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Abstract

We propose a point cloud and mesh generation algorithm, particle injection

mesh generator (PIMesh), that can be used to generate optimized high-quality

point clouds and unstructured meshes for domains in any shape with mini-

mum (or even no) user intervention. The domains can be scanned images in

OBJ format in 2D and 3D or just a line drawing in 2D. Mesh grading can also

be easily controlled. The PIMesh is robust and easy to be implemented and is

useful for a variety of applications, ranging from generating point clouds for

meshless methods, mesh generation for finite element methods, computer

graphics applications and surgical simulators. The core idea of the PIMesh is

that a mesh domain is considered as an “airtight container” into which parti-

cles are “injected” at one or multiple selected interior points. The motion of

the particles is controlled by a pseudo-molecular dynamics (PMD) formulation

with a pairwise purely repelling “force” moderated by an absolute velocity

dependent drag force. The particles repel each other and occupy the whole

domain somewhat like blowing up a balloon. When the container is full of par-

ticles and the motion is stopped (the particles can be considered as a point

cloud), a Delaunay triangulation algorithm is employed to link the particles

together to generate an unstructured mesh. The performance of the PIMesh

and the comparison with other unstructured mesh generation approaches are

demonstrated through generating node distributions and meshes for several

2D and 3D object domains including a scanned image of bones and others.
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1 | INTRODUCTION

Point cloud and mesh generation is a basic task for all discretization methods for the numerical solutions of physical
problems and many computer graphics applications. Various mesh generation strategies have been deployed over the
years1–3 and have been successfully integrated into commercial packages and are in widespread use in the finite
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element and finite volume community. The meshes applied in numerical simulations are generally classified into two
categories: structured and unstructured meshes. Since unstructured meshes provide better conformity to complex
geometries than structured meshes,4 unstructured meshes are more suitable to be used in surgical simulations where
the geometries of mesh domains are typically very complex. However, the currently available mesh generators require
quite a bit of user intervention in preparing the object for meshing, locating highly distorted meshes and “healing”
errors in meshing, and so on. Because of these challenges, mesh generation remains a technically challenging task.

In particular, the challenges in mesh generation are particularly acute in the area of surgical simulations for train-
ing students and professionals in surgical interventions. Real-time rendering technology and haptic devices based on
high-fidelity surgical simulators have been adopted by the surgical community. However, once surgical simulators are
developed, the training scenarios are rarely updated by healthcare educators due to the complexity of re-meshing and
computational simulations. Thus, allowing medical educators to set new simulation scenarios directly is extremely valu-
able, because even for the same type of surgery there can be many different training scenarios since human organs and
tissues change with ages and patients can have many different symptoms. For example, the procedures of surgeries to
cure stomach cancers can be different according to the geometries as well as the positions of tumors in stomachs and
patients' age. However, it is not possible to develop surgical simulators by engineers that cover all the practical scenarios
due to the limit of funding resources and an unlimited number of cases in reality.

A prospective technical plan is to develop a surgical simulator that an educator can adjust the existing training sce-
narios or even create new training scenarios without the need for expertise in numerical simulations. To develop such a
simulator, it is essential to integrate an automatic mesh generator to generate meshes for objects on which learners
practice. Unstructured meshes are widely adopted in surgical simulation.5 Furthermore, compared to the autonomous
structured meshes generation algorithms, autonomous unstructured meshes algorithms are generally simpler.6 This
work aims to develop a fast simple autonomous unstructured mesh generator that can easily be integrated into surgical
simulators, which allows healthcare educators to adjust and create training scenarios.

Autonomous unstructured mesh generation methods is an active research subject in recent decades. Delaunay trian-
gulation-based methods and its variations,7–9 advancing front methods,10,11 Octree-based methods,12,13 and their hybrid
methods14,15 are the most popular mesh generation methods. However, these geometrically based methods, particularly
extending the methods from 2D domain to 3D domain, require extensive mathematical descriptions of the objects and
so cannot be directly used from scans and OBJ files.

