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Streaming Codes for Variable-Size Messages

Michael Rudow

Abstract—Live communication is ubiquitous, and frequently
must contend with reliability issues due to packet loss during
transmission. The effect of packet losses can be alleviated by using
erasure codes, which aid in recovering lost packets. Streaming
codes are a class of codes designed for the live communication
setting, which encode a stream of message packets arriving
sequentially for transmission over a packet-loss channel. The
existing study of streaming codes considers settings where the
sizes of the message packets to be transmitted are all fixed.
However, message packets occur with unpredictable and variable
sizes in many applications, such as videoconferencing. In this
paper, we present a generalized model for streaming codes that
incorporates message packets of variable sizes. We show that
the variability in the sizes of message packets induces a new
trade-off between the rate and the decoding delay under lossless
transmission. Moreover, the variability in the sizes of message
packets impacts the optimal rate of transmission. To address this,
we introduce algorithms to compute upper and lower bounds on
the optimal rate for any given sequence of sizes of message pack-
ets. We then design an explicit streaming code for the proposed
model. We empirically evaluate the code construction over a live
video trace for several representative parameter settings, and
show that the rate of the construction is approximately 90% of
an upper bound and 5%-48% higher than naively using the
existing streaming codes.

Index Terms— Streaming codes, erasure coding, live streaming
applications, video conferencing, packet loss.

I. INTRODUCTION

HE information age has heralded widespread demand for

live communication with high quality-of-service (QoS).
Such demand is evident in the abundance of popular multime-
dia live streaming applications, including video conferencing,
VoIP, and online gaming. These services form an integral part
of Internet use. Communication for these live streaming appli-
cations involves encoding a sequence of so-called “message
packets” for transmission to a receiver over a lossy channel.
Despite packet losses, each message packet must be decoded
within a strict playback deadline to avoid degrading the QoS.
Furthermore, under several settings, the low-latency require-
ment prohibits using feedback-based retransmission schemes,
necessitating a proactive coding-based approach to provide
robustness to packet loss.
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One natural coding-based approach uses traditional codes,
such as block codes, to recover lost packets. However, such
coding schemes are ill-suited for the low-delay communication
setting of live streaming applications. The loss patterns faced
in streaming applications are correlated (i.e., bursty). Never-
theless, conventional block codes, such as maximum-distance-
separable (MDS) codes, are inefficient for recovering from
burst losses within a strict decoding delay for the following
reason. Using MDS block codes necessitates recovering all
packets lost as a burst simultaneously. As a result, all lost
packets must be decoded by the playback deadline of the
first lost packet—an unnecessarily stringent requirement for
most lost packets. The redundancy sent by the deadline of the
final lost packet is wasted, penalizing the rate. Finally, it is
possible to convert an MDS code into a burst-correcting code
via the standard technique of interleaving. However, such an
approach is inapplicable to the live streaming setting, as it
would violate the low-delay requirement.

Convolutional coding schemes tailored to the live com-
munication setting can outperform traditional code construc-
tions. Martinian and Sundberg demonstrated this fact in [2]
by formalizing the “streaming model” of live communica-
tion and introducing specialized codes —called ‘“‘streaming
codes”—with significantly higher rates than traditional block
codes. Under the streaming model, a sender communicates
a sequence of message packets, each with a strict fixed
decoding delay constraint, to a receiver. The message packets
are communicated via transmission of a sequence of “channel
packets” over a packet loss channel. Subsequent works pro-
vided capacity-achieving streaming codes first in the setting
of burst-only losses [3] and second in a setting introduced
by [4] with both bursty packet losses and arbitrary packet
losses [5]-[9].

The model employed in prior works on streaming codes
considers the sizes of message packets and channel packets
as fixed. However, many live communication settings involve
communication with message packets and channel packets of
variable sizes. Such a situation often occurs in live video com-
munication; wherein video frames are typically compressed
prior to transmission to reduce the communication load. The
sizes of the compressed frames often exhibit high variability.
For example, we demonstrate the variability of compressed
frame sizes for a live video trace transmitted by Facebook Live
in Figure 1. Variable-sized input data is incompatible with the
previously studied streaming model, motivating the need for a
new model.

In this paper, we present a generalized model for streaming
codes that accommodates message packets of variable sizes.
The variability in the sizes of the message packets induces a
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Fig. 1. Frame size variability in a live video trace collected from the Facebook
Live application (for a 2000 Kbps live video).

new trade-off between the rate of the code and the minimum
decoding delay (i.e., the delay for decoding a message packet
when all channel packets are received). Such a trade-off does
not exist in the existing model of streaming codes. We capture
this trade-off by introducing a new parameter into the model,
which we term “lossless-delay.”

The variability in the sizes of the message packets impacts
the optimal rate. We capture the dependence by explicitly
identifying the range of values the optimal rate could take.
Specifically, we determine the least upper bound and greatest
lower bound on the optimal rate for arbitrary sequences of
sizes of message packets. However, the gap between these
values is wide in many settings, prompting the need to better
characterize the optimal rate for any specific sequence of
sizes of message packets. We introduce algorithms to compute
tighter upper and lower bounds on the optimal rate for any
given sequence of sizes of message packets.

We then present a simple explicit construction of streaming
codes for the proposed model with message packets of variable
sizes. The construction employs an existing streaming code
construction presented in [9] as a building block, along with
several techniques to alleviate the adverse effect of variability
of sizes of message packets on the rate of the code. We the-
oretically characterize the rate of the construction when the
size of each message packet is drawn independently from
any distribution with finite support. Finally, we empirically
evaluate the code construction over several representative
parameter settings for a live video trace collected from the
Facebook live application and show that it performs well.
Specifically, the construction exhibits an average rate of 90%
of an upper bound and improves the rate by 5% ro 48% over
naively using the existing streaming codes.

II. BACKGROUND AND RELATED WORK

This section provides an overview of the background of
streaming codes relevant to this work. First, we will describe
the previously studied streaming model in which message
packets have the same fixed size. Second, we will detail a
sliding-window adversarial channel model which captures the
worst-case packet loss patterns which occur in transmissions.
The sliding-window adversarial channel model will be used
throughout this work. We discuss an upper bound on the
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rate imposed by such a channel under the previously studied
setting where all message packets have the same size. Third,
we deconstruct a class of optimal code constructions for the
previously studied fixed-size streaming model. We highlight
aspects of the construction that we leverage later in this work.
Fourth, we discuss alternative formulations of the streaming
setting, which can form the basis for potential future studies.

A. Background

The streaming model was first introduced by Martinian
and Sundberg in [2]. Under this model, at every time slot,
i, the sender receives a message packet, S[i], comprised of
k symbols from a finite field F, for a natural number k.
The sender transmits a channel packet, X [i], consisting of n
symbols from IF, (for a natural number n) over a packet-loss
channel to a receiver. Either X[i] is received, or a unique
symbol (i.e., %) is received, reflecting a packet loss. Packet
losses can occur as isolated bursts of some maximal length,
b, separated by guardspaces of successful transmissions. Such
loss patterns are useful representations of real-world settings
where losses occur as occasional bursts, as can be reflected
by the Gilbert model [10]. The rate of the code is naturally
defined as % The encoding is causal, meaning that the channel
packet X [¢] can be any function of S[0], ..., S[¢] but may not
depend on any future message packets. The real-time playback
deadline for live communication is incorporated by requiring
the receiver to recover each message packet, S[i], within a
worst-case-delay of T time slots. In other words, the received
channel packets of X[0],..., X[i + 7] are sufficient to decode
S[i].! Martinian and Sundberg presented an upper bound on
the rate of T as well as a rate-optimal code construction for
a large class of parameter settings. Later, Martinian and Trott
in [3] designed a capacity-achieving code construction for all
parameter settings for this streaming model.

In certain real-world settings, burst (correlated) and iso-
lated (uncorrelated) packet losses both occur. These loss
patterns are well-approximated by statistical models like the
GE channel model [11]. Yet, constructing coding schemes
directly for such statistical models is believed to be hard.
An analytically tractable sliding-window adversarial channel
model approximating the worst-case conditions of models such
as the GE model was introduced by Badr et al. in [4]. The
channel model is characterized using three parameters a, b, and
w and is referred to as C(a, b, w).> For every w consecutive
channel packets, one burst of no more than b consecutive
packets or up to a arbitrary packets may be lost.

A generalized streaming model incorporating a C(a, b, w)
sliding-window adversarial channel was introduced by Badr
et al. in [4]. The authors designed a near-optimal streaming
code construction for this streaming model. Badr et al. also
showed that Tl;‘_l;ril and 5% are upper bounds on the rate
when the worst-case-delay is 7 < w and 7 > w respectively.
We will later show that the argument used to prove these
bounds extends to the setting where message packets have
variable sizes.

'n [2], the worst-case-delay parameter was called 7" rather than
2In [4], the parameters (a, b, w) were referred to as (N, B, W).
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Later, the above upper bound on the rate was attained by
streaming code constructions designed in the two indepen-
dent concurrent works [5] and [6]. An alternative explicit
capacity-achieving streaming code for the model was pre-
sented by Dudzicz et al. in [7]. These constructions require
an exponential field size for certain parameter settings.
A capacity-achieving streaming code and an explicit capacity-
achieving streaming code with quadratic field size require-
ments were concurrently designed by Krishnan et al. in [8] and
Domanovitz et al. in [9]. The design of these streaming codes
employs the technique of diagonal interleaving to convert the
problem of constructing a rate-optimal streaming code into
the more tractable challenge of designing a block code of
the same rate. To design rate-optimal streaming codes for a
worst-case-delay of 7 and a C'(a, b, w) channel, one can design
a block code which decodes each symbol within 7 symbols
when either a burst of at most b consecutive symbols or up
to a arbitrary symbols are lost. The technique of first creating
a block code and then applying interleaving has also been
employed in several other prior works, including [2]-[4], [12].

Later in this work, we will leverage existing block codes,
such as from [5]-[9], as a component of our proposed code
construction. Specifically, we shall consider systematic rate-
optimal block codes presented in [9], whose field size require-
ment is quadratic in the delay parameter 7. Any block code
designed for the streaming model, including those presented
in [5]-[8], could likewise be used by our proposed code
construction. We refer to any such code as a Streaming Block
Code (SBC). We now highlight a few relevant details for
such codes, which we will use later in this work. For any
parameter setting, (7,a,b), we denote any systematic (n, k)
SBC where n = (1+b—a+1)and k = (1 —a+ 1) as
(S0y -+ Sr—asD0s - - - » Db—1)- Specifically, sg, . .., S;_, are the
(T—a+1) systematic symbols and py, . . ., pp—1 are the b parity
symbols. For these codes, the ith symbol fori € {0,...,n—1}
is decoded using the first min(i + 7 + 1,n) symbols in the
presence of a single burst loss of b consecutive symbols or the
loss of a arbitrary symbols.

We now illustrate how to use interleaving to convert a
block code into a streaming code. An (n, k) systematic block
code which maps k systematic code symbols, (sg, ..., Sk—1),
into n code symbols, (Sg,...,Sk—1,P0,---,Pn—k—1), Will be
used. In the ¢th time slot, the sender receives as input the
message packet S[i] = (So[é],...,Sk—1[i]) comprising &
symbols, and the channel packet X[i] = (So[i],. .., Sk—1[i],
Pyli — k],...,Pp_k-1[i — n + 1]) is sent. The symbol
P,_p—1[i — n + 1] is the final symbol of a distinct block
code (“block™) consisting of (So[i —n+1],...,Sk—1[i —n+
k], Poli—n+1],..., Pp_g—1[i —n+1]). This block contains
a single symbol from each of channel packets X[i — n +
1],...,X[i]. The channel packets X[i —n + 1],...,X[i —
n + k] contain So[i — n + 1],...,Sk—1[i — n + k] respec-
tively, and X[i — n + k + 1],..., X[i] contain Py[i — n +
1],..., Ph—g—1[i —n + 1] respectively. Next, we discuss the
block which corresponds to message packet S[i]. This block
comprises (a) symbols of message packets S[i], ..., S[i+k—1]
sent in channel packets X[i], ..., X[i+ k — 1], and (b) parity
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Fig. 2. Interleaving example of a (5, 3) block code. The blue boxes labeled
S;[i] are symbols of message packet S[i], the red boxes labeled P;[:] are
parity symbols, and the black lines connect the boxes which are part of the
same block. The numbers under the lines indicate the time slots.

symbols, Poli],..., Pp—g—1[i], sent in channel packets
X[i+k],...,X[i4+n—1]. Specifically, the jth position of the
block consists of the jth symbol of the corresponding channel
packet for j € {0,...,n — 1}. Hence, the block comprises

<SO[j]731[j + 1]7 . '7Sk—1[j +k— 1]7P0[j]7 . "Pn—k—l[jD'

We demonstrate an example of converting a block code into
a streaming code with diagonal interleaving for a (5, 3) block
code in Figure 2.

During time slot ¢, let i’ = (¢ — k + 1). The block code

(Soli'], ..., Sk—1li], Poli'], ..., Po_k—1li'])
is computed. The parity symbols
(Poli'], ..., Po_k—1li'])

are defined before they are sent in channel packets X|[i +
1],..., X[t + n — k] respectively. Consequently, during time
slot 4, the each value P;[l] for j € {0,...,n — k — 1} is
accessible for [ < (i —k+ 1), since it was defined during time
slot (I + k — 1) < i. Finally to handle edge conditions, for
any z < 0 and j € {0,...,k — 1}, 5;[z] is defined to be an
arbitrary fixed symbol.

B. Other Related Work

Several other variants of the streaming model have been
studied in the literature. We briefly discuss them below for the
sake of completeness. Most of these models involve message
packets having fixed sizes. Under a streaming model with mul-
tiplexing, a sender receives two streams of message packets
as input with two different decoding delays for transmission
over a burst-only channel [13], [14]. Under another model,
a sender transmits a stream of message packets to two different
receivers over two different burst-only channels subject to two
different decoding delays [15], [16]. Another variant of the
streaming model includes unequal error protection wherein all
symbols from each message packet must be recovered in the
event of short bursts, but only certain symbols need to be
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recovered in the presence of longer bursts [17]. Another setting
considers average rather than worst-case-delay for decod-
ing [18]. Various other streaming models incorporate multiple
channel uses between every message packet [4], [19], [20].
Another variation of the streaming model stipulates partial
recovery of certain loss patterns wherein only some of the
message packets are decoded by their deadlines [21]. The
setting of streaming over a three-node relay network is studied
in [22], wherein there is a delay in decoding even under
lossless transmissions. The notion of two distinct decoding
delays has also arisen in the context of VoIP in [23], which
introduces codes with a shorter delay to decode a few random
packet losses than that of recovering a longer burst of packet
losses. A different streaming model formulation considers
a channel which can induce multiple burst losses within
the worst-case-delay [24]. Diverging from the above models,
another streaming model considers (1) high and low priority
message packets, each with a (potentially different) fixed size,
which occur in a fixed periodic manner, (2) channel packets
of a fixed size, and (3) unequal error protection [25]. A formal
study of incorporating message packets with arbitrary variable
sizes in these models is outside of the scope of this paper and
is a potential avenue for future work.

III. A MODEL FOR STREAMING CODES WITH
MESSAGE PACKETS OF VARIABLE SIZES

The streaming model discussed in Section II will now be
generalized to incorporate message packets of variable sizes.
The variability in the sizes of the message packets induces
a new trade-off between the optimal rate and the decoding
delay under a lossless transmission. A new delay parameter
will be introduced to the model to capture this trade-off. A new
definition for the rate of a code is included to reflect the
varying sizes of the message packets and channel packets.

Under the proposed streaming model, the sender receives
a message packet, S[i] = (So[é],...,Sk;—1[i]), during the
ith time slot. The message packet consists of k; symbols
drawn uniformly at random from a finite field, F,, where k;
is an arbitrary non-negative integer. A channel packet, X [i] =
(Xoli], ..., Xn,—1[i]) € Fyi, is transmitted to the receiver,
where n; is an arbitrary non-negative integer. This deviates
from the prior models (such as in [2]-[9]) where each |S[i]| =
k and | X [i]| = n for some fixed positive integers k and n. The
channel packet X [i] is a function of the current and previous
message packets (i.e., X[i| = Enc ((S[j] | 7 € {0,...,9)}))).
Encoding is not a function of the symbols of future message
packets (or their sizes), as the sender does not have access to
this information.

The channel packet X[i] is transmitted over the C'(a, b, w)
channel discussed in Section II. The receiver obtains Y[i| €
{XTi],*}, where * denotes a dropped packet. Under the
channel model, for any sliding window of w consecutive
packets, up to b consecutive packets may be dropped as a
burst, or up to a packets may be dropped in arbitrary locations.
In other words, for any time slot ¢, the packet losses introduced
by the C(a,b,w) channel satisfy at least one of the following
two conditions for the window W = {i,...,i +w — 1}:
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1) Lose only a burst of length at most b channel packets :
Jjew, VMieWwW\{j,...,7+b— 1} L(Y[l] = X[I]).

