


women choose to apply to such fields as result of societal influ-

ences. We suggest here a structured framework for fair selection

aimed at combating such systemic imbalances by encouraging a

larger number of people from minority groups to participate in the

selection process.

Contributions. Based on a simple model for evolution of the

composition of the applicant pool, we develop a framework for fair

selection by formulating the problem as a Markov Decision Process

(MDP) with two objectives ś maximizing the utility by admitting

candidates with the highest scores, and minimizing the disparity

between the proportions of selected candidates from each group.

We present two policies for fair selection: an optimal policy based

on value-iteration that maximizes the utility accumulated over

multiple rounds, where the utility comprises of a greedy term that

maximizes sum of scores of selected applicants and a fair-only term

that minimizes disparity; and second, a computationally simple and

effective policy, which we term the Fair-Greedy (FG) policy, that

optimizes for instantaneous utility. We characterize the structure

of the FG policy and show convergence and also prove that the

applicant pool proportion approaches the target proportion that

is desired by the system under identical score distributions across

the two groups. We provide experimental results on interesting

scenarios with synthetic data, as well as with dynamic data created

from the static law school [23] and German credit [9] datasets.

2 RELATEDWORK

Recent work on fairness in sequential decision making includes set-

tings such as online classification [2], Bayesian decision making [7]

and predictive policing [10]. Several works address the notion of

imposing fairness in multi-armed bandit and online learning prob-

lems [6, 12, 13, 15, 21]. This body of work focuses on the design of

policies and the effects of fairness constraints on them. However,

in these frameworks, decisions do not affect future samples.

The importance of introducing dynamics into notions of fairness

is highlighted by studies indicating that static fairness criteria may

lead to undesired long-term effects on minority groups [18], [29].

While we focus in this paper on the participation rates of different

groups in the selection process, prior work on fairness in sequential

decision making has focused, either explicitly or implicitly, on the

impact of decisions on the qualifications or score distributions of

the different groups.

In particular, [18] models the effect of fairness-aware decisions

via a one-step feedback model: for example, they might model

the mean change in credit score in a disadvantaged segment of

the population as a function of the rate at which bank loans are

granted. It is shown in [18] that, depending on the specific model

for the change, łfairž policies (e.g,. equalizing selection rates or

true positive rates across disadvantaged and advantaged groups)

may sometimes lead to negative outcomes. The work [29] studies

how the imposition of hard fairness constraints leads to changes in

the underlying feature distributions and the group representation.

In particular, they show that imposing typical notions of fairness

such as statistical parity or equality of opportunity could lead to

exacerbation of the disparity between the group proportions of

samples, and the disadvantaged group may even exit the system.

Modeling the long-term impact in the sense of the updated pop-

ulation distributions feeding into the subsequent examples seen

by the system and studying such feedback effects have been tra-

ditionally investigated using reinforcement learning frameworks

via Markov Decision Processes (MDPs), and introducing fairness

constraints in the reward functions [11, 14, 22]. Departing from

conventional statistical notions of fairness based on independence

or separation, [14] adopts a ‘weakly meritocratic’ notion where they

devise policies such that, their algorithm never (probabilistically)

prefers an action over another, if the latter has larger long-term

utility, which for example in a hiring process, can be viewed as the

selction process cannot target one group over another if selection

from either groups leads to similar long-term utility or benefit to

the institution.

Recent works such as [20, 24, 30] examine the long-term im-

pact of decisions on the features of the population. Building on the

work of [18], the authors of [24] propose a dynamic model with the

motivation of loan lending decisions. They model the group-wise

distributions of the likelihood of loan repayment (analogous to

score distributions in our framework), termed the payback probabil-

ities, and consider dynamics governed by the hypothesis: granting

loans produces upward mobility for a population when they are

repaid. Along with examining the impact of fair decisions on the

likelihood of loan repayment, they also highlight the detrimental

effects of unequal misestimation of the payback probabilities across

groups under their model, even under fair decisions. A fundamental

notion of fairness is that of ‘affirmative action’, which is viewed

in [20] as balancing the long-term qualification across groups. The

authors in [20] study the evolution of qualification rates while at-

tempting to maintain the social equity of selecting an equal number

of applicants from both groups. They assume that the selection

decisions could act as either an incentive or impediment, causing a

change in the proficiency of a group: for example, systemic rejec-

tion of a particular group may cause the group’s population to lose

the interest to participate altogether. The long-term dynamics of

group wise qualification rates are also investigated in [30]. Under a

partially observable MDP setting, they introduce a myopic policy,

characterize the equilibrium of dynamics and study their effects on

population under two regimes: one where accepted individuals feel

less motivated to remain qualified, and another where accepted in-

dividuals get access to better resources and hence remain or become

more qualified.