Besides the above geometrically based mesh generation methods, there are some physically based mesh generators,
such as the bubble mesh.16 The bubble mesh is an approach that is based on sphere packing, that is, it considers each
node to be a solid sphere and packs them inside the mesh domain one by one using attractive forces to get the bubbles
to “stick” together. However, it requires a good initial bubble configuration to reduce the convergence in the relaxation
stage. The attractive forces tend to “clump” the mesh points and care has to be taken to eliminate that.

Smoothed-particle hydrodynamics (SPH)17 based mesh generation algorithms18,19 are recent methods to generate
unstructured meshes. They are based on a level set description of a surface and require a background multi-resolution
Cartesian mesh assigning boundary points, seeding it with interior points, and then improving on their locations using
the equations for fluid flow. The approach requires assigning mesh nodes on boundary edges or surfaces of mesh
domains and using temporal ghost particles at the boundaries, both of which can complicate the implementation of the
mesh generation methods or even reduce the efficiency.

Apart from these, there are other mesh generators, such as DistMesh20 and Gmsh,21 which are very popular in the
finite element methods community. DistMesh is also a physically based mesh generator; however, it requires specifica-
tion of distance functions for bounding surfaces which are very challenging for complex domains. Additionally, Gmsh
uses a local refinement strategy starting from the Delaunay triangulation of the boundary points and then adding new
points as required, and requires considerable user interventions.

There has also been a considerable effort focused on the fast triangulation of domains using techniques such as opti-
mal Delaunay triangulation22 or centroidal Voronoi tessellation.23 These techniques have seen further impetus due to
applications of discrete differential geometry which requires both the original mesh (the triangles or tetrahedral
obtained as a result of a Delaunay triangulation for instance) as well as its dual (the Voronoi cell polygons or polyhedral
for examples). Approaches such as Hodge-optimized triangulation24 that preserve the quality of both the mesh and its
dual have been developed. In the last decade, approaches that discretize the physical problem using both the primal
and dual meshes have increased25 with geometrical and physical quantities defined on either the primal or dual mesh.
Most recently dual mesh approach to finite elements has been pioneered by Reddy and coworkers.26,27

In many of these approaches, the mesh generation proceeds in two steps: (1) allocation of points on the boundary
and inside a domain and (2) creation of connections or edges between the points in such a way as to give rise to a valid

2 of 31 WANG ET AL.



non-intersecting and high-quality mesh. The aforementioned methods all focus on the second task, that is, how to cre-
ate a mesh given a point cloud28 and how to adjust the location of the point cloud to improve the mesh quality. Usually,
the second step involves a complex geometry-based cost function with multiple minima29 so that viable solutions
depend upon good starting locations for the nodes.

Recently with the increased use of finite element methods to quickly evaluate preliminary designs, there has also
considerable interest in generating quick meshes from 2D sketches. There is thus a need for an easy to use mesh gener-
ator that

• Does not require an extensive mathematical description of the domain so that it can even generate meshes from a
computer sketch;

• Provides a simple and automated way to estimate the number of points required and insert them.
• Provides a high-quality mesh without additional smoothing steps;
• Allows for a graded mesh with higher density where required;
• Allows for particle movement and the injection or removal of points for adaptive mesh generation.

The mesh generation scheme presented here (see Figure 1,2), the PIMesh (Particle Injection Mesh Generator),
which is based on a simplified version of molecular dynamics, satisfies all these criteria. The PIMesh mimics a “gas
expansion” or “balloon inflation” process (see Figure 3) using a purely repelling “forces” on the particles.

Given a computer sketched region and one or more “injection” points in the interior, the algorithm “injects” parti-
cles that repel each other and so occupy the whole domain. The repulsion can be location dependent so that graded
meshes are possible. The simulation of the particles' movement is based on Newton's laws with pairwise repulsive
forces and velocity-based drag forces constraints that allow particles to dissipate their kinetic energy. Rather than use
physically realistic forces, such as van der Waals forces, the approach (a) uses purely repelling simplified forces that
allow for rapid computation and (b) uses a velocity limiting scheme so that the particle velocities do not exceed a
threshold.