2) Lose at most a channel packets :

+w—1

a> _Z_ L(Y[j] = ).

Due to the real-time playback deadline, the receiver must
decode S[i] within 7 time slots. We refer to 7 as the
“worst-case-delay” parameter and the requirement that S/[i]
be decoded by time slot (i + 7) as the “worst-case-delay
constraint.” More formally, the receiver decodes S|i] as

Sli] = Dec((Slj] | je {i—7,...,i—1}),

Yl 1Geis . itry),(kjlieli,...i+T}))
where 7/ < 7 is the largest value such that X[i +
7'] has been received (ie., Y[i + 7] = X[i + 7']).

In other words, the receiver decodes message packet S|[i]
using the (a) previously-decoded 7 message packets, (S[i —

7],...,S[i —1]), (b) already received channel packets among
(XTi],..., X[i+7]), and (c) sizes of up to (7 +1) of the mes-
sage packets (S[i], ..., S[i+7]) which may not have been be

decoded. In order to inform the receiver about (c) irrespective
of which channel packets are lost, the sender adds the sizes
of the current message packet and previous b message packets
to a small header of each channel packet.

Under the previously studied model, the rate is % But
% is not well-defined in the proposed model. Accordingly,
we introduce a suitable definition of rate for the setting of
message packets of variable size. To do so, we limit our
attention to finite-length sequences of message packets. For
an arbitrary non-negative integer, ¢, consider an arbitrary
sequence of ¢ message packets, S[0], S[1],..., S[t]. We refer
to the corresponding sequence ko, ...,k; as the “message
packet size sequence.” The rate for any code construction is
defined as the ratio of the number of symbols of all message
packets to the total number of transmitted symbols,

ZE:O ki
ZE:O i
For convenience of notation, we use the convention that ¢t > 27
and the sizes of each of the final 27 message packet is 0
(.e., kt—2741 = 0,...,k; = 0). This convention can be met
by appending 27 message packets of size 0 to any sequence
of message packets to ensure that it meets this convention
without altering the rate.

The setting in which message packets have variable sizes
differs from where message packets all have the same fixed
size in the following critical respect. When the sizes of the
message packets and channel packets are fixed, there exists an
optimal rate code construction in which each message packet,
S|i], is sent as a part of the corresponding channel packet,
Xi] ([5]-[8]). In other words, there are rate-optimal coding
schemes where each message packet S[i] can be decoded
without any delay under lossless transmission. However, this
is no longer true when the sizes of message packets can vary.

Ry = . (1)
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When the message packets have variable sizes, distributing

symbols of message packets over multiple channel packets can
lead to a higher rate than sending each message packet within
its corresponding channel packet. We illustrate this observation
with a toy example. Consider the length (7 + 1) sequence
of message packets where the first message packet S[0] is
of size 7 and the next 7 message packets have size 0. The
C(a,b,w) channel for (e =1,b=1,w =7+ 1) could drop
X[0]. Therefore, if S[0] were transmitted as part of channel
packets X [0], at least 7 parity symbols would need to be sent
in channel packets X[1],..., X[7] to decode S[0] within the
worst-case-delay of 7 time slots. The rate for such a scheme
is at most % Alternatively, the symbols of message packet
S[0] could be transmitted evenly over X|0],..., X[t — 1],
and a parity of the previous 7 channel packets sent in X|[7]
(e, X[r] = Z:;OI X[7]). Such a scheme would have a rate
of —T7 while satisfying the worst-case-delay constraint.
As shown above, under the setting where message packets
have variable sizes, distributing the symbols of a message
packet over multiple channel packets can lead to a higher rate.
However, doing so will delay decoding the message packet
when there are no losses. Thus, the variability in the sizes of
the message packets induces a new trade-off between the rate
of the code and decoding delay when all channel packets are
received. We incorporate this new trade-off into our model
via a new parameter which we call the lossless-delay, 77,.3
The receiver must be able to decode every message packet,
S|i], using channel packets X[0],..., X[i+ 7] if they are all
received. In other words,

S[i) = Dec'™) ({X[4],k; | 5 € {0,...,i +7L})).

The newly introduced parameter 77 represents the tolerable
decoding delay under lossless channel conditions, whereas 7
reflects the worst-case delay in the presence of packet loss.
The two parameters (77,7) are relevant to settings where
the transmission is lossless most of the time, and the rare
worst-case channel conditions are captured via the C'(a, b, w)
channel. In such scenarios, a live streaming application may
occasionally tolerate a decoding delay of 7 time slots but
benefit from the faster decoding of 77, time slots most of the
time.

Due to the worst-case-delay constraint, 7, for transmission
over a C'(a,b,w) channel, each S[i] must be decoded with
X[0],...,X[i+7—b] when X[i+7—b+1],..., X[i+7] are
lost. Therefore, under a lossless transmission setting, each S[i]
is recoverable from X|[0],..., X[i+7 — b]. Consequently, the
parameter 7, is at most (7 —b), leading to 7, € {0,...,7—b}.
Higher values of 77, enable the symbols of the message packets
to be spread over more channel packets, thereby increasing
both the rate of the code and decoding delay under lossless
transmission.

Finally, the parameters (7, a, b, w) obey certain restrictions.
Because burst losses are a special case of arbitrary losses,
a < b. Moreover, if it were the case that b > w (or b > 1), for
any time slot, 4, the channel packets X[i],..., X[i+ 7] could

3In the conference version of this paper [1], this parameter was called the
“good-window-delay” parameter 7.
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all be lost. As a result, it would be impossible to decode S|[i]
within a delay of 7, resulting in a capacity of 0. Moreover,
if b = 0, the channel is lossless, and the capacity is trivially 1.
Consequently, we restrict our attention to 1 < a < b <
min(7 + 1,w). We consider the setting where 7 < w in this
paper to reflect the motivating scenario where each message
packet must be decoded in the presence of either a single burst
of length b (or a arbitrary losses). In contrast, the setting of
T > w requires that each message packet be decoded in the
presence of multiple bursts of losses. It is, hence, outside of
the scope of this paper.

We will refer to input parameters (7, a, b, w, 7) satisfying
the above inequalities (along with 0 < 71, < (7 — b)) as valid
throughout this work.

IV. GENERAL BOUNDS ON RATE FOR STREAMING
CODES WITH VARIABLE-SIZE MESSAGES

This section discusses general upper and lower bounds on
the rate of code constructions for the proposed model. The
bounds constitute the least upper bound and greatest lower
bound for arbitrary message packet size sequences. Later,
Lemma 5 shows that the optimal rate depends on the message
packet size sequence and can vary over the entire range
between the aforementioned lower and upper bounds on the
optimal rate.

A. General Upper Bound on the Rate

As was discussed in Section II, the rate for streaming codes
that satisfy the worst-case-delay constraint 7 over a C'(a, b, w)
channel in the setting where all message packets have a fixed
size is at most T;%;r}rl Next, we show that this upper bound
on the rate applies under the proposed model with message
packets of variable sizes by using a simple extension to the
proof techniques used by Badr et al. in [4].

Lemma 1: For any valid inputs (7,a,b,w,7), for any
streaming code which satisfies the worst-case-delay constraint
over the C(a,b,w) channel, the rate is at most

) T—a+1

=— 2
T+b—a+1 )

Proof Sketch: In [4], Badr et al. show that any stream-

ing code satisfying the worst-case-delay constraint over a
C(a,b,w) channel must recover from any erasure channel
which periodically introduces a burst of length b followed
by a guard space of length (7 — a + 1). Let Cp; be such
an erasure channel whose bursts each begin in positions = ¢
mod (7 + b — a+ 1), where ¢ mod j is defined for a non-
negative integer ¢ and positive integer j as the remainder
of 7 divided by j. Even when the sizes of channel packets
vary, Cpo,Cp1,...,Cp (r4p—q) €rase on average ﬁ
fraction of the transmitted symbols. Therefore, there is always
some Cp; that erases at least T-i—Tba—i-l fraction of the
transmitted symbols. Consequently, the rate cannot exceed
RW)_ Thus, the upper bound on the rate provided in [4] for
fixed-size message packets continues to hold for the model
with variable-size message packets as well. |
The rate R(Y) is attained by the constructions presented
in [5]-[9] when the sizes of the message packets are fixed.
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Thus, R(Y) is the smallest general upper bound on the rate of
streaming codes for arbitrary message packet size sequences.

B. General Lower Bound on Rate

Next, we present a general lower bound on the rate. Each
message packet can always be encoded separately (i.e., trans-
mitted symbols corresponding to each message packet are kept
independent of all other message packets) for any message
packet size sequence. The optimal rate of coding schemes
encoding message packets separately, thus, serves as a lower
bound on the optimal rate. Moreover, this bound is tight for
certain message packet size sequences and therefore is the
greatest lower bound. For example, it is tight when the worst-
case-delay is 7, and each message packet of positive size is
followed by at least 7 message packets of size 0. For such
message packet size sequences, the sender must encode each
message packet separately.

Next, we will present a simple code construction with the
best-possible rate among code constructions that encode each
message packet separately and identify its rate. For valid
inputs (7, a, b, w, 71,), the proposed code construction is called
the “(7,a,b, 71,)-separate encoding scheme.” The scheme is
presented in two cases.

Case 1: 77, < (a — 1). In this case, since (77, + 1) < a
all symbols used to decode a message packet under lossless
transmission can be lost under lossy transmission. In addition,
either (a—1—77,) arbitrary channel packets may be lost, or the
next (b — 77, — 1) channel packets may be lost. Consequently,
the rate is at most 0.5 in this case. We present the scheme first
using a toy example and then in detail.

Toy example. An example of the (7, 3, 5, 1)-separate encod-
ing scheme is shown in Figure 3 for a message packet S[i] =
(Soli], .., Ss[i]). The blue boxes contain the symbols of S[i],
while the red boxes contain parity symbols for a systematic
[14,6] MDS code. The 6 symbols of S[i] are transmitted
evenly over X[i] and X[i + 1]. The 8 parity symbols are
transmitted evenly over X [i +4],..., X[i + 7]. The lossless-
delay constraint is satisfied, since S[i] is transmitted over X []
and X [i+ 1]. The worst-case-delay constraint is met, since for
any burst of length 5, or any 3 arbitrary losses, enough symbols
are received by time slot 7 to decode S|i] using properties of
the MDS code.

Detailed description. The symbols of S[i] are sent
evenly over all channel packets within the lossless-delay
(ie., X[i],...,X[i + 71]). The k; symbols corresponding to
S|i] are transmitted evenly over the final (7 — b + 1) packets
by time slot (i + 7) to cover the case of a burst of length
b starting in time slot i. Parity symbols are sent over the
remaining channel packets to ensure at least k; symbols are
received for a arbitrary losses. For convenience of notation,
let a’ = (71, + 2 + 7 — b). The following terms are used

{((rL+1)(T —b+1), ifa<d
(L +1)(t—b—11,+a))

(n,n')y = <TL+1)(T—b+1)(T—a+1),
(r+1)(r=b+1)(r—a+ 1)+ ifa>d
(L + 1) (r=b+1)(b— 71— 1))). 5
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X[il X[i+1]
Sofil | |Salil X[i+4]  X[i+5]  X[i+6]  X[i+7]
4[] S, li] X[i+2]  X[i+3]
Sa[il| | Ssli]
i i+1 i+2 i+3
Fig. 3. The (7,3,5,1)-separate encoding scheme is shown for a mes-

sage packet S[i] = (Soli],...,S5[i]). The symbols are spread evenly
over channel packets X[i¢] and X[i 4 1], thereby satisfying the lossless-
delay constraint. Additional parity symbols (Po[i], ..., Pr[i]) of a [14,6]
systematic MDS code are distributed evenly over channel packets X [i + 4],
X[i + 5], X[i + 6], and X[¢ + 7]. This ensures that at least 6 out of
(Solil, ..., Ssli], Poli], ..., Pr[i]) are received in the event of either a burst
of length at most 5 losses or the loss of any 3 arbitrary channel packets. Thus,
S|i] is decoded within 7 time slots by properties of the MDS code.

We assume that 7|k;.* The message packet is partitioned
evenly into sets of 1 symbols. For each such set

o A [n+mn',n] systematic MDS code is applied, leading to
symbols cq, ..., ¢4y —1, where the final 7’ symbols are
parity symbols.

e The symbols cg, ...,
X, ..., X[i+ 7]

e The symbols ¢,,...,co,—1 are evenly transmitted over
X[i+0b],....,X[i+ 7]

e The symbols cyy,..., ¢, are sent evenly over X[i +
gl X[i +b—1], where j = (1, +b—a+ 1) if
a<(rp,+2+7—">)and j = (71, + 1) otherwise.

In short, the scheme involves (a) sending S[i] over
(tr + 1) channel packets to satisfy the lossless-delay con-
straint, (b) sending parity symbols to recover S[i] when
Xi],..., X[t +b—1] are lost, and (c) sending parity symbols
to recover S[i] when both X [i],..., X[i+7.] and (a —77 —1)
additional channel packets of X [i+ 77 +1],..., X[i + 7] are
lost.

Remark 1: The rate for the (7, a,b, 7, )-separate encoding

cy—1 are evenly transmitted over

code employed.

The field size requirement is at most that of a [’ + 7, 7]
Reed-Solomon code. If a < (71, + 2+ 7 — b), the requirement
is at most (77, + 1)(27 — 2b — 71, + a + 1), which is no more
than 27a. Otherwise, the field size requirement is at most

(TL+1)(T—b+1)(2(T—a+1)+(b—TL—1)),

which is no more than 3a?b.

Case 2: 77, > (a — 1). In this case, 7y, is large enough that
the symbols of S[i] can be distributed over (77 + 1) > a
channel packets such that at most k; symbols are lost by
making use of a buffer of (b— a) channel packets in which no
symbols are sent, as will be described below. This approach
leads to a rate of at least 0.5 in this case. We divide the
presentation of case 2 into two sub-cases.

It suffices to pad S[i] with strictly fewer than 7 extra symbols, where
n < 72 or n < 73 depending on whether a < (7, + 2 + 7 — b). Typically,
n <K k;.
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X[il X[i+1] X[i+2]  X[i+3]  X[i+4]  X[i+5]  X[i+6]  X[i+7]
Solil | [S4[1] Sy[il| | Sslil - .
i i+1 i+2 i+3 i+4 i+5
Fig. 4. The (7,2, 3,4)-separate encoding scheme is shown for a message

packet S[i] = (Soli],. .., S3[i]). The symbols are spread evenly over channel
packets X [¢], X [i+1], X [i+3], and X [i+4]. Parity symbols (Py[i], P1[]) of
a systematic [6, 4] MDS code are spread evenly over channel packets X [i+ 6]
and X[i + 7]. The lossless-delay constraint is satisfied, since the symbols of
S|[i] are sent by time slot X[¢ + 4]. At most 2 nonempty channel packets
are lost with a burst of length 3 or 2 arbitrary losses. Therefore, at least 4
of (Solil,...,Ss[i], Poli], P1[i]) are received, so S[i] is decoded by time
slot (7 4 7).

Sub-case 1: either ((77, + 1) mod b) € {0}U{a,...,b—1}
or (o +1) mod b) (|| +1)>a

Toy example. An example of the (7,2, 3, 4)-separate encod-
ing scheme is shown in Figure 4 for a message packet
S[i) = (Soli], S1[i], S2li], Ss[i]). The parity symbols, Py[i],
and P;[i], are formed using a [6,4] systematic MDS code.
The 6 symbols, (So[i], S1[i], S2[i], Ss[i], Poli], P1[i]) are then
periodically sent over time slots ¢ through (i + 7) by trans-
mitting one symbol for each of two consecutive time slots
followed by not transmitting any symbols for one time slot.
Specifically, Soli], S1[i], S2[i], Ss[i], Poli], and Py[i] are sent
over X[i], X[t + 1], X[i + 3], X[i 4+ 4], X [i + 6], and X [i + 7]
respectively. The lossless-delay constraint is satisfied, as S]]
is transmitted over X [i],..., X[i + 4] where 7, = 4. At least
4 symbols are received by time slot (i 4+ 7). Hence, S[i] can
be decoded by properties of the MDS code.

