Note that (τL +1 �= b) by the sub case. Also, (τL +1) must1669

be strictly greater than b in accordance with (τL ≥ a − 1).1670

Let e = ((τL + 1) mod b). If any b consecutive channel1671

packets of X [b], . . . , X [b+ τL] contains at least kb
a

⌊ τL+1

b ⌋a+e
1672

symbols the proof is immediate, since all b of them could be1673

lost. Otherwise, let1674

X ′ =

⌊ τL+1

b ⌋
⋃

i=0

{(X [b + ib], . . . , X [b + ib + e − 1])} .1675

Consider any (X [j], . . . , X [j + e − 1]) ∈ X ′. The remaining1676

channel packets of X [b], . . . , X [b + τL] can be partitioned1677

into
⌊

τL+1
b

⌋

groups of b consecutive channel packet. Recall1678

that each group of b consecutive packets contains at most1679

kb
a

⌊ τL+1

b ⌋a+e
symbols. In total, the

⌊

τL+1
b

⌋

groups contain1680

at most kb
a

⌊ τL+1

b ⌋a+e

⌊

τL+1
b

⌋

symbols. In order to satisfy1681

the lossless-delay, at least kb symbols must be received over1682

X [b], . . . , X [b + τL]. Hence, the total combined number of 1683

symbols in X [j], . . . , X [j + e − 1] is at least the following 1684

(

1 − (
⌊

τL+1
b

⌋

)a
⌊

τL+1
b

⌋

a + e

)

kb =
e

⌊

τL+1
b

⌋

a + e
kb. 1685

There are e
(⌊

τL+1
b

⌋

+ 1
)

≥ a channel packets in X , 1686

each of which lies within X [b], . . . , X [b + τL]. In total, these 1687

channel packets contain at least
(⌊

τL+1
b

⌋

+ 1
)

e

⌊ τL+1

b ⌋a+e
kb 1688

symbols. The channel packets in X contain on average at 1689

least 1

⌊ τL+1

b ⌋a+e
kb symbols. In expectation, if a of these 1690

channel packets are dropped uniformly at random, at least 1691

a

⌊ τL+1

b ⌋a+e
kb symbols are lost. Thus, at least one choice of 1692

a arbitrary channel packet losses results in a total number of 1693

lost symbols of at least a

⌊ τL+1

b ⌋a+e
kb. 1694

In all above sub-cases for τL ≥ (a − 1), 1695

at least a

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
kb symbols 1696

could be lost. This necessitates transmitting at least 1697

kb(1 + a

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
) = kb

R(L) symbols. 1698

Sub-case 2: ((τL + 1) mod b)
(⌊

τL+1
b

⌋

+ 1
)

< a. 1699

For this case, recall that the number of symbols sent per 1700

channel packet is determined by IP-based construction 1. Each 1701

channel packet contains a non-negative number of symbols, 1702

as is imposed by constraint #1. At least ki symbols must 1703

be received within the first τL channel packets due to the 1704

lossless-delay constraint. This requirement is imposed with 1705

constraint #2. For any loss pattern under the C(a, b, w) chan- 1706

nel, the total number of symbols over the received channel 1707

packets must be at least ki. This requirement is imposed with 1708

constraints #3 and #4 of the integer program. All constraints of 1709

the integer program must be met by any code construction. The 1710

integer program solves for the minimum number of symbols to 1711

be sent subject to these three constraints. Hence, the optimal 1712

rate is attained. � 1713

APPENDIX B 1714

PROOF OF LEMMA 2 1715

Proof: Consider the encoding for a message packet S[i] 1716

for i ∈ {0, . . . , t}. When i > (t − τ), ki = 0, and S[i] is 1717

automatically known by the receiver. Otherwise, the symbols 1718

message packet S[i] are sent over X [i], . . . , X [i+τL], thereby 1719

satisfying the lossless-delay constraint. 1720

The proof that the worst-case-delay constraint is satisfied 1721

over the C(a, b, w) channel is divided into two cases depend- 1722

ing on whether τL ≥ (a − 1). 1723

Case 1: τL < (a − 1). 1724

If a ≤ (τL + 2 + τ − b), let η = (τL + 1)(τ − b + 1) 1725

and η′ = (τL + 1)(τ − b + a − τL). Otherwise, let η = 1726

(τL+1)(τ−b+1)(τ−a+1) and η′ = η+(τL+1)(τ−b+1)(b− 1727

τL − 1). The message packet, S[i], is partitioned evenly into 1728

sets of η symbols. For an arbitrary such set, {c0, . . . , cη−1}, 1729

we verify all symbols are decoded within τ time slots. The 1730

set is encoded as part of a [η + η′, η] systematic MDS code. 1731

Let (c′0, . . . , c
′
η+η′) be the code symbols corresponding to 1732

{c0, . . . , cη}. It suffices to show that at least η symbols of 1733

(c′0, . . . , c
′
η+η′) are received by time slot (i + τ). 1734
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We note that (τL + b ≤ τ) =⇒ (τ − b + 1 ≥ τL + 1).1735

