Assessing the 4f orbital participation in the Ln-C bonds of $[Li(THF)_4][Ln(C_6Cl_5)_4]$ (Ln = La, Ce)

Osvaldo Ordoñez, Xiaojuan Yu, Guang Wu, Jochen Autschbach*, and Trevor W. Hayton*

Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260

*To whom correspondence should be addressed. Email: jochena@buffalo.edu, hayton@chem.ucsb.edu

Abstract

Reaction of $[Ln(NO_3)_3(THF)_4]$ (Ln = La; Ce) with 4 equiv of LiC_6Cl_5 in Et_2O resulted in the formation of the homoleptic lanthanide-aryl "ate" complexes $[Li(THF)_4][La(C_6Cl_5)_4]$ ([Li][1]) and $[Li(THF)_4][Ce(C_6Cl_5)_4]$ ([Li][2]). These complexes represent the first isolated homoleptic perchlorophenyl complexes for the lanthanides. In the solid state, both [Li][1] and [Li][2] exhibit octa-coordinate lanthanide centers, with four Ln-C σ -bonds and four $Cl\rightarrow Ln$ dative interactions involving the *ortho-Cl* atoms of the C_6Cl_5 ligands. Despite this apparent steric saturation, both [Li][1] and [Li][2] are highly temperature sensitive and quickly decompose in solution at room temperature. Density functional calculations show that the $Ln-C_{ipso}$ donation bonds feature only weak 4f participation (e.g., $\sim 1\%$ 4f weight for $[1]^-$). Nonetheless, the ^{13}C chemical shift for the C_{ipso} nuclei of $[1]^-$ includes ca. 8 ppm of deshielding from spin-orbit coupling effects from the 4f (and 5d) participation in its La-C bonds.

Introduction

Homoleptic lanthanide aryl complexes have a long and rich history. The first structurally characterized example, $[\text{Li}(\text{THF})_4][\text{Lu}(2,6-\text{Me}_2\text{C}_6\text{H}_3)_4]$, was isolated in 1972 by Hursthouse and co-workers. Since that time, a large number homoleptic Ln aryl complexes have been reported in the literature. Many of these complexes utilize pendant donor groups to stabilize the Ln-C_{aryl} bonds, 1,3,4 such as $[\text{Ln}(\eta^2-N,C-\text{C}_6\text{H}_4-o-\text{CH}_2\text{NMe}_2)_3]$ (Ln = Er, Yb, Lu, Y), $[\text{Ln}(\eta^2-N,C-\text{C}_6\text{H}_4-o-\text{CH}(\text{Me})\text{NMe}_2)_3]$), and $[\text{La}\{(S,S)-\text{Phebox}_-^i\text{Pr}\}_3]$, among others. $[\text{Ln}(\eta^2-N,C-\text{C}_6\text{H}_4-o-\text{C}(\text{Me}_2\text{NMe}_2)_3]$, and $[\text{La}\{(S,S)-\text{Phebox}_-^i\text{Pr}\}_3]$, among others. $[\text{Ln}(\Lambda^2-N,C-\text{C}_6\text{H}_4-o-\text{C}(\text{Me}_2)]$, and $[\text{Ln}(\Lambda^2-N,C-\text{C}_6\text{H}_4-o-\text{C}(\text{Me}_2)]$, and $[\text{Ln}(\Lambda^2-N,C-\text{C}_6\text{H}_4-o-\text{C}(\text{Me}_2)]$. These complexes examples are several $[\text{Ln}(\Lambda^2-N,C-\text{C}_6\text{H}_4-o-\text{C}(\text{Me}_2)]$, and $[\text{Ln}(\Lambda^2-N,C-\text{C}_6\text{H}_4-o-\text{C}(\text{Me}_2)]$. These complexes are functionally homoleptic due to the lability of their solvent donor ligands. Yet, despite this rich history, there are no reported lanthanide complexes containing the perchlorophenyl ligand (C₆Cl₅), which is remarkable given the large number of homoleptic C₆Cl₅ complexes reported for the transition metals, $(\text{Ln})^{13-22}$ and more recently, the actinides.

Previously, we and others have shown that ¹³C NMR spectroscopy is a valuable tool to evaluate covalency in actinide-ligand bonding.^{23–31} In particular, the ¹³C chemical shifts of organometallic ligands have proven to be highly sensitive to the degree of 5f orbital participation in the An-C bonds. Actinide perchlorophenyl complexes have also proven useful in this regard.^{23,24} For example, the C_{ipso} chemical shift in the uranyl C₆Cl₅ complex [Li(Et₂O)₂(THF)][UO₂(C₆Cl₅)₃] was found at 236.7 ppm. Calculations reveal a 62 ppm downfield spin-orbit (SO) induced shift due to the involvement of the 5f orbitals in the U-C bonding.²³ In contrast, this method of analysis has not been widely applied to the lanthanides. In one case,