We adopt an outlook complementary to the preceding body of

work, seeking to influence the participation of under-represented

groups in the selection process. We do not assume that the score

distributions change as a consequence of our decisions, but our

model can be extended to accommodate such changes, as long as we

can estimate them. Rather than studying the impact of fair policies

as in [20, 24, 30], we provide a generic framework for achieving

long-term fairness dynamically. While we also consider a score-

based selection problem as in [18], our notion of fairness is that the

proportion of applicants and also that of admissions is equitable

across groups or approaches a target set by the policy-maker. We

adopt the MDP framework as well, but instead of imposing fair-

ness as a hard static constraint at every round in the sequential

decision-making process, we define our reward as a composition of
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two-fold objectives of maximization of scores of accepted individu-

als and minimizing disparity between the proportion of accepted

individuals from a target set by the decision-maker. We model the

proportion of applicants as states of the MDP, thus the state space

is different from that considered in other works.

3 PROBLEM SETTING

Given that there are two groups 𝑢 and 𝑣 within the population,

based on a binary valued sensitive attribute, we denote the total

number of applicants in round 𝑡 by 𝑁𝑡 , out of which 𝑁𝑢
𝑡 belong to

group 𝑢 and 𝑁 𝑣
𝑡 = 𝑁𝑡 − 𝑁𝑢

𝑡 belong to group 𝑣 . We wish to admit

a fixed proportion 𝑎 of the total applicants, leading to 𝐴𝑡 = 𝑎𝑁𝑡

number of total applicants accepted in round 𝑡 . We denote by 𝐴𝑢
𝑡

and 𝐴𝑣
𝑡 = 𝐴𝑡 − 𝐴𝑢

𝑡 the number of applicants selected in round 𝑡

from groups 𝑢 and 𝑣 respectively.

Score distributions. The qualification of an applicant is mea-

sured by the score, assumed to be an increasing function of the

proficiency of a candidate. Let P𝑢 and P𝑣 denote the score distri-

butions of the two groups. Thus the scores for groups 𝑢 and 𝑣 are

{𝑋𝑢
𝑖
}
𝑁𝑢

𝑡

𝑖=1 and {𝑋 𝑣
𝑗
}
𝑁 𝑣

𝑡

𝑗=1, generated from P𝑢 and P𝑣 respectively. We

denote the ordered scores by {𝑋𝑢
(𝑖)

}
𝑁𝑢

𝑡

𝑖=1 and {𝑋 𝑣
( 𝑗)

}
𝑁 𝑣

𝑡

𝑗=1, where 𝑋
𝑢
(𝑖)

and 𝑋 𝑣
( 𝑗)

denote the 𝑖𝑡ℎ and 𝑗𝑡ℎ largest scores out of 𝑁𝑢
𝑡 and 𝑁 𝑣

𝑡

respectively.

Fairness-aware utility. The goal is to optimize the utility,

which comprises of two parts: a greedy term (to be maximized)

which is the expected sum of scores of selected candidates, and a

fair term (to be minimized) measuring disparity between groups

based on a target proportion.

MDP formulation. We define the MDP state 𝑠𝑡 ∈ [0, 1] as the

proportion of applicants from group 𝑢 out of the total, and the

action 𝑎𝑡 ∈ [0, 1] as the proportion of selected candidates from

group 𝑢 out of the total selected candidates:

𝑠𝑡 =
𝑁𝑢
𝑡

𝑁𝑡
, 𝑎𝑡 =

𝐴𝑢
𝑡

𝐴𝑡
.

We denote by 𝑠 ∈ (0, 1) the long-term target of the proportion of

group 𝑢 among the selected applicants. For example, if group 𝑢

is under-represented in the applicant pool, we may set 𝑠 as the

proportion of group 𝑢 in society at large. Instead, if our long-term

goal is to admit equal number from both groups, we set 𝑠 = 0.5. Note

that formulating the states and actions as proportions of group 𝑢 is

sufficient since the proportion of applicants and admitted candidates

from group 𝑣 is naturally 1 − 𝑠𝑡 and 1 − 𝑎𝑡 respectively. The overall

utility or reward is:

𝑅(𝑠𝑡 , 𝑎𝑡 ) = 𝑅G (𝑠𝑡 , 𝑎𝑡 ) − 𝜆𝐿F (𝑎𝑡 ), (1)

where the greedy reward term is the expected sum of scores of

admitted candidates, given by:

𝑅G (𝑠𝑡 , 𝑎𝑡 ) =

1

𝐴𝑡
E

[ 𝐴𝑢

𝑡
∑︁

𝑖=1

𝑋𝑢
(𝑖)

+

𝐴𝑣

𝑡
∑︁

𝑖=1

𝑋 𝑣
(𝑖)

]