Furthermore, X [i], . . . , X [i + τL] and X [i + b], . . . , X [i +1736

τ ] each contain η symbols of (c′0, . . . , c
′
η+η′). The number1737

of symbols per channel packet in X [i], . . . , X [i + τL] is1738

η
τL+1 . The number of symbols per channel packet in X [i +1739

b], . . . , X [i+ τ ] is η
τ−b+1 . If a ≤ (τL +2+ τ − b), the number1740

of symbols per channel packet in X [i+ τL + 1], . . . , X [b− 1]1741

is either 0 or η
τ−b+1 . If a > (τL + 2 + τ − b), the number of1742

symbols per channel packet in X [i + τL + 1], . . . , X [b− 1] is1743

η
τ−a+1 . Finally, η

τ−a+1 ≤ η
τ−b+1 ≤ η

τL+11744

Burst losses: For all bursts of length b starting during or after1745

time slot (i+τL+1), η symbols of (c′0, . . . , c
′
η+η′) are received1746

via X [i], . . . , X [i + τL]. Hence, decoding within a delay of τ1747

follows immediately. For any burst starting in channel packet1748

X [i + j] for j ∈ {0, . . . , τL}, (τL − j + 1) channel packets1749

X [i], . . . , X [i + j − 1] are received, each of which contain1750

η
τL+1 symbols of (c′0, . . . , c

′
η+η′). Moreover, channel packets1751

X [i+ j + b], . . . , X [i+ τ ] are received, each of which contain1752

η
τ−b+1 symbols of (c′0, . . . , c

′
η+η′). The fewest symbols are1753

received when j = 0, in which case exactly η symbols are1754

received. Any η symbols are sufficient for decoding.1755

Arbitrary losses: The maximum number of symbols of1756

(c′0, . . . , c
′
η+η′) are lost when the a largest channel packets1757

are lost, such as when1758

X [i], . . . , X [i + τL], X [i + τ − a + τL + 2], . . . , X [i + τ ]1759

are lost. If a ≤ (τL+2+τ−b), the (τ−b+1) channel packets1760

X [i+ b− a+ τL +1], . . . , X [i+ τ − a+ τL +1] are received,1761

each of which contains η
τ−b+1 symbols. If a > (τL+2+τ−b),1762

then the (τ −a+1) channel packets X [i+ τL +1], . . . , X [i+1763

τ − a + τL + 1] are received, each of which contains η
τ−a+11764

symbols. Therefore, at least η symbols of (c′0, . . . , c
′
η+η′) are1765

received within a delay of τ , enabling decoding.1766

Case 2: τL ≥ (a − 1).1767

Sub-case 1: ((τL + 1) mod b) ∈ {0} ∪ {a, . . . , b − 1}) or1768

(0 < (τL + 1) mod b < a and ((τL + 1) mod b) (
⌊

τL+
b

⌋

+1769

1) ≥ a).1770

Let ζ =
(⌊

τL+1
b

⌋

a + min ((τL + 1) mod b, a)
)

. Recall1771

that each S[i], for i ∈ {0, . . . , t − τ}, is partitioned into sets1772

of ζ symbols. Every such set is encoded separately as part of1773

a [ζ + a, ζ] systematic MDS code. We verify for an arbitrary1774

such set, {c0, . . . , cζ−1}, with corresponding code symbols,1775

(c′0, . . . , c
′
ζ+a), that at least ζ code symbols are received within1776

τ time slots. Any ζ symbols suffice to decode {c0, . . . , cζ−1}.1777

Every burst of b consecutive channel packets eliminates at1778

least (b − a) channel packets which contain no symbols of1779

(c′0, . . . , c
′
ζ+a). Thus, at most a symbols of (c′0, . . . , c

′
ζ+a) are1780

lost. For any sequence of a arbitrary losses, at least ζ of the1781

symbols of (c′0, . . . , c
′
ζ+a) are received within τ time slots.1782

For either loss pattern, recovery with a delay of τ time slots1783

follows immediately by properties of the [ζ + a, ζ] systematic1784

MDS code.1785

Sub-case 2: (0 < (τL + 1) mod b < a and1786

((τL + 1) mod b)
(⌊

τL+1b
b

⌋

+ 1
)