The particles are prevented from crossing any boundary by repulsion from them so that they eventually occupy the
region assigned to them with maximally separate distances. If new particles are injected, they will simply readjust based
on the repulsive forces. If the boundaries move they will exert repulsive “forces” on the particles which will conse-
quently readjust. With this approach, it is shown that we obtain excellent mesh quality with minimal or NO user
intervention.

The major innovations of the PIMesh are

• The repelling forces of the pseudo-molecular dynamic (PMD) drive the particles' motion. Even when the particles'
motion is stopped, there are still repelling forces among neighbor particles. Therefore, the particles are always trying
to occupy all the space of an object domain and the PIMesh can be used to generate point clouds and meshes for
domains with any shape.

(A) (B) (C)

FIGURE 1 Illustration of the capability of the PIMesh to generate graded node distributions for meshless methods and triangular mesh

for finite element analysis from CAD drawings. (A) The geometry of a 2D domain. (B) Nonuniform node distributions and (C) a nonuniform

mesh for the 2D domain.
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• The PIMesh does not require an initial high-quality mesh nodes configuration, which is required in other physically
based mesh generation methods, such as the bubble mesh16 and the SPH based mesh generation methods.18,19 We
can even inject all the nodes from a single point in the domain (or even on the boundary) and the particles will repel
each other and occupy the domain.

(A) (B)

(C) (D)

FIGURE 3 (A) The plot of a 2D object represents the mesh domain, which is assumed to be an airtight container. (B) Mesh nodes are

assumed to be particles, which are injected at multiple places and can move inside the container. (C) The particles are distributed over the

container until the motion is stopped (the speed of the particles is very small). The particles can be considered as a point cloud. (D) Generate

a mesh based on the positions of the particles using Delaunay triangulation (or other schemes)

FIGURE 2 Illustration of the efficacy of the PIMesh for surgical simulation applications. (A) A 3D femur model (OBJ format) obtained

through CT scan images. (B) Uniform node distributions and (C) a uniform tetrahedral mesh for the 3D femur domain. Note that the node

distribution includes nodes inside the mesh domain; the mesh is generated based on the uniform node distribution and the nodes on the

surface of the mesh domain are distributed almost uniformly.
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Since the bubble mesh has attractive forces, the initial particle distribution should be distributed to prevent clumping
to speed up the convergence (see Section 3.1 for the detailed comparison between the PIMesh and the bubble mesh).
The SPH based mesh generation methods require high-quality boundary nodes distributions to guarantee the quality
of the resulting meshes. Assigning mesh nodes on boundary edges for 2D mesh domains and boundary surfaces for
3D mesh domains essentially are tasks for generating meshes for 2D curves and 3D surfaces respectively.

• Compared to SPH based mesh generation methods,18,19 in which the particles' flow is driven by the gradient of pres-
sure, the PIMesh is much easier and at least an order of magnitude faster to implement, because (1) the calculation
of repelling and viscous forces in this work is only based on pairwise repellent functions and particle absolute veloci-
ties without the need for calculating the density as well as the gradient of pressure and velocities; (2) PIMesh does
not need to calculate ghost boundary mesh nodes, which take extra memories and requires extra computation; (3)
PIMesh has a dynamic population control algorithm and thus always simulate the motion of a minimum number of
particles (see Section 3.2 for the detailed advantages of PIMesh over SPH based mesh generation methods).

• The velocity dependent drag force and the use of a cutoff speed guarantees that the motion simulation always is con-
verged since the viscous forces dissipate the kinetic energy of particles.

• The algorithm can easily handle fixed mesh node constraints or complex interior point constraints;
• The number of particles is automatically updated according to a particle population control algorithm based on the

target mesh size (or the target neighbor node distance for point clouds); therefore, the PIMesh does not require a pre-
determined number of nodes.

As the unstructured mesh generation is based on point clouds, we first discuss the algorithm to obtain admissible
point cloud distributions for meshless methods.