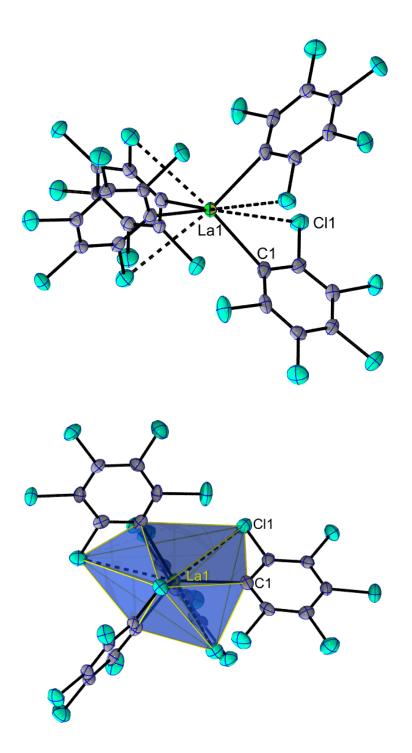
reported by Schelter and co-workers, an analysis of the 13 C NMR spectrum of [Li(THF)4][Ce^{IV}(κ^2 ortho-oxa)(MBP)2] (ortho-oxa = dihydro-dimethyl-2-[4-(trifluoromethyl)phenyl]-oxazolide,
MBP²⁻ = 2,2'-methylenebis(6-tert-butyl-4-methylphenolate)) reveals a calculated 40 ppm SOinduced shift for the C_{ipso} resonance, which is compelling evidence of 4f involvement in lanthanide(IV)-ligand bonding.³² That said, to our knowledge this method has not been applied to Ln(III) organometallics.

In an effort to expand this method of analysis to lanthanide organometallics, we targeted the synthesis of two homoleptic lanthanide-aryl "ate" complexes [Li(THF)₄][La(C₆Cl₅)₄] ([Li][1]) and [Li(THF)₄][Ce(C₆Cl₅)₄] ([Li][2]). These complexes proved to be highly thermally sensitive; nonetheless, both complexes were characterized by X-ray crystallography and ¹³C{¹H} NMR spectroscopy, and their electronic structures were examined by density functional theory (DFT) with a relativistic Hamiltonian.

Results and Discussion

Synthesis and Characterization. Reaction of [La(NO₃)₃(THF)₄] with 4 equiv of LiC₆Cl₅³³ in cold Et₂O (-25 °C) resulted in immediate formation of an orange-yellow solution, concomitant with the deposition of copious amounts of tan precipitate. Work-up of reaction mixture afforded [Li(THF)₄][La(C₆Cl₅)₄] ([Li][1]), which as isolated as colorless plates in 20% yield (Scheme 1). We also sought to synthesize the analogous cerium(III) aryl complex [Li(THF)₄][Ce(C₆Cl₅)₄] ([Li][2]), which was prepared by reaction of [Ce(NO₃)₃(THF)₄] with 4 equiv of LiC₆Cl₅ in cold Et₂O (-25 °C) (Scheme 1). Work-up of the reaction mixture followed by recrystallization from concentrated toluene afforded [Li][2] as yellow plates in 16% yield. Importantly, [Li][1] and [Li][2] represent the first homoleptic perchlorophenyl complexes of the lanthanides.

The low yields observed for [Li][1] and [Li][2] reflect their high thermal sensitivity (see below). Indeed, the highest yields were achieved when the reaction time and temperature were minimized. In particular, reaction times were kept to 2 min, and the work-up was performed using cold pentane and toluene. Longer reaction times (e.g., 1 h at room temperature) resulted in substantially reduced yields. Attempts to improve the yields of [Li][1] and [Li][2] were met with limited success. For example, reaction of LiC₆Cl₅ with CeCl₃ or [CeCl₃(THF)₄] did not generate [Li][2], likely because the low solubility of either starting material in Et₂O resulted in minimal conversion. In this regard, the successful use of [Ln(NO₃)₃(THF)₄] in this chemistry likely reflects its higher solubility in Et₂O. Additionally, our choice of solvents was somewhat limited because LiC₆Cl₅ reacts rapidly with THF. Moreover, attempts to understand the mass balance of each transformation was complicated by the absence of a convenient NMR handle.


Scheme 1. Synthesis of Complexes [Li][1] and [Li][2]

$$[Ln(NO_3)_3(THF)_4] \xrightarrow{Cl} Cl$$

$$Ln = La, Ce$$

$$Cl \qquad Cl \qquad Cl$$

$$Cl \qquad Cl \qquad Cl \qquad Cl$$

Figure 1. Solid-state molecular structure of [Li][1] shown with 50% probability ellipsoids (top). Solid-state molecular structure of [Li][1] with the triakis tetrahedron polygon shown in blue (bottom). The [Li(THF)₄]⁺ counterion was omitted for clarity.