=

1

𝐴𝑡
E

[ 𝑎𝑡𝐴𝑡
∑︁

𝑖=1

𝑋𝑢
(𝑖)

+

(1−𝑎𝑡 )𝐴𝑡
∑︁

𝑖=1

𝑋 𝑣
(𝑖)

]

,

and the fairness loss term is

𝐿F (𝑎𝑡 ) = (𝑎𝑡 − 𝑠)2 . (2)

Since the accepted candidates are the ones with the largest scores,

the ordered statistics of the score distributions come into play. In (1),

𝜆 ≥ 0 is a parameter used to control the weight given to the fairness

objective relative to the greedy objective. The greedy objective pro-

motes the admission of good candidates, while the fairness objective

promotes fairness in selection proportion. The fairness objective is

balanced: it pushes the selection proportion towards 𝑠 regardless of

whether group 𝑢 is under-represented or over-represented among

the selected applicants. Note that the dependence of the greedy

reward on state 𝑠𝑡 is through 𝑁𝑢
𝑡 and 𝑁 𝑣

𝑡 , where the ordered scores

for groups 𝑢 and 𝑣 are specifically out of 𝑁𝑢
𝑡 and 𝑁 𝑣

𝑡 applicants for

groups 𝑢 and 𝑣 respectively.

Applicant pool evolution. We illustrate our ideas with a simple

linear model for positive reinforcement. The effect of decisions on

subsequent applicant pools would, in reality, be far more complex;

we hope that our work stimulates the major effort in experimenta-

tion and data collection required to build such models. We model

the positive reinforcement provided by decision-making as a set

of transition probabilities P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). The total number of appli-

cants 𝑁𝑡 to the system at round 𝑡 can be any sequence of numbers

and the number of applicants from group 𝑢 to the system is sam-

pled from a Poisson distribution based on the mean parameter and

overall number of applicants (which is variable) as

𝑁𝑢
𝑡 ∼ 𝑃𝑜𝑖𝑠 (𝜃𝑡𝑁𝑡 ), (3)

where 𝑃𝑜𝑖𝑠 (·) is the Poisson distribution with mean 𝜃𝑡𝑁𝑡 . Thus, 𝜃𝑡
is the mean proportion of group 𝑢 in the applicant pool in round 𝑡 .

We consider the following model for positive reinforcement:

𝜃𝑡+1 = [𝜃𝑡 + 𝜂 (𝑎𝑡 − 𝑠𝑡 )]C, (4)

where 𝜂 is a step-size parameter and []C is the projection on the

convex set C = [0, 1]. Thus the update is such that when the

admission rate 𝑎𝑡 of the group 𝑢 is higher than the application rate

𝑠𝑡 , more applicants from the group are encouraged in future rounds,

and vice versa. The state then evolves as

𝑠𝑡+1 =
𝑁𝑢
𝑡+1

𝑁𝑡+1
.

The model for positive reinforcement is relevant to many real-

world selection systems and is inspired by the social behavior that

the successful admission of candidates from a particular group

encourages more such candidates to apply to the institution. For

instance, a large number of female college graduates in society

serve as role-models, encouraging the future generations of women

to go to college. However, if a particular program is known for

admitting women at a rate smaller than the application rate, lesser

women might consider the institution as worth applying to.

Optimal Policy. The maximum long-term reward accumulated

by the system through the horizon 𝐻 is given by

max
𝜋
E
[

𝐻
∑︁

𝑡=0

𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝜋
]

(5)

where 𝜋 is the policy or mapping from the set of states to the set of

actions. The optimal policy 𝜋∗ (𝑠) can be found by exact methods
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such as value iteration [4], where the optimal value function is

defined as:

𝑉 ∗ (𝑠) = max
𝜋
E
[

𝐻
∑︁

𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝜋, 𝑠0 = 𝑠
]

, (6)

which is the cumulative reward earned by playing policy 𝜋 , and

starting from initial state 𝑠 , with 0 < 𝛾 < 1 being the discount

factor. The optimal policy 𝜋∗ (𝑠) is found by iteratively solving the

Bellman equation:

𝑉 ∗
𝑘
(𝑠) = max

𝑎

∑︁

𝑠′

P(𝑠 ′ |𝑠, 𝑎) [𝑅(𝑠, 𝑎) + 𝛾𝑉 ∗
𝑘−1

(𝑠 ′)],∀𝑠 (7)

and the optimal policy is computed iteratively as below:

𝜋∗
𝑘
(𝑠) = argmax

𝑎

∑︁

𝑠′

P(𝑠 ′ |𝑠, 𝑎) [𝑅(𝑠, 𝑎) + 𝛾𝑉 ∗
𝑘−1

(𝑠 ′)], (8)

until the optimal policy converges to 𝜋∗ (𝑠). It is also known that

the value iteration algorithm converges as long as the reward is

bounded in magnitude [4]. However, analyzing the equilibrium

state of the MDP under this optimal policy is intractable.