Detailed description. The symbols of S[i| are periodically
spread over a channel packets followed by no symbols being
sent in a buffer of (b — a) channel packet until time slot
(i + 7). Afterward, a buffer of (b — a) channel packets
are sent which do not include any symbols corresponding
to S[i]. Parity symbols are sent in the next a channel pack-
ets. A similar interleaving approach with empty positions
(i.e., buffers) was used in [26] and [27], albeit for the streaming
model with message packets all having the same fixed size,
where each message packet is sent in its entirety as part of the
corresponding channel packet, and the parity symbols apply
to multiple message packets. For convenience of notation, the
following term is used

¢= (LTLllea—l—min((TL—f—l) mod b,a)>. 4

We will assume that (|k;.° The message packet is partitioned
into sets of ¢ symbols. For each such set:

e A [C+ a,(] systematic MDS code is applied, leading to

symbols cg, ..., c¢4q—1, Where the final a symbols are
parity symbols.

e For J = {jo,...,jc_l} = {] | J € {i,...,i+TL},j
mod b < (b—a)} and !l € {0,...,{—1}, ¢ is transmitted
in X[jl]

3Tt suffices to pad S[i] with up to (¢ — 1 < 7) extra symbols—a quantity
typically negligible compared to k;.
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e C¢y...yCopa—1 are transmitted in X[i + 7, + b —
a+1],..., X[i + 71 + b] respectively.

Remark 2: The rate for the (7, a,b, 7, )-separate encoding

Cia' This follows directly

from the MDS code employed.

The field size requirement is that of a [ + a,(] Reed-
Solomon code. The requirement is at most ({ + @), which
is no more than (7 + 1+ a).

Sub-case 2: ((77 +1) modbd) € {1,...,a — 1} and
((r2 +1) mod b) (|| + 1) < a. The construction from
sub-case 1 applies to this sub-case, but its rate does not
attain the greatest lower bound on the rate. The converse
proof in sub-case | relies on the worst-case losses corre-
sponding to either (a0 a burst of consecutive losses over
between ((7, + 1) mod b) and b consecutive channel pack-
ets, or (b) a arbitrary losses corresponding to a set of
((r1 +1) mod b) (|| + 1) channel packets. However,
in sub-case 2, both loss scenarios comprise fewer than a arbi-
trary losses. Hence, the worst-case a arbitrary losses cannot be
limited to just one of these two quantities. In order to design
a scheme that leads to the greatest lower bound for this sub-
case, we introduce a construction based on a simple integer
program (IP) that reflects minimizing the number of symbols
sent by a coding scheme while satisfying the lossless-delay
and worst-case-delay constraints. The variables of the IP are
n(()c), . ,nﬁc), which denote the sizes of the (7 + 1) channel
packets corresponding to the message packet.

IP-based construction 1 Takes as input any valid parameters
and k; and uses integer programming to compute the number
of symbols to be sent in the next (7 + 1) channel packets.

Input: Valid values for (7,a,b,w,7;) and k;.
Minimize 377, n ) subject to:

1) ¥je{0,...,7hnl? >0

2) (E; on )_k 2 0.

3y vl e {0,...,7} (zj - §C>) + (Z§:z+bn§c)) -
ki > 0.

4) VI - {0,...,7} such

(Zj€{0,~..,‘r}\1 n§c)) — k>0
Output: n§*> = (Z; , (c))

The constraints of the integer program reflect the require-
ments that (1) the size of each channel packet is non-negative,
(2) the lossless-delay constraint is met, (3) the worst-case-
delay constraint is met for bursts of at most b consecutive
channel packets, and (4) the worst-case-delay constraint is met
for @ arbitrary losses. The objective function reflects minimiz-
ing the total number of symbols which are sent. Observe that
n§*) is the total number of symbols sent according to the IP
subroutine of IP-based construction 1. For a message packet
size sequence ko, ..., kq, let n( ) .. (*) be the outputs of
IP-based construction 1 apphed to each of kg,...,k;. For
each 7 where k; > 0, a systematic [n(*),k‘i] MDS code is

i
applied to encode S[i] into ¢y, ..., ¢, +)_;. The symbols are

that |7

Il
8
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distributed over channel packets X[i],..., X[i + 7] so that
the number sent for each channel packet X[j] is n;C). The
construction is systematic, as the first k; symbols (i.e., S[i])
are sent over X [i],..., X[i+71]. The following terms will be
used to express the rate of IP-based construction 1

t t
<k(*)7n(*)> _ <Zk“z"§*)> ) 5)
i=0 =0

Remark 3: The rate for the (7,a,b, 71,)-separate encoding
scheme for message packet size sequence ko, . . . , k; for case 2
sub-case 2 is f)((—*; This follows directly from the MDS code
employed.

Finally, we note that IP-based construction 1 can be used for
any parameter settings. We provide explicit constructions for
case 1 and case 2 sub-case 1 because IP-based construction 1
is not explicit.

Next, we use the (7,a,b, 7. )-separate encoding scheme
described above to provide a general lower bound on the rate.
Before doing so, we must verify that the (7, a, b, 71, )-separate
encoding scheme satisfies the lossless-delay constraint and
worst-case-delay constraint over the C'(a, b, w) channel for any
valid parameters (7, a, b, 71,) and sequence of message packets.
This is done below.

Lemma 2: For any valid inputs (7,a,b,w,7;) and any
sequence of message packets S[0],...,S[t], the (1, a,b,Tr)-
separate encoding scheme satisfies the lossless-delay con-
straint 77, and the worst-case-delay constraint 7 over the
C(a,b,w) channel.

Proof Sketch: The proof of Lemma 2 is included in
Appendix B. |

Consequently, the rate of the (7, a, b, 71,)-separate encoding
scheme constitutes a lower bound on the optimal rate. This
quantity is summarized in Lemma 3.

Lemma 3: For any valid inputs (7,a,b,w, ), the opti-
mal rate for streaming codes that satisfy the lossless-delay
constraint and worst-case-delay constraint over the C'(a, b, w)
channel for an arbitrary message packet size sequence is at
least R(") =

# if 7, <a-—1
(TCa ifr, >(a—1)and ((r7z +1) mod b) €
{0tuU{a,...,b—1}or7 > (a—1) and
(L +1) modb)([”—bﬂj—i—l)za (6)
fl((; if 7, > (a—1) and
0<((rr +1) mod b) < a and
((r+1) mod b) (|| +1) <a.

Proof: The (7,a, b, 71, )-separate encoding scheme exhibits
this rate. This follows directly from the parameters of the MDS
code used in each case, as is noted in Remark 1, Remark 2,
and Remark 3. The lossless-delay constraint and worst-case-
delay constraint over the channel model are also satisfied by
the code construction, as was shown in Lemma 2. |

For any valid inputs (7,a,b,w,71), as 7 increases,
the quantity R(), is monotonically non-decreasing and
approaches the upper bound on the rate of R(V). Whenever
7, = (1 —b) and either b = a or ((7 +1) mod b) = a, the
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least upper bound on the rate of R(Y) is equal to the greatest
lower bound on the optimal rate of R(™). For such parameter
settings, the rate of the (7, a, b, 77,)-separate encoding scheme
matches the least upper bound on the rate of R(Y). In such
settings, the (7,a,b, 7y )-separate encoding scheme is also
analogous to the scheme presented in [26] for the streaming
model with message packets of the same fixed size.

We show in Lemma 4 that R(Y) is the greatest lower
bound on the optimal rate for arbitrary message packet size
sequences.

Lemma 4: For any valid inputs (7, a, b, w, 71,), R is the
greatest lower bound on the optimal rate for arbitrary message
packet size sequences for streaming codes that satisfy the
lossless-delay constraint and worst-case-delay constraint over
the C'(a, b, w) channel.

Proof Sketch: The proof of Lemma 4 is included in
Appendix A. |

V. BOUNDS ON RATE FOR SPECIFIC MESSAGE
PACKET SI1ZE SEQUENCES

In the proposed model for streaming codes with message
packets of varying sizes, the optimal rate for any transmission
depends on the specific message packet size sequence. The
optimal rate can be as large as R(Y) and as small as R(%),
as was shown in Section IV. These general bounds are agnostic
to the sizes of the message packets and apply to an arbitrary
message packet size sequences. In this section, we develop a
deeper understanding for the optimal rate of a streaming code
for any specific message packet size sequence. We refer to
the setting in which the sender and receiver have access to
the complete message packet size sequence as the “offline”
setting and consider it for the rest of this section. This differs
from the setting considered in the rest of this work, which we
call the “online” setting, where the sender and receiver do not
have access to kjy1,...,k; during time slot ¢. The optimal
rate for the online setting for any specific message packet size
sequence is not well-defined because there exists a coding
scheme which attains the best possible rate, which is that of
the offline setting. However, the rate of that coding scheme
may not be optimal for other message packet size sequences,
as is discussed in detail in [28].

First, we show that the optimal rates for various message
packet size sequences can take values over the entire range of
[R), R(W)], Naturally, the general upper and lower bounds
on the rate, i.e., R(Y) and R, are inherently loose for many
message packet size sequences, motivating the need for tighter
bounds. We then present an algorithm to compute an upper
bound on the rate for linear encoding schemes by imposing the
lossless-delay constraint and worst-case-delay constraint over
the channel model for each message packet. We then present
an algorithm to compute the best possible rate for a coding
scheme that combines block codes such as those presented
in [5]-[9] with the separate encoding scheme presented in
Section IV-B. The so-computed rate serves as a lower bound
on the optimal rate. Finally, we empirically evaluate these
upper and lower bounds on the optimal rate. The empirical
evaluation demonstrates that the gap between the lower and
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upper bounds computed by the two aforementioned algorithms
is a significant improvement over the gap between the bounds
agnostic to the size sequence.

Lemma 5: For any valid inputs (7,a,b,w, 1), the set of
optimal rates for coding schemes that satisfy the lossless-delay
constraint and worst-case-delay constraint over any C(a, b, w)
channel over all possible message packet size sequences are
dense in [R(Y), RW)].

Proof: Let v € [RY, RW], and € > 0 arbitrarily.
We will show that there is a message packet size sequence for
which the optimal rate is within € of v. Let p,r € Z* U {0}

be chosen so that the quantity R(P") = % satisfies

RO

|IRP™) —v| < e. When v € (RW), R(U)) the existence of
such p and r follows from the fact that R®") — v in the
limit as 2 — %. When v = R(F) or v = R(V)
it suffices to choose (r = 0,p > 0) and (p = 0,7 > 0)
respectively. Let d be the smallest positive integer for which
% and % are both integers. Consider the following
length (37’ — a + 2) message packet size sequence: ko = pd,
kj = - forje{r+1,...,2r—a+1}, and k; =0 for
jG{l T}U{ZT—a+2,...,3T—a+1}.

The proof follows from verifying that the optimal rate
for this message packet size sequence is at most R(”") and
presenting a coding scheme with rate R""), which we will
show below.

Upper bound. The lossless-delay constraint and worst-
case-delay constraint over the C(a,b,w) channel must be
satisfied for message packet S[0]. This necessitates that As
such, at least R’Z—‘i) symbols are sent by time slot 7 (Lemma 4).
The lossless-delay constraint and worst-case-delay constraint
over the C(a,b, w) channel must be met for the rd symbols
corresponding to the remaining (7 — a + 1) message packets.
Thus, at least (U) additional symbols must be sent due to the
upper bound on the rate of R(Y). A total of at least R<L> + R(m
symbols are sent, leading to an upper bound on the rate of
Rm)

Achievability. Applying the (7, a,b, 71,)-separate encoding
scheme to message packet S[0] involves transmitting Rp(—f)
symbol. The systematic [T + b — a + 1,7 — a + 1] block
code, presented in [9] (or alternatively the block codes from
[5]-[8]), can be applied to message packets S[r +
1],...,S[27 — a + 1] by sending each message packet in the
corresponding channel packet. Afterward, the channel packets
X[27—a+2],..., X[27+b—a+1] are defined to each contain
a1 Parity symbols of the block code. The lossless-delay
constraint and worst-case-delay constraint over the C'(a, b, w)
channel are met by the definition of the (7, a, b, 71, )-separate
encoding scheme and block codes. This code construction has
a rate of R(P7), |

Hence, the quantities R“) and R(U) are insufficient for
understanding the best possible rate for a specific message
packet size sequence. As such, Lemma 5 motivates the need
to compute upper and lower bounds on the optimal rate for any
specific message packet size sequence that can more tightly
bound the optimal rate. A desirable property for doing so is
that the upper and lower bounds on rate can likewise range
from R(%) to R(Y). We introduce algorithms to compute upper

a+1
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and lower bounds on the optimal rate for any specific message
packet size sequence in Sections V-A and V-B to capture this

property.

A. An Upper Bound on the Optimal Rate for Specific
message packet size sequences

We now present Algorithm 1, which computes an upper
bound on the rate for linear encoding schemes for any given
message packet size sequence by imposing the lossless-delay
constraint and worst-case-delay constraint over the channel
model for each message packet. To do so, Algorithm 1 will
make use of an integer program by converting the lossless-
delay and worst-case-delay constraints into constraints for the
IP. In order to avoid confusion over the term “constraint,’
we refer to constraints of the IP as “constraints” and the
lossless-delay and worst-case-delay constraints as “require-
ments” in this section and Section V-B. Under Algorithm 1,
(1) the lossless-delay and worst-case-delay requirements are
converted into constraints for an integer program (IP) with
a simple minimization objective function, (2) its solution is
computed, and (3) its solution is converted into an upper bound
on the optimal rate. In Section V-C, we will show empirically
that the upper bound on the optimal rate determined by
Algorithm 1 can be significantly lower than R(V)

Consider any message packet size sequence of an arbitrary
length ¢. Consider any valid inputs (7,a,b,w, 7). We first
model the sizes of the message and channel packets, and
the associated parameters will serve as the variables for the
IP. Each channel packet, X[i], for i € {0,...,¢} comprises
(XO[], X(M[i]). Under a lossless transmission, message
packets S[0],...,S[i] are decoded using X(@[0],..., X
[i +71]. In contrast, X(M[0],..., X(W[i 4 7] are used for
decoding only under a lossy transmission. The linear equations
corresponding to the symbols of X (V)[i] are in the span of the
linear equations corresponding to the symbols of (X(©)[j] |
j < ). Each quantity | XM [i]| will be a variable of the IP,
whereas there will be (77, + 1) variables corresponding to
X O)[;] defined shortly. The details of how (X () [i], X (MD[i])
are defined are only used in in the proof of Theorem 1 and
can be found in Appendix C.

The symbols of X (O[] are partitioned into Xl(o) [i] for
Il € {i,...,i — 1} for convenience of notation, where
each quantity |X Z(O)[i]| will be a variable of the IP. Under
a lossless transmission, the symbols sent in channel packet
X[j] for j € {0,...,7} used to decode S[0] are called

X(()O) [7]. Similarly, for ¢ = 1,...,¢, the symbols sent in
channel packet X [j] for j € {i,...,7+ 71} that are used to
decode S[i] under lossless transmission are labeled as X i(o) [7]-
Thus, XO[i] = <Xj(.0)[i]j € {i —7,...,i}), and hence,
S i 1X )] = |X ]| for any i € {0,...,t}.0

We next outline how the constraints for the IP reflect
the worst-case-delay and lossless-delay requirements of the

SFor convenience of notation, the edge conditions are handled by modeling
Sl—7¢],...,S[-1],S[t + 1],...,S[t + 7] as message packets of size 0.
Furthermore, variables |X]<.0) [i]| = 0 whenever at least one of %, j is either
negative or i exceeds t. Similarly, | X (1) [i]| = 0 whenever i is negative or
exceeds .
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streaming model. For ease of presentation, in this paragraph,
we assume that the coding scheme is systematic. Under
a systematic coding scheme, the quantity X](-U)[i] for i €
{0,...,t},j€{i—7L,...,i} corresponds to |X](»U)[i]| distinct
symbols of S[j]. Each of |X](0)[i]| and |X(M[i]| are non-
negative integers to reflect that each channel packet consists
of some non-negative quantity of symbols corresponding to
message packet S[j] for j € {i —71,...,i}, along with some
non-negative number of parity symbols (constraints #1 and #2
in Algorithm 1). The lossless-delay requirement is imposed
through requiring that &; symbols for message packet S|[i], for
eachi € {0,...,t—7}, be transmitted over X [i], ..., X[i+7L]
(constraint #3).” In the proof of Lemma 1, it was shown
that satisfying the worst-case-delay requirement over any
C'(a, b, w) channel necessitates satisfying the worst-case-delay
requirement over all channels which periodically drop b chan-
nel packets and allow (7 — a + 1) successful transmissions.
This implies that for each burst of length b starting in time
slot i € {0,...,t}, S[y]. forj € {i—7r,...,i+b—1}, must
be decoded by time slot (i + 7+ b — a), while the worst-case-
delay requirement necessitates that S[j] be decoded by (j+7)
(constraint #4). The worst-case-delay requirement is imposed
for all possible patterns of a losses on every sliding window
of length (7 + 1). Specifically, under constraint #4 (respec-
tively #5), for any considered burst of length b (respectively
a arbitrary losses) beginning in time slot i € {0,...,¢ — b}
(respectively @ € {0,...,t — 7}) and terminating in time
slot ¢/ € {i,...,t}, the following relaxation of the worst-
case-delay requirement is imposed. For each message packet
Sljl € {S[i — mz],...,S[']}, S[¢ — 7¢],...,S[j] must be
decoded by time slot (j+7). This relaxation is more restrictive
than the relaxation which allows all lost message packets
to be decoded within 7 time slots of the final lost message
packet. Finally, we consider the relaxation that each X j(-,o) [']
is received even if X[i] is lost for j/ > j. A toy example of
constraint #4 is shown in Figure 5. An analogous figure could
be constructed for constraint #5.