2 | ADMISSIBLE NODE DISTRIBUTIONS FOR MESHLESS METHODS

In practice, most node distributions are obtained through meshes by removing the nodal connections. Recently, several
works30–32 have been proposed to generate node distributions for meshless methods. The PIMesh proposed in this work
is an alternative method to create high-quality node distributions. We first introduce the algorithm for generating uni-
form node distributions, and the overview of the algorithm is shown in Table 1. The details are discussed in the follow-
ing part.

2.1 | Initialization for obtaining uniform node distributions

At the initial step, 2D and 3D domains are prepared in the OBJ file format. The simulation parameters, such as the total
simulation time Ttotal, the time step size Δt, and mesh size function over the domain h(x), are set. Since the node distri-
butions is uniform, the target node distance function is set as h(x) = h (h is a constant).

2.1.1 | Estimate the target number of particles

For a 2D domain represented by a triangular mesh in OBJ file format, we assume that particles are uniform array points
distributed over the 2D domain. Thus, the initial target number of particles that will be injected into the domain can be
estimated as,

Ntotal ¼A2d

h2
, ð1Þ

where A2d is the total area of the domain. Similarly, for a 3D domain represented by a triangular surface mesh in OBJ
file format, the initial target number of particles is estimated as,

Ntotal ¼V 3d

h3
, ð2Þ
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where V3d is the volume of the 3D domain. Note that the estimated number of particles is underestimated for both 2D
and 3D domains at the initialization step, more particles will be injected during the motion simulation.

2.1.2 | Initialize the particles' injection positions

The essential feature of the approach (and one that makes it different than other approaches in the literature), is the
fact that rather than pre-distributing particles (or mesh nodes) which is a complicated task, we just select a few points
(it could be as low as one) in the interior to inject particles and let the repulsion between the particles force them to dis-
tribute themselves throughout a domain. The injection positions S, where the particles will be injected, can either be
manually set by users or be calculated automatically based on the geometry of the domain and mesh size function. An
algorithm to obtain the node injection positions automatically is discussed in Appendix A for 2D domains and
Appendix B for 3D domains.

2.1.3 | Set fixed mesh nodes

The PIMesh can easily handle the constraints of fixed mesh nodes by specifying the positions of fixed particles. If Nf

fixed mesh nodes are set at the positions xf = {xf1, xf2, � � �,xfNf
g, particles (speeds are set as zeros) are immediately

injected at these positions before the simulation of the particles' motion. The method to handle the fixed particles is
very simple and straightforward, and is discussed in Section 2.2.1.

Up to now, the initialization is completed and the simulation of the particles' motion is introduced as follows.

TABLE 1 The overview of the PIMesh to obtain uniform node distributions

1 Initialization

1.1 Prepare a domain composed of pure triangles in OBJ format.

1.2 Set simulation parameters: the target node distance function h(x) = h, total simulation time Ttotal, time step size Δt, and
Nstatus = False.

1.3 Add extra vertices on the domain boundaries to ensure that particles are inside the domain.

1.4 Calculate the initial target number of particles Ntotal.

1.5 Set injection positions S where particles will be injected.

1.6 (Optional) Set fixed particles (nodes).

2 While t < Ttotal (run motion simulation):

2.1 If Np < Ntotal:
Generate new particles at the injection positions S.
Else if Np > Ntotal:
Remove extra particles.

2.3 If multiple particles overlap at the same position, keep one and remove extra particles.

2.4 Update the particles positions according to Equation (3).

2.5 If a particle move outside of the domain, project the particle onto the boundary of the domain.

2.6 Calculate the average distance Δdavg and that the particles travel and the maximum distance Δdmax that a particle travel at
the current time step.

2.7 If Δdavg <0.005 h & Np = Ntotal & Nstatus = False:
Update Ntotal and set Nstatus = True

2.8 If Δdavg >0.006 h or eavg >0.02:
Set Nstatus = False

2.9 If Δdavg <0.005 h & Δdmax � Δdavg <0.02 h & Np = Ntotal:
Terminate the motion simulation
If Δdavg <0.001 h & Np = Ntotal:
Terminate the motion simulation

3 The particles distributions are the node distributions (point cloud).
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2.2 | Simulation of the particles' motion

At the beginning of the particles' motion simulation, we compare the current number of particles Np and the target
number of particles Ttotal.