We observe through simulations that the structure of the optimal

policy 𝜋∗ (𝑠) is similar to that of the simpler Fair-Greedy policy

proposed next, and that the applicant pool evolution converges to

an equilibrium point.

4 FAIR-GREEDY POLICY

Finding an optimal policy is computationally expensive as the state

space grows larger. We therefore propose a simple, yet effective,

Fair-Greedy policy that optimizes the instantaneous overall utility

in (1):

𝜋∗𝐹𝐺 (𝑠𝑡 ) = argmax
𝑎𝑡

𝑅(𝑠𝑡 , 𝑎𝑡 ). (9)

We provide insight into this policy by considering its performance

for a large applicant pool (𝑁𝑡 large) with identical score distribu-

tions across the two groups. In this regime, we first prove that the

greedy reward term is optimized when the admission proportion

is the same as the applicant proportion. We then derive some key

properties of the FG policy, and provide theoretical guarantees for

the convergence of the applicant pool to the target proportion.

Theorem 4.1. If the score distributions P𝑢 and P𝑣 of the two

groups are identical, the greedy reward 𝑅G (𝑠𝑡 , 𝑎𝑡 ) is optimized by the

action:

𝑎∗G = argmax
𝑎𝑡

𝑅G (𝑠𝑡 , 𝑎𝑡 ) = 𝑠𝑡 . (10)

Proof. Recall that the greedy reward is given by:

𝑅G (𝑠𝑡 , 𝑎𝑡 ) =
1

𝐴𝑡
E

[ 𝐴𝑢

𝑡
∑︁

𝑖=1

𝑋𝑢
(𝑖)

+

𝐴𝑣

𝑡
∑︁

𝑖=1

𝑋 𝑣
(𝑖)

]

(11)

Since we assume the space of actions as 𝑎𝑡 ∈ [0, 1], the number

of admitted candidates from each group, more formally, are 𝐴𝑢
𝑡 =

⌊𝑎𝑡𝐴𝑡 ⌋ and 𝐴
𝑣
𝑡 = ⌊(1 − 𝑎𝑡 )𝐴𝑡 ⌋. For simplicity of presentation, we

omit the ‘floor’ without loss of generality of our results since we

are interested in the regime that 𝑁𝑡 is large. Therefore, we write:

𝑅G (𝑠𝑡 , 𝑎𝑡 ) = 𝑎𝑡E

[∑𝑎𝑡𝐴𝑡

𝑖=1 𝑋𝑢
(𝑖)

𝑎𝑡𝐴𝑡

]

+ (1 − 𝑎𝑡 )E

[∑(1−𝑎𝑡 )𝐴𝑡

𝑖=1 𝑋 𝑣
(𝑖)

(1 − 𝑎𝑡 )𝐴𝑡

]

By the law of large numbers, the collection of score variables

{𝑋𝑢
𝑖
}
𝑁𝑢

𝑡

𝑖=1 and {𝑋 𝑣
𝑖
}
𝑁 𝑣

𝑡

𝑖=1 converge to their respective distributions P𝑢
and P𝑣 as 𝑁𝑡 increases. Choosing the top 𝐴𝑢

𝑡 = 𝑎𝑡𝐴𝑡 candidates

out of 𝑁𝑢
𝑡 (similarly top 𝐴𝑣

𝑡 out of 𝑁 𝑣
𝑡 ) is equivalent to setting a

threshold 𝑡𝑢 (similarly, 𝑡𝑣 ) and admitting all candidates with scores

above the threshold. This holds for generic score distributions and

they need not necessarily be identical across the groups. Thus for

large 𝑁𝑡 , the average score of the admitted candidates from each

group approaches its expected value as:

lim
𝑁𝑡−→∞

∑𝑎𝑡𝐴𝑡

𝑖=1 𝑋𝑢
(𝑖)

𝑎𝑡𝐴𝑡
= E[𝑋𝑢 |𝑋𝑢 ≥ 𝑡𝑢 ] (12)

lim
𝑁𝑡−→∞

∑(1−𝑎𝑡 )𝐴𝑡

𝑖=1 𝑋 𝑣
(𝑖)

(1 − 𝑎𝑡 )𝐴𝑡
= E[𝑋 𝑣 |𝑋 𝑣 ≥ 𝑡𝑣] (13)

Rewriting the greedy reward in terms of the above conditional

expectations leads to the following equation:

𝑅G (𝑠𝑡 , 𝑎𝑡 ) = 𝑎𝑡

∫ ∞

𝑡𝑢
𝑢P𝑢 (𝑢)𝑑𝑢

∫ ∞

𝑡𝑢
P𝑢 (𝑢)𝑑𝑢

+ (1 − 𝑎𝑡 )

∫ ∞

𝑡𝑣
𝑣P𝑣 (𝑣)𝑑𝑣

∫ ∞

𝑡𝑣
P𝑣 (𝑣)𝑑𝑣

(14)

with the additional constraint being that the thresholds 𝑡𝑢 and 𝑡𝑣
are such that the total number of admitted candidates is equal to

𝐴𝑡 = 𝑎𝑁𝑡 . Note that 𝑡𝑢 and 𝑡𝑣 depend on the current state 𝑠𝑡 and

action 𝑎𝑡 .