Complex [Li][1] crystallizes in the tetragonal space group I4₁/a and features only one crystallographically independent aryl ligand (Figure 1). The eight-coordinate lanthanum center is coordinated by four *ipso* carbons and four "short" Ln—Cl contacts involving the *ortho*-Cl atoms of the C₆Cl₅ ligands. However, calculations suggest that the La center forms dative interactions of varying strengths with all eight ortho-Cl atoms (see below). According to the continuous shape measure, 34 the coordination geometry is best described as a T_d -symmetric triakis tetrahedron. $Cl\rightarrow M$ dative interactions previously observed in were $[Li(DME)_2(Et_2O)]_2[Li(DME)_2][Th(C_6Cl_5)_5]_3$ and $[Li(Et_2O)_4][U(C_6Cl_5)_5]_4$, as well as several transition metal examples. 14,15,19,24 Despite these nominally stabilizing interactions, [Li][1] still exhibits appreciable thermal sensitivity (see below). The La-C distance in [Li][1] is 2.594(3) Å (Table 1), which is similar to those seen in other σ -bonded lanthanum aryl complexes, ^{3,8,35} such as $[Cp_2La(2,6-(Me_2NCH_2)C_6H_3]$ (2.548(3) Å).³⁵ The Cl \rightarrow Ln distance in [Li][1] (3.5193(9) Å) is significantly longer Cl→An interactions observed than the $[\text{Li}(\text{DME})_2(\text{Et}_2\text{O})]_2[\text{Li}(\text{DME})_2][\text{Th}(\text{C}_6\text{Cl}_5)_5]_3$ (av. 3.09 Å) and $[\text{Li}(\text{Et}_2\text{O})_4][\text{U}(\text{C}_6\text{Cl}_5)_5]$ (av. 3.13 Å), despite their relatively similar ionic radii (i.e., $La^{3+} = 1.032 \text{ Å}$; $Th^{4+} = 0.94 \text{ Å}$; $U^{4+} = 0.89 \text{ Å}$). Complex [Li][2] crystallizes in the monoclinic space group P2₁/c as the toluene solvate, [Li][2]·C₇H₈ (Figure S3). The solid-state molecular structure of [Li][2] reveals an eight-coordinate cerium center formed by four Ln-C σ-bonds and four "short" Cl→Ln dative interactions. According to the continuous shape measure, 34 its coordination geometry is best described as a highly distorted triakis tetrahedron. The average Ce-C distance in [Li][2] is 2.559(7) Å (range = 2.542(7) – 2.579(7) Å; Table 1), which is shorter than the La-C distance in [Li][1], consistent with smaller ionic radius of the Ce(III) ion.³⁶ These values are also shorter than the Ce-C_{ipso} distances in $[Cp'_2Ce(C_6F_5)]$ $(Cp' = 1,2,4-{}^tBu_3C_5H_2; 2.621(4) \text{ Å}),^{37}$ $[Cp'_2Ce(2,3,4,6-C_6HF_4)]$ $(2.623(3) \text{ Å}),^{38}$

and [Cp'₂Ce(2,3,4,5-C₆HF₄)] (2.64(2) Å).³⁸ Interestingly, these examples also feature F \rightarrow Ce dative interactions similar to the Cl \rightarrow Ce interactions found in [Li][2].³⁹ In this regard, the "short" Cl \rightarrow Ce distances in [Li][2] range from 3.455(2) to 3.558(2) Å. These values bracket that found in [Li][1].

Table 1. Selected metrical parameters for [Li][1] and [Li][2] $\cdot C_7H_8$.

Complex	[Li][1]	[Li][2]·C ₇ H ₈
Ln-C	2.594(3)	2.557(6),
		2.542(7), 2.579(7),
		2.552(7)
Cl→Ln	3.5193(9)	3.455(2),
		3.470(2),
		3.545(2), 3.558(2)
Ln-C _{ipso} -C _{ortho}	118.5(3)°, 126.1(2)°	118.8(5)°, 127.6(5)°
		119.1(4)°, 126.1(5)°
		120.3(5)°, 124.2(4)°
		121.9(5)°, 123.0(5)°

Both [Li][1] and [Li][2] exhibit appreciable thermal sensitivity, as evidenced by a ¹³C {¹H} NMR spectrum of an *in situ* prepared sample of [Li][1] that was allowed to stand at room temperature for 1 h (Figure S15). This spectrum reveals the formation of a number of decomposition products, including C₆Cl₅H, and while the other decomposition products could not be definitively identified, the number of peaks, and their positions, suggest that they could be chlorinated biphenyls.⁴⁰ Similar products are generated upon decomposition of Ln-C₆F₅ complexes.^{11,39,41,42} Additionally, both [Li][1] and [Li][2] quickly decompose upon dissolution in tetrahydrofuran, CH₂Cl₂, pyridine, dimethoxyethane, and dimethylacetamide, as evidenced by the rapid formation of intractable deep orange-brown solutions. Isolated samples of [Li][1] and [Li][2] are insoluble hexanes and Et₂O, and only somewhat soluble in arene solvents. Curiously, however, the solubility of material

prepared in situ in Et₂O is much improved. Accordingly, we recorded their ¹³C{¹H} NMR spectra with material generated in situ in this solvent. These spectra were also recorded at -35 °C to minimize thermal decomposition. The in situ ¹³C{¹H} NMR spectrum of complex [Li][1], recorded in a mixture of Et₂O/benzene-d₆, features a resonance at 185.41 ppm (Figure S6), which we assign to the *ipso* carbon environment of its pentachlorophenyl ligands. This resonance is much resonances of $[\text{Li}(\text{Et}_2\text{O})_2(\text{THF})][\text{UO}_2(\text{C}_6\text{Cl}_5)_3]^{23}$ more upfield C_{ipso} $[Li(DME)_2(Et_2O)]_2[Li(DME)_2][Th(C_6Cl_5)_5]_3$, which appear at 236.7 and 198.78 ppm, respectively, suggesting a much less covalent M-C interaction (see below for more discussion). This spectrum also features resonances at 139.80, 128.73, and 128.47 ppm, which we ascribe to the *ortho*, *meta*, and *para* resonances of the pentachlorophenyl ligand, respectively. Additionally, we observe resonances at 184.35, 141.06, 127.74, and 127.38 ppm, which we ascribe to the *ipso*, ortho, meta, and para resonances of unreacted LiC₆Cl₅, respectively. Confirmation of these assignments comes from a ¹³C NMR spectrum of [Li][1] prepared with 10 equiv of LiC₆Cl₅ (Figure S8), as well as ¹³C NMR spectrum of a sample of LiC₆Cl₅ prepared in situ (Figure S14). The in situ ¹³C{¹H} NMR spectrum of [Li][2], recorded Et₂O/benzene-d₆, features a distinctive downfield resonance at 557.87 ppm (Figure S10), attributable to the ipso carbon of the pentachlorophenyl ligand. In addition, we observe resonances at 150.92, 149.83, and 129.66 ppm, which are assigned to the *ortho/meta*, *para*, and *ortho/meta* resonances of the pentachlorophenyl ligand, respectively. The large downfield shift of the C_{ipso} peak is consistent with the paramagnetism expected for [Li][2]. This spectrum also exhibits resonances assignable to unreacted LiC₆Cl₅.