< a.1787

Recall that each S[i] is encoded according to the outputs of1788

IP-based construction 1. Constraints #3 and #4 of IP-based1789

construction 1 ensure that least ki symbols of an [n
(∗)
i , ki] 1790

MDS code are received by time slot (i + τ). Hence, S[i] is 1791

recovered within τ time slots by the MDS property. � 1792

APPENDIX C 1793

PROOF OF THEOREM 1 1794

Proof: We will show that each constraint corresponds 1795

to a valid requirement to impose on coding schemes. This 1796

ensures that the solution is a lower bound on the number of 1797

symbols that must be sent. As there are
∑t

i=0 ki symbols of 1798

the message packets, the output must be an upper bound on 1799

the rate. 1800

Before presenting the proof of correctness for the con- 1801

straints, we will formally define how a channel packet, X [i] 1802

for i ∈ {0, . . . , t}, is split into (X(0)[i], X(1)[i]). Recall that 1803

each symbol of X [i] comprises a linear combination of the 1804

symbols of 1805

〈S0[0], . . . , Sk0−1[0], . . . , S0[i], . . . , Ski−1[i]〉 . (9) 1806

The symbols 1807

〈

X0[0], . . . , X|X[0]|−1[0], . . . , X0[i], . . . , X|X[i−1]|−1[i − 1]
〉

1808

(10) 1809

correspond to linear equations over the symbols of 1810

Eq. (9) where the linear equations for each j ∈ 1811

{0, . . . , i − 1} of X [j] have 0 in positions corresponding to 1812
〈

S0[j + 1], . . . , S|ki|−1[i]
〉

due to causality. Next, the symbols 1813

of channel packet X [i] are partitioned into (X(0)[i], X(1)[i]). 1814

Initially, consider X(0)[i] and X(1)[i] as being empty. The 1815

symbols of X [i] are labeled as being in either X(0)[i] or 1816

X(1)[i] by iterating over j ∈ {0, . . . , |X [i] − 1|} as follows. 1817

If the set of linear equations corresponding Xj [i], the symbols 1818

of X(0)[i], and the symbols of Eq. (10) are linearly indepen- 1819

dent, Xj [i] is added to X(0)[i]. Otherwise, Xj [i] is added to 1820

X(1)[i]. 1821

Constraints #1 and #2: For i ∈ {0, . . . , t − τL}, j ∈ {i − 1822

τL, . . . , i}, |X(0)
i [i + j]| reflects a number of symbols sent in 1823

channel packet X [i+j] corresponding to message packet S[i], 1824

so it is non-negative. For i < 0, i > t, or j < 0, |X(0)
j [i]| is 1825

defined to be 0 to handle edge conditions of indexing. For 1826

i ∈ {0, . . . , t + τ}, |X(1)[i]| corresponds to a number of 1827

parity symbols sent in channel packet X [i] and similarly is 1828

non-negative. 1829

Constraint #3: We will show that any construction satisfy- 1830

ing the lossless-delay requirement, even with the relaxations 1831

allowed under Algorithm 1, will satisfy constraint #3. We will 1832

prove this by induction on i ∈ {0, . . . , t}. In the base 1833

case, i = 0 and X
(0)
0 [0], . . . , X

(0)
0 [τL] consist of exactly 1834

k0 symbols used to decode S[0] under lossless transmission. 1835

In the inductive step, for i = 1, . . . , t, S[0], . . . , S[i] can be 1836

decoded using channel packets X [0], . . . , X [i+τL] by solving 1837

a system of linear equations. Only the symbols corresponding 1838

to X(0)[0], . . . , X(0)[i + τL] need to be used, since the linear 1839

equations corresponding to X(1)[0], . . . , X(1)[i + τL] are in 1840

their span. Moreover, the linear equations corresponding to 1841
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the symbols of X(0)[0], . . . , X(0)[i+ τL] are linearly indepen-1842