Since the acceptance is decided by a group-wise threshold, the

fraction of applicants from a group who are admitted is precisely

determined by the area under its score distribution beyond the

threshold. Formalizing the above, for large 𝑁𝑡 , we have:
∫ ∞

𝑡𝑢

P𝑢 (𝑢)𝑑𝑢 = 1 − 𝐹𝑢 (𝑡𝑢 ) =
𝑎𝑡𝐴𝑡

𝑠𝑡𝑁𝑡
∫ ∞

𝑡𝑣

P𝑣 (𝑣)𝑑𝑣 = 1 − 𝐹𝑣 (𝑡𝑣) =
(1 − 𝑎𝑡 )𝐴𝑡

(1 − 𝑠𝑡 )𝑁𝑡
.

and the constraint on the total number of candidates admitted can

now be expressed through the following equivalent statements:

𝑎𝑡𝐴𝑡 + (1 − 𝑎𝑡 )𝐴𝑡 = 𝑎𝑁𝑡

𝑠𝑡𝑁𝑡 (1 − 𝐹𝑢 (𝑡𝑢 )) + (1 − 𝑠𝑡 )𝑁𝑡 (1 − 𝐹𝑣 (𝑡𝑣)) = 𝑎𝑁𝑡 ,

and finally, we have:

𝑠𝑡𝑁𝑡

∫ ∞

𝑡𝑢

P𝑢 (𝑢)𝑑𝑢 + (1 − 𝑠𝑡 )𝑁𝑡

∫ ∞

𝑡𝑣

P𝑣 (𝑣)𝑑𝑣 = 𝑎𝑁𝑡 . (15)

Let us now consider the maximization of the greedy reward.

Given state 𝑠𝑡 , and generic distributions P𝑢 and P𝑣 , we need to

set the thresholds 𝑡𝑢 and 𝑡𝑣 for the respective groups such that the

sum of scores of all admitted candidates is maximized. We show

by contradiction that to maximize the greedy reward, we require

𝑡𝑢 = 𝑡𝑣 .

Assume a pair of thresholds (𝑡𝑢 , 𝑡𝑣) that result in the maximiza-

tion of the greedy reward, and 𝑡𝑢 < 𝑡𝑣 . Let us denote the expected

sum of scores of the admitted candidates by 𝑆 (𝑡𝑢 , 𝑡𝑣), which is the

optimum. One can construct thresholds 𝑡 ′𝑢 = 𝑡𝑢 +𝜖1 and 𝑡
′
𝑣 = 𝑡𝑣 −𝜖2

(where 𝜖1, 𝜖2 > 0, infinitesimally small for large 𝑁𝑡 ), such that we

admit one more candidate from group 𝑣 (as a result of the decreased

threshold) and one less from group 𝑢 (as a result of the increased

threshold) as compared to the case with thresholds (𝑡𝑢 , 𝑡𝑣). As long

as 𝑡 ′𝑣 > 𝑡 ′𝑢 , we have 𝑆 (𝑡 ′𝑢 , 𝑡
′
𝑣) > 𝑆 (𝑡𝑢 , 𝑡𝑣), which contradicts the
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assumption that (𝑡𝑢 , 𝑡𝑣) maximize the greedy reward. Similarly, if

we begin with a pair of optimal (𝑡𝑢 , 𝑡𝑣) such that 𝑡𝑢 > 𝑡𝑣 , we can

construct thresholds 𝑡 ′𝑢 = 𝑡𝑢 − 𝜖3 and 𝑡
′
𝑣 = 𝑡𝑣 + 𝜖4, so that we admit

one more candidate from group 𝑢 and one less from group 𝑣 . As

long as 𝑡 ′𝑢 > 𝑡 ′𝑣 , we arrive at the contradiction 𝑆 (𝑡 ′𝑢 , 𝑡
′
𝑣) > 𝑆 (𝑡𝑢 , 𝑡𝑣).

Thus the greedy reward is optimized when thresholds across the

groups are equal, irrespective of the nature of P𝑢 and P𝑣 .