• If Np < Ttotal: new particles are injected at the injection positions S. For each time step, only one particle is allowed to
be injected at one injection position. Therefore, the maximum number of particles that can be injected at each time
step is Ns.

• If Np > Ttotal: the recently injected Np � Ttotal particles are removed at the current time step.

The direction of the initial velocity of a particle is chosen at random so that the particles are distributed throughout
the domain with a very low probability of collision. The overlap between the particles is then checked. If multiple parti-
cles are overlapped at one location, extra particles are removed and only one particle is kept at this location.

2.2.1 | Pseudo-molecular dynamics

In this work, the simulation of the particles' motion is based on a molecular dynamics-like formulation with a
pairwise repelling force moderated by an absolute velocity dependent drag force. Since these do not have to repre-
sent any specific physical system, the repelling forces and the drag forces are chosen to be (a) computationally as
efficient as possible (b) prevent excessive velocity build up (i.e., the velocity of the particles are capped to a given
maximum so that particles do not drift out of control). The PMD formulation is simply based on Newton's sec-
ond law,

mx
::

i
tð Þ¼Ffi x tð Þð ÞþFvi x

:
tð Þ� �

, ð3Þ

where xi is the position of the ith particle pi; the mass m of a particle is a constant; Ffi is the repelling force applied
on pi,

Ffi ¼ ks
X

W
xi� xj
�� ���� ��

h

� �
xi�xj
xi�xj
�� ���� �� : ð4Þ

xj are the positions of the pi's neighbor particles; the kernel function W(q)

W qð Þ¼ α

2�qð Þ3�4 1�qð Þ3 0≤ q<1

2�qð Þ3 1≤ q<2

0 q≥ 2

8><
>: , ð5Þ

is a modification of the kernel function in the work.33 The kernel width is set as the target mesh size h and therefore
q¼ xi�xjk k

h ; α is set as α¼ 1
6 for 2D case and α¼ 1

18 for 3D case. Once the distance between two particles at xi and xj is
smaller than 2 h, a repelling force is generated between these two particles. The viscous force Fvi is set as

Fvi ¼�kv
mx

:

i

Δt
, ð6Þ

to stabilize the motion, where kv is a constant (0 < kv <1) and Δt is the size of the time step.
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The numerical simulation of the motion is based on a Euler method. During each time step, the distance that a par-
ticle has traveled in the recent time step is

Δdi ¼
���xi tþΔtð Þ� xi tð Þ

���: ð7Þ

The average distance that the particles have traveled is,

Δdavg ¼ 1
Np

XNp

i¼0

Δdi: ð8Þ

It is worth noting that if there is no repelling force applied on the ith particle (Ffi = 0), the viscous force (6) can
reduce the velocity of the ith particle from x

:

i
to 1�kvð Þx:

i
, which indicates x

:

i
tþΔtð Þ¼ 1�kvð Þx:

i
tð Þ. The viscous forces

always try to dissipate the kinetic energy of the particles as long as the viscous constant 0 < kv ≤1. The bigger kv is set,
the faster the motion is stopped. Therefore, the particle's momentum rate based vicious forces Fvi allow us to adjust the
viscous forces dynamically to terminate the simulation quickly. In this work, to get the simulation converged quickly,
we update the viscous constant kv according to the following scheme:

• If Np < Ntotal or Δdavg >0.1 h, we set the viscous constant as kv = 0.5.
• If Np = Ntotal and 0.02 h < Δdavg <0.1 h, the viscous constant is set as kv = 0.05 so that the particles can quickly reach

all the space of the domain.
• If Np = Ntotal and Δdavg <0.02 h, we assume that the motion of the particles is almost stopped and the particles are

almost uniformly distributed among the domain. To stop the particles' motion simulation quickly, we increase the
viscous constant gradually using the following equation,

kv ¼ 0:05þ ti� t0:02i

� � �0:001
kv ¼min kv,0:5

� � , ð9Þ

where ti is the current time step number and t0:02i is the recent time step number when the Δdavg<0.02 h.
In this way, we can stabilize the motion and obtain the particle distributions quickly. The detailed convergence

analysis is discussed in Section 2.4. The PMD is the core innovation and the fundamental of the work, which differs
from other physically based mesh generation algorithms (see Sections 3.1 and 3.2 for the detailed advantages over phys-
ically based mesh generation algorithms, including the SPH based mesh generation methods18,19).

2.2.2 | Handle the fixed mesh nodes constraints

To handle the constraints of fixed mesh nodes, we simply set the repelling forces and viscous forces applied on the par-
ticles at the positions of

xf ¼ xf 1,xf 2, � � �,xfNf

� 	
,

as zeros in the governing Equation (3). Then the accelerations of the fixed particles are equal to zero and so the posi-
tions of the fixed particles are never updated.

2.2.3 | Project particles that are outside domains

When a particle pi moves outside the mesh domain (see Appendix C and D for the method to determine the location of
a particle), we simply project the particle back to the mesh boundary edge/surface, and the particle's updated position
is the projection point p0i, which is the nearest point on the boundary to the particle pi; the updated velocity is
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x
: new
pi ¼ x

:
pi�2 x

:
pi �np0i


 �
np0i , ð10Þ

where x
:
pi is the velocity of the particle pi before projection; np0i is the normal vector of the domain boundary where the

projection point p0i locates. Note that the particle's updated speed remains the same x
: new
pi

��� ���¼ x
:
pi

�� ��
 �
, and the direction

of the updated particle's velocity x
: new
pi is changed as if the particle is bounced back from a wall.

2.2.4 | Update the target number of particles based on a PID controller

If three criteria (1) Δdavg
h <5% (the motion is considered to be relatively slow), (2) Np = Ntotal (the current number of the

particles Np is equal to the target number Ntotal), and (3) Nstatus = False (if Δdavg
h >6%, set Nstatus = False) are satisfied,

the particles are assumed to move slowly enough for estimating the target number of particles Ntotal and Nstatus is set as
Nstatus = True.

To update Ntotal, the average node distance error eavg is obtained as

eavg ¼ 1
Np

XNp

i¼1

Li�h
h

; Li ¼ 1
Nnbr

X
xj� xi
�� ���� ��, ð11Þ

where Li the average of the distances from the ith particle to its nearest Nnbr particles (for 2D case, Nnbr = 3; for 3D case,
Nnbr = 6 in this work). If average distance error eavg is greater than 0.02 (jeavgj > 0.02), the target number of the particles
Ntotal is updated through a digital implementation of a PID controller,

u tþΔtð Þ¼ kPeavgþkIetþkDed
et ¼ eavg tþΔtð Þþ eavg tð Þ
ed ¼ eavg tþΔtð Þ� eavg tð Þ

u tþΔtð Þ¼min u tþΔtð Þ,1:0ð Þ
Ntotal tþΔtð Þ¼ Ntotal tð Þ 1þu tþΔtð Þ½ �d e

, ð12Þ

where the parameters of the PID controller are set as kp = 0.5, ki = 0.05, kd = 0.1 to avoid overshoot in the number of
the particles. To further avoid injecting too many particles at a time, the change in the number of the particles is limited
to Ntotal(t).

If Np(t) < Ntotal(t + Δt), more particles will be added; if Np(t) > Ntotal(t + Δt), extra particles will be removed. New
particles will be injected at the locations where the particles are sparse. The updated particles injection positions can be
obtained thought the algorithm shown in Table 2.