The objective function is to minimize the sum of all vari-
ables. The summation constitutes a lower bound on the number
of transmitted symbols. The solution is easily converted into
an upper bound on the rate since the total number of symbols
of the message packets is fixed.

We now present Algorithm 1.

In Theorem 1, we verify that the output of Algorithm 1 is
an upper bound on the rate.

Theorem 1: For any valid inputs (7,a,b,w,7) and any
message packet size sequence ko ...k, the value computed
by Algorithm 1 is an upper bound on the rate of streaming
codes that satisfy the lossless-delay requirement and worst-
case-delay requirement over the C(a,b,w) channel while
employing linear encoding.

Proof Sketch: Follows from the high-level descrip-
tion presented above. The full details are shown in
Appendix C. |

"The final T message packets are of size 0 and, therefore, no lossless-delay
requirement needs to be imposed. For ¢ < 0 or 7 < 0, as well as 7 > ¢ and
jed0,..., 70}, \X](O) [¢]| = 0 is defined only for edge conditions.
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Algorithm 1 Takes as input any valid parameters and message
packet size sequence and uses integer programming to com-
pute an upper bound on the rate of streaming codes with linear
encoding schemes for the input message packet size sequence.

Input: Valid values for (7, a, b, w, 77,) and message packet size
sequence ko, . . ., ki.

Minimize /7 (|X(1)[z’]| w0, XY [¢]|) subject to:
D Vie{o,...t—rhje {i—m,...iLX "] >
0 and |X[i']] = 0 when i’ < 0, > t, or j' < 0.

2) Vi€ {0,....t+7} | XD >o0.
3) Vi€ {0t — 7050 1XVli + 4]l > ki and
T 0)r- .
71X+ )l < K
4) Vie{o,.. . t—b+1},Vje{i—1L,..
min(j+7,i+b+7—a)

D

z=1+b

Litb—1}

j
XL = Y kit
i

D 2.

l=i—71p, ZE{Z,...,Z-‘,—TL}\{’L,...,i—‘,—b—l}}

5) Vi e {0,...,t —7}VI C {i,...,i+ 7} of size |I| =
a,¥j € {min(l) — 7z,...,max(l)},

J
S KO- Y ke
z€{min(I)+1,....5+7}\T l=i—TL,
J
> X

l=i—7p ze{l,...,l4+71 }\I}

XV > 0.

0
X2 > 0.

t
i—o ki

Output: : )
P EfiS(IXW[i]HZ;:PE |XJ(0)[¢]\)

Remark 4: The value computed by Algorithm 1 is also an
upper bound on the rate for streaming code constructions in
an online setting since the offline setting involves providing
the sender and receiver additional information not available in
the online setting.

Next, we show that the outputs of Algorithm 1 can
tightly bound the optimal rate for various message packet
size sequences with values ranging from R to R(U).
Recall from Lemma 5 that this is a desired property because
the optimal rate can likewise range from R to R(U),
For any message packet size sequence, (ko,...,k:), let
Algi%hw’m (ko, ..., k) and Optr o pw 7. (Ko, ..., ki) denote
the output of Algorithm 1 and the optimal rate respectively.

Lemma 6: For any valid parameters (7, a, b, w, 7z,), for all
e >0andv € [RY), RW)], there exists a sequence of message

packet sizes (ko, .. ., k) such that Algi%hw’m (koy... k) =
Optroapwry (koo k) and [Algl),  (ko,... k) —
vl < e

Proof: We now introduce a message packet size sequence
for which the optimal is within € of v. Let p,r € Z* U {0}
be chosen so that the quantity RP") = —2t"_ obeys the

P __
7O TR

inequality |[R»") — v| < e. Let d be the smallest positive
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Fig. 5.
and (j + 7) respectively. The gray boxes (time slots i, . . .

An example of imposing constraint #4 (in Algorithm 1) for j € {4, ...
,ip) are lost in a burst of channel packets X|[i], ...

,©+ b — 2}. The quantities 4r,, %, and jr represent (i — 7r,), (i + b — 1),
, X [ip]. The symbols in the gray boxes with

thick blue outlines must be recoverable using the symbols inside boxes with double red outlines. This requirement allows for the relaxation that the symbols

inside boxes with purple dashed outlines are treated as received.

d

R and

integer such that U) are mtegers Comlder the

message packet size sequence ko =pd, kj = — +1 for j €
{T+1,...,27'7a+1},andk'j:Oforj6{1 LLTHU
{21—a+2,...,3r —a+1}.

The code construction presented in the proof of Lemma 5
satisfies lossless-delay requirement and worst-case-delay
requirement over the C'(a, b, w) channel and has rate R(").
Hence, the optimal rate is at least R®).

The lossless-delay requirement and worst-case-delay
requirement over the C'(a,b,w) channel are both imposed
under Algorithm 1. As shown in the proof of Lemma 4, these
requirements are sufficient to show that at least R(‘f) symbols
must be sent by time slot 7 due to message packet S[0].
Recall from Section IV that the rate is upper bounded by

RW) = %. This holds because all message packets are
decoded for any lossy channels C'p; for i € {0,....,7+b—a}
consisting of bursts of length b starting in positions = 3

mod (7 + b — a + 1). Furthermore, at least one such channel
drops at least b | fraction of the transmitted symbols.
Similarly, one can n show that at least one such channel drops
at least sz —7 fraction of the symbols sent strictly after
time slot 7. All such periodic packet loss channels Cp;
are accounted for under Algorithm 1, due to constraint #4
Hence, the output of Algorithm 1 reflects that at least R(U)
additional symbols are sent strictly after time slot 7. The
output of Algorithm 1 is, thus, at most R®:7),

The value computed by Algorithm 1 is an upper bound
on the optimal rate, which is at least R®7) Therefore,
Algorithm 1 must output R(""); this is a tight upper bound on
the rate for the message packet size sequence, and it is within
€ of v. |

The value computed by Algorithm 1 is an upper bound on
the rate, but the algorithm can be computationally intensive.
We now discuss modifications to the algorithm that trade off
tightness for runtime.

There is a simple linear program (LP) relaxation of
Algorithm 1 which uses non-negative real-valued variables
|X7F0)[j]| and | X (V[4]| rather than integral ones. A solution to
this LP can be converted into an upper bound on the rate by
setting each variable to be the floor of its previous value. The
conversion changes the size of each channel packet by at most
(71, +2) which, in practice, is several orders of magnitude less
than the average size of the message packets. Finally, Lemma 6
would likewise apply to the LP relaxation of Algorithm 1.

Remark 5: Modifying Algorithm 1 to solve an LP relaxation
of the underlying IP has a negligible impact on its output.

It is simple to analyze the runtime of the modified ver-
sion of Algorithm 1 that uses an LP relaxation of the IP.
For any valid inputs (7, a,b,w,7;,) and message packet size
sequence kg ...k, the total number of combined constraints
in Algorithm 1 is at most

(r1, +2)t + (b+ 71 + 1)t + (Z)(TL+T+1)t

<(b+ 21y + 34 27Tt

Consequently, Algorithm 1 with the LP relaxation of the IP
runs in poly(7®,t) time.

One might want a polynomial-time algorithm to compute a
tighter upper bound on the rate than R(Y). Therefore, one may
run the LP relaxation of Algorithm 1 without constraint #5.
In this case, there are at most (b + 27, + 3)t¢ constraints, and
the run time is poly(7t). Despite the relaxation, the algorithm
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imposes the lossless-delay requirement and the worst-case-
delay requirement over a burst-only channel model which
introduces bursts of length b separated by guardspaces of at
least (1 —a+1).

Remark 6: Modifying Algorithm 1 to use an LP relaxation
of the underlying IP and removing constraint #5 results in
a polynomial-time algorithm. Its output is less than or equal
to R(Y). The modified algorithm imposes more stringent con-
straints than computing Algorithm 1 for inputs (7, 1, b, w, 77,).

Algorithm 2 Takes as input any valid parameters and a
message packet size sequence and uses integer programming
to compute a lower bound on the optimal rate for the input
message packet size sequence.

Input: Valid (7, a, b, w, 7;,) and message packet size sequence
ko ki—r.

Minimize (S2/5 77 +bpi) + (2025 S50 Ky ) subject
to:

1) Vie{0,...,t —7},e; > 0.

2) Vie{0,....t =7}, 5€ {iy....i+710}, kij>0.

3) Vie{0,....,t —7},p; > 0.

4) Vi € {0,. t—T}ez ki+ Y ki = 0.

5) Vi € {0 t —7hj = To,...,] = 1

Z:L:] ki*Z_,i >0
- T} E’;:max(if‘rJra}O) b -

i+a—b
Zz max(zj 7+a,0) Dz —
6 Vi e {0,....t
Z‘Iz—io ki—z,i > 0.
Output: — Sicg ks Po———
(Zi28 S +om ) +(SI2s ST ki)

B. A Lower Bound on the Optimal Rate for Specific
Message Packet Size Sequences

We now present Algorithm 2, which computes a lower
bound on the optimal rate for offline streaming codes that
satisfy the lossless-delay constraint and worst-case-delay
constraint over the C'(a,b,w) channel. Specifically, under
Algorithm 2, an integer program with a simple minimization
function is used to determine the minimum number of symbols
which need to be transmitted using a combination of two
schemes. The solution to this integer program is then converted
into a lower bound on the optimal rate. The values computed
by Algorithm 2 over various message packet size sequences
can vary over [R¥), R(W)]. We will later see in Section V-C
that the empirically computed lower bound on the optimal
rate determined by Algorithm 2 can be significantly tighter
than that of R, Specifically, the gap between the output
of Algorithm 2 and Algorithm 1 is shown to be small in
Section V-C, highlighting the utility of Algorithm 1 empir-
ically. A high-rate offline construction (e.g., Algorithm 2) is
of interest because it lays the groundwork for designing high-
rate online constructions. For example, in a recent work [29],
the authors convert an offline rate-optimal construction into
an online approximately rate-optimal online construction.
Algorithm 2 also outputs an upper bound on the rate for a class
of coding schemes which include the online coding scheme
that will be presented in Section VI-B. A detailed discussion
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on the difference between the best possible rate for online and
offline streaming codes is presented in [28]. We first provide
an overview of Algorithm 2 before discussing its technical
details. Finally, we consider the accuracy-runtime trade-off for
the LP relaxation of the algorithm.

Similar to Section V-A, we refer to constraints of an IP
as “constraints” and the lossless-delay and worst-case-delay
constraints as “requirements” for convenience of notation.
Each symbol of each message packet, S[i], is encoded either
as part of a block of the SBC or using the (7, a, b, 77, )-separate
encoding scheme. To reflect this, the number of symbols
corresponding to S[i| encoded using the (7, a,b, 71, )-separate
encoding scheme is denoted e;. For j € {i,...,i+ 71}, the
variable k; ; will represent the number symbols corresponding
to S[¢] sent in X [j] within blocks of the SBC. Finally, p; will
reflect the number of blocks of the SBC whose first position
occurs in channel packet X[i].

The lossless-delay and worst-case-delay requirements are
satisfied for symbols of message packets encoded using the
(1,a,b, T1,)-separate encoding scheme via the properties of the
(1,a,b, 1,)-separate encoding scheme detailed earlier. There
must be a non-negative quantity of symbols encoded in this
manner (constraint #1 in Algorithm 2). The number of symbols
corresponding to message packet S[i] sent in channel packet j
is non-negative (constraint #2). Similarly, the number of blocks
corresponding to each message packet is non-negative (con-
straint #3). All symbols of message packets not encoded using
the (7,a,b, Tr)-separate encoding scheme must be decoded
within delay 77 under lossless transmission (constraint #4).
Finally, under the two considered code constructions, all
symbols of message packets which are not encoded using the
(1,a,b, r,)-separate encoding scheme must be encoded via
a block of SBC which ensures decoding within the worst-
case-delay requirement under lossy conditions (constraints #5
and #6). Specifically, all symbols of message packet S|i] for
¢ transmitted in a time slot later than ¢ (not as part of the
(1,a,b,7r,)-separate encoding scheme) must be encoded as
part of blocks whose final parity symbol is transmitted by
time slot (7 + 7) (constraint #5). Furthermore, all symbols for
message packet S[i] sent in channel packet X[¢] are encoded
via blocks of the SBC which have an open slot in position @
(constraint #6). Figure 6 depicts a toy example of how these
constraints may be applied for a single time slot, <.

The objective function of the IP used under Algorithm 2
is the total number of symbols sent via the solution to the
IP. Minimizing this quantity ensures that the fewest number
of symbols possible are transmitted, thereby maximizing the
rate. The combined number of symbols of all message packets
is divided by total number of transmitted symbols to output
the rate of the corresponding coding scheme.

In Theorem 2, we show that the output of Algorithm 2 is a
lower bound on the optimal rate.?

Theorem 2: For any valid inputs (7,a,b,w,7,) and any
message packet size sequence ko . ..k, Algorithm 2 outputs

8The extra padding symbols needed to employ the (7,a,b, 7r1,)-separate
encoding scheme is ignored. The padding only negligibly impacts the value
computed when the number of extra padding symbols is small compared to
the size of each message packet, as is typical.
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X[ X[i+1] X[i+2]X[i+3] X[i+4X[i+5] X[i+6]X[i+7]

DoogoeEE-

(7,2,3,4) —separate
encoding scheme

Constraint #4: «, —k; + ¥ ¥k; ;> 0

H Constraint #5:p;_3 —k; ;=0 H

H Constraint #6: (p; 3 +p; 1 +pi) —ki 25— ki; =0 “

i i+1  i+2 i+3 i+4 i+5 46

Fig. 6. An example imposing constraints #4, #5, and #6 for time slot 7 for parameters (7, a,b,7r) =

Blocks of the SBC

(7,2,3,4). Blue boxes can hold symbols of message

packets. Red boxes hold parity symbols. Gray boxes contain no symbols. Boxes above time slot j correspond to symbols sent in channel packet X []. At least
k; symbols are sent for S[i] consisting of (a) e; symbols sent as part of the (7,2, 3, 4)-separate encoding scheme (shown at the top), and (b) k; ; symbols

sent in channel packet X [j] for j € {3,...

,i+4} (constraint #4). There are p;_3 blocks of the SBC for which the final parity symbols are sent during time

slot (¢4 5). The total number of symbols sent in channel packet X [¢] corresponding to message packet S[i — 2] (i.e., kj—2 ;) is at most p; _3 (constraint #5).
In addition, there are p;—1 and p; blocks of the SBC for which the final parity symbols are sent during time slots (i 4+ 7) and (i + 8) respectively. The
number of symbols of all message packets sent in channel packet X[i] within blocks of the SBC (i.e., (kj—2,; + ki )) is at most (pi—3 + pi—1 + ps)

(constraint # 6).

a lower bound on the optimal rate for streaming codes that
satisfy the lossless-delay requirement and worst-case-delay
requirement over the C(a, b, w) channel.
Proof Sketch: Follows from the ideas presented above.

A complete proof is included in Appendix D. |

We now demonstrate that outputs of Algorithm 2 range
from R to RW). Having outputs vary over all possible
values of the optimal rate for various message packet size
sequences is a useful property because the optimal rate can
likewise range from R%) to R(Y), as was shown in Lemma 5.
For any message packet size sequence, (ko,...,kt), let
Algf;b oy (ko, ..., ki) and Optr o pw 7. (Ko, ..., ki) denote
the olutlp’ut’ of Algorithm 1 and the optimal rate respectively.

Lemma 7: For any valid parameters (7,a,b,w,7r,), for
al ¢ > 0 and v € [RW RWI there exists a
sequence of message packet sizes, (ko,...,k:), such that
Algf; bwm(ko, k) = Optrapwe, (ko,... k) and
|AlgTabwTL(k0,...,kt) —v| <e

Proof: We will introduce a message packet size sequence

whose optimal rate is within € of v. Let p,r € Z*T U {0} be
chosen and the quantity R?P*") = 2" defined so that

Rr(L) R(U.) ) )
|R(”+’“) -l < ¢ Let d be the smallest positive integer such

that R(L) and R(m are 1ntegers C0n51der the message packet
size sequence ko = pd, kj = —%45 for j e {7 +1,...,27 —
a+1},and k; =0 for j € {1,...,T}U{Zr—a+2,...,3r—

a+1}.

The code construction presented in the proof of Lemma 5
satisfies lossless-delay requirement and worst-case-delay
requirement over the C(a, b, w) channel and has rate R(P+7).
Moreover, the scheme follows from applying the (7, a, b, 71)-
separate encoding scheme to message packet S[0] and blocks
of the SBC to message packets S[r + 1],...,S[27 —a + 1].