dent by definition. By induction,
∑i−1

j=0

∑τL

l=0 |X
(0)
j [j + l]| =1843

∑i−1
j=0 kj . The symbols of X

(0)
j [j + l] in the first term reflect1844

the symbols sent in channel packet X [j + l] used to decode1845

message packet S[j]. When S[i] is decoded, at least
∑i

j=0 kj1846

of the symbols of X(0)[0], . . . , X(0)[i + τL] are required to1847

decode S[0], . . . , S[i] (along with perhaps some additional1848

symbols of S[i + 1], . . . , S[i + τL]). For j ∈ {0, . . . , i + τL},1849

each symbol of X(0)[j] included reflects adding a linearly1850

independent equation. S[0], . . . , S[i], along with perhaps some1851

additional symbols of S[i + 1], . . . , S[i + τL], are decoded1852

together. Exactly ki equations (corresponding to symbols) used1853

in decoding are used to decode symbols of S[i]. Since the1854

encoding is causal, each of these ki equations correspond to1855

symbols are sent in channel packets X [i], . . . , X [i + τL] and1856

are labeled X
(0)
i [i], . . . , X

(0)
i [i + τL].1857

Constraint #4: Consider any burst starting in time slot1858

i ∈ {0, . . . , t−b+1}. The proof of Lemma 1 showed that satis-1859

faction of the worst-case-delay requirement over the C(a, b, w)1860

channel implies that message packets S[i−τL], . . . , S[i+b−1]1861

must be decoded by time slot (i + τ + b − a). Moreover, for1862

any burst loss of length b starting in channel packet i, for each1863

of j ∈ {i − τL, . . . , i + b − 1}, S[i − τL], . . . , S[j] must be1864

recoverable by time slots (i−τL+τ), . . . , (j+τ) respectively.1865

Message packets S[i− τL], . . . , S[j] are therefore decoded by1866

time slot (j + τ). We consider the relaxation that symbols of1867

X
(0)
l [z] for l ∈ {j + 1, . . . , i + b− 1}, z ∈ {l, . . . , l + τL} are1868

received.1869

We allow the relaxation that each symbol corresponding1870

to X
(0)
l [z] where l ∈ {i − τL, . . . , j}, z ∈ {l, . . . , l + τL}1871

which are received can be used to decode one symbol of1872

S[i − τL], . . . , S[j]. These symbols are received during time1873

slots (i − τL), . . . , (i − 1) and (i + b), . . . ,min(j + τ, i +1874

τ + b − a). Furthermore, parity symbols received during1875

time slots (i + b), . . . ,min(j + τ, i + τ + b − a) can be1876

used to decode message packets S[i−τL], . . . , S[j]. However,1877

by definition any parity symbols sent before time slot i are in1878

the span of symbols of X
(0)
l [z] for l ∈ {0, . . . , i − 1}, z ∈1879

{l, . . . , min(i − 1, l + τL)}. Therefore, given access to the1880

symbols of X
(0)
l [z], these parity symbols are not used to1881

decode message packets S[i − τL], . . . , S[j]. All symbols1882

received strictly after min(j + τ, i + τ + b − a) are received1883

after message packets S[i − τL], . . . , S[j] have already been1884

decoded. Thus, the symbols of S =1885

{

X
(0)
l [z] | l ∈ {0, . . . , t}, z ∈ {l, . . . , l + τL}\1886

{i, . . . , i + b − 1}
}

∪1887

{

X
(0)
l [z] | l ∈ {j + 1, . . . , i + b − 1}, z ∈ {l, . . . , l + τL}

}

∪1888

{

X(1)[z] | z ∈ {i + b, . . . ,min(j + τ, i + τ + b − a)}
}

1889

must be sufficient to decode (S[0], . . . , S[t]). Therefore, |S| ≥1890

∑t
i=0 ki. By constraint #3,

∑l+τL

z=l |X(0)
l [z]| = kl for any l ∈1891

{0, . . . , t − τ}. Thus, the size of1892

{

X
(0)
l [z] | l ∈ {i − τL, . . . , j}, z ∈ {l, . . . , l + τL}\1893

{i, . . . , i + b − 1}
}

∪1894

{

X(1)[z] | z ∈ {i + b, . . . ,min(j + τ, i + τ + b − a)}
}

1895

is at least
∑j

l=i−τL
kl.1896

Constraint #5: Consider any combination of a arbitrary 1897

packet losses in a sliding window of length w = (τ + 1) 1898

which begin during some time slot i ∈ {0, . . . , t − a + 1}. 1899

Let the time slots of the packet losses be denoted as I , and 1900

let i′ be the final time slot in I where i′ ≤ t. For any 1901

j ∈ {0, . . . , i′}, each of S[i − τL], . . . , S[j] must be decoded 1902

by time slot (j + τ) in order to satisfy the worst-case-delay 1903

requirement. The relaxation is used that each received symbol 1904

of X
(0)
l [z] for l ∈ {i − τL, . . . , j}, z ∈ {l, . . . , l + τL} 1905

can be used to decode one symbol of S[i − τL], . . . , S[j]. 1906

Furthermore, the relaxation is taken that each received symbol 1907

X(1)[l] for l ∈ {i + 1, . . . , j + τ} can be used to decode 1908

one lost symbol of S[i− τL], . . . , S[j]. We assume X
(0)
l [z] is 1909

received for l ∈ {0, . . . , i−1}, z ∈ {l, . . . , min(l+τL, i−1)}, 1910

so the received symbols of X(1)[0], . . . , X(1)[i − 1] are not 1911

useful for decoding S[i−τL], . . . , S[j]. Moreover, all symbols 1912

received strictly after time slot (j+τ) are not used in decoding 1913

S[i−τL], . . . , S[j], since they are decoded by time slot (j+τ). 1914

This follows from similar reasoning to that discussed for 1915

constraint #4. Hence, the symbols of S = 1916

{

X
(0)
l [z] | l ∈ {i − τL, . . . , j}, z ∈ {l, . . . , l + τL} \ I

}

∪ 1917

{

X(1)[j] | j ∈ {i + 1, . . . , j + τ} \ I
}

∪ 1918

{

X
(0)
l [z] | l ∈ {0, . . . , i − τL − 1} ∪ {i′ + 1, . . . , t}, 1919

z ∈ {l, . . . , l + τL}
}

1920

are sufficient to decode S[0], . . . , S[t]. Consequently, the size 1921

of S must be at least
∑t

l=0 kl. Similar to the discussion for 1922

constraint #4,
∑l+τL

z=l |X(0)
l [z]| = kl for any l ∈ {0, . . . , t−τ}. 1923

Thus, as a relaxation of the worst-case-delay requirement for 1924

at most a arbitrary losses, the size of 1925

{

X
(0)
l [z] | l ∈ {i − τL, . . . , j}, z ∈ {l, . . . , l + τL} \ I

}

∪ 1926

{

X(1)[j] | j ∈ {i + 1, . . . , j + τ} \ I
}

1927

must be at least
∑j

z=i−τL
kz . � 1928

APPENDIX D 1929

PROOF OF THEOREM 2 1930

Proof: The value computed by Algorithm 2 is the optimal 1931

rate for a coding scheme that combines (1) blocks of the SBC 1932

with (2) the (τ, a, b, τL)-separate encoding scheme. Therefore, 1933

this rate is feasible. The total number of symbols of all 1934

message packets divided by the total number of symbols 1935

transmitted by the scheme is returned. Hence, the rate of 1936

the corresponding coding scheme is returned. The objective 1937

function is to compute the minimal possible value for the 1938

number of symbols transmitted over the considered coding 1939

schemes for the message packet size sequence. For a fixed total 1940

number of symbols of all message packets, this minimizes the 1941

rate. 1942

It remains to verify that the lossless-delay and worst-case- 1943

delay requirements are satisfied. We do so for (a) the symbols 1944

of message packets encoded as part of the (τ, a, b, τL)-separate 1945

encoding scheme, and (b) for all remaining symbols. For 1946

i > (t − τ), the message packet S[i] is of size 0 and is 1947

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 02,2022 at 21:07:05 UTC from IEEE Xplore.  Restrictions apply. 