Electronic Structure Analysis. To understand the electronic structures and bonding interactions within [Li][1] and [Li][2], DFT calculations with various hybrid and non-hybrid functionals, and a relativistic Hamiltonian, were performed on the anionic components, [1] and [2].

Complete computational details are given in the Supporting Information. The calculated NMR shifts of [1] were insensitive to the choice of functional, and therefore only the NMR data and corresponding bonding analysis obtained with the PBE functional are discussed in the following paragraphs. Complex [1] is a closed-shell spin singlet, whereas complex [2] exhibits a spin doublet configuration, as expected for a Ce(III) complex. The spin density is effectively localized at cerium, as evidenced by the Ce spin population of 0.986 (idealized 1.0) (Figure S1). The singly occupied molecular orbital (MO) is mostly of non-bonding 4f character. Natural localized MO (NLMO) analysis of the Ln-C_{ipso} interactions reveals nearly identical orbital compositions for La and Ce (Figure 2), which is also indicated by the similar Ln-C_{ipso} Wiberg bond orders (WBOs) of 0.30 and 0.33 for [1]⁻ and [2]⁻, respectively. The Ln weights in the σ -bonding NLMOs range from 8% (for [1]⁻) to 9% (for [2]⁻). Within these weights, the 4f and 5d contributions are 11% and 73% for [1], respectively, and 17% and 69% for [2], respectively, with the balance being 6s character in both cases (Table 2). The C_{ipso} weights in the σ -bonding NLMOs are 84% for both [1]⁻ and [2]. Within these weights, the 2s and 2p contributions are 25% and 75% for [1], respectively, and 26% and 74% for [2], respectively. In other words, there is an appreciable degree of donation bonding, but weaker than what is known from similar actinide complexes, 24,27,46 and the involvement of the 4f orbitals in the donation bonds is overall very minor. For comparison, the An- C_{ipso} WBOs for [An(C_6Cl_5)₅]⁻ are much larger, ranging from 0.47 for the Th analogue and 0.56 in the U analogue.²⁴ This difference reflects both the greater expected M-L covalency for the early actinides vs. the lanthanides, as well as the greater expected M-L covalency for M⁴⁺ vs M³⁺. 32,47 The NLMO analysis of [1][−] and [2][−] also reveals the presence of eight weak Cl→An dative interactions in each complex. The average Ln weight in the NLMOs of these dative interactions

is 2% for both [1]⁻ and [2]⁻ (Figure S2 and Table 1), which are commensurate with the experimentally measured (relatively long) Cl→Ln distances.

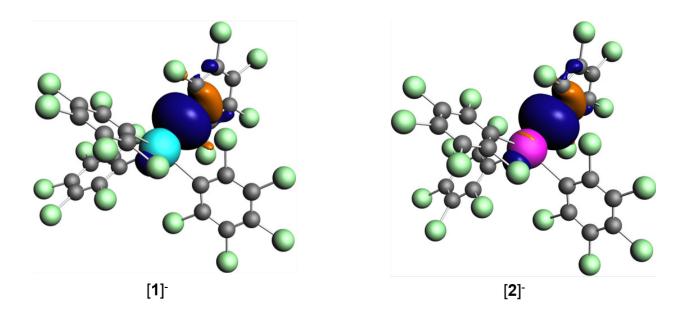


Figure 2. Representative Ln–C bonding NLMOs in [1] and [2]. (Isosurface values ±0.03 au.)

Table 2. % weight compositions of the Ln-C (Ln = La, Ce) bonding and Lone pair (LP) NLMOs in [1]⁻ and [2]⁻. % orbital character averaged over equivalent NLMOs.

Complex	Orbital	Total L	ns	np	Total Ln	6s	5d	4f
[1]-	σ(La-C)	84	25	75	8	15	73	11
	LP(Cl)	96	26	74	2	19	76	5
[2]-	σ(Ce-C)	84	26	74	9	14	69	17
	LP(Cl)	96	27	73	2	20	75	5