Thus, the variables of the IP computed by Algorithm 2
could represent this scheme while satisfying all constraints.
Therefore, Algorithm 2 will output a value of at least R®+7),

As was shown in Lemma 5, RP*") is also an upper
bound on the rate. Hence, the value computed by Algorithm 2
is a tight lower bound on the optimal rate. It is also
within € of v. |

Algorithm 2 computes a lower bound on the rate, but
it can be computationally intensive. For any valid inputs
(1,a,b,w,71,) and message packet size sequence, consider the
LP relaxation of Algorithm 2 which uses non-negative real-
valued variables e;, k; ;,p; fori € {7+b,...,t—(7+b)}. It is
possible to transform a real-valued solution into an integral one
by setting each variable to be the ceiling of its previous value.
The number of symbols transmitted corresponding to each
message packet increases by at most (77, + 3 +b). In practice,
(11, +3+D) is several orders of magnitude less than the average
size of the message packets and leads to a negligible impact on
the tightness of the bound. The total number of constraints for
the LP is at most ¢(277, +5). Hence, the number of constraints
is quadratic in the input parameters (and linear in the length
of the message packet size sequence).

Remark 7: Modifying Algorithm 2 to use an LP relaxation
of the underlying IP results in a polynomial-time algorithm
while changing the output only negligibly.

C. Empirical Evaluation of the Bounds on Rate

The general upper and lower bounds on the optimal rate,
RW) and RW), are tight for certain message packet size
sequences. Yet the optimal rate for a specific message packet
size sequence varies over the entire range of [R(%), R(V)].
Thus, R(Y) and R(¥) can be loose depending on the message
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TABLE I
PARAMETER SETTINGS USED IN THE EMPIRICAL EVALUATION OF THE BOUNDS ON THE OPTIMAL RATE

0|1 (2|34 |5|6|7 |8 |9|10 |11 12| 13 | 14 | 15| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24
T | S|S5|S5[5|5[S5|5]|5[5|5] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
a {1 |11 ]2(2(1|1]2]2]3 3 1 1 2 2 3 3 4 4 1 2 3 4 5
b {1 22223 |3[3[3]|3 3 4 4 4 4 4 4 4 4 5 5 5 5 5
7, |04 10[3]0[3[0|2]0]2]0 2 0 1 0 1 0 1 0 1 0 0 0 0 0
I Greatest lower bound (R(%)) Lower bound computed by Algorithm 2
0o Upper bound computed by Algorithm 1 In Least upper bound ( R(U))
0.8 i
0.6 - i
Q
5
%04l |
0.2 ‘ ‘ 1
0 T T T T T T T T T T T T T T T T T T T T T T T T
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Parameter settings (Table I)
Fig. 7. Comparison over the parameter settings listed in Table I for the live video trace shown in Figure 1 of the four bounds on the optimal rate for the

offline setting: the greatest lower bound (R(L))), the lower bound computed by Algorithm 2, the upper bound computed by Algorithm 1, and the least upper

bound (R(U)).

packet size sequences. In contrast, the upper and lower bounds
on optimal rate computed by Algorithms 1 and 2 can range
over all feasible values of the optimal rate, [R(Y) R(V)],
We evaluate the usefulness of the latter two bounds by
empirically evaluating them over the live video trace shown in
Figure 1. We show that the gap is small in magnitude and a
significant improvement over the gap between RY) and R("),

We consider the setting of a small worst-case-delay
(ie., T 5) and all parameter settings (7 = 5,a,b,77)
where 77, takes on its minimum and maximum values of 0 and
(7—b). Algorithms 2 and 1 bound the optimal rate significantly
more tightly than R(%) and R(Y) for many parameter settings.
In the remaining settings, one or both of the lower and upper
bounds on the optimal rate of R(*) and R(Y) is nearly tight.
Specifically, the size of the gap between Algorithms 2 and 1
is, on average, 65.4% smaller than the gap between R(U) and
R(®) over the parameter settings from Table 1. Furthermore,
the gap between the bounds computed by the two algorithms is
less than 0.034 (on average .007) over the parameter settings
from Table I, as is shown in Figure 7. The results demonstrate
the effectiveness of the algorithms in bounding the optimal
rate for the offline setting.

VI. EXPLICIT CONSTRUCTION OF STREAMING
CODES FOR VARIABLE MESSAGE-SIZES

In this section, we present a streaming code construction
for any valid inputs (7,a,b,w,7;,) and any message packet
size sequence, referred to as the (7,a,b, 7 )-Variable-size
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Streaming Code (or (7,a,b,7)-VSC). We include a toy
example to illustrate the details of the construction concretely
in Section VI-A. We then present the general construction in
Section VI-B. Finally, we determine the field size requirement
of the construction in Section VI-C.

The construction is simple and intuitive. At a high level, the
SBC is leveraged as an underlying component. The adverse
effects of the variability of the sizes of message packets is
alleviated via the following two-step process:

1) The symbols from each message packet are distributed
over the (77, + 1) channel packets within 77, time slots.
Blocks of the SBC (existing block codes presented in
Section II) are created to satisfy the worst-case-delay
constraint over a C'(a, b, w) channel for :f—;jrll fraction

of the symbols of each message packet. The objective of

doing so is to (a) reduce the variability of the sizes of the
channel packets and (b) minimize the number of empty
positions in blocks of the SBC.

Additional parity packets are sent to ensure all symbols

not included in any block of SBC are recovered within

the worst-case-delay, 7, over the C'(a, b, w) channel.

2)

A. Toy Example

We start by illustrating the details of the code construction
for a simple toy setting with input parameters (7 = 3,
a = 1,b = 2w > 4,7, = 1) and the specific sequence
of message packets shown in Figure 8. Each message packet
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Sol3][  |Sol4] Sol6l]  |Sol7]|  |Sol8]] |SolO]

SiB] |S404] Sulel] |71 |Sal8]) |Su[0]

S231f |S214] Sal6]| [S27]| [Sal8]| [S2[9]

Ss[31] [Ss[4] Ss[6]|  [Ss[7]| |SsIBf [Ss[9]

Sa[31]  [Sa[4] Syl6]] |Sal71| |Sal8]] |Sal9]

Ss[31] [Ss[4] Sslelf  [Ss[71| |Ss[8l] |Ss[O]
3 4 5 6 7 8 9

Fig. 8. An example sequence of message packets. Each message packet, S[i],
has 6 total symbols, So[i], ..., S5[¢], which are contained in the blue boxes.
The unlabeled gray boxes are empty and contain no symbols. The numbers
under the lines at the bottom indicate the time slots.

X[5] x[6] X[7]
X[3] X[4] P5[4] — PE14] X[8] X[9]
Sol31') | Sol4] " Sofel } | Sol71 'y | Sol81 ) | Sol]
51031 \\ S51[4] | Syl6] \\ 51171 5118 \\ 51091
S52[3] \\ S2[4] S, 6] \‘ S5[71 A\ Sz[8] N S2[9]
53[3] \\ S3[4] \ Ss[6] S3[7] A\ Sa[8] \\\ 3091
Sa[2] \ 54031 Sa[6] \\] Sa[71 \\\ S4[8]
Ss[2] S:[3] Ss[6] Ss[7] S5[8]

3 4 5 6 7 8 9

Fig. 9. The channel packets sent under the (3,1, 2,1)-VSC for the sequence
of message packets from Figure 8. The blue boxes labeled S, [i] each contain
one symbol of the message packet S[i]. The red boxes labeled P;[i] each
contain one parity symbol from the interleaved SBC. The yellow boxes labeled
Pje [4] each contain one parity symbol. The unlabeled gray boxes are empty.
Black lines connect boxes that are part of the same block. The numbers under
the lines at the bottom indicate the time slots.

consists of 6 symbols except for S[5], which contains 0 sym-
bols. The channel packets sent under the (3,1,2,1)-VSC for
this sequence of message packets are shown in Figure 9.
During each time slot, the sender does not have access to
the sizes of the future message packets.

In the toy example, for i € {3,...,9}, the first 4 symbols
of each message packet S|i], that is (So[é], S1[i], S2[i], Ss[i]),
are sent in X [i]. The remaining 2 symbols, (S4[i], S5[i]), are
sent in X [¢ 4+ 1]. Next, two blocks of the SBC are created:
(@) (Soli — 1], Salil, Sali], Poli], Pi[d]), and (b) (Si[i — 1],
Szli], Ss[i], Pli], Ps[i]). The parity symbols Py[i] and P [i])
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are sent in X[i + 2] and X[i + 3] respectively. Sim-
ilarly, the parity symbols Ps[i] and Ps[i]) are sent in
X[i + 2] and X[i + 3] respectively. Each of these blocks
is interleaved over channel packets (X[i — 1], X[i], X[i +
1], X[i + 2], X[i + 3]). Message packet S[5] had 0 sym-
bols, so the blocks (empty, S2[6],.54[6], Py[6], P1[6]) and
(empty, S3[6], S5[6], P2[6], P3[6]) treat empty as a unique
finite field symbol used for padding. Moreover, no blocks of
the SBC are created corresponding to message packet S[5],
since it is of size 0. As a result, So[4] and S [4] are not placed
in any block of the SBC. To ensure that Sp[4] and S;[4] are
decoded within the worst-case-delay under lossy conditions,
two additional parity symbols, Pg5[4] and Pf[4], are sent in
channel packets X[6] and X|[7] respectively. The quantities
P§[4] and Pf[4] are defined to be parity symbols of a [4, 2]
systematic MDS code applied to (So[4], S1[4]).

The lossless-delay constraint is satisfied for ¢ € {3,...,9},
since each symbol, S;[i] for j € {0,...,5}, is transmitted as
part of either X [¢] or X[i + 1]. Furthermore, in the presence
of packet loss, all symbols of all message packets besides
(So[4], S1[4]) are recovered within 3 time slots based on
the properties of the underlying SBC. Since at most one
of ((Sol4], S1[4]), (P§[4], P[4])) is lost, Sp[4] and S;[4] are
decoded by X [7]. Hence, the construction in the toy example
satisfies the lossless-delay constraint and the worst-case-delay
constraint over the C(a, b, w) channel.

B. General Construction

We now discuss the details of the proposed construction
for valid inputs (7,a,b,w,7;) and an arbitrary sequence
of message packets S[0],...,S[t]. The encoding scheme is
systematic, so we will divide the description into two parts:
First, we will detail how the symbols of the message packets
are distributed over the channel packets. Second, we will
explain how parity symbols are created and transmitted.

During time slot ¢ € {0,...,t — 7}, let d; = Tfka"'ﬂ.
As in the existing streaming code constructions for message
packets of a fixed size, we assume that each message packet
has a size which is divisible by (7 — a + 1). The value
(t — a4+ 1) is typically negligible compared to the sizes
of the message packets.” Hence, it has negligible effect on
the rate of the construction. The first d;(t — a — 71, + 1)
symbols of S[i] are sent in channel packet X[i]. For each
je{r—a—-7,+1,...,7 — a}, the next d; symbols,
namely (Sjq, [i],...,S(j+1)d,—1i]), are sent in channel packet
X[i+(j—7+a+7L)]. During time slots ¢ € {t—7+1,...,t},
the message packet S[i] is known to consist of 0 symbols by
the receiver. Thus, no additional symbols are sent in these
packets.

Parity symbols will be generated as part of blocks of the
SBC and a [27 —2b+a+ 1,7 — b+ 1] systematic MDS code.
We now explain how blocks of the SBC corresponding to
message packet S[i] are created for i € {0,...,t — 7}.

For example, consider a 2000 kbps video call recorded at 60 frames per
second with an RTT of 150ms and a maximum tolerable latency of 150 ms.
The maximum possible setting for 7 is 6. As such, (1 —a — 1) < 6.
Consequently, (7 —a+ 1) is 0.14% of the average size of a message packet.
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In total, d; blocks of the SBC are created. These blocks will
encode systematic symbols of channel packets X[i — (b —
a)l,...,X[i+ 7 — b] into parity symbols, which are then sent
in channel packets X[i+7— b+ 1],..., X[i + 7|. Finally, for
the remaining values of 4, namely 7 > (¢ — 7), no blocks of
the SBC are created.

Systematic symbols of various message packets (or unique
padding symbols) occupy the first (7 — a + 1) positions of
the blocks of the SBC which are placed in channel packets
X[i—(b—a)],...,X[i + 7 — b]. Parity symbols are sent in
the final b positions (i.e., in channel packets X[i + 7 — b +
1],..., X[t + 7]). The symbols S(.,-,a,.,-L)di [i], ..., Sk, —1]7]
of S[i| are distributed evenly over X[i],..., X[i + 71] and
will occupy the positions of the blocks of the SBC for the
respective channel packets. There are (7 — a — 77,) remaining
positions of each block of the SBC, namely in X[j] for j €
{i—(b—a),...,i—1,i+7L+1,...,i+7—>b}. These positions
of the SBC are filled by symbols of the corresponding message
packets (i.e., block position j is filled with the next symbol
of S[j] sent in channel packet X[j] which has not already
been allocated to blocks of the SBC). If no such symbols are
available to fill any position of the SBC, the empty position
is treated as a unique padding symbol.

Specifically, for each | € {0,...,d; — 1}, there are b parity
symbols of the block of the SBC: (Pplil, ..., Pii1yp—1li]).
They will be transmitted over channel packets X[i +7 — b+
1],..., X[i + 7] respectively. The Ith block consists of

(Serrwlim (B=a)ess Sy, li— 1,
Str—a—rpydi+ilds - -+ Sir—ayd;+ld],

Seivirey BT+ 85 i+ T =B
Puli], .-, Payryp—1lil),

where S, ,[h] for h € {i —(b—a),...,i—1,i+4 71 +
1,...,i+ 7 — b} represents the first symbol from S[h| which
has not yet been placed in a block of the SBC. If no such
symbol exists, then S, ,1[h] is defined to be a unique padding
symbol (which is not transmitted). For j € {0,...,b — 1},
Py ;[i] is computed during time slot (i + 7 — b) and sent
during time slot (¢ +7 — b+ j).

Finally, we explain how the remaining symbols of the
message packets which are not placed in blocks of the SBC
are encoded as part of a [27 —2b+a+1,7— b+ 1] systematic
MDS code. These symbols are S, 1[i], . . ., S(r—a—r,)d,—1[i],
where 7; = min ((7’ —a—7L)di, )55 dj), for Jp = {i —
T4+b,...,i—T1—1i+1,...,i+ (b—a)} (ie., the set
of time slots for which there is at least one open posi-
tion of blocks of the SBC in channel packet X[i]). Then
Sroqalil, -+ S(r—a—rp)d,—11i] are referred to as the “excess”
symbols S.[i]. Excess symbols arise if and only if (r; +1) <
(1 — a — 71)d;. The quantity of excess symbols is defined
as e; = |Se[i]|. We zero pad S[i] to ensure divisibility by
(t—b+1) (although the padding symbols are not transmitted).
The extra symbols are referred to as pad[i]. Hence, (1 —
b+ 1)|(e; + pad[i]). Symbols of S[i] are only included in
blocks of the SBC corresponding to time slots at or before
(¢t + b — a). Hence, Sc[i] is determined during time slot
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e;j—1

(i +b—a). For each j € {0,...,-%-5}, the symbols
S —prnylils - SF 11y (r—ps1y—1 7] are encoded as part of
a E2’7’ —2b+a+ 1,7 — b+ 1] systematic MDS code to
create parity symbols Pf_ . i), PGy —ppay [t
Then these parity symbols are sent in channel packets X [i 4+
b—a+1],..., X[i+7] respectively. Finally, for the remaining
values of i, namely 7 > (t — 7), there are no symbols of S|i],
so there are no symbols of S¢[i].

In short, the symbols (S(;_q—r;)a, ], ..,k —1]i]) are
encoded as part of the d; blocks of the SBC corresponding
to time slot ¢. In total, there are r; open positions in these
blocks. Of the remaining symbols, Soli] . .., S(r—q—r,)d,~1[1],
the first r; are encoded as part of the blocks corresponding to
time slots j € J;. The remaining symbols of S[i] are encoded
using as part of blocks of a 27 —2b+a+ 1,7 — b+ 1] MDS
code.

We now verify that the (7,a,b,7.)-VSC meets the con-
straints of the proposed streaming model.

Theorem 3: For any valid inputs (7,a,b,w,7s) and
sequence of message packets S[0],...,S[t], the (7,a,b,7r)-
VSC satisfies the lossless-delay constraint and the worst-case-
delay constraint over a C'(a, b, w) channel.

Proof: We first show that the (7,a,b,71)-VSC meets
the lossless-delay constraint. Recall that the symbols of

Soli], .., S(r—a—r)d;—1]t] are sent in X[i], and the symbols
of St;_a—rya,lt],- .., Sk, —1[i] are transmitted evenly over
X[i+1],...,X[i + 72]. Thus, under a lossless transmission,

S|i] is received within delay 7.