RUDOW AND RASHMI: STREAMING CODES FOR VARIABLE-SIZE MESSAGES 5845

automatically known by the receiver. Hence, the lossless-1948

delay and worst-case-delay requirements are satisfied for such1949

message packets.1950

First, a non-negative number of symbols of any S[i], for1951

i ∈ {0, . . . , t − τ}, are modeled as being encoded using1952

the (τ, a, b, τL)-separate encoding scheme for each message1953

packet due to constraint #1. The lossless-delay and worst-1954

case-delay are met for such symbols by properties of the1955

(τ, a, b, τL)-separate encoding scheme.1956

Second, we verify that all remaining symbols are accurately1957

modeled as being encoded within blocks of the SBC such that1958

the lossless-delay and worst-case-delay requirements are met.1959

The lossless-delay requirement: For any S[i], for i ∈1960

{0, . . . , t−τ}, a non-negative number of symbols are modeled1961

as sent in each of X [i], . . . , X [τL + 1], as is reflected by1962

constraint #2. Moreover, the total number of such symbols1963

is sufficient to satisfy the lossless-delay requirement by con-1964

straint #4.1965

The worst-case-delay requirement: A non-negative number1966

of blocks starting in each channel packet is modeled due to1967

constraint #3. Recall that the variables pi reflect the quantity1968

of blocks whose first position occurs during time slot i.1969

The first position of blocks occur between time slot 0 and1970

(t−τ). It remains to verify that all symbols not encoded using1971

the (τ, a, b, τL)-separate encoding scheme can be modeled as1972

being placed in the corresponding blocks which ensure that1973

they are decoded within τ time slots. Under constraint #5, each1974

j ∈ {τL, . . . , 1} is sequentially considered for each channel1975

packet X [i]. Without loss of generality, each symbol sent in1976

channel packet X [i] corresponding to message packet (i − j)1977

is modeled as being placed in the earliest block ending by1978

time slot (i − j + τ) with an available position in channel1979

packet X [i]. Sequentially doing so ensures that all symbols1980

corresponding to message packets (i − τL), . . . , (i − 1) sent1981

in channel packet X [i] are modeled as being encoded as part1982

of by blocks of the SBC whose final position occur by the1983

time slots (i − τL + τ), . . . , (i + τ − 1) respectively. This1984

ensures that the worst-case-delay is satisfied over a C(a, b, w)1985

channel for such symbols. Finally, due to constraint #6, each1986

symbol corresponding to S[i] which is modeled as being1987

transmitted without delay in X [i] is modeled as being placed1988

in an available block of the SBC. This ensures recovery1989

within τ time slots over a C(a, b, w) channel. In so doing,1990

all blocks which have an available position in channel packet1991

X [i] are considered, as the recovery properties of the SBC1992

ensure recovery within τ time slots. Furthermore, all symbols1993

corresponding to message packets S[i − τL], . . . , S[i − 1]1994

sent in channel packet X [i] still must also be modeled as1995

being placed in available blocks of the SBC, as is reflected1996

in constraint #6. �1997

APPENDIX E1998

PROOF OF LEMMA 81999

Proof: By definition, a channel packet is comprised of2000

three quantities. First, symbols of message packets. Second,2001

parity symbols corresponding to blocks of the SBC. Third,2002

parity symbols corresponding to the padded excess.2003

The number of systematic symbols in channel packet X [i] 2004

is given by 2005

=





i−1
∑

j=i−τL

kj

τ − a + 1



+
ki(τ − a + 1 − τL)

τ − a + 1
. 2006

In expectation, this is 2007

E









i−1
∑

j=i−τL

kj

τ − a + 1



+
ki(τ − a + 1 − τL)

τ − a + 1



 (11) 2008

=





i−1
∑

j=i−τL

E[kj ]
1

τ − a + 1



+ E[ki]
τ − a + 1 − τL

τ − a + 1
(12) 2009

=





i−1
∑

j=i−τL

µ
1

τ − a + 1



+ µ
(τ − a + 1 − τL)

τ − a + 1
(13) 2010

=µ. (14) 2011

The number of parity symbols corresponding to blocks of 2012

the SBC in X [i] is given by 2013

i−(τ−a+1)
∑

j=i−(τ+b−a)

kj

τ − a + 1
. 2014

In expectation, this equals 2015

i−(τ−a+1)
∑

j=i−(τ+b−a)

E[kj ]

τ − a + 1
= µ

b

τ − a + 1
2016

The number of parity symbols corresponding to padded 2017

excess sent in channel packet X [i] is given by 2018

i−(b−a+1)
∑

j=i−τ

ec
j

τ − b + 1
. 2019

In expectation, this equals 2020

i−(b−a+1)
∑

j=i−τ

E[ec
j ]

τ − b + 1
= ec τ − b + a

τ − b + 1
. 2021

Altogether, the expected number of symbols of a channel 2022

packet is 2023

µ

(

1 +
b

τ − a + 1

)

+ ec τ − b + a

τ − b + 1
. 2024

� 2025

APPENDIX F 2026

PROOF OF THEOREM 4 2027

The proof of Theorem 4 is shown in three parts. First, 2028

we show convergence of the mean number of symbols of 2029

message packets (i.e., 1
t+1

∑t
i=0 ki) to its expected value, µ, 2030

using the Hoeffding inequality [33] in Lemma 10. Second, 2031

we show convergence of the mean number of transmitted 2032

symbols (i.e., 1
t+1

∑t
i=0 ni) to its expected value, µc, using 2033

the Hoeffding inequality [33] in Lemma 11. Third, show 2034

convergence of the rate given convergence of the mean number 2035

of symbols of message packets and channel packets. 2036

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 02,2022 at 21:07:05 UTC from IEEE Xplore.  Restrictions apply. 