We calculated the 13 C NMR chemical shifts of the C_{ipso} nuclei for [(Et₂O)₃Li(C₆Cl₅)] and [1]⁻ with and without SO coupling effects. Repeated attempts to model the paramagnetic NMR (pNMR) ligand shifts for [2]⁻ with DFT or wavefunction calculations were unsuccessful, likely because of

a strong sensitivity of the spin delocalization and spin population to the dynamics of the system;^{48–50} therefore, the chemical shifts for [2][–] are not included in this analysis. The calculated C_{ipso}, C_{ortho}, C_{meta}, and C_{para} chemical shifts for [(Et₂O)₃Li(C₆Cl₅)] are 180.9 ppm (exp = 183.63 ppm), 145.1 ppm (exp = 140.97 ppm), 132.6 ppm (exp = 127.79 ppm), and 131.7 ppm (exp = 127.57 ppm). These predictions match the experimental values reasonably well, and further confirm our assignments for the unreacted LiC₆Cl₅ in the *in situ* ¹³C NMR spectra. The calculated C_{ipso}, C_{ortho}, C_{meta}, and C_{para} chemical shifts for [1][–] are 184.0 ppm (exp = 185.41 ppm), 140.6 ppm (exp = 139.80 ppm), 131.6 ppm (exp = 128.73 ppm), and 132.3 ppm (exp = 128.47 ppm). These values, especially the C_{ipso} and C_{ortho} chemical shifts, are in excellent agreement with experiment.

The diamagnetic, paramagnetic, and spin-orbit shielding (σ) contributions to the C_{ipso} chemical shifts for both [1]⁻ and [Th(C₆Cl₅)₅]⁻ are provided in Table 3. Note, for both [1]⁻ and [Th(C₆Cl₅)₅]⁻, the 2s contributions to the M-C_{ipso} bonding are similar (25 and 28%, respectively).²⁴ Likewise, σ_d contributions are essentially identical and the σ_p contributions are very similar. The only substantive difference is the σ_{SO} contribution (-7.9 and -26.1 ppm, respectively), which can be explained by the greater covalency (and greater valence f-shell contributions) in the M-C_{ipso} donation bonds of [Th(C₆Cl₅)₅]⁻ vs. [1]⁻. [Ce^{IV}(κ^2 -ortho-oxa)(MBP)₂]⁻ features a large (40 ppm) deshielding due to SO coupling for the same reason.³² Nonetheless, while the SO contribution to the C_{ipso} chemical shift in [1]⁻ is relatively small, as expected given the weak 4f (and to a lesser extent 5d) participation in the La-C_{ipso} bonds, its inclusion is unequivocally necessary to achieve good agreement between theory and experiment.

Table 3. Calculated C_{ipso} NMR chemical shift (δ , in ppm) and individual isotropic shielding contributions (σ , in ppm) in [1]⁻ and [Th(C₆Cl₅)₅]⁻ at the SO-PBE level of theory.^a

Compound	Method	σ_{d}	σ_{p}	σso	σcalc	δcalc	δexpt	Ref
[1]-	SO-PBE	248.7	-244.6	-7.9	-3.8	184.0	185.4	This work
$[Th(C_6Cl_5)_5]^-$	SO-PBE	248.4	-237.1	-26.1	-14.8	203.2	198.8	24

 $^{^{}a}$ σ_{d} , σ_{p} and σ_{so} indicate the diamagnetic, paramagnetic, and SO shielding, respectively, as partitioned in the NMR calculations.

Conclusion

In summary, we have prepared and characterized the first structurally authenticated homoleptic perchlorophenyl complexes of the lanthanides, [Li(THF)4][La(C₆Cl₅)4] ([Li][1]) and [Li(THF)4][Ce(C₆Cl₅)4] ([Li][2]), and we have confirmed their formulations by X-ray crystallography. A combined ¹³C NMR spectroscopic and DFT study found that the Ln-C_{ipso} bonds are mostly ionic, with the donation bonding mainly involving the Ln 5d orbitals and only minimal 4f orbital participation. Indeed, the spin-orbit-induced deshielding of the C_{ipso} chemical shift was only ca. 8 ppm – much less than that calculated for comparable An⁴⁺ perchlorophenyl complexes. Yet, while the SO contribution to the C_{ipso} chemical shift is small, it must be included in the DFT calculations to accurately match theory to experiment, highlighting the sensitivity of this approach to unravel electronic structure.

ASSOCIATED CONTENT

Supporting Information. Experimental procedures, crystallographic details, computational results, and spectral data for complexes [Li][1] and [Li][2] (PDF).

AUTHOR INFORMATION

Corresponding Author

hayton@chem.ucsb.edu, jochena@buffalo.edu

ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division under Contract DE-SC0001861. This research made use of the 400 MHz NMR Spectrometer in the Department of Chemistry, an NIH SIG (1S10OD012077-01A1), and a 500 MHz NMR Spectrometer supported by an NSF Major Research Instrumentation (MRI) Award 1920299. J. A. acknowledges support for the theoretical component of this study by the U.S. Department of Energy, Office of Science, Heavy Element Chemistry program, grant DE-SC0001136. We thank the Center for Computational Research (CCR) at the University of Buffalo for providing computational resources.