Thus, for arbitrary score distributions, the action that maximizes

the greedy reward is such that:

𝑡𝑢 = 𝑡𝑣

=⇒ 𝐹−1𝑢

(

1 −
𝑎𝑡𝐴𝑡

𝑠𝑡𝑁𝑡

)

= 𝐹−1𝑣

(

1 −
(1 − 𝑎𝑡 )𝐴𝑡

(1 − 𝑠𝑡 )𝑁𝑡

)

(16)

If P𝑢 and P𝑣 are identical, the arguments of the inverse CDFs in

(16) need to be equal. Thus the optimal action should be such that:

1 −
𝑎𝑡𝐴𝑡

𝑠𝑡𝑁𝑡
= 1 −

(1 − 𝑎𝑡 )𝐴𝑡

(1 − 𝑠𝑡 )𝑁𝑡

=⇒ 𝑎𝑡 = 𝑠𝑡 .

Thus, the greedy reward is maximized by choosing the admission

proportion of group 𝑢 to be same as the applicant proportion of

group 𝑢:

𝑎∗G = 𝑠𝑡 .

□

Employing theorem 4.1, we arrive at the the following theorem

which informs us about the convergence of the applicant pool and

characterizes the FG policy.

Theorem 4.2. For identical score distributions across the groups,

the Fair-Greedy policy satisfies the following properties:

𝑠𝑡 < 𝜋∗𝐹𝐺 (𝑠𝑡 ) < 𝑠, if 𝑠𝑡 < 𝑠

𝑠 < 𝜋∗𝐹𝐺 (𝑠𝑡 ) < 𝑠𝑡 , if 𝑠𝑡 > 𝑠

𝜋∗𝐹𝐺 (𝑠𝑡 ) = 𝑠, if 𝑠𝑡 = 𝑠

Furthermore, if the step-size 𝜂𝑡 decays with time and satisfies the

conditions (i)
∑

𝑡 𝜂𝑡 = ∞ and (ii)
∑

𝑡 𝜂
2
𝑡 < ∞, the applicant pool

proportion converges to the target proportion 𝑠 . This implies that the

admission or action at equilibrium also approaches the societal or

target proportion, in the asymptotic regime that the total applicants

in every round are large.

Proof. Under the FG policy, 𝑎𝑡 = 𝜋∗
𝐹𝐺

(𝑠𝑡 ). The applicant pool

update for the mean parameter is:

𝜃𝑡+1 = [𝜃𝑡 + 𝜂 (𝜋
∗
𝐹𝐺 (𝑠𝑡 ) − 𝑠𝑡 )]C . (17)

The fairness loss in (2) is minimized when the admission propor-

tion is same as the target, formalized as:

𝑎∗
F
= argmin

𝑎𝑡
𝐿F (𝑎𝑡 ) = 𝑠

The overall reward 𝑅(𝑠𝑡 , 𝑎𝑡 ) is a sum of the greedy reward and

fairness loss (scaled by 𝜆). The fairness loss is convex (hence−𝐿F (𝑎𝑡 )

is concave) in 𝑎𝑡 . It can be seen that the greedy reward monotoni-

cally decreases in either directions around 𝑎𝑡 = 𝑠𝑡 , and in addition

it possesses continuity in 𝑎𝑡 . When at state 𝑠𝑡 , suppose the optimal

action 𝑎∗ of the FG policy is such that 𝑎∗ < 𝑠𝑡 , when 𝑠𝑡 < 𝑠 . Then

by continuity and since the greedy reward is maximized at 𝑠𝑡 , ∃

some 𝑎′ > 𝑠𝑡 , such that 𝑅G (𝑠𝑡 , 𝑎
′) ≥ 𝑅G (𝑠𝑡 , 𝑎

∗), and moreover has

a smaller fairness loss, i.e., 𝐿F (𝑎
′) < 𝐿F (𝑎

∗), which violates the

optimality of 𝑎∗. Thus the optimal action for the FG policy must be

𝑎∗ > 𝑠𝑡 , if 𝑠𝑡 < 𝑠 . Similar arguments hold if 𝑠𝑡 > 𝑠 , and here we can

show that the optimal action must be such that 𝑎∗ < 𝑠𝑡 . Hence, it

follows that the optimal action for overall utility lies between the

optimal actions for greedy and fairness terms:

𝑠𝑡 < 𝜋∗𝐹𝐺 (𝑠𝑡 ) < 𝑠, if 𝑠𝑡 < 𝑠 (18)

𝑠 < 𝜋∗𝐹𝐺 (𝑠𝑡 ) < 𝑠𝑡 , if 𝑠𝑡 > 𝑠 (19)

𝜋∗𝐹𝐺 (𝑠𝑡 ) = 𝑠, if 𝑠𝑡 = 𝑠 (20)