5846 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 9, SEPTEMBER 2022

First, we analyze the rate of convergence of the average2037

number of symbols of message packets in Lemma 10.2038

Lemma 10: Consider any valid inputs (τ, a, b, w, τL), δ,2039

ǫ > 0, and a sequence of2040

√
2d

ǫ

√

ln

(

2

δ

)

+
5τd

ǫ
2041

message packets whose sizes are drawn independently from an2042

admissible distribution with mean µ and maximum value d.2043

With probability at least (1−δ), the mean number of symbols2044

of the message packets of the message packet size sequence2045

satisfy the following inequality:2046

∣

∣

∣

∣

∣

(

1

t + 1

t
∑

i=0

ki

)

− µ

∣

∣

∣

∣

∣

< ǫ.2047

Proof: This proof will follow from a simple application2048

of the Hoeffding inequality [33] after handling the fact that2049

the final 2τ message packets have size 0.2050

We rewrite2051

1

t + 1

t
∑

i=0

ki =
1

t + 1

t−2τ
∑

i=0

ki =
t − 2τ

t + 1

1

t − 2τ

t−2τ
∑

i=0

ki.2052

When t > 2 2τ
ǫ , it means that t−2τ+1

t+1 = 1 − 2τ
t+1 ≥ 1 − ǫ

2 .2053

The quantity 1
t−2τ

∑t−2τ
i=0 ki is the sum of random variables2054

drawn independently from D and each ki ∈ {0, . . . , d} for2055

some positive integer d for i ≥ τ and i ≤ (t − τ). We apply2056

the Hoeffding inequality [33] to bound the probability that2057
∣

∣

∣

(

1
t−2τ+1

∑t−2τ
i=0 ki

)

− µ
∣

∣

∣ < ǫ
2 and find it to be at least (1 −2058

2e−
2(t+1−2τ)2ǫ2

4d2 ). To ensure that this value is at least (1 − δ),2059

it suffices to have t ≥
(√

2d
ǫ

√

ln
(

2
δ

)

+ 2τ
)

.2060

Whenever t =
(√

2d
ǫ

√

ln
(

2
δ

)

+ 5τµ
ǫ

)

, with probability at2061

least (1 − δ),2062

∣

∣

∣

∣

∣

(

1

t + 1

t
∑

i=0

ki

)

− µ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

t − 2τ

t + 1

1

t − 2τ

t−2τ
∑

i=0

ki

)

− µ

∣

∣

∣

∣

∣

2063

≤
∣

∣

∣(1 − ǫ

2
)
ǫ

2

∣

∣

∣ =

∣

∣

∣

∣

ǫ

2
− ǫ2

4

∣

∣

∣

∣

2064

< ǫ.2065

Applying the inequality µ ≤ d concludes the proof. �2066

Second, we analyze the rate of convergence of the average2067

number of symbols of channel packets in Lemma 11.2068

Lemma 11: Consider any valid inputs (τ, a, b, w, τL), δ,2069

ǫ > 0, and a sequence of2070

18τbd√
2ǫ

√

ln

(

4τ

δ

)

+
45dbτ

ǫ
2071

message packets whose sizes are drawn independently from2072

an admissible distribution with mean µ and maximum value2073

d. Recall from Eq. (7) that µc is the expected number of2074

symbols of a channel packet under the (τ, a, b, w, τL)−VSC.2075

With probability at least (1−δ), the mean number of symbols2076

of channel packets for the (τ, a, b, w, τL)−VSC is given by:2077
∣

∣

∣

(

1
t+1

∑t
i=0 ni

)

− µc

∣

∣

∣ < ǫ.2078

Proof: We break 1
t+1

∑t
i=0 ni into three components. 2079

This is necessary to handle the first τ and final 2τ channel 2080

packets having sizes taken from a different distribution based 2081

on boundary conditions as compared to the remaining terms. 2082

Specifically, we rewrite 1
t+1

∑t
i=0 ni as 2083

1

t + 1





τ−1
∑

i=0

ni +

t
∑

i=t−2τ+1−p

ni



+ 2084

t − 3τ + 1 − p

t + 1

1

t − 3τ + 1 − p

t−2τ−p
∑

i=τ

ni (15) 2085

where p is the smallest non-negative integer so that (2τ)|(t− 2086

3τ + 1 − p), which is chosen so as to make the number of 2087

terms in
∑t−2τ+1−p

i=t ni divisible by 2τ , which will be used 2088

later. 2089

Each channel packet comprises at most d symbols of 2090

message packets, d τ−b+a
τ−b+1 parity symbols from encoding the 2091

padded excess, and d b
τ−a+1 parity symbols corresponding to 2092

blocks of the SBC. Therefore, the size of a channel packet lies 2093

in {0, . . . , d ·
(

1 + τ−b+a
τ−b+1 + b

τ−a+1

)