References

- (1) Petrov, A. R.; Thomas, O.; Harms, K.; Rufanov, K. A.; Sundermeyer, J. Dramatic Enhancement of the Stability of Rare-Earth Metal Complexes with α-Methyl Substituted N,N-Dimethylbenzylamine Ligands. *J. Organomet. Chem.* **2010**, *695*, 2738–2746.
- (2) Cotton, S. A.; Hart, F. A.; Hursthouse, M. B.; Welch, A. J. Preparation and Molecular Structure of a σ-Bonded Lanthanide Phenyl. *J. Chem. Soc., Chem. Commun.* **1972**, 1225–1226.
- (3) Pan, Y.; Xu, T.; Yang, G.-W.; Jin, K.; Lu, X.-B. Bis(oxazolinyl)phenyl-Ligated Rare-Earth-Metal Complexes: Highly Regioselective Catalysts for Cis-1,4-Polymerization of Isoprene. *Inorg. Chem.* **2013**, *52*, 2802–2808.
- (4) Petrov, A. R.; Rufanov, K. A.; Harms, K.; Sundermeyer, J. Re-Investigation of Ortho-Metalated N,N-Dialkylbenzylamine Complexes of Rare-Earth Metals. First Structurally Characterized Arylates of Neodymium and Gadolinium Li[LnAr₄]. *J. Organomet. Chem.* **2009**, *694*, 1212–1218.
- (5) Zimmermann, M.; Anwander, R. Homoleptic Rare-Earth Metal Complexes Containing Ln–C σ-Bonds. *Chem. Rev.* **2010**, *110*, 6194–6259.
- (6) Ihara, E.; Adachi, Y.; Yasuda, H.; Hashimoto, H.; Kanehisa, N.; Kai, Y. Synthesis of 2,6-Dialkoxylphenyllanthanoid Complexes and Their Polymerization Catalysis. *J. Organomet. Chem.* **1998**, *569*, 147–157.
- (7) Wayda, A. L.; Atwood, J. L.; Hunter, W. E. Homoleptic Organolanthanoid Hydrocarbyls. The Synthesis and X-Ray Crystal Structure of Tris[o-((dimethylamino)methyl)phenyl]lutetium. *Organometallics* **1984**, *3*, 939–941.
- (8) Martinez-Arripe, E.; Jean-Baptiste-dit-Dominique, F.; Auffrant, A.; Le Goff, X.-F.; Thuilliez, J.; Nief, F. Synthesis and Characterization of Bidentate Rare-Earth Iminophosphorane *o*-Aryl Complexes and Their Behavior As Catalysts for the Polymerization of 1,3-Butadiene. *Organometallics* **2012**, *31*, 4854–4861.
- (9) Bochkarev, L. N.; Stepantseva, T. A.; Zakharov, L. N.; Fukin, G. K.; Yanovsky, A. I.; Struchkov, Y. T. Synthesis and Crystal Structure of Ph₃Ln(THF)₃ (Ln = Er, Tm). *Organometallics* **1995**, *14*, 2127–2129.
- (10) Forsyth, C. M.; Deacon, G. B. The First Crystallographically Characterized (Perfluoroaryl)lanthanoid(II) Complex, Eu(C₆F₅)₂(OC₄H₈)₅. *Organometallics* **2000**, *19*, 1205–1207.
- (11) Deacon, G. B.; Forsyth, C. M. A Half-Sandwich Perfluoroorganoytterbium(II) Complex from a Simple Redox Transmetalation/Ligand Exchange Synthesis. *Organometallics* **2003**, *22*, 1349–1352.
- (12) Heckmann, G.; Niemeyer, M. Synthesis and First Structural Characterization of Lanthanide(II) Aryls: Observation of a Schlenk Equilibrium in Europium(II) and Ytterbium(II) Chemistry. *J. Am. Chem. Soc.* **2000**, *122*, 4227–4228.
- (13) Ara, I.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Menjón, B. Synthesis and Characterization of Pentachlorophenyl–Metal Derivatives with d⁰ and d¹⁰ Electron Configurations. *Chem. Eur. J.* **2004**, *10*, 4186–4197.
- (14) Forniés, J.; Menjón, B.; Sanz-Carrillo, R. M.; Tomás, M.; Connelly, N. G.; Crossley, J. G.; Orpen, A. G. Synthesis and Structural Characterization of the First Isolated Homoleptic Organoplatinum(IV) Compound: [Pt(C₆Cl₅)₄]. J. Am. Chem. Soc. 1995, 117, 4295–4304.