In order to show that the (7, a, b, 7,)-VSC meets the worst-
case-delay constraint over a C'(a, b, w) channel, we show that
every symbol s' of S[i] is decoded within delay 7 over the
channel.

Case 1: 5" is a part of S(-_,_+,4,[i],. .., Sk,—1[i]. There-
fore, it is placed in a block of the SBC in which the final
parity symbol is sent in X [i 4+ 7]. Hence, by the properties of
SBC, s’ is recovered over a C'(a, b, w) channel within 7 time
slots.

Case 2: 5" is a part of Soli],...,S(r—a—r;)d,—1[i] and is
placed in a block of the SBC corresponding to a different
message packet. Hence, s’ is transmitted within X[i| and,
by the properties of SBC, s’ is recovered over the C(a, b, w)
channel within 7 time slots.

Case 3: s is part of S,[i]. Either X[i] is received or at least
(t=b+1)of X[i+b—a+1],...,X[i + 7] are received.
Therefore, either s’ is received as part of X [i], or sufficiently
many code symbols are received from a [27 —2b+a+ 1,7 —
b + 1] systematic MDS codeword to recover s’ within 7 time
slots. |

Next, in Section VII, we analyze the rate of the (7, a, b, 71)-
VSC. Later, in Section VIII, we empirically evaluate the rate
of the (7,a,b,7,)-VSC when the sizes of message packets
correspond to a video trace.

C. Field Size Requirement

The field size requirement for the (7,a,b,7)-VSC must
meet two constraints: (1) the field size requirement for the
underlying SBC, and (2) the field size requirement for the
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[27 —2b+a+ 1,7 — b+ 1] systematic MDS code. The field
size requirement for the SBC from [9] is O(7?). The field
size requirement for a [27 — 2b+ a + 1,7 — b+ 1] systematic
MDS is at most (27 — 2b + a + 1). Overall, the former field
size requirement dominates the latter, leading to a field size
requirement of O(72).

VII. ANALYSIS OF THE RATE OF THE (7, a,b, 71,)-VSC

As with any code construction which adapts to the specific
message packet size sequence, the rate for the construction
proposed in Section VI depends on the message packet size
sequence. For concreteness, we will analyze the class of inputs
where the size of each message packet is drawn independently
from any discrete distribution D with finite support. For any
valid inputs (7, a, b, w, 71,), we characterize the asymptotic rate
of the (7,a,b,71,)-VSC as the length of the message packet
size sequence becomes sufficiently long in terms of the mean
of D in Theorem 4. We then provide an easily-computable
lower bound on the rate of the (7, a,b,7)-VSC in terms of
the mean and variance of D in Lemma 9.

We begin with some notation. A distribution D with mean
w1 and maximum value d is called an admissible distribution
if it (1) has finite support, (2) consists only of non-negative
elements, and (3) consists solely of elements divisible by
(t — a+ 1). Recall (from Section IV-A) that the rate is
never more than R(V) = —Z=a£L_ Fyrthermore, recall from
Section VI-B that S,[i] is used to denote the excess symbols
in the VSC construction for S[i| for i € {0,...,t — 7}.
The excess symbols are the symbols that are not placed in
blocks of the SBC. Recall that e; denotes the number of such
symbols, and pad]i] refers to the number of padding symbols
to ensure that (7 — b+ 1)|(e; + pad]i]). Let ef = (e; + pad|i])
denote the “padded excess,” and e® = E[ef] be called the
expected padded excess. The value ¢f is uniquely determined
by (Fmax(0,i—7), - - - » kiyr). Therefore, by the independence
of the sizes of the message packets, the ef are identically
distributed for i € {27,...,¢t —27}.

Next, we identify the expected number of symbols in a
channel packet under the (7, a, b, w, 71,)—VSC.

Lemma 8: For any valid inputs (7, a, b, w, 71,), and sequence
of t > 47 message packets whose sizes are drawn indepen-
dently from an admissible distribution D with mean g and

maximum value d, for all i € {27,...,t — 27}, the expected
number of symbols in channel packet X[i] is given by
B ' i .T—b+a
we=Einl = (G + T4 01). O

Proof Sketch: Follows from the definition of the
(1,a,b,71,)-VSC. The proof involves counting the number
of symbols of each X[i], for i € [t], corresponding to the
(a) symbols of S[i], (b) symbols of the previous 7;, message
packets, (c) parity symbols corresponding to blocks of the
SBC, and (d) parity symbols corresponding to the padded
excess. A complete proof is included in Appendix E. |

Using Lemma 8, we identify the asymptotic rate in terms
of Eq. (7) as follows.
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Fig. 10. The rate for the (7, a, b, 71,)-VSC as a percent of the upper bound
on the rate for the online setting computed by Algorithm 1 and the value
computed by Algorithm 2 for a live video trace over the parameter settings
included in Table II.

Theorem 4: Consider any valid inputs (7,a,b,w,7y), 9,
e > 0, and sequence of ¢ > (‘367;;7”“/5 In (47) + 185%
message packets whose sizes are drawn independently from
an admissible distribution D with mean p and maximum value
d. With probability at least (1 —¢), the rate of the (7, a,b, 77,)-
VSC construction, Ry, satisfies |R; — pi' <e.

Proof Sketch: Recall from Eq. (1) thzlt, the rate, R;, equals
Yioki _ TT Xizoki
2:0 ni - H—;l Zf=0 n;
analyzing the rate of convergence of (a) the mean number of
symbols of the message packets and (b) the mean number
of symbols of the channel packets and then applying the
union bound. We show (a) and (b) with simple applications
of concentration bounds. A complete proof is included in
Appendix F. |
Theorem 4 establishes the rate of the (7, a, b, 71,)-VSC for a
randomly generated message packet size sequence as a func-
tion of the expected padded excess, e, and the mean size of
message packets, p. In turn, e is a function of the distribution
D. For certain distributions, computing the exact value of e
may require a high computational complexity. In Lemma 9,
we provide an upper bound on expected excess. Further-
more, the expected padding is upper bounded by (7 — b +
a — 1)—a term which is typically several orders of magnitude
smaller than the average size of a message packet. Combining
these two bounds provides an easily-computable upper bound
on e° and a corresponding lower bound on the rate for
(1,a,b,71,)-VSC.
Lemma 9: Consider valid inputs (7, a,b,w,7r,), €, > 0,

18bd\/2 4t 180dbr
and any sequence of (T In (47) + AT ) message

packets whose sizes are drawn independently from any admis-
sible distribution D with maximum size d, mean p, and
variance o2. With probability at least (1 — J) the rate, R;,

. At a high level, the proof follows by
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Percent improvement in rate

Comparison of the (7, a, b, 71,)-VSC to a baseline streaming code and the (7, a, b, 71,)-separate encoding scheme. The baseline is a streaming code

designed for the setting where message packets have fixed sizes (with necessary adjustments to account for the variability of the sizes of message packets).
The comparison ranges over the parameter settings listed in Table II and represents: (a) rate and (b) percent improvement in rate provided by VSC over the

other two schemes.

TABLE II

THE PARAMETER SETTINGS USED IN THE EMPIRICAL
EVALUATION OF THE (7, a, b, 71,)-VSC

0|12 |3 4 5 6 7 8 9 | 10 | 11

T S| S| 7| 7|12 ] 12| 40 | 40 | 40 | 40 | 50 | 50
a 212122 2 2 4 4 8 8 4 4

b 3131515 9 9 | 24 |24 | 31 | 31 | 30 | 30

7, |02 ]0]2] 0 3 0 16 | 0 9 0 | 20

of the (7, a,b, 7)-VSC construction is at least
RW)
Be 2 bt b
r=bta pU) (_c_ 4 7=b
1+ 222 R (g 4 222
Proof Sketch: Follows from using Jensen’s inequality to
show an upper bound on the expected excess. The upper bound
is then applied to Theorem 4. A complete proof is included

in Appendix G. n
As expected, as % decreases, the above quantity approaches

— e (8)

the upper bound on the rate of R().

VIII. EMPIRICAL EVALUATION OF THE (7, a,b, 71,)-VSC

The optimal rate under the proposed streaming model
depends on the specific message packet size sequence. Sim-
ilarly, the rate of a streaming code construction can depend
on the specific message packet size sequence. In order to
fairly evaluate the effectiveness of the (7, a,b, 71,)-VSC, it is
therefore necessary to empirically evaluate the code over a
realistic message packet size sequence. We do so in this section
by assessing the rate of the (7,a,b,7.)-VSC over several
representative parameter settings for a real-world live video
trace.

In the simulation, the proposed (7, a,b, 71,)-VSC construc-
tion and a baseline are evaluated over a live video trace
uploaded to Facebook Live through Open Broadcast Software
(OBS) [30] at a bitrate of 2000 Kbps. Table II shows the

parameter settings used in simulations. The parameter settings
included are either considered by existing streaming code
literature or are used to reflect the low-latency constraints of
live communication. For all parameter settings, the maximal
and minimal values of the lossless-delay, namely 7, = (7 —b)
and 77, = 0, are included to illustrate the trade-off between
the rate and the decoding delay under lossless transmission.

The empirical comparison of the performance of
(1,a,b,71,)-VSC to the upper bound on the rate computed
by Algorithm 1 and to the value computed by Algorithm 2
is demonstrated in Figure 10.!° Recall that Algorithm 2
outputs the best possible rate for coding schemes in the
offline setting which encode symbols using a combination
of (a) blocks of the SBC and (b) the (7,a,b, 7 )-separate
encoding scheme. Therefore, the output of Algorithm 2 is an
upper bound on the rate of the (7,a,b, 71,)-VSC, which uses
the same combination of encoding schemes but operates in
an online setting. Over the considered parameter settings, the
(1,a,b,71,)-VSC exhibits a rate of 85.1% to 95.1% of the
upper bound on the rate computed by Algorithm 1, with an
average of 90.1%. Furthermore, the (7,a,b,7)-VSC does
slightly better relative to the upper bound when 77, = (7 — b)
than it does when 7, = 0. This property is in addition
to the fact that the rate for the (7,a,b,7.)-VSC improves
as 77, increases, which we will discuss subsequently. Over
the considered parameter settings, the (7,a,b,7)-VSC
exhibits a rate of 89.1% to 97.5% of the value computed by
Algorithm 2, with an average of 94.3%.

The closeness of the comparisons to Algorithms 1 and 2
reflects the (small) penalty on the rate for considering a
restricted class of coding schemes. The gap between the rate of
the (7,a,b,7,)-VSC and the value computed by Algorithm 2
reflects an upper bound on the cost of operating in an online
setting for the restricted class of coding schemes.

10°[31] and [32] were used in the computation of the LP solution for the
modified version of Algorithm 1 using an LP relaxation.
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Next, the (7, a, b, 71,)-VSC is compared to the (7, a,b, 77,)-
separate encoding scheme and a baseline which is an adapted
version of existing streaming codes that are rate-optimal when
all message packets have the same fixed size. The changes to
the baseline are mandatory modifications to account for the
variability of the sizes of the message packets. A detailed
description of the baseline is provided in Appendix H.
Figure 11a compares the rates of the three code constructions
directly, while Figure 11b shows the percent improvement of
the (7,a,b, 71,)-VSC over the baseline and the (7,a,b,7r)-
separate encoding scheme. The (7, a,b, 71,)-VSC outperforms
the (7,a,b, 71,)-separate encoding scheme over all parameter
settings except for (7 = 40,a = 8,b = 31,7, = 9), where
the rate of the (7, a,b, 71,)-separate encoding scheme is 97%
of an upper bound on the rate. Moreover, the (7, a, b, 71,)-VSC
improves the rate between 5% and 48% over the baseline.
Increasing 77, leads to a higher rate for the (7, a,b, 77,)-VSC.
Such a result is expected, as the distribution of each message
packet over multiple channel packets under the (7, a,b,77)-
VSC alleviates the variability in the sizes of the channel
packets. Thus, fewer parity symbols are needed to recover
from packet losses.

IX. CONCLUSION

In this work, we present a model for streaming codes
that captures the requirements of live streaming applications
that send sequences of messages of varying sizes, such as
videoconferencing. We show that variability in the sizes of
messages leads to several unique challenges for streaming
codes. Examples include a new trade-off between the rate
and the decoding delay under lossless transmission and the
achievable rate being a function of the message size sequence.
We present integer programming-based algorithms to compute
upper and lower bounds on the rate of streaming codes for any
given message size sequence. We show that they significantly
improve general bounds that do not take the sequence into
account. We also present an explicit construction for streaming
codes under varying message sizes. We theoretically prove
that the construction meets the latency requirements for any
message size sequence under a sliding window channel model
with arbitrary and burst losses. We also empirically evaluate
the proposed construction on a Facebook Live video trace for
a wide variety of channel settings. We show that the proposed
construction attains a rate of 85% — 95% of an upper bound
and 5%-48% higher than naively using the existing streaming
codes.

Videoconferencing applications are becoming the mainstay
of communication over the Internet. Streaming codes that can
support varying message sizes well can help such applications
improve the quality-of-service. Many questions remain open
for streaming codes with varying message sizes. For instance,
how to convert high-rate offline streaming codes into online
ones. In addition, several additional constraints explored under
the fixed-size setting, such as correlations between the sizes
of the messages, unequal error protection across messages,
and varying latency constraints on different messages, are
interesting future directions to explore under the variable-size
setting. Several such constraints are equivalent to restricted
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variants of the proposed model. As such, the fundamental
principles introduced in this work are well-suited for designing
and evaluating new communication schemes for such restricted
models.

APPENDIX A
PROOF OF LEMMA 4

Proof: The optimal rate of streaming codes that satisfy
the lossless-delay and worst-case-delay constraint over the
C(a,b,w) model is no more than R(X), as was shown in
Lemma 3. In order to show that R(") is the greatest lower
bound on rate, it suffices to show for at least one message
packet size sequence that the optimal rate is at most R(%).
We do so in this proof.

Consider the following length (7 + 2b) message packet
size sequence: k; = 0 for ¢ € {0,...,b — 1,b +
1,...,7m +2b — 1} and ky = (7 + (7 — b +
1) (|2 | a4 min ((7 + 1) mod b,a)) (1 —a+1).

The proof is divided into two cases to match the two cases
of the construction. In both cases, we show that meeting the
lossless-delay constraint and worst-case-delay constraint over
the C'(a, b, w) requires sending at least % symbols. Hence,
the rate of any streaming code that satisfies the lossless-delay
and worst-case-delay constraint over the C'(a, b, w) model is
at most R(") for the considered message packet size sequence.
The proof will make use of the fact that S[b] cannot be decoded
unless at least k; symbols are received.

Case 1: 77 < (a —1).

At least k; symbols must be sent over X [b], ..., X[b+ 7]
to meet the lossless-delay constraint. At least k;, symbols must
be sent over X [2b],..., X[b+ 7] to meet the worst-case-delay
constraint when X[b],..., X[2b — 1] are lost.

The average number of symbols per channel packet over
X[bl, ..., X[b+ 7] is at least — +1 The average number of
symbols per channel packet over X[20],..., X[b+ 7] is at
least b e

By deﬁnltlon, (o+1) < (r—=b+1).

When a < (7, + 1+ 74+ 1—-0), a arbitrary losses can
result in a loss of (1) ky symbols in X[b],..., X[b+ 71],
and (2) at least — b+1 (a — 71, — 1) symbols in (a — 71— 1)
adversarially chosen channel packets among X [2b],..., X [b+

7]. Thus, at least — +1( — 71, — 1) additional symbols must
be sent. Let us combrne these bebﬂ(a — 7, — 1) symbols
with the at least k;, symbols sent in X [b],..., X[b+ 7] and
at least k, symbols sent in X [2b], ..., X[b+7]. In total, at least
ky (2 + “T__T,fJ:ll) = % symbols are transmitted.

When ¢ > (rp, +1+7+1-0b), (b—7 —1) >
(t —a+1). Hence, due to arbitrary losses, X [b],..., X[b+
71], X[20],..., X [b+ 7] may all be lost. Thus, it is possible
that only (7 — a + 1) arbitrary packets of X[b + 71 +
1],..., X[2b— 1] to be received.

As such, any (7 + 1 — a) channel packets of X[b+ 7, +
1], ..., X[2b— 1] must contain at least k;, symbols. Therefore,
the channel packets X [b+ 7., +1],..., X[2b— 1] contain on
average at least — i 7 symbols. At least (b—r71 — 1)T )
symbols are sent over X [b+ 7 +1],..., X[2b— 1]. In total,

at least &y (2 + b L 1) symbols are transrmtted
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Case 2: 71, > (a—1).