≤ d(1 + a + b) ≤ 3db}. 2094

When t ≥ 45dbτ
ǫ , 2095

1

t + 1





τ−1
∑

i=0

ni +

t
∑

i=t−2τ+1−p

ni



 ≤ ǫ

3
(16) 2096

. 2097

When t > 3 3τ+1
ǫ , it means that 2098

t − 3τ + 1 − p

t + 1
≥ 1 − ǫ

3
. (17) 2099

Next, we analyze the last term in Eq. (15), 2100

1
t−3τ+1−p

∑t−2τ−p
i=τ ni. Recall that ni is a function of 2101

ki−τ , . . . , ki, so ni ⊥ nj whenever |i − j| > 2τ . To apply 2102

Hoeffding’s inequality, we rewrite 2103

1

t − 3τ + 1 − p

t−2τ−p
∑

i=τ

ni = 2104

2τ−1
∑

r=0

1

2τ





2τ

t − 3τ + 1 − p

t−3τ+1−p

2τ
−1

∑

i=0

nτ+(2τi)+r



 . (18) 2105

Observe that nτ+(i−τ)2τ+r ⊥ nτ+(i′−τ)2τ+r for i �= 2106

i′ ∈
{

τ, . . . , t−2τ−p
2τ

}

. Consider any r ∈ {0, . . . , 2τ − 1}. 2107

We apply Hoeffding’s inequality [33] to show that 2108
∣

∣

∣

(

2τ
t−3τ+1−p

∑

t−3τ+1−p

2τ
−1

i=0 nτ+(2τi)+r

)

− µc

∣

∣

∣
< ǫ

3 with prob- 2109

ability at least

(

1 − 2e−
2(t−3τ+1−p)2ǫ2

324τ2b2d2

)

. Taking a union 2110

bound over the 2τ values of r and applying it to Eq. (18) 2111

leads to 2112

∣

∣

∣

∣

∣

1

t − 3τ + 1 − p

(

t−2τ−p
∑

i=τ

ni

)

− µc

∣

∣

∣

∣

∣

<
ǫ

3
(19) 2113

with probability at least

(

1 − 4τe−
2(t−3τ+1−p)2ǫ2

324τ2b2d2

)

. In order 2114

for this to be at least (1 − δ), it suffices to have 2115
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t ≥
(

18τbd√
2ǫ

√

ln
(

4τ
δ

)

+ 5τ
)

. The proof follows from com-2116

bining Eq. (15) with Eq. (16), Eq. (17), and Eq. (19) as,2117

∣

∣

(

1

t + 1

t
∑

i=0

ni

)

− µc

∣

∣

2118

=
∣

∣

1

t + 1





τ−1
∑

i=0

ni +

t
∑

i=t−2τ+1−p

ni



+2119

(

t − 3τ + 1 − p

t + 1

1

t − 3τ + 1 − p

t−2τ−p
∑

i=τ

ni − µc

)

∣

∣

2120

≤
∣

∣

ǫ

3
+ (1 − ǫ

3
)
ǫ

3

∣

∣

2121

= |2ǫ

3
− ǫ2

9
|2122

< ǫ.2123

Thus,

∣

∣

∣

(

1
t+1

∑t
i=0 ni

)

− µc

∣

∣

∣ < ǫ with probability at least2124

(1 − δ) whenever2125

t = max

(

18τbd√
2ǫ

√

ln

(

4τ

δ

)

+ 5τ,
45dbτ

ǫ

)

.2126

�2127

Third, we analyze the rate of convergence of the coding2128

rate of the (τ, a, b, w, τL)−VSC to conclude the proof of2129

Theorem 4.2130

Proof: Using t ≥
(

36τbd
√

2
ǫµc

√

ln
(

4τ
δ

)

+ 180dbτ
µcǫ

)

,2131

we apply Lemmas 10 and 11 with δ′ = δ
2 and ǫ′ = ǫµc

4 . With2132

probability (1 − δ
2 − δ

2 ) = (1 − δ), there exists |ǫ1|, |ǫ2| ≤ ǫ′2133

such that2134

∣

∣

∣

∣

∣

∑t
i=0 ki

∑t
i=0 ni

− µ

µc

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

µ + ǫ1

µc + ǫ2
− µ

µc

∣

∣

∣

∣

2135

=
1

µc(µc + ǫ2)
|µµc + ǫ1µc − µµc − ǫ2µc|2136

=
1

µc + ǫ2
|ǫ1 − ǫ2|2137

≤ 4ǫ′

µc
2138

≤ ǫ.2139

�2140

APPENDIX G2141

PROOF OF LEMMA 92142

Before presenting the proof of Lemma 9, we include the2143

auxiliary Lemma 12 which will later used in the proof of2144

Lemma 9.2145

Lemma 12: Let U and V be any two discrete random2146

variables drawn from distributions with finite support such that2147

E[U ] = E[V ]. Then E[max(U − V, 0)] = 1
2E[|U − V |].2148

Proof: Let pU,V (u, v) be the joint probability mass2149

function of U and V . By assumption,2150

0 =E[U − V ]2151

=
∑

(u,v)∈U×V

pU,V (u, v)(u − v)2152

=
∑

(u,v)∈U×V

pU,V (u, v)[max(u − v, 0) + min(u − v, 0)].2153

Rearrangement yields 2154

E[max(U − V, 0)] =
∑

(u,v)∈U×V

pU,V (u, v)max(u − v, 0) 2155

= −
∑

(u,v)∈U×V

pU,V (u, v)min(u − v, 0). 2156

(20) 2157

The value of E[|U − V |] can be written as 2158

E[|U − V |] = 2159

∑

(u,v)∈U×V

pU,V (u, v) (max(u − v, 0) − min(u − v, 0)) . 2160

(21) 2161

Combining Eq. (20) and Eq. (21) along with dividing by 2162

2 yields 2163

E[max(U − V, 0)] =
1

2
E[|U − V |]. 2164

� 2165

Next, we use Lemma 12 to prove Lemma 9 as follows 2166

Proof: We will show for any i ∈ {2τ, . . . , t − 2τ} that the 2167

expected excess E[ei] is at most 2168

σ
√

(τ − a − τL)2 + (τ − a − τL)