Now we show the convergence of the applicant pool to its equi-

librium. Let us consider a step-size that decays with time such that
∑

𝑡 𝜂𝑡 = ∞ and
∑

𝑡 𝜂
2
𝑡 < ∞. Consider the case when 𝑠𝑡 < 𝑠 , where

we have: 𝑠𝑡 < 𝜋∗
𝐹𝐺

(𝑠𝑡 ) < 𝑠 . From (17), we can see that the mean

proportion parameter 𝜃𝑡+1 increases. Similarly, when 𝑠𝑡 > 𝑠 , it fol-

lows that 𝑠 < 𝜋∗
𝐹𝐺

(𝑠𝑡 ) < 𝑠𝑡 , and the mean proportion parameter

decreases. Note that the target proportion is a fixed point of the

FG policy, i.e., 𝜋∗
𝐹𝐺

(𝑠) = 𝑠 . Due to the above characterization of

𝜋∗
𝐹𝐺

(𝑠𝑡 ) and the model for the update of the applicant pool, the

mean parameter 𝜃𝑡 grows or reduces in the direction of 𝑠 . Hence,

as the step-size is decaying, one can show that the mean param-

eter 𝜃𝑡 converges to 𝑠 (see appendix A for details). Moreover, the

variance of the number of group 𝑢 applicants is 𝑣𝑎𝑟 (𝑁𝑢
𝑡 ) = 𝜃𝑡𝑁𝑡

due to the Poisson distribution. Thus, the state 𝑠𝑡 = 𝑁𝑢
𝑡 /𝑁𝑡 has

variance 𝑂 (1/𝑁𝑡 ). Consequently, in the asymptotic regime that

𝑁𝑡 is large, using Chebyshev’s inequality one can show that 𝑠𝑡
also converges to 𝜃𝑡 in probability. This implies that the applicant

proportion approaches 𝑠 , which completes the proof. □

5 EXPERIMENTAL EVALUATION

5.1 Evaluation on synthetic data

We begin by employing synthetic data to demonstrate the fair-

ness framework we develop in this paper, and study interesting

scenarios.

Optimal policy based on value iteration. Let us first consider

the MDP setting from Section 3, where the policy learnt is the

optimal policy (8) maximizing the accumulated utilities. Consider

the case where the two groups have identical score distributions.

This may often be the case in real-world scenarios when there

is no inherent reason for the sensitive attribute to influence the

scores or proficiency of a candidate. Let the score distributions be

Gaussian with means 𝜇𝑢 = 𝜇𝑣 = 5 and variances 𝜎2𝑢 = 𝜎2𝑣 = 1.

The societal/target proportion can be set by employing guidance

from the societal state or based upon the long-term target that the

selector has in mind. For example, suppose our application is to

hire software engineers, then representing women as group 𝑢, one

can set the target proportion to be the proportion of women in

computer science, or in the society in general. Or, if we target to

have a certain proportion of women in the company in the long-

term, we could set 𝑠 accordingly. In this experiment, we set 𝑠 = 0.4

and the admission rate is fixed to 𝑎 = 0.3, or in other words, the

selector aims to admit only 30% of the total applied candidates.

The other parameter values used for this experiment are 𝛾 = 0.99,

𝜆 = 1.5, a fixed step-size of 𝜂 = 0.05. Figure 1 shows how the

proportion of applicants, admitted candidates and mean parameter
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Our results indicate the potential of achieving long-term fairness

objectives through positive reinforcement via decision making. We

hope that this work stimulates the collaboration between machine

learning researchers and social scientists required for these ideas

to make real-world impact. A key future direction is to devise and

conduct experiments for measuring, understanding and shaping

the evolution dynamics posited in our framework.
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A APPENDIX: PROOF DETAILS

Lemma A.1. If the step-size 𝜂𝑡 decays with time and satisfies the

conditions (i)
∑

𝑡 𝜂𝑡 = ∞ and (ii)
∑

𝑡 𝜂
2
𝑡 < ∞, the mean of the appli-

cant pool proportion for group 𝑢 converges to the target proportion 𝑠

under the FG policy, when the score distributions across the groups

are identical.

Proof. We wish to show that 𝜃𝑡 → 𝑠 as 𝑡 → ∞. Let 𝑑𝑡 =

1
2 (𝜃𝑡 − 𝑠)2. Fix an 𝜖 > 0. We need to show that there exists some

𝑡0 (𝜖) such that when 𝑡 ≥ 𝑡0 (𝜖),

𝑑𝑡+1 ≤ 𝑑𝑡 − 𝛾𝑡 , if 𝑑𝑡 ≥ 𝜖 (21)

𝑑𝑡+1 < 𝑐𝜖, if 𝑑𝑡 < 𝜖 (22)

where 𝑐 is a positive constant. Moreover 𝛾𝑡 > 0 and
∑

𝑡 𝛾𝑡 = ∞. If

the above hold, then eventually for some 𝑡 = 𝑡1 (𝜖) ≥ 𝑡0 (𝜖), one has

𝑑𝑡 < 𝜖 . But due to (21) and (22) 𝑑𝑡 < 𝑐𝜖 for all 𝑡 > 𝑡1 (𝜖). Since 𝜖 is

arbitrary, 𝜃𝑡 → 𝑠 as 𝑡 → ∞.