Sub-case 1: either ((7, + 1) mod b) e {0}U{a,...,b—1}
or (1, +1) mod b) (LTL“J +1)>

At least k; symbols must be sent over X[b], oo, X[b+ 1)
to satisfy the lossless-delay constraint. We will show in

several sub-cases that at least LTL_HJaerm((a‘r D medba) b
L B

symbols could be lost by time slot (b 4+ 7). At least
ky symbols must be received. Therefore, at least

ki \_ Lt J a+mln((7—L +1) mod b,a) parity symbols are

transmltted. In total, R(—bL) symbols are sent. A final sub-case
will handle the remaining parameter settings and follows
from showing the correctness of IP-based construction 1.
Sub-sub-case ((77, +1) mod b > a):
All channel packets of one of

(X[],...,X[26-1]),...,
(x [o+ ([ 2] = 1o)X ot [ S 0 =1,
(x [b+ {%J b},...,X[b—FTL])

could be dropped as part of a single burst. There are
(LTTLJ +1) quantities, and at least k; symbols are sent
over XI[b],...,X[b + 7]. By the pigeonhole principle,
at least one such quantity contains at least ﬁ =
aky ’

I_TL+ Ja+1111n((7'L+1) mod b,a)
Sub-sub-case ((77, + 1) mod b = 0):

All channel packets of one of

symbols.

(X[0],...,X[26—-1]),...,
( [o+ |22 o] oo x o (| 22+ 10 - 1))

could be dropped as part of a single burst. There are
(L%J +1) TL—b“ such quantities. By the pigeon-
hole principle, at least one contains at least —%— =

[ )

I_TL+ J(l+111111((7—L+1) mod b, )kb SymbOIS.

Sub-sub-case 0 < (77 + 1) modbd <
(0 +1) mod b) (| =] +1) > a:

Note that (7, +1 # b) by the sub case. Also, (77 + 1) must
be strictly greater than b in accordance with (7, > a —1).

Let e = ((71, + 1) mod b). If any b consecutive channel

packets of X[b],..., X[b+ 7] contains at least I<;L,TL+fJaJre

symbols the proof is immediate, since all b of them could be
lost. Otherwise, let

|25t
U {(x

Consider any (X[j],. .. ,X[j + e —1]) € X’. The remaining
channel packets of X[b],..., X[b + 71] can be partitioned
into | 7| groups of b consecutive channel packet. Recall
that each group of b consecutive packets contains at most
Tr+1 :
kbm symbols. In total, the L L J groups contain

at most kbm LTLl;i-l

a and

b+ib],...,X[b+ib+e—1])}.

J symbols. In order to satisfy

the lossless-delay, at least k; symbols must be received over
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X[b],...,X[b+ 71]. Hence, the total combined number of
symbols in X[j],..., X[j + e — 1] is at least the following

- (LTLbJrlJ)a B e L
(%2 ate) " 2 ate
There are e (LTLbJr 1J + 1) > a channel packets in X,

each of which lies within X [b],..., X[b+ 7.]. In total, these
channel packets contain at least (| 24| 4+ 1) ka

symbols. The channel packets in X contain on average at
least ka symbols. In expectation, if a of these
I a-re

channel packets are dropped uniformly at random, at least
—= kp symbols are lost. Thus, at least one choice of
% a+te
a arbitrary channel packet losses results in a total number of
—__a
lost symbols of at least [ Jare ky.

In all sub-cases for 7, > (a — 1),
at least ky symbols

could be
k(1 +

above

I_TL+ Ja+1111n((7—L+1) mod b,a)
ThlS necessitates transmlttlng at
symbols.

lost. least

I_TL+1Ja+m1n((7—L+1) mod b, a)) R

Sub-case 2: ((7 +1) mod b) (|| +1) <

For this case, recall that the number of symbols sent per
channel packet is determined by IP-based construction 1. Each
channel packet contains a non-negative number of symbols,
as is imposed by constraint #1. At least k; symbols must
be received within the first 77, channel packets due to the
lossless-delay constraint. This requirement is imposed with
constraint #2. For any loss pattern under the C(a, b, w) chan-
nel, the total number of symbols over the received channel
packets must be at least k;. This requirement is imposed with
constraints #3 and #4 of the integer program. All constraints of
the integer program must be met by any code construction. The
integer program solves for the minimum number of symbols to
be sent subject to these three constraints. Hence, the optimal
rate is attained. u

APPENDIX B
PROOF OF LEMMA 2

Proof: Consider the encoding for a message packet S|i|
fori € {0,...,t}. When i > (t — 7), k; = 0, and S[i] is
automatically known by the receiver. Otherwise, the symbols
message packet S[i] are sent over X[i],..., X[i+7L], thereby
satisfying the lossless-delay constraint.

The proof that the worst-case-delay constraint is satisfied
over the C(a, b, w) channel is divided into two cases depend-
ing on whether 7, > (a — 1).

Case 1: 77, < (a — 1).

Ifa<(rp+24+7—=0b),letn=(rp, +1)(7—-b+1)
and ' = (7, + 1)(1 — b+ a — 7). Otherwise, let n =
(r.+1)(r=b+1)(t—a+1)and ' = n+ (7 +1)(7—b+1)(b—
71, — 1). The message packet, S[i], is partitioned evenly into
sets of 1 symbols. For an arbitrary such set, {co,...,c;-1},
we verify all symbols are decoded within 7 time slots. The
set is encoded as part of a [+ 7, 7] systematic MDS code.
Let (cg,...,c) ., ) be the code symbols corresponding to
{co,...,cp}. It suffices to show that at least  symbols of

(C0s- - Cpypyy) are received by time slot (i + 7).
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We note that (7, +b<7) = (1—b+1>71,+1).
Furthermore, X[i],..., X[i + 77] and X[z +0),..., X[i +
7] each contain 7 symbols of (cg,...,c; /) The number
of symbols per channel packet in X[i],..., X[i + 7] is
- +1 The number of symbols per channel packet in X[i +

bl,..., X[i+7]is =7 . Ifa < (72 +2+7—b), the number
of symbols per channel packetin X[i+7,+1],..., X[b—1]
is either O or b+1 Ifa>(rp,+2+7- b) the number of
symbols per channel packetin X[i +71, +1],..., X[b—1] is
T—a+1" Finally’ T—Z-‘rl < T—Z-’rl < TLZ—I

Burst losses: For all bursts of length b starting during or after
time slot (i+72+1), 7 symbols of (g, ..., c; /) are received
via X[i],..., X[i + 7]. Hence, decoding within a delay of 7
follows immediately. For any burst starting in channel packet
X[i+j] for j € {0,...,70}, (70 — j + 1) channel packets
X),..., X[i+j— 1] are recelved each of which contain

=i symbols of (cfs .-,y ). Moreover, channel packets

X[i+j+Db],..., X[i+ 7] are received, each of which contain
symbols of (cf, ... The fewest symbols are

T+b+1 ’c;]Jrn/)'
received when j = 0, in which case exactly n symbols are
received. Any 7 symbols are sufficient for decoding.

Arbitrary losses: The maximum number of symbols of
(cp, - .,c;, Jm,) are lost when the a largest channel packets
are lost, such as when

X[i],...,X[i+ 7], X[i+7—a+7+2],...,X[i + 7]

are lost. If a < (7, +2+T—b), the (7 —b-+1) channel packets
X[i+b—a+7,+1],. X[z'—i—r—a—i—TL—i—l] are received,
each of which contains — b+1 symbols. If @ > (70 +24+7-b),
then the (1 —a+1) channel packets X[i+7,+1],..., X[i+
T —a+ 71, + 1] are received, each of which contains T_LGH
symbols. Therefore, at least n symbols of (cg,..., ¢, ) are
received within a delay of 7, enabling decoding.

Case 2: 77, > (a — 1).

Sub-case 1: ((7, + 1) mod b) € {0} U{a,... 1}) or
(0<(r+1) modb<aand ((r, +1) modb L Lt |+
1) > a).

Let ¢ = ([TLb“J a+min ((r7 + 1) mod b,a)). Recall
that each S[i], for ¢ € {0,...,¢ — 7}, is partitioned into sets
of ¢ symbols. Every such set is encoded separately as part of
a [¢ + a, (] systematic MDS code. We verify for an arbitrary
such set, {co,...,cc—1}, with corresponding code symbols,
(chy -y c’C +q) that at least ¢ code symbols are received within
7 time slots. Any ¢ symbols suffice to decode {co,...,cc—1}.

Every burst of b consecutive channel packets eliminates at
least (b — a) channel packets which contain no symbols of
(s -+ »Cttq)- Thus, at most @ symbols of (cp, ..., ce,,) are
lost. For any sequence of a arbitrary losses, at least  of the
symbols of (cp,...,c¢,,) are received within 7 time slots.
For either loss pattern, recovery with a delay of 7 time slots
follows immediately by properties of the [¢ + a, (] systematic
MDS code.

Sub-case 2: (0 < (7 + 1) mod b <
((r, + 1) mod b) (LTLHZ’J +1) <

Recall that each S[¢] is encoded according to the outputs of
IP-based construction 1. Constraints #3 and #4 of IP-based

a and
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construction 1 ensure that least k; symbols of an [ng*),ki]
MDS code are received by time slot (i + 7). Hence, S|i] is
recovered within 7 time slots by the MDS property. |

APPENDIX C
PROOF OF THEOREM 1

Proof: We will show that each constraint corresponds
to a valid requirement to impose on coding schemes. This
ensures that the solution is a lower bound on the number of
symbols that must be sent. As there are 25:0 k; symbols of
the message packets, the output must be an upper bound on
the rate.

Before presenting the proof of correctness for the con-
straints, we will formally define how a channel packet, X [i]
for i € {0,...,t}, is split into (X (©)[i], X(V[i]). Recall that
each symbol of X[i] comprises a linear combination of the
symbols of

(So[0], ..., Sko—1[0], ..., So[d], ..., Sk, 1[i]).  (9)
The symbols
<X0[O],...,X|X[O]|_1[O],...,Xo[z'],...,X|X[i_1H_1[z’—1]>

(10)
correspond to linear equations over the symbols of

Eq. (9) where the linear equations for each j €
{0,...,4 — 1} of X[j] have 0 in positions corresponding to
(Solj +1],..., Sk, -1[i]) due to causality. Next, the symbols
of channel packet X [i] are partitioned into (X (©)[], X (V[4]).
Initially, consider X (©)[i] and X([i] as being empty. The
symbols of X[i] are labeled as being in either X (9[i] or
XMTi] by iterating over j € {0,...,|X[i] — 1|} as follows.
If the set of linear equations corresponding X ;[i], the symbols
of X([i], and the symbols of Eq. (10) are linearly indepen-
dent, X;[i] is added to X (V)[]. Otherwise, X;[i] is added to
XM

Constraints #1 and #2: For ¢ € {0,...,t —7.},j € {i —
TLye-osi}, |Xi(0) [i 4 j]| reflects a number of symbols sent in
channel packet X [i+ j] corresponding to message packet S[i,

. ]o) ]| s
defined to be 0 to handle edge conditions of indexing. For
i € {0,....,t + 7}, |XM[i]| corresponds to a number of
parity symbols sent in channel packet X[i] and similarly is
non-negative.

Constraint #3: We will show that any construction satisfy-
ing the lossless-delay requirement, even with the relaxations
allowed under Algorithm 1, will satisfy constraint #3. We will
prove this by induction on ¢ € {0,...,t}. In the base
case, ¢ = 0 and X(U)[ 0],... ,Xéo) [71] conmsist of exactly
ko symbols used to decode S[0] under lossless transmission.
In the inductive step, for ¢ = 1,...,t, S[0],...,S[i] can be
decoded using channel packets X[0], ..., X[i+7.] by solving
a system of linear equations. Only the symbols corresponding
to X©[0],..., X[ + 7,] need to be used, since the linear
equations corresponding to X 1[0],..., X(M[i + 7] are in
their span. Moreover, the linear equations corresponding to
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the symbols of XO[0],..., X[+ TL] are linearly indepen-
dent by definition. By 1nduct10n Z] 0 2120 1X; U)[j +1]] =

Z k The symbols of X; o )[] + ] in the first term reflect
the symbols sent in channel packet X[j + 1] used to decode
message packet S[j]. When S[i] is decoded, at least Z;:o k;
of the symbols of X[0],..., X([i 4 1] are required to
decode SI[0],...,S[i] (along with perhaps some additional
symbols of S[i +1],...,S[i+ 7.]). For 5 € {0,..., i+ 7.},
each symbol of X(?[j] included reflects adding a linearly
independent equation. S[0], ..., S[i], along with perhaps some
additional symbols of S[i + 1],...,S[i + 77], are decoded
together. Exactly k; equations (corresponding to symbols) used
in decoding are used to decode symbols of S[i]. Since the
encoding is causal, each of these k; equations correspond to
symbols are sent in channel packets X[i],..., X[i + 71] and
are labeled Xi(o) [i], ... ,Xi(o)[i + 7]

Constraint #4: Consider any burst starting in time slot
i €{0,...,t—b+1}. The proof of Lemma 1 showed that satis-
faction of the worst-case-delay requirement over the C'(a, b, w)
channel implies that message packets S[i—7r], ..., S[i+b—1]
must be decoded by time slot (i + 7 + b — a). Moreover, for
any burst loss of length b starting in channel packet ¢, for each
of je{i—7mn,....i+b—1}, S[i —1z],...,S[j] must be
recoverable by time slots (i —7,+7), ..., (j+7) respectively.
Message packets S[i — 71], ..., S[j] are therefore decoded by
time slot (j + 7). We consider the relaxation that symbols of
Xl(o)[z] forle{j+1,...;i+b—1},ze{l,...,l+ 7L} are
received.

We allow the relaxation that each symbol corresponding
to XZ(O)[Z] where | € {i —7r,...,j},z € {l,...., 1+ 1}
which are received can be used to decode one symbol of
S[i — 71],...,S[j]. These symbols are received during time
slots (i —71),...,(i = 1) and (¢ + b),...,min(j + 7,7 +
7 + b — a). Furthermore, parity symbols received during
time slots (¢ + b),...,min(j + 7,4 + 7 + b — a) can be
used to decode message packets S[i —7z], ..., S[j]. However,
by definition any parity symbols sent before time slot ¢ are in
the span of symbols of Xl(o)[z] fori € {0,...,i—1},z €
{l,...,min(i — 1,1 + 71,)}. Therefore, given access to the
symbols of Xl(O [2], these parity symbols are not used to
decode message packets S[i — 71],...,S[j]. All symbols
received strictly after min(j + 7,4 + 7 + b — a) are received
after message packets S[i — 7z],...,S[j] have already been
decoded. Thus, the symbols of S =

(XOL[1e{0,....t}z€ {l,...,l+ 1L}
{i,...,i+b— 1}}u

{X<0> Jlle{j+1,....itb—1},z€{l,....,I+m}}U
{X(1 Jlze{i+b,...,min(j+7,i+7+b—a)}}
must be sufficient to decode (S[0], ..., S[t]). Therefore,
S°t_, ki. By constraint #3, EHTL |X( )[ || =k for any [ €

{0,...,t — 7}. Thus, the size of

{Xl(o)[z]|l€{z’—TL,...,j},zE{l,...,
{i,....i+b—1}}U
{XU ]|z {i+b,.
is at least S7_, ke

l+TL}\

.,min(j+7,i+7+b—a)}}
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Constraint #5: Consider any combination of a arbitrary
packet losses in a sliding window of length w = (7 + 1)
which begin during some time slot i € {0,...,t —a + 1}.
Let the time slots of the packet losses be denoted as I, and
let ¢/ be the final time slot in I where i’ < ¢. For any
j€{0,...,7}, each of S[i —7r],...,S[j] must be decoded
by time slot (j 4+ 7) in order to satisfy the worst-case-delay
requirement. The relaxation is used that each received symbol
ofX(O)[z] forl € {i —7,....5},2z € {l,....;1 + 71}
can be used to decode one symbol of S[i — TL] , S[J]-
Furthermore, the relaxation is taken that each recelved symbol
XM[) for 1 € {i+1,...,5 + 7} can be used to decode
one lost symbol of S[i —7z],...,S[j]. We assume Xl(o) [2] is
received for I € {0,...,i—1},z € {l,...,min(l+7,i—1)},
so the received symbols of XM[0],..., X(V[i — 1] are not
useful for decoding S[i — 7], ..., S[j]. Moreover, all symbols
received strictly after time slot (j47) are not used in decoding
Sli—r], ..., S[j]. since they are decoded by time slot (j+7).
This follows from similar reasoning to that discussed for
constraint #4. Hence, the symbols of S =

(XOL]|1e{i—m,....i5z€{l,..., 1+ }\ T}U
(XD jeli+1,...,5+7I\I}U
(XO6L]|1€{0,....i— —1}U{i' +1,...,t},
ze{l,... . l+7}}

are sufficient to decode S [O]7 ..., S[t]. Consequently, the size
of S must be at least Zl o k1. Similar to the discussion for
constraint #4, ZHTL |X(0)[ ]| =k forany I € {0,...,t—7}.
Thus, as a relaxation of the worst-case-delay requirement for
at most a arbitrary losses, the size of

(XOL]|1e{i—m,....i5z€{l,..., 1+ }\ T}U
{(xO]1jeli+1,....j+7\I}
must be at least Y°7_. o Foe |
APPENDIX D

PROOF OF THEOREM 2

Proof: The value computed by Algorithm 2 is the optimal
rate for a coding scheme that combines (1) blocks of the SBC
with (2) the (7, a, b, 71, )-separate encoding scheme. Therefore,
this rate is feasible. The total number of symbols of all
message packets divided by the total number of symbols
transmitted by the scheme is returned. Hence, the rate of
the corresponding coding scheme is returned. The objective
function is to compute the minimal possible value for the
number of symbols transmitted over the considered coding
schemes for the message packet size sequence. For a fixed total
number of symbols of all message packets, this minimizes the
rate.