2(τ − a + 1)
≤ σ√

2
. 2169

The result follows from combining this inequality with 2170

Theorem 4, the definition of µc from Eq. (7), and the identity 2171

E[pad[i]] ≤ (τ − b). 2172

For any message packet S[i], the symbols (Sτ−a−τL
[i], . . . , 2173

Sτ−a[i]) are always included in the blocks of SBC. The 2174

remaining symbols (S0[i], . . . , Sτ−a−τL−1[i]) can be placed 2175

in blocks corresponding to message packets 2176

Ii = {j | j ∈ {i + 1, . . . , i + b − a}}∪ 2177

{j | j ∈ {i − τ + b, . . . , i − τL − 1}}. 2178

Therefore, the expected excess is given by 2179

E[ei] =
1

τ − a + 1
E



max ((τ − a − τL) ki −
∑

j∈Ii

kj , 0)





2180

(22) 2181

=

E

[

√

(

(τ − a − τL)ki −
∑

j∈Ii
kj

)2
]

2(τ − a + 1)
(23) 2182

≤

√

E

[

(

(τ − a − τL)ki −
∑

j∈Ii
kj

)2
]

2(τ − a + 1)
(24) 2183

=
1

2(τ − a + 1)

(

(τ − a − τL)2
(

E[k2
i ] − E[ki]

2
)

+ 2184

(25) 2185

E
[(

∑

j∈Ii

ki

)2]− E
[

∑

j∈Ii

kj

]2
)1/2

2186
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=

√

(τ − a − τL)2Var(ki) + Var
(

∑

j∈Ii
kj

)

2(τ − a + 1)
(26)2187

=
σ
√

(τ − a − τL)2 + (τ − a − τL)

2(τ − a + 1)
2188

≤ σ√
2
. (27)2189

Eq. (23) follows from applying Lemma 12 to E[ei] along2190

with the identity |A| =
√

A2. Eq. (24) holds due to Jensen’s2191

inequality and the fact that
√· is concave. Eq. (25) follows2192

from the facts that (τ − a − τL)E[ki] = E[
∑

j∈li
kj ] and2193

kj ⊥ ki for j ∈ Ii. Eq. (26) holds by the fact that kj ⊥ kj′2194

for j �= j′ ∈ Ii. Finally, Eq. (27) is a consequence of the2195

inequality (τ − a + 1) ≥ (τ − a − τL). �2196

APPENDIX H2197

DESCRIPTION OF BASELINE2198

We now provide a detailed explanation of the base-2199

line scheme to which we compare the (τ, a, b, τL)-VSC in2200

Section VIII. Recall from Section II that rate-optimal stream-2201

ing codes for the setting of message packets of the same fixed2202

size, k, such as [5]–[9], involve sending each S[i] as part of2203

X [i]. In addition, k
τ−a+1 blocks of the SBC corresponding to2204

S[i] are created. This involves sending k b
τ−a+1 parity symbols2205

evenly over channel packets X [i + τ − a + 1], . . . , X [i + τ −2206

a + b]. Hence, the first parity symbol corresponding to S[i] is2207

sent during time slot (i+ τ − a+1). Another way of viewing2208

such schemes is that τ−a
τ−a+1k symbols of S[i] are encoded2209

using blocks of the SBC corresponding to message packets2210

X [i − τ + a], . . . , X [i − 1]. The remaining k
τ−a+1 symbols2211

of S[i] are encoded by creating the additional k
τ−a+1 blocks2212

of the SBC corresponding to S[i]. Thus, during time slot2213

(i + τ − a + 1), the minimum necessary number of additional2214

blocks of the SBC are created to ensure that message packet2215

S[i] is recovered within the worst-case-delay constraint over2216

the C(a, b, w) channel.2217

For the “baseline” scheme used in our evaluation, we intro-2218

duce as few adjustments to the aforementioned rate-optimal2219

code construction for message packets of the same fixed size,2220

as are needed to account for the new setting where message2221

packets are of varying sizes. As is done by the aforementioned2222

schemes, the baseline coding scheme will involve sending2223

each message packet S[i] as part of channel packet X [i].2224

This satisfies the lossless-delay constraint. Each symbol of2225

the message packets is protected using a block of the SBC,2226

as is the case under the existing schemes. To do so, di2227

blocks of the SBC are created corresponding to message2228

packet S[i] where di = max
(

0, ki −
∑i−1

j=max(0,i−τ+a) dj

)

2229

for i ≥ (τ − a + 1) and 0 = d0 = . . . = dτ−a. The2230

b parity symbols of each stripe are sent in channel packets2231

X [i + τ − a + 1], . . . , X [i + τ + b − a + 1]. The quantity di2232

is therefore defined during time slot (i + τ − a + 1). This is2233

the final time slot during which a block of the SBC can be2234

created which includes a symbol of message packet S[i]. Each2235

block includes one not yet encoded symbol of S[i] and one2236

not yet encoded symbol of S[j] for j ∈ {i + 1, . . . , i + τ − a}2237

(or a unique padding symbol if none are available). This 2238

ensures that the worst-case-delay constraint is satisfied for 2239

message packet S[i]. The number of blocks, di, is the minimal 2240

value for which all symbols of message packet S[i] can be 2241

encoded in a block of the SBC. 2242
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