We first show that (22) holds.

𝑑𝑡+1 =

1

2
(𝜃𝑡+1 − 𝑠)2

=

1

2
( [𝜃𝑡 − 𝜂𝑡 (𝑠𝑡 − 𝑎𝑡 )]C − 𝑠)2

≤
1

2
(𝜃𝑡 − 𝜂𝑡 (𝑠𝑡 − 𝑎𝑡 ) − 𝑠)2

= 𝑑𝑡 + 𝜂𝑡 (𝑠 − 𝜃𝑡 ) (𝑠𝑡 − 𝑎𝑡 ) +
1

2
𝜂2𝑡 (𝑠𝑡 − 𝑎𝑡 )

2

≤ 𝑑𝑡 + 𝜂𝑡 (𝑠 − 𝜃𝑡 ) (𝑠𝑡 − 𝑎𝑡 ) +
1

2
𝜂2𝑡

≤ 𝑑𝑡 +
𝜂𝑡

2
((𝑠 − 𝜃𝑡 )

2 + 1) +
1

2
𝜂2𝑡

Since 𝜂𝑡 is arbitrarily small, if 𝑑𝑡 < 𝜖 , we have:

𝑑𝑡+1 < 𝑐𝜖. (23)

When 𝑑𝑡 ≥ 𝜖 , we want to first show that

(𝑠 − 𝜃𝑡 ) (𝜃𝑡 − 𝑎𝑡 ) ≤ −𝛿 (𝜖) (24)
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where 𝛿 (𝜖) > 0. If this holds, we have,

𝑑𝑡+1 ≤ 𝑑𝑡 − 𝜂𝑡𝛿 (𝜖) +
1

2
𝜂2𝑡 . (25)

Let us denote 𝛾𝑡 = 𝜂𝑡𝛿 (𝜖) −
1
2𝜂

2
𝑡 . Since 𝜂𝑡 → 0, there exists some

𝑡2 (𝜖) such that 𝛾𝑡 > 0 for 𝑡 > 𝑡2 (𝜖). Moreover, due to conditions on

step size, we have
∑

𝑡 𝛾𝑡 = ∞.

Next, we will account for the stochasticity of 𝑠𝑡 . We have 𝑠𝑡 −𝑎𝑡 =

𝜃𝑡 + (𝑠𝑡 − 𝜃𝑡 ) − 𝑎𝑡 . Denoting 𝑧𝑡 = 𝑠𝑡 − 𝜃𝑡 , we have

𝑑𝑡+1 ≤ 𝑑𝑡 + 𝜂𝑡 (𝑠 − 𝜃𝑡 ) (𝜃𝑡 + 𝑧𝑡 − 𝑎𝑡 ) +
1

2
𝜂2𝑡 (26)

𝑧𝑡 is a zero-mean random variable. Also 𝐸 [𝑧2𝑡 ] = 𝑣𝑎𝑟 (𝑠𝑡 ) = 𝜃𝑡/𝑁𝑡 ,

which is bounded. Therefore 𝑣𝑡 :=
∑𝑡
𝑚=0 𝜂𝑚𝑧𝑚 is a martingale, and

𝐸 [𝑣2𝑡 ] is also bounded. This implies, by the martingale convergence

theorem, that 𝑣𝑡 converges to a finite random variable. Therefore,

we have
∑∞
𝑚=𝑡 𝜂𝑚𝑧𝑚 → 0. Since | 𝜃𝑡 − 𝑠 | is bounded, the effect of

noise 𝑧𝑡 is asymptotically negligible.

What remains to be shown is (24). In the regime of large num-

ber of applicants 𝑁𝑡 , we can see that the state 𝑠𝑡 is equal to its

mean 𝜃𝑡 with probability approaching one, through the Chebyshev

inequality.

When 𝑑𝑡 ≥ 𝜖 , since 𝑠𝑡 is equal to 𝜃𝑡 , we need to consider only

the cases (i) 𝑠𝑡 > 𝑠 and (ii) 𝑠𝑡 < 𝑠 . Under both these cases, we

have (𝑠 − 𝜃𝑡 ) (𝜃𝑡 − 𝑎𝑡 ) < 0 due to the structure of the FG policy in

(18) and (19), when the score distributions across the groups are

identical. □
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