2.2.5 | Terminate the motion simulation

Define the maximum distance Δdmax that a particle traveled during the recent time step as,

TABLE 2 The algorithm to calculate the updated particle injection positions for a 2D domain

1 Find each particle's average distance Li (see Equation (11)).

2 Find the Nnew = Ntotal(t + Δt) � Ntotal(t) largest average distance.

3 For i = 1, 2, � � �, Nnew:
Si = (xk + xl + xm + xn)/4
where xk is the ith particle of particles with the Nnew largest average distances. xl, xm, xn are the positions of three nearest neighbor
particles of xk.

4 S¼ S1,S2, � � �,SNnewf g are the new injection positions
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Δdmax ¼max Δd0,Δd1, � � �,ΔdNp

� 	
: ð13Þ

If one of the two criteria—(1) Δdavg
h <0:1% and Np = Ntotal (2)

Δdmax�Δdavg
h <2:0%, Δdavgh <0:5%, and Np = Ntotal—is sat-

isfied, the motion is assumed to be stopped. Therefore, the motion simulation is terminated. The particle distributions
are the node distributions for meshless methods.

2.2.6 | Speed up the motion simulation

A fast collision detection (FCD) technique using uniform cells34 is employed to speed up the search of a particle's neigh-
bor elements, such as other particles, boundary vertices, boundary edges, and boundary surfaces (for 3D mesh genera-
tion). The size of the uniform cell is set as 2 h.

To smooth the motion simulation, the maximum speed of particles is limited to 0.4r/Δt,35 where r is the width of
the kernel function (5) and is set equal to the uniform cell size of the FCD technique (r = 2 h) in this work. This indi-
cates that a particle cannot travel through two uniform cells during each time step. Therefore, whenever a particle
moves across the boundaries, there must be at least a boundary element, such as a vertex, an edge, or a triangle surface,
occupying the particle's neighbor cells. If we add enough extra boundary vertices on the boundary (see Appendix C for
the details of adding extra boundary vertices for 2D and 3D domains), We can detect whether a particle is inside the
boundary of the mesh domain by searching for the boundary vertices in the particle's neighbor cells (see Appendix D
for the details).

2.3 | Nonuniform node distributions

The nonuniform node distributions generation algorithm is similar to the uniform node distributions algorithm shown
in Table 1. The main differences exist in estimating the target number of particles, constructing the node distance func-
tion, and updating the target number of particles.

2.3.1 | Estimate the target number of particles

Similar to the uniform case, the initial target number of particles for 2D nonuniform node distributions is estimated as

Ntotal ¼ A2d

h2max

, ð14Þ

where A2d is the total area of the 2D domain; hmax is the maximum target node distance. For 3D case, the initial target
number of particles is estimated as

Ntotal ¼ V 3d

h3max

, ð15Þ

where V3d is the volume of the 3D domain.

2.3.2 | Construct nodes distance function

For nonuniform node distributions, the node distance function h(x) can be explicitly defined as h(x) = hc(x) (see
equation Equation [20] as an example) or constructed through a discrete node distance function as h(x) = hd(x)
(see the details in Appendix E). With the node distance function, the repelling force applied on the ith particle is
updated as
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Ffi ¼ ks
XNi

j¼1

W

���xi� xj
���

h xi,xj
� �

0
@

1
A xi�xj���xi�xj

��� , ð16Þ

where

h xi,xj
� �¼ h xið Þþh xj

� �
2

: ð17Þ

2.3.3 | Update the target number of particles

Similar to the uniform case, the updated target number of particles is calculated according to Equation (12), and the
average node distance error of a nonuniform node distributions is obtained as,

eavg ¼ 1
Np

XNp

i¼1

ei

ei ¼ 1
Nnbr

X
���xj� xi

����h xi,xj
� �

h xi,xj
� �

, ð18Þ

where xj are the Nnbr closest particles of xi (for 2D case Nnbr = 3 and 3D case Nnbr = 6); h(xi, xj) is target node distance
(see Equation (17)). Inserting eavg into Equation (12), we can obtain the updated target number of particles
Ntotal(t + Δt).

2.4 | Results

2.4.1 | Convergence analysis

To analyze the performance of the PMD and the effects of particles injection process as well as the boundary nodes han-
dling method in this work