- (15) García, M. P.; Jiménez, M. V.; Lahoz, F. J.; López, J. A.; Oro, L. A. Synthesis of the Homoleptic Rhodium(III) Complex [Rh(C₆Cl₅)₃]. Molecular Structures of [Rh(C₆Cl₅)₃] and [Rh(C₆Cl₄–C₆Cl₄)(C₆Cl₅)(SC₄H₈)₂]. *J. Chem. Soc., Dalton Trans.* **1998**, 4211–4214.
- (16) García, M. P.; Jiménez, M. V.; Oro, L. A.; Lahoz, F. J.; Tiripicchio, M. C.; Tiripicchio, A. A Homoleptic Mononuclear Iridium(II) Organometallic Complex: Synthesis and X-Ray Structure of [Ir(C₆Cl₅)₄]²⁻. *Organometallics* **1993**, *12*, 4660–4663.
- (17) Alonso, P. J.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Menjón, B. The First Structurally Characterised Homolepticorganovanadium(III) Compound. *Chem. Commun.* **2001**, 2138–2139.
- (18) Alonso, P. J.; Falvello, L. R.; Forniés, J. Synthesis and First Structural Characterisation of a Homoleptic Tetraorganochromate(III) Salt. *Chem. Commun.* **1998**, 1721–1722.
- (19) Alonso, P. J.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Menjón, B.; Rillo, C. A New Series of Homoleptic, Paramagnetic Organochromium Derivatives: Synthesis, Characterization, and Study of Their Magnetic Properties. *Chem. Eur. J.* **2002**, *8*, 4056–4065.
- (20) Alonso, P. J.; Arauzo, A. B.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Martínez, J. I.; Menjón, B.; Rillo, C.; Sáiz-Garitaonandia, J. J. A Square-Planar Organoiron(III) Compound with a Spin-Admixed State. *Angew. Chem. Int. Ed.* **2006**, *45*, 6707–6711.
- (21) Alonso, P. J.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Menjón, B. New Homoleptic Organometallic Derivatives of Vanadium(III) and Vanadium(IV): Synthesis, Characterization, and Study of Their Electrochemical Behaviour. *Chem. Eur. J.* **2005**, *11*, 4713–4724.
- (22) García-Monforte, M. A.; Alonso, P. J.; Forniés, J.; Menjón, B. New Advances in Homoleptic Organotransition-Metal Compounds: The Case of Perhalophenyl Ligands. *Dalton Trans.* **2007**, 3347–3359.
- (23) Ordoñez, O.; Yu, X.; Wu, G.; Autschbach, J.; Hayton, T. W. Synthesis and Characterization of Two Uranyl-Aryl "Ate" Complexes. *Chem. Eur. J.* **2021**, *27*, 5885–5889.
- (24) Ordoñez, O.; Yu, X.; Wu, G.; Autschbach, J.; Hayton, T. W. Homoleptic Perchlorophenyl "Ate" Complexes of Thorium(IV) and Uranium(IV). *Inorg. Chem.* **2021**, *60*, 12436–12444.
- (25) Kent, G. T.; Yu, X.; Pauly, C.; Wu, G.; Autschbach, J.; Hayton, T. W. Synthesis of Parent Acetylide and Dicarbide Complexes of Thorium and Uranium and an Examination of Their Electronic Structures. *Inorg. Chem.* **2021**, *60*, 15413–15420.
- (26) Kent, G. T.; Yu, X.; Wu, G.; Autschbach, J.; Hayton, T. W. Synthesis and Electronic Structure Analysis of the Actinide Allenylidenes, [{(NR₂)₃}An(CCCPh₂)]⁻ (An = U, Th; R = SiMe₃). *Chem. Sci.* **2021**, *12*, 14383–14388.
- (27) Pedrick, E. A.; Hrobárik, P.; Seaman, L. A.; Wu, G.; Hayton, T. W. Synthesis, Structure and Bonding of Hexaphenyl Thorium(IV): Observation of a Non-Octahedral Structure. *Chem. Commun.* **2016**, *52*, 689–692.
- (28) Mullane, K. C.; Hrobárik, P.; Cheisson, T.; Manor, B. C.; Carroll, P. J.; Schelter, E. J. ¹³C NMR Shifts as an Indicator of U–C Bond Covalency in Uranium(VI) Acetylide Complexes: An Experimental and Computational Study. *Inorg. Chem.* **2019**, *58*, 4152–4163.

- (29) Smiles, D. E.; Wu, G.; Hrobárik, P.; Hayton, T. W. Synthesis, Thermochemistry, Bonding, and ¹³C NMR Chemical Shift Analysis of a Phosphorano-Stabilized Carbene of Thorium. *Organometallics* **2017**, *36*, 4519–4524.
- (30) Seaman, L. A.; Hrobárik, P.; Schettini, M. F.; Fortier, S.; Kaupp, M.; Hayton, T. W. A Rare Uranyl(VI)–Alkyl Ate Complex [Li(DME)_{1.5}]₂[UO₂(CH₂SiMe₃)₄] and Its Comparison with a Homoleptic Uranium(VI)–Hexaalkyl. *Angew. Chem. Int. Ed.* **2013**, *52*, 3259–3263.
- (31) Kent, G. T.; Yu, X.; Wu, G.; Autschbach, J.; Hayton, T. W. Ring-Opening of a Thorium Cyclopropenyl Complex Generates a Transient Thorium-Bound Carbene. *Chem. Commun.* **2022**, *58*, 6805–6808.
- (32) Panetti, G. B.; Sergentu, D.-C.; Gau, M. R.; Carroll, P. J.; Autschbach, J.; Walsh, P. J.; Schelter, E. J. Isolation and Characterization of a Covalent Ce^{IV}-Aryl Complex with an Anomalous ¹³C Chemical Shift. *Nat. Commun.* **2021**, *12*, 1713.
- (33) Rausch, M. D.; Tibbetts, F. E.; Gordon, H. B. Perhaloaryl-Metal Chemistry: II. Pentachlorophenyllithium. *J. Organomet. Chem.* **1966**, *5*, 493–500.
- (34) Cirera, J.; Ruiz, E.; Alvarez, S. Continuous Shape Measures as a Stereochemical Tool in Organometallic Chemistry. *Organometallics* **2005**, *24*, 1556–1562.
- (35) Hogerheide, M. P.; Boersma, J.; Spek, A. L.; van Koten, G. Synthesis of a Bis(cyclopentadienyl)lanthanum Aryl Complex with a Pseudofacially Bound Bis(ortho)-Chelating Aryldiamine Ligand. X-Ray Structure of (η⁵-C₅H₅)₂La(C₆H₃{CH₂NMe₂}₂-2,6). *Organometallics* **1996**, *15*, 1505–1507.
- (36) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Cryst A* **1976**, *32*, 751–767.
- (37) Maron, L.; Werkema, E. L.; Perrin, L.; Eisenstein, O.; Andersen, R. A. Hydrogen for Fluorine Exchange in C₆F₆ and C₆F₅H by Monomeric [1,3,4-(Me₃C)₃C₅H₂]₂CeH: Experimental and Computational Studies. *J. Am. Chem. Soc.* **2005**, *127*, 279–292.
- (38) Werkema, E. L.; Andersen, R. A. Fluorine for Hydrogen Exchange in the Hydrofluorobenzene Derivatives $C_6H_xF_{(6-x)}$, Where x = 2, 3, 4 and 5 by Monomeric [1,2,4- $(Me_3C)_3C_5H_2$]₂CeH: The Solid State Isomerization of [1,2,4- $(Me_3C)_3C_5H_2$]₂Ce(2,3,4,5- C_6HF_4) to [1,2,4- $(Me_3C)_3C_5H_2$]₂Ce(2,3,4,6- C_6HF_4). *J. Am. Chem. Soc.* **2008**, *130*, 7153–7165.
- (39) Yin, H.; Zabula, A. V.; Schelter, E. J. C–F→Ln/An Interactions in Synthetic f-Element Chemistry. *Dalton Trans.* **2016**, *45*, 6313–6323.
- (40) Yanagisawa, M.; Hayamizu, K.; Yamamoto, O. ¹³C Chemical Shifts of Chlorinated Biphenyls. *Magn. Reson. Chem.* **1986**, *24*, 1013–1014.
- (41) Deacon, G. B.; Jaroschik, F.; Junk, P. C.; Kelly, R. P. A Divalent Heteroleptic Lanthanoid Fluoride Complex Stabilised by the Tetraphenylcyclopentadienyl Ligand, Arising from C–F Activation of Pentafluorobenzene. *Chem. Commun.* **2014**, *50*, 10655–10657.
- (42) Deacon, G. B.; Koplick, A. J.; Raverty, W. D.; Vince, D. G. Organolanthanoids: II. Preparation and Identification of Some Organolanthanoid Species in Solution. *J. Organomet. Chem.* **1979**, *182*, 121–141.
- (43) Glendening, E. D.; Landis, C. R.; Weinhold, F. NBO 6.0: Natural Bond Orbital Analysis Program. *J. Comput. Chem.* **2013**, *34*, 1429–1437.
- (44) Autschbach, J. The Role of the Exchange-Correlation Response Kernel and Scaling Corrections in Relativistic Density Functional Nuclear Magnetic Shielding Calculations with the Zeroth-Order Regular Approximation. *Mol. Phys.* **2013**, *111*, 2544–2554.