It remains to verify that the lossless-delay and worst-case-
delay requirements are satisfied. We do so for (a) the symbols
of message packets encoded as part of the (7, a, b, 71, )-separate
encoding scheme, and (b) for all remaining symbols. For
i > (t — 7), the message packet S[i] is of size 0 and is
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automatically known by the receiver. Hence, the lossless-
delay and worst-case-delay requirements are satisfied for such
message packets.

First, a non-negative number of symbols of any S[i], for
i € {0,...,t — 7}, are modeled as being encoded using
the (7,a,b, 7 )-separate encoding scheme for each message
packet due to constraint #1. The lossless-delay and worst-
case-delay are met for such symbols by properties of the
(1,a,b, 1,)-separate encoding scheme.

Second, we verify that all remaining symbols are accurately
modeled as being encoded within blocks of the SBC such that
the lossless-delay and worst-case-delay requirements are met.

The lossless-delay requirement: For any S[i], for i €
{0,...,t—7}, a non-negative number of symbols are modeled
as sent in each of X[i],..., X[t + 1], as is reflected by
constraint #2. Moreover, the total number of such symbols
is sufficient to satisfy the lossless-delay requirement by con-
straint #4.

The worst-case-delay requirement: A non-negative number
of blocks starting in each channel packet is modeled due to
constraint #3. Recall that the variables p; reflect the quantity
of blocks whose first position occurs during time slot i.
The first position of blocks occur between time slot 0 and
(t—7). It remains to verify that all symbols not encoded using
the (7, a, b, T, )-separate encoding scheme can be modeled as
being placed in the corresponding blocks which ensure that
they are decoded within 7 time slots. Under constraint #5, each
j € {r,...,1} is sequentially considered for each channel
packet X [i]. Without loss of generality, each symbol sent in
channel packet X [i] corresponding to message packet (i — j)
is modeled as being placed in the earliest block ending by
time slot (¢ — j + 7) with an available position in channel
packet X[i]. Sequentially doing so ensures that all symbols
corresponding to message packets (i — 71,),..., (i — 1) sent
in channel packet X [i] are modeled as being encoded as part
of by blocks of the SBC whose final position occur by the
time slots (¢ — 7, + 7),...,(¢ + 7 — 1) respectively. This
ensures that the worst-case-delay is satisfied over a C'(a, b, w)
channel for such symbols. Finally, due to constraint #6, each
symbol corresponding to S[i] which is modeled as being
transmitted without delay in X [¢] is modeled as being placed
in an available block of the SBC. This ensures recovery
within 7 time slots over a C(a,b,w) channel. In so doing,
all blocks which have an available position in channel packet
X|i] are considered, as the recovery properties of the SBC
ensure recovery within 7 time slots. Furthermore, all symbols
corresponding to message packets S[i — 7z],...,S[i — 1]
sent in channel packet X[i] still must also be modeled as
being placed in available blocks of the SBC, as is reflected
in constraint #6. n

APPENDIX E
PROOF OF LEMMA 8

Proof: By definition, a channel packet is comprised of
three quantities. First, symbols of message packets. Second,
parity symbols corresponding to blocks of the SBC. Third,
parity symbols corresponding to the padded excess.

5845

The number of systematic symbols in channel packet X ]
is given by

i—1

k.
- Z T—a]—l-l

Jj=t—7L

ki(t—a+1—17L)
T—a+1

In expectation, this is

i—1

k; ki(r—a+1—11)
E J ! 11
Z T—a+1 T—a+1 (i
J=t—TL
— 1 T—a+1-7
= E Elk;)| —— Efk;]—————— L (12
& [j]T—a—f—l + Elk] T—a+1 (12)
J=1—TL
i—1
1 (t—a+1-1p)

= 13
Z MT—CE—I—l th T—a-+1 (13
J=1—TL

o (14)

The number of parity symbols corresponding to blocks of
the SBC in X[i] is given by

i—(T—a+1)

) — -
jmie(rab—a) ¢ +1
In expectation, this equals
”Tz““) Bl b
i (rib—a) T—a+1 T—a+1

The number of parity symbols corresponding to padded
excess sent in channel packet X[i] is given by

i—(b—a+1)
O
= T—b+1
Jj=1—T
In expectation, this equals

i—(b—a+1)

>

Jj=i—T1

E[ej]

.T—b+a
=e
T—b+1

T—b+1"

Altogether, the expected number of symbols of a channel

packet is
b
14—
M( +T—a+1>+e

APPENDIX F
PROOF OF THEOREM 4

.T—b+a
T—b+1"

The proof of Theorem 4 is shown in three parts. First,
we show convergence of the mean number of symbols of
message packets (i.e., H—Ll ZE:O k;) to its expected value, L,
using the Hoeffding inequality [33] in Lemma 10. Second,
we show convergence of the mean number of transmitted
symbols (i.e., t% Zfzo n;) to its expected value, ., using
the Hoeffding inequality [33] in Lemma 11. Third, show
convergence of the rate given convergence of the mean number
of symbols of message packets and channel packets.
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First, we analyze the rate of convergence of the average
number of symbols of message packets in Lemma 10.

Lemma 10: Consider any valid inputs (7,a,b,w,7), o,
€ > 0, and a sequence of

\/id In (2) _|_5Ld
€ ) €

message packets whose sizes are drawn independently from an
admissible distribution with mean p and maximum value d.
With probability at least (1 —¢), the mean number of symbols
of the message packets of the message packet size sequence
satisfy the following inequality:

t
1
- k| —
<t +1 Z ’) :
=0
Proof: This proof will follow from a simple application

of the Hoeffding inequality [33] after handling the fact that
the final 27 message packets have size 0.

< €.

We rewrite
t t—2T1 t—2T1
1 1 t—21 1
T ;= —— ki = k;.
t4+ 14" t+1z ! t+1t—2¢Z !
=0 =0 =0
When ¢ > 227, it means that faf*l =1- f+1 >1— =
The quantity ;— 2 Zf 27 k; is the sum of random varlables
drawn independently from D and each k; € {0,...,d} for

some positive integer d for ¢ > 7 and i < (¢t — 7). We apply
the Hoeffding inequality [33] to bound the probability that
‘(t o= P 2Tk —u}<§and find it to be at least (1 —

2(t+1—27)2e2

e~ 2z ). To ensure that this value is at least (1 — ¢),

it suffices to have t > (@\ /1n( )+ 27)
Whenever ¢ = (@ In(3) + E’TT“), with probability at
least (1 —9),

1 i:k =2 1 tffk
R A e B AR W TP P B
2
g‘(l—f)f‘z c_<
272 2 4
< €.
Applying the inequality ;¢ < d concludes the proof. |

Second, we analyze the rate of convergence of the average
number of symbols of channel packets in Lemma 11.

Lemma 11: Consider any valid inputs (7,a,b,w,7y), 6,
€ > 0, and a sequence of

187bd I <4T> n 45dbr

V2e €
message packets whose sizes are drawn independently from
an admissible distribution with mean p and maximum value
d. Recall from Eq. (7) that p. is the expected number of
symbols of a channel packet under the (7, a, b, w, 7;,)—VSC.
With probability at least (1 —¢), the mean number of symbols
of channel packets for the (7,a,b, w,7,)—VSC is given by:

1 t
(e Sheone) | <
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Proof: ~ We break S _,mi into three components.
This is necessary to handle the first 7 and final 27 channel
packets having sizes taken from a different distribution based
on boundary conditions as compared to the remaining terms.
Specifically, we rewrite t% EE:O n; as

1 T—1
(e

t—3r+1-p
t+1

t
> ne
i=t—27+1—p
t—27—p

>

where p is the smallest non-negative integer so that (27)|(t —
37 + 1 — p), which is chosen so as to make the number of
terms in > ._. " "?n, divisible by 27, which will be used
later.

Each channel packet comprises at most d symbols of
message packets, dZ= bt +1 parity symbols from encoding the
padded excess, and d +1 parity symbols corresponding to
blocks of the SBC. Therefore the size of a channel packet lies

in{0,....d (1+;2ﬁ+ )gd(1+a+b)§3db}.
When ¢ > 42407,

1
t—37’+1— as)

T—a+1

T—1 t
1 €
ST\t 2 mf<g a9
=0 i=t—27+1—p
When t > 3@, it means that
t—31+1—p €
- o >1--. 17
t+1 - 3 an
Next, we analyze the last term in Eq. (15),

ﬁ 22;377’) n;. Recall that n; ‘is a function of
i—7y. -, ki, s0 n; L n; whenever |i — j| > 27. To apply
Hoeffding’s inequality, we rewrite

t—27—p
t—37’—|—1— Z e
t—37+1—p
27—1 — -1
1 2T
[ . 18
;} or \t—3r+1-p ; PrrGrotr |- (18)

Observe that 1.y (i_ry2rqr L Nrp(r—r)2r4r for @ #

i' € {r,...,2=2}. Consider any r € {0,...,27 — 1}.

We apply Hoeffdlng s inequality [33] to show that
t—37+1—

! < 5 with prob-

27 27
[E===S v

(1 —2e

n‘r+(2‘ri)+r> — M

2(t—37+1—p)2e2
32472b2d2

ability at least . Taking a union

bound over the 27 values of r and applying it to Eq. (18)

leads to
nz) — He

1 t—27—p
(2

=T

€
< 3 (19)

2(t—37+1—p)2e?

1 —4re” ~ 321720242 . In order

for this to be at least (1 — J),

with probability at least

it suffices to have
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t > (15/_;2})5(1 In (4%) + 57’) The proof follows from com-

bining Eq. (15) with Eq. (16), Eq. (17), and Eq. (19) as,
&
\ (H ) -

=0
t
t4—1 25371’ > m|+

i=t—274+1—p
t—27—p
t—3r+1-p
t+1 t—37+1— Z i ”C>

€. €

— 1— )=

_‘3+( 3>3
_|%_E_|
3 9

Thus, ( ) ZZ:O m) — ie| < € with probability at least
(1 —9) whenever

‘o 187bd I <4T> 45 45dbt
= T, )
V2e €
|

Third, we analyze the rate of convergence of the coding
rate of the (7,a,b,w,7,)—VSC to conclude the proof of
Theorem 4.

Proof:

Using ¢ > (36?;7%\/5 ln(%’)_i_lé%,i):ibq—)’

we apply Lemmas 10 and 11 with ¢’ = g and ¢ = <=, With
probability (1 — g - g) = (1 —9), there exists |e1], |62| <

such that
Sioki _m|_ ‘ ptea p
E§=Q Uz He He + €2 He
1
= — + € - —€
MC({LC o) lpte + €1pie — pipte — €2ficl
= €1 — €2
/J/C +e€ | |
4¢€'
< —
e
<e.
|
APPENDIX G

PROOF OF LEMMA 9

Before presenting the proof of Lemma 9, we include the
auxiliary Lemma 12 which will later used in the proof of
Lemma 9.

Lemma 12: Let U and V be any two discrete random
variables drawn from distributions with finite support such that
E[U] = E[V]. Then Emax(U — V,0)] = 1E[|U — V]

Proof:  Let pyv(u,v) be the joint probability mass
function of U and V. By assumption,

0 =E[U — V]
= Z puv(u,v)(u—v)
(u,0)eUXV
= Z pu,v (u, v)[max(u — v,0) + min(u — v, 0)].

(u,0)eUXV
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Rearrangement yields

E[max(U — V,0)] =

D

(u,w)eUxV

- 5

(u,0)eUXV

pu,v (u, v) max(u — v,0)
pu,v (u,v) min(u — v,0).

(20)
The value of E[|U — V] can be written as

E[U -V =

D

(u,0)eUXV

pu,v(u,v) (max(u — v,0) — min(u — v,0)) .

21

Combining Eq. (20) and Eq. (21) along with dividing by
2 yields

Emax(U — V,0)] = zE[|U — V|].
|
Next, we use Lemma 12 to prove Lemma 9 as follows
Proof: 'We will show for any ¢ € {27,...,t — 27} that the
expected excess Fle;] is at most

o/(t—a—1)2+(T—a—T1L) <0
2(r—a+1) - V2

The result follows from combining this inequality with
Theorem 4, the definition of y. from Eq. (7), and the identity
El[pad[i]] < (1 —b).

For any message packet S[é], the symbols (S:—q—7, [7],-- .,
Sr_qlt]) are always included in the blocks of SBC. The
remaining symbols (So[i], ..., Sr—a—r,—1[i]) can be placed
in blocks corresponding to message packets

Ii:{j|j6{i+1,...,
{jlie{i—7+b,...

i+b—a}tu
,i—TL—l}}.

Therefore, the expected excess is given by

Ele;] :T%ME max (1 —a—7r) ki — Z k;,0)
JEL;
(22)
E [\/((T —a—T)ki — X ey, kj)2
- 2r—a+1) ) (23)
\/]E {((T —a—T1L)ki =Y er kj)z
= 2(r—at1) _ 24)
:2(7—;%1) <(T —a—7)? (B[R] — Ells]?) +

(25)

E[(3 k)]

JEL;

—E[> k]

JEL;
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- \/(T —a — 71,)?Var(k;) + Var (Ejeh k;j)

3 —at 1) (26)
o(t—a—71)2+(T—a—7L)
B 2(r—a+1)
<. 27)
V2

Eq. (23) follows from applying Lemma 12 to E[e;] along
with the identity |A| = v/A2. Eq. (24) holds due to Jensen’s
inequality and the fact that /- is concave. Eq. (25) follows
from the facts that (7 —a — 7)E[k;] = E[}_;, k;] and
kj L k; for j € I;. Eq. (26) holds by the fact that k; 1 kj
for j # 7' € I;. Finally, Eq. (27) is a consequence of the
inequality (71 —a+1) > (1 —a — 71z). [ ]

APPENDIX H
DESCRIPTION OF BASELINE

We now provide a detailed explanation of the base-
line scheme to which we compare the (7,a,b,7)-VSC in
Section VIII. Recall from Section II that rate-optimal stream-
ing codes for the setting of message packets of the same fixed
size, k, such as [5]- [9] involve sending each S[i] as part of
Xi]. In addition, —Z— blocks of the SBC corresponding to
S[i] are created. ThlS 1nvolves sending k—_— parity symbols
evenly over channel packets X[i + 7 — at 1] yXi+T—
a + b]. Hence, the first parity symbol corresponding to S[i] is
sent during time slot (7 + T —a+1). Another way of viewing
such schemes is that —Z—f=k symbols of S [i] are encoded
using blocks of the SBC corresponding to message packets
X[i —7+al,...,X[i — 1]. The remaining ++1 symbols
of S[i] are encoded by creating the additional —"— blocks
of the SBC corresponding to S[i]. Thus, during tnne slot
(i +7 —a+1), the minimum necessary number of additional
blocks of the SBC are created to ensure that message packet
S|i] is recovered within the worst-case-delay constraint over
the C'(a, b, w) channel.

For the “baseline” scheme used in our evaluation, we intro-
duce as few adjustments to the aforementioned rate-optimal
code construction for message packets of the same fixed size,
as are needed to account for the new setting where message
packets are of varying sizes. As is done by the aforementioned
schemes, the baseline coding scheme will involve sending
each message packet S[i| as part of channel packet XT[i].
This satisfies the lossless-delay constraint. Each symbol of
the message packets is protected using a block of the SBC,
as is the case under the existing schemes. To do so, d;
blocks of the SBC are created corresponding to message
packet S[i] where d; = max (0, k; — Z;ilnax(o irtay Qi
fori > (r—a+1)and 0 = dy = ... = dr_,. The
b parity symbols of each stripe are sent in channel packets
Xli+7—a+1],...,X[i +7+b—a+ 1]. The quantity d;
is therefore defined during time slot (i +7 — a + 1). This is
the final time slot during which a block of the SBC can be
created which includes a symbol of message packet S[i|. Each
block includes one not yet encoded symbol of S[i] and one
not yet encoded symbol of S[j] for j € {i+1,...,i+7—a}

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 9, SEPTEMBER 2022

(or a unique padding symbol if none are available). This
ensures that the worst-case-delay constraint is satisfied for
message packet S[i]. The number of blocks, d;, is the minimal
value for which all symbols of message packet S[i| can be
encoded in a block of the SBC.
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