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ABSTRACT 1 INTRODUCTION

With Al-based decisions playing an increasingly consequential role
in our society, for example, in our financial and criminal justice
systems, there is a great deal of interest in designing algorithms
conforming to application-specific notions of fairness. In this work,
we ask a complementary question: can Al-based decisions be de-
signed to dynamically influence the evolution of fairness in our
society over the long term? To explore this question, we propose a
framework for sequential decision-making aimed at dynamically
influencing long-term societal fairness, illustrated via the problem
of selecting applicants from a pool consisting of two groups, one
of which is under-represented. We consider a dynamic model for
the composition of the applicant pool, in which admission of more
applicants from a group in a given selection round positively re-
inforces more candidates from the group to participate in future
selection rounds. Under such a model, we show the efficacy of the
proposed Fair-Greedy selection policy which systematically trades
the sum of the scores of the selected applicants (“greedy”) against
the deviation of the proportion of selected applicants belonging to
a given group from a target proportion (“fair”). In addition to ex-
perimenting on synthetic data, we adapt static real-world datasets
on law school candidates and credit lending to simulate the dy-
namics of the composition of the applicant pool. We prove that the
applicant pool composition converges to a target proportion set by
the decision-maker when score distributions across the groups are
identical.
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In this paper, we seek to develop a framework for sequential de-
cision making aimed at influencing long-term societal fairness.
Machine learning models are being increasingly applied in making
critical decisions that affect humans, such as recidivism predic-
tion [8], mortgage lending [3], and recommendation systems [25].
While the algorithms offer increased efficiency, speed, and scala-
bility in the decision-making process, they could introduce bias
leading to the decisions being unfair towards certain groups of the
population. There is a rich and rapidly growing literature on “fair”
strategies that mitigate bias in algorithmic decision making, includ-
ing pre-processing the labels or data and reweighting costs based
on groups [16], adversarial de-biasing [28], introducing regulariz-
ers based on mutual information [17], addition of constraints that
satisfy fairness criteria [26], learning representations that obfuscate
group information [27] and many more.

Most of the above studies focus on a static framework where the
long-term effects of decisions on the population are not explored.
However, in many practical applications, decisions may affect the
feature distributions across groups and influence the future rewards,
that will eventually affect the dynamics of the decision-making
loop [19].

The long-term dynamic study of such systems can be modeled
through a reinforcement learning framework based on Markov De-
cision Process (MDP) as considered in our work. Our framework is
motivated by real-world examples such as the following. Consider
a company receiving applications every month, which wants to
hire good candidates in an unbiased manner (e.g., by ultimately
selecting equal numbers of male and female applicants). With the
total monthly intake fixed based on a budget, the company selects
a certain proportion of candidates from each group. The hiring
decisions affect the subsequent pool of applicants: admitting more
candidates from a particular group might encourage more such
candidates to apply, or successful candidates from a group might
inspire other such candidates, providing positive feedback into
the decision-making loop. Such a strategy could not only enhance
diversity and equity, but also enable the company to learn more
about a minority group so as to eventually have a richer pool of
well-qualified applicants. Another motivating example is college
admissions, where the goal may be to admit students with the best
academic records, while accounting for socio-economic background
and reducing bias based on sensitive attributes such as race or gen-
der. Could one, for example, reverse the trend in the decrease in
the proportion of women in science, technology, engineering and
mathematics (STEM) as documented in [5]? It reported that 18% of
bachelor’s degrees in computer science were awarded to women
in 2010, down from 37% in 1985. Studies also point out that fewer
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women choose to apply to such fields as result of societal influ-
ences. We suggest here a structured framework for fair selection
aimed at combating such systemic imbalances by encouraging a
larger number of people from minority groups to participate in the
selection process.

Contributions. Based on a simple model for evolution of the
composition of the applicant pool, we develop a framework for fair
selection by formulating the problem as a Markov Decision Process
(MDP) with two objectives — maximizing the utility by admitting
candidates with the highest scores, and minimizing the disparity
between the proportions of selected candidates from each group.
We present two policies for fair selection: an optimal policy based
on value-iteration that maximizes the utility accumulated over
multiple rounds, where the utility comprises of a greedy term that
maximizes sum of scores of selected applicants and a fair-only term
that minimizes disparity; and second, a computationally simple and
effective policy, which we term the Fair-Greedy (FG) policy, that
optimizes for instantaneous utility. We characterize the structure
of the FG policy and show convergence and also prove that the
applicant pool proportion approaches the target proportion that
is desired by the system under identical score distributions across
the two groups. We provide experimental results on interesting
scenarios with synthetic data, as well as with dynamic data created
from the static law school [23] and German credit [9] datasets.

2 RELATED WORK

Recent work on fairness in sequential decision making includes set-
tings such as online classification [2], Bayesian decision making [7]
and predictive policing [10]. Several works address the notion of
imposing fairness in multi-armed bandit and online learning prob-
lems [6, 12, 13, 15, 21]. This body of work focuses on the design of
policies and the effects of fairness constraints on them. However,
in these frameworks, decisions do not affect future samples.

The importance of introducing dynamics into notions of fairness
is highlighted by studies indicating that static fairness criteria may
lead to undesired long-term effects on minority groups [18], [29].
While we focus in this paper on the participation rates of different
groups in the selection process, prior work on fairness in sequential
decision making has focused, either explicitly or implicitly, on the
impact of decisions on the qualifications or score distributions of
the different groups.

In particular, [18] models the effect of fairness-aware decisions
via a one-step feedback model: for example, they might model
the mean change in credit score in a disadvantaged segment of
the population as a function of the rate at which bank loans are
granted. It is shown in [18] that, depending on the specific model
for the change, “fair” policies (e.g,. equalizing selection rates or
true positive rates across disadvantaged and advantaged groups)
may sometimes lead to negative outcomes. The work [29] studies
how the imposition of hard fairness constraints leads to changes in
the underlying feature distributions and the group representation.
In particular, they show that imposing typical notions of fairness
such as statistical parity or equality of opportunity could lead to
exacerbation of the disparity between the group proportions of
samples, and the disadvantaged group may even exit the system.
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Modeling the long-term impact in the sense of the updated pop-
ulation distributions feeding into the subsequent examples seen
by the system and studying such feedback effects have been tra-
ditionally investigated using reinforcement learning frameworks
via Markov Decision Processes (MDPs), and introducing fairness
constraints in the reward functions [11, 14, 22]. Departing from
conventional statistical notions of fairness based on independence
or separation, [14] adopts a ‘weakly meritocratic’ notion where they
devise policies such that, their algorithm never (probabilistically)
prefers an action over another, if the latter has larger long-term
utility, which for example in a hiring process, can be viewed as the
selction process cannot target one group over another if selection
from either groups leads to similar long-term utility or benefit to
the institution.

Recent works such as [20, 24, 30] examine the long-term im-
pact of decisions on the features of the population. Building on the
work of [18], the authors of [24] propose a dynamic model with the
motivation of loan lending decisions. They model the group-wise
distributions of the likelihood of loan repayment (analogous to
score distributions in our framework), termed the payback probabil-
ities, and consider dynamics governed by the hypothesis: granting
loans produces upward mobility for a population when they are
repaid. Along with examining the impact of fair decisions on the
likelihood of loan repayment, they also highlight the detrimental
effects of unequal misestimation of the payback probabilities across
groups under their model, even under fair decisions. A fundamental
notion of fairness is that of ‘affirmative action’, which is viewed
in [20] as balancing the long-term qualification across groups. The
authors in [20] study the evolution of qualification rates while at-
tempting to maintain the social equity of selecting an equal number
of applicants from both groups. They assume that the selection
decisions could act as either an incentive or impediment, causing a
change in the proficiency of a group: for example, systemic rejec-
tion of a particular group may cause the group’s population to lose
the interest to participate altogether. The long-term dynamics of
group wise qualification rates are also investigated in [30]. Under a
partially observable MDP setting, they introduce a myopic policy,
characterize the equilibrium of dynamics and study their effects on
population under two regimes: one where accepted individuals feel
less motivated to remain qualified, and another where accepted in-
dividuals get access to better resources and hence remain or become
more qualified.

We adopt an outlook complementary to the preceding body of
work, seeking to influence the participation of under-represented
groups in the selection process. We do not assume that the score
distributions change as a consequence of our decisions, but our
model can be extended to accommodate such changes, as long as we
can estimate them. Rather than studying the impact of fair policies
as in [20, 24, 30], we provide a generic framework for achieving
long-term fairness dynamically. While we also consider a score-
based selection problem as in [18], our notion of fairness is that the
proportion of applicants and also that of admissions is equitable
across groups or approaches a target set by the policy-maker. We
adopt the MDP framework as well, but instead of imposing fair-
ness as a hard static constraint at every round in the sequential
decision-making process, we define our reward as a composition of
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two-fold objectives of maximization of scores of accepted individu-
als and minimizing disparity between the proportion of accepted
individuals from a target set by the decision-maker. We model the
proportion of applicants as states of the MDP, thus the state space
is different from that considered in other works.

3 PROBLEM SETTING

Given that there are two groups u and v within the population,
based on a binary valued sensitive attribute, we denote the total
number of applicants in round ¢ by N, out of which N}* belong to
group u and Ny = N; — N} belong to group v. We wish to admit
a fixed proportion a of the total applicants, leading to A; = aN;
number of total applicants accepted in round ¢. We denote by A}
and A = A; — A} the number of applicants selected in round ¢
from groups u and v respectively.

Score distributions. The qualification of an applicant is mea-
sured by the score, assumed to be an increasing function of the
proficiency of a candidate. Let #,, and #, denote the score distri-
butions of the two groups. Thus the scores for groups u and v are

N N?
{X}},7, and {XJZ.J ‘

P =1 generated from P, and P, respectively. We

where X4

(@)

denote the i*" and j!" largest scores out of N/ and N}

u N/ o N/
denote the ordered scores by {X(l.) }i2; and {X(j) }Fl’
(2
and X )
respectively.

Fairness-aware utility. The goal is to optimize the utility,
which comprises of two parts: a greedy term (to be maximized)
which is the expected sum of scores of selected candidates, and a
fair term (to be minimized) measuring disparity between groups
based on a target proportion.

MDP formulation. We define the MDP state s; € [0, 1] as the
proportion of applicants from group u out of the total, and the
action a; € [0, 1] as the proportion of selected candidates from
group u out of the total selected candidates:

N A

St = — = —.

Ny Ay
We denote by § € (0, 1) the long-term target of the proportion of
group u among the selected applicants. For example, if group u
is under-represented in the applicant pool, we may set § as the
proportion of group u in society at large. Instead, if our long-term
goal is to admit equal number from both groups, we set § = 0.5. Note
that formulating the states and actions as proportions of group u is
sufficient since the proportion of applicants and admitted candidates
from group v is naturally 1 — s; and 1 — a; respectively. The overall
utility or reward is:

R(st,ar) = Rg(st, ar) — ALg(ay), (1)

where the greedy reward term is the expected sum of scores of
admitted candidates, given by:
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and the fairness loss term is

Ly(ar) = (ar = 5)°. @)
Since the accepted candidates are the ones with the largest scores,
the ordered statistics of the score distributions come into play. In (1),
A > 0is a parameter used to control the weight given to the fairness
objective relative to the greedy objective. The greedy objective pro-
motes the admission of good candidates, while the fairness objective
promotes fairness in selection proportion. The fairness objective is
balanced: it pushes the selection proportion towards s regardless of
whether group u is under-represented or over-represented among
the selected applicants. Note that the dependence of the greedy
reward on state s; is through N} and Ny, where the ordered scores
for groups u and v are specifically out of N/ and Ny’ applicants for
groups u and v respectively.

Applicant pool evolution. We illustrate our ideas with a simple
linear model for positive reinforcement. The effect of decisions on
subsequent applicant pools would, in reality, be far more complex;
we hope that our work stimulates the major effort in experimenta-
tion and data collection required to build such models. We model
the positive reinforcement provided by decision-making as a set
of transition probabilities P (s;+1(sz, ar). The total number of appli-
cants N; to the system at round ¢ can be any sequence of numbers
and the number of applicants from group u to the system is sam-
pled from a Poisson distribution based on the mean parameter and
overall number of applicants (which is variable) as

N;‘ ~ Pois(@tNt), (3)

where Pois(-) is the Poisson distribution with mean 6; N;. Thus, 0;
is the mean proportion of group u in the applicant pool in round ¢.
We consider the following model for positive reinforcement:

Ore1 = [0 +n(ar —st)lc, 4)
where 7 is a step-size parameter and [] ¢ is the projection on the
convex set C = [0,1]. Thus the update is such that when the
admission rate a; of the group u is higher than the application rate
s¢, more applicants from the group are encouraged in future rounds,
and vice versa. The state then evolves as

N
N1
The model for positive reinforcement is relevant to many real-
world selection systems and is inspired by the social behavior that
the successful admission of candidates from a particular group
encourages more such candidates to apply to the institution. For
instance, a large number of female college graduates in society
serve as role-models, encouraging the future generations of women
to go to college. However, if a particular program is known for
admitting women at a rate smaller than the application rate, lesser
women might consider the institution as worth applying to.

St+1 =

Optimal Policy. The maximum long-term reward accumulated
by the system through the horizon H is given by

H
mja;le[ ZR(st,at)M] (5)
=0

where 7 is the policy or mapping from the set of states to the set of
actions. The optimal policy 7*(s) can be found by exact methods
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such as value iteration [4], where the optimal value function is
defined as:
H

V*(s) = I‘nﬂ{iXE[ ZO Y R(ss, ap)|m, 50 = s],
=

(6)

which is the cumulative reward earned by playing policy =, and
starting from initial state s, with 0 < y < 1 being the discount
factor. The optimal policy 7*(s) is found by iteratively solving the
Bellman equation:

Vi(s) = mgxz P(s'ls,a)[R(s,a) + yV{_ ()]s (7)
7
and the optimal policy is computed iteratively as below:
7, (s) = arg max Z P(s'ls,a)[R(s, @) +YV{_ ()], ()
7

until the optimal policy converges to 7*(s). It is also known that
the value iteration algorithm converges as long as the reward is
bounded in magnitude [4]. However, analyzing the equilibrium
state of the MDP under this optimal policy is intractable.

We observe through simulations that the structure of the optimal
policy 7*(s) is similar to that of the simpler Fair-Greedy policy
proposed next, and that the applicant pool evolution converges to
an equilibrium point.

4 FAIR-GREEDY POLICY

Finding an optimal policy is computationally expensive as the state
space grows larger. We therefore propose a simple, yet effective,
Fair-Greedy policy that optimizes the instantaneous overall utility
in (1):

©)

We provide insight into this policy by considering its performance
for a large applicant pool (N; large) with identical score distribu-
tions across the two groups. In this regime, we first prove that the
greedy reward term is optimized when the admission proportion
is the same as the applicant proportion. We then derive some key
properties of the FG policy, and provide theoretical guarantees for
the convergence of the applicant pool to the target proportion.

JI;;G (st) = arg n}ﬁx R(st, a).

THEOREM 4.1. If the score distributions Py, and Py of the two
groups are identical, the greedy reward Rg (s, ay) is optimized by the
action:

a*g =arg K%Z:XRQ (s¢,a) = s¢. (10)
Proor. Recall that the greedy reward is given by:
Rg(st,ar) = Zx +me] 11)

Since we assume the space of actions as a; € [0, 1], the number
of admitted candidates from each group, more formally, are A¥ =
la;Ar] and A7 = [ (1 - a;)A; . For simplicity of presentation, we
omit the ‘floor’ without loss of generality of our results since we
are interested in the regime that Ny is large. Therefore, we write:
a;A
ign
arAy

(1 ar)At v
Zian U XGy

E 1- El ——————
“ t(-a) (1 —ar)Ay

Rg(st,ar) =
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By the law of large numbers, the collection of score variables

X “} and {X7} | converge to their respective distributions P,
and SDU as N; 1ncreases. Choosing the top AY = a;A; candidates
out of N} (similarly top A? out of N}) is equivalent to setting a
threshold t,, (similarly, t,) and admitting all candidates with scores
above the threshold. This holds for generic score distributions and
they need not necessarily be identical across the groups. Thus for
large Ny, the average score of the admitted candidates from each
group approaches its expected value as:

arAr you

lim Zie Xy E[XYIXY > 1] (12)
N> arAy
(1=ar)Ar yo

lim u = E[XYIX? = t] (13)
N> (l—at)At

Rewriting the greedy reward in terms of the above conditional
expectations leads to the following equation:

ftoo uPy (u)du ftoo vPy(v)do
o tl-a) T —r
f Pu(uydu f Po(v)do

with the additional constraint being that the thresholds t,, and t,
are such that the total number of admitted candidates is equal to
Ay = aNy. Note that t,, and t, depend on the current state s; and
action ay.

Since the acceptance is decided by a group-wise threshold, the
fraction of applicants from a group who are admitted is precisely
determined by the area under its score distribution beyond the
threshold. Formalizing the above, for large N;, we have:

Rg(stsar) = ar

0 A
Pu(u)du = 1 - Fy(ty) = 22t
tu stNt
0 (1-ap)A;
Py(0)do = 1 - Fy(ty) = 22
. v (v)do o(ty) (1= s)N;

and the constraint on the total number of candidates admitted can
now be expressed through the following equivalent statements:

aiAs + (1 - at)At aNy
= Fu(ty)) + (1 = 5:)N¢ (1 = Fy(t0)) aNy,

and finally, we have:

seN: (1

st Ny Pu(u)du+ (1 - st)Nt/ Py(v)do = aN;. (15)
ty

ty

Let us now consider the maximization of the greedy reward.
Given state s;, and generic distributions #;, and $,, we need to
set the thresholds #, and t, for the respective groups such that the
sum of scores of all admitted candidates is maximized. We show
by contradiction that to maximize the greedy reward, we require
ty = ty.

Assume a pair of thresholds (#, t,) that result in the maximiza-
tion of the greedy reward, and #;, < t;. Let us denote the expected
sum of scores of the admitted candidates by S(t,, t,), which is the
optimum. One can construct thresholds t;, = t,, + €1 and t}, = t, — €2
(where €1, €2 > 0, infinitesimally small for large N;), such that we
admit one more candidate from group v (as a result of the decreased
threshold) and one less from group u (as a result of the increased
threshold) as compared to the case with thresholds (t,, t). As long
as t, > t],, we have S(t,t,) > S(tu,ty), which contradicts the
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assumption that (ty, t,) maximize the greedy reward. Similarly, if
we begin with a pair of optimal (t, t,) such that t;, > t,, we can
construct thresholds ¢, = t, — €3 and t;, = t, + €4, so that we admit
one more candidate from group u and one less from group v. As
long as t;, > t],, we arrive at the contradiction S(t},,t}) > S(ty, ty)-
Thus the greedy reward is optimized when thresholds across the
groups are equal, irrespective of the nature of $,, and P,.

Thus, for arbitrary score distributions, the action that maximizes
the greedy reward is such that:

th = Iy
A 1—az)A

— F! ) ! 1_% (16)
s¢N¢ (1—st)Nt

If Py, and P, are identical, the arguments of the inverse CDFs in
(16) need to be equal. Thus the optimal action should be such that:

- arAz _ (1-an)A;
stNt (1—s¢)N;
== a = St

Thus, the greedy reward is maximized by choosing the admission
proportion of group u to be same as the applicant proportion of
group u:

a*g = 5;.
0

Employing theorem 4.1, we arrive at the the following theorem
which informs us about the convergence of the applicant pool and
characterizes the FG policy.

THEOREM 4.2. For identical score distributions across the groups,
the Fair-Greedy policy satisfies the following properties:

st < mpg(st) <8, ifsy <5

Tr(st) < st ifse > §

ﬂ;G(St) =5, ifst =S5

Furthermore, if the step-size n; decays with time and satisfies the
conditions (i) Y,; n;y = oo and (ii) ) ; 17% < oo, the applicant pool
proportion converges to the target proportion s. This implies that the
admission or action at equilibrium also approaches the societal or
target proportion, in the asymptotic regime that the total applicants
in every round are large.

S <

Proor. Under the FG policy, a; = 7y (s¢). The applicant pool
update for the mean parameter is:

Orr1 = [0r + (g (st) = st ¢ (17)

The fairness loss in (2) is minimized when the admission propor-
tion is same as the target, formalized as:

. . .
ag= argn;ltnLyr(at) =3

The overall reward R(s;, a;) is a sum of the greedy reward and
fairness loss (scaled by 1). The fairness loss is convex (hence —Lg(a;)
is concave) in a;. It can be seen that the greedy reward monotoni-
cally decreases in either directions around a; = s, and in addition
it possesses continuity in a;. When at state s;, suppose the optimal
action a* of the FG policy is such that a* < s;, when s; < 5. Then
by continuity and since the greedy reward is maximized at s;, 3
some a’ > sz, such that Rg(st, a) > Rg (st,a*), and moreover has
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a smaller fairness loss, i.e., Lg(a’) < Lg(a*), which violates the
optimality of a*. Thus the optimal action for the FG policy must be
a* > sy, if s; < §. Similar arguments hold if s; > §, and here we can
show that the optimal action must be such that a* < s;. Hence, it
follows that the optimal action for overall utility lies between the
optimal actions for greedy and fairness terms:

St H;-G(St) <5 ifs; <3 (18)
§ < mpg(sy) <spifsp > 5 (19)
Tpg(se) =5, if sy =5 (20)

Now we show the convergence of the applicant pool to its equi-
librium. Let us consider a step-size that decays with time such that
DMt =coand ), rﬁ < 00. Consider the case when s; < §, where
we have: s; < n;G(s,) < 5. From (17), we can see that the mean
proportion parameter 6;41 increases. Similarly, when s; > 3, it fol-
lows that § < 7y ;(st) < s¢, and the mean proportion parameter
decreases. Note that the target proportion is a fixed point of the
FG policy, i.e., 7f;(5) = 5. Due to the above characterization of
7 (st) and the model for the update of the applicant pool, the
mean parameter §; grows or reduces in the direction of 5. Hence,
as the step-size is decaying, one can show that the mean param-
eter 0; converges to § (see appendix A for details). Moreover, the
variance of the number of group u applicants is var(N}') = 0;N;
due to the Poisson distribution. Thus, the state s; = N}'/N; has
variance O(1/N;). Consequently, in the asymptotic regime that
Ny is large, using Chebyshev’s inequality one can show that s;
also converges to 6; in probability. This implies that the applicant
proportion approaches s, which completes the proof. O

5 EXPERIMENTAL EVALUATION

5.1 Evaluation on synthetic data

We begin by employing synthetic data to demonstrate the fair-
ness framework we develop in this paper, and study interesting
scenarios.

Optimal policy based on value iteration. Let us first consider
the MDP setting from Section 3, where the policy learnt is the
optimal policy (8) maximizing the accumulated utilities. Consider
the case where the two groups have identical score distributions.
This may often be the case in real-world scenarios when there
is no inherent reason for the sensitive attribute to influence the
scores or proficiency of a candidate. Let the score distributions be
Gaussian with means y, = p, = 5 and variances 02 = 02 = 1.
The societal/target proportion can be set by employing guidance
from the societal state or based upon the long-term target that the
selector has in mind. For example, suppose our application is to
hire software engineers, then representing women as group u, one
can set the target proportion to be the proportion of women in
computer science, or in the society in general. Or, if we target to
have a certain proportion of women in the company in the long-
term, we could set § accordingly. In this experiment, we set § = 0.4
and the admission rate is fixed to @ = 0.3, or in other words, the
selector aims to admit only 30% of the total applied candidates.
The other parameter values used for this experiment are y = 0.99,
A = 1.5, a fixed step-size of n = 0.05. Figure 1 shows how the
proportion of applicants, admitted candidates and mean parameter
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Group u evolution

1.0
-=-= Applicants s; (0 = 0.1)
-=== Admitted a, (6 =0.1)
0.8 —— Mean param 0, (0 = 0.1)
i ---- Applicants s, (fp = 0.9)
H -—-— Admitted a, (6 = 0.9)
B 0.6 4 A Mean param 6; (6, = 0.9)
8
2
3
044
0.2 4
0.0

100
Rounds

Figure 1: Optimal policy under identical score distributions
across the groups.

0; vary for group u. We see in the figure that beginning the process
from different initial states 6y = 0.1, 0.9, we observe convergence
of the applicant pool proportion for group u. The optimal policy
under the evolution model considered has resulted in close to 40%
of the applicants belonging to group u, and also approximately the
same proportion of the admitted candidates are from group u.

FG policy under identical score distributions. Let us now
consider the same score distributions, target proportion and overall
admission rate a as above, but with the FG policy in (9), described in
Section 4. The step-size for changes in applicant pool mean parame-
ter is fixed to = 0.05, though a decaying step-size would in fact aid
in smoother convergence behavior. Figure 2 shows the convergence
of the applicant pool to the target proportion of 40%, and the pro-
portion of admitted candidates belonging to group u is also around
0.4, as guaranteed by our analysis of the FG policy. We also observe
that the FG policy follows the structure stated in Theorem 4.2. The
framework is capable of handling an inversion in the majority and
minority proportions as supported by the evolutions shown from
two distinct initial applicant mean proportion parameters §p = 0.1
and 0y = 0.9. We report on the dynamics for the proportion of
applicants and admitted candidates for individual sample paths in
which the number of applicants is randomly drawn as in (3). We do
not smooth over multiple sample paths in such figures because our
objective is to highlight the convergence of the mean parameter 6;
over each sample path. Note that tuning of the hyperparameter A
is not required when score distributions are identical (here we set
A =2). Aslong as A > 0, the applicant pool converges to the target
proportion, with only the rate of convergence increasing with A, as
we depict in Figure 3.

FG policy: under selective applications. Next, we focus on
a setting where the underprivileged class u has larger variance,
but slightly smaller mean (62 = 1.5, y, = 4.9). We set § = 0.4, and
consider a more selective process, with a = 0.1. Typically, such cases
might occur when the data about unprivileged group is unreliable
or there is imbalance in the amount of samples available, leading to
a larger variance. From Figure 4, we note that the applicant mean
and also the group admission converges to a proportion larger than
5. This is due to the fact that as the admission rate gets selective,
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Group u evolution
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Figure 2: FG policy under identical score distribution across
groups, showing convergence from distinct initial mean pa-
rameters 0y = 0.1,0.9.
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Figure 3: Applicant pool converges to the target proportion
for identical score distributions under the FG policy.
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Figure 4: FG policy under selective system, lower mean and
larger variance for group u. Shows convergence from 6y =
0.1,0.9.

the greedy part of the reward is optimized by an action that admits
more from the group with longer tail (larger variance), which is
the unprivileged group u in this case. Hence the greedy reward
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Mean applicant parameter 6, evolution with A
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Figure 5: Applicant pool convergence for the selective system
under FG policy.

promotes more admission from group u. This is also evident in
Figure 5, where we observe that for smaller values of 4, i.e., when
more weight is assigned to the greedy reward, the mean parameter
0;, which measures the expected proportion of group u applicants,
converges to larger values. However with enough weight being
given to fairness, the applicant pool still converges to the desired
ratio.

5.2 Dynamically adapted real-world datasets

We simulate the dynamics by considering the following: (i) the
law school bar study dataset, applying our framework from the
viewpoint of a recruiter selecting candidates who are likely to
be successful in the bar exam, based on features such as LSAT
scores, undergraduate GPA, law school GPA and others, while
maintaining equity based on race as the sensitive attribute. The aim
of positive reinforcement is to drive the system towards a richer
pool of applicants. (ii) German credit dataset with gender as the
sensitive attribute, where the motivation is to encourage higher
levels of participation of women in the financial lending system.
The law school bar study dataset [23] consists of data collected by
a Law School Admission Council survey across law schools in the
United States. The predictions indicate whether or not a candidate
would pass the bar exam based on features such as LSAT scores,
undergraduate GPA, law school GPA, race, sex, family income, age
and so on. We consider race as the sensitive attribute, and though
originally there are 8 distinct races in the dataset, we group the
samples by combining samples corresponding to all others except
‘white’, giving rise to binary groups ‘white’ and ‘non-white’. We
observe that the data is imbalanced - about only 25% of the samples
belong to group ‘non-white’, which we will label as group u. This
proportion will serve as a starting point for the applicant pool
composition. We use a version of the bar study dataset found at [1]
with around 1800 instances. A longer and more popular version of
the same in fairness literature is the law school GPA admissions
dataset which comprises of about 21,790 samples and the labels
indicate if an applicant will have a high first year average GPA. We
fit score distributions on this dataset as well, but choose the bar
study dataset to study the dynamics of positive reinforcement and
observe how the decisions of admitting candidates who are more
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Histograms of score distributions and Gaussian fit

—— Group u: non-white

= Group v: white
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Figure 6: Histograms and Gaussian fit for score distributions
of law school bar study dataset

Histograms of score distributions and Gaussian fit

—— Growp u: women
—— Group v: men

Figure 7: Histograms and Gaussian fit for score distributions
of German credit dataset

likely to eventually succeed in the bar exam affects the composition
of the applicant pool.

The German credit dataset [9] consists of 1000 instances, with
20 features (both numeric and qualitative), such as credit history,
account history, employment status, age, gender and so on. This is
typically used to assess the risk of lending loans to people, i.e., to
determine if granting credit is risky or not. We consider gender as
the binary valued sensitive attribute, labeling women as group u
and men as group v. The dataset is imbalanced — about 31% of the
instances belong to group u.

After pre-processing the datasets to suit our usage, our first
step is to learn score distributions that measure the proficiency
of candidates. To achieve this, we fit a predictor based on logistic
regression that uses the features and labels to fit scores, which are
the derived as the product of the model coefficients and the features.
We observe that the histograms of the scores of the two groups
reveal that they are indeed Gaussian in nature. We fit a Gaussian for
each of the histograms, to obtain the mean and variance parameters
of the score distributions #,, and P,.

The histograms and the Gaussian fit for the score distributions
for the law school bar study and German credit dataset are depicted
in Figures 6 and 7 respectively. For the law school bar study dataset
the parameters of scores are y, = —1.46, 02 = 2.73, y, = 0.79,
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Mean applicant parameter 6; evolution with A

—_— A=4.0
A=5.0
A=75
A=10.0
A =25.0
A =100.0
A =200.0

0.45 4

0.40 4
0.35 4

0.30 4

= 0.20 \ww

[
f

Mean of group u applicant pool process

0.15 T T T T
150 200 250 300

Rounds

T T T
0 50 100

Figure 8: Law school bar study dataset: applicant pool con-
vergence with initial mean proportion parameter 6y = 0.25,
as A is varied.
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Figure 9: German credit dataset: applicant pool convergence
with initial mean proportion parameter 6y = 0.31, as 1 is
varied.

02 = 3.16. For the German credit dataset the score distributions are
closer with parameters p;, = 0.32, 62 = 1.93, p1, = 0.85, 62 = 2.06.
We now simulate the dynamics of the application process, under
the FG policy, by sampling from these distributions with initial state
of the applicant process 6y determined by the number of instances
of respective groups, which is 0.25 for the law school bar study
and 0.31 for the German credit datasets respectively. The variation
of the applicant pool for different values of hyperparameter A are
shown for the datasets in Figures 8 and 9 respectively. The evolu-
tion step size used in these simulations is = 0.025, admission rate
is set to @ = 0.3 and the target proportion is set to § = 0.5, which
is equivalent to demographic parity, i.e., admitting same number
proportion of candidates from both groups. In both the figures, we
observe that when the greedy reward is favored (lower values of
A), the applicant pool in fact converges to a point lesser than the
target, while it approaches the target as A increases. This means
that for maximizing the utility, more samples need to be admitted
from group v, due to the nature of their score distributions, when
less importance is allotted to fairness objective. The tuning of the
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Table 1: Gaussian score distribution parameters for different
datasets

Dataset Sensitive i, Lo 03 02
attribute

LS bar study included -1.46 0.79 273 3.16

LS bar study excluded -1.33 0.76 2.85 3.23
German credit included 032 0.85 193 2.06
German credit excluded 0.62 0.84 203 214
LS GPA admissions included 1.45 3.14 244 1.89
LS GPA admissions excluded 1.51 3.13 250 1.93

hyperparameter A to achieve desired level of applicant pool pro-
portion depends on the order statistics of #,, and #,. The step-size
parameter 7 can be set appropriately based on how quickly we wish
to achieve convergence.

These experiments with real-world datasets indicate that scores
which are fit after learning predictors based on logistic regression
are distributed like Gaussians. Once we have the parameters of
the scores, the application of the FG policy and the applicant pool
evolution follows.

It is interesting to examine how the score distributions change
when we approach fairness through unawareness, that is, by omit-
ting the sensitive attributes while learning the logistic regression
based predictor. Note that we learn a single predictor based on
all samples and then distinguish the scores based on the sensitive
attribute. Table 1 lists the score parameters when the predictor is
learnt with or without the inclusion of the sensitive attribute for
the law school bar study, the law school GPA admissions and the
German credit datasets. Similar to bar study dataset, we employ
race as the sensitive attribute to the GPA admissions dataset as
well. For both the law school datasets, we observe that the score
distributions are not very different, although the difference between
the means of minority and majority groups has decreased slightly
when the sensitive attribute is dropped during the learning. For
the German credit dataset, the distributions are significantly closer
when the sensitive attribute is omitted, and there is a clear drop in
the difference between the group means.

6 CONCLUSION

As Al-based decision-making becomes increasingly impactful on
human society, the study of the influence of fairness-aware poli-
cies on the population becomes important. In this paper, we pro-
posed a framework for fair selection of applicants to a system,
and studied the long-term effects of decisions on the composition
of the applicant pool. We proposed an optimal policy based on
dynamic programming, and also a simple Fair-Greedy policy that
optimizes for instantaneous utility. We characterized the FG pol-
icy for general score distributions and proved that the applicant
pool approaches the target proportion when score distributions are
identical across groups. Experimental evaluation reveals that by
appropriately choosing the hyperparameter A, a desired equilibrium
point in the applicant pool composition can be achieved for generic
score distributions.



Contributed Paper

Our results indicate the potential of achieving long-term fairness
objectives through positive reinforcement via decision making. We
hope that this work stimulates the collaboration between machine
learning researchers and social scientists required for these ideas
to make real-world impact. A key future direction is to devise and
conduct experiments for measuring, understanding and shaping
the evolution dynamics posited in our framework.
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A APPENDIX: PROOF DETAILS

LEMMA A.1. If the step-size n; decays with time and satisfies the
conditions (i) 3,; ny = oo and (ii) 3,4 17% < co, the mean of the appli-
cant pool proportion for group u converges to the target proportion §
under the FG policy, when the score distributions across the groups
are identical.

Proor. We wish to show that §; — Sast — oo. Let dy =
%(9; —5)%. Fix an € > 0. We need to show that there exists some
to(€) such that when t > ty(e),

(21)
(22)

div1 < dr—yr ifdr 2 €

div1 < ce ifdy <e

where c is a positive constant. Moreover y; > 0 and ) ; yy = 0. If
the above hold, then eventually for some t = t;(€) > t(€), one has
d; < €. But due to (21) and (22) d; < ce for all t > t1(€). Since € is
arbitrary, 6; — Sast — oo.

We first show that (22) holds.

1
5 (9t+1 - 5)2

dr+1

= (00— nilsi - anlc -5
< %(Gt = ne(se — ar) = 9)°

1
= dene(S =00 (s —an) + (st — ar)?

IA

1
dp + 1 (5= 0r) (st —ar) + E’??

IN

1
dr+ (5= 0% + 1) +

Since n; is arbitrarily small, if d; < €, we have:

dis1 < ce. (23)
When d; > €, we want to first show that
(5=01)(0r —ar) < —6(e) (29)
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where §(€) > 0. If this holds, we have,

1
dis1 < dp —ni(e) + 5;75. (25)

Let us denote y; = n;6(€) — %ry? Since n; — 0, there exists some
t2(€) such that y; > 0 for t > t2(¢€). Moreover, due to conditions on
step size, we have }; y; = co.
Next, we will account for the stochasticity of s;. We have s; —a; =
0¢ + (st — 0r) — a. Denoting z; = s; — 0;, we have
drvr < d4mi (=00 @+ —a) +50F (20

z; is a zero-mean random variable. Also E[z%] =var(st) = 0¢/Ng,
which is bounded. Therefore v; := anzo NmZm is a martingale, and
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E [U?] is also bounded. This implies, by the martingale convergence
theorem, that v; converges to a finite random variable. Therefore,
we have Y, °_, hmzm — 0. Since | 6; — § | is bounded, the effect of
noise z; is asymptotically negligible.

What remains to be shown is (24). In the regime of large num-
ber of applicants N;, we can see that the state s; is equal to its
mean 0; with probability approaching one, through the Chebyshev
inequality.

When d; > e, since s; is equal to 0;, we need to consider only
the cases (i) s; > § and (ii) s; < 5. Under both these cases, we
have (5 — 0;)(6; — a¢) < 0 due to the structure of the FG policy in
(18) and (19), when the score distributions across the groups are
identical. O
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