- (45) E. J. Baerends, T. Ziegler, A. J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, C. Daul, D. P. Chong, D. V. Chulhai, L. Deng, R. M. Dickson, J. M. Dieterich, D. E. Ellis, M. v. Faassen, L. Fan, T. H. Fischer, C. F. Guerra, M. Franchini, A. Ghysels, A. Giammona, S. J. A. v. Gisbergen, A. Goez,; A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. v. d. Hoek, Z. Hu, C. R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J. W. Kaminski, G. v. Kessel, C. König, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. v. Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, C. A. Peeples, P. H. T. Philipsen, D. Post, C. C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, J. I. Rodríguez, P. Ros, R. Rüger, P. R. T. Schipper, D. Schlüns, H. v. Schoot, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Stener, M. Swart, D. Swerhone, V. Tognetti, G. t. Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. v. Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, Amsterdam Density Functional. 2017 Ed.; SCM, Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands, 2017. https://www.scm.com.
- (46) Wolford, N. J.; Sergentu, D.-C.; Brennessel, W. W.; Autschbach, J.; Neidig, M. L. Homoleptic Aryl Complexes of Uranium (IV). Angew. Chem. Int. Ed. 2019, 58, 10266–10270.
- (47) Löble, M. W.; Keith, J. M.; Altman, A. B.; Stieber, S. C. E.; Batista, E. R.; Boland, K. S.; Conradson, S. D.; Clark, D. L.; Lezama Pacheco, J.; Kozimor, S. A.; Martin, R. L.; Minasian, S. G.; Olson, A. C.; Scott, B. L.; Shuh, D. K.; Tyliszczak, T.; Wilkerson, M. P.; Zehnder, R. A. Covalency in Lanthanides. An X-Ray Absorption Spectroscopy and Density Functional Theory Study of LnCl₆^{x-} (x = 3, 2). *J. Am. Chem. Soc.* **2015**, *137*, 2506–2523.
- (48) Martin, B.; Autschbach, J. Temperature Dependence of Contact and Dipolar NMR Chemical Shifts in Paramagnetic Molecules. *J. Chem. Phys.* **2015**, *142*, 054108.
- (49) Gendron, F.; Sharkas, K.; Autschbach, J. Calculating NMR Chemical Shifts for Paramagnetic Metal Complexes from First-Principles. *J. Phys. Chem. Lett.* **2015**, *6*, 2183–2188.
- (50) Autschbach, J. Chapter One NMR Calculations for Paramagnetic Molecules and Metal Complexes. In *Annual Reports in Computational Chemistry*; Dixon, D. A., Ed.; Elsevier, 2015; Vol. 11, pp 3–36.

Table of Contents

The homoleptic lanthanide-aryl "ate" complexes, $[Li(THF)_4][Ln(C_6Cl_5)_4]$ (Ln = La, Ce), exhibit highly ionic Ln-C_{ipso} bonds with minimal 4f orbital participation, according to a combined ¹³C NMR spectroscopic and density functional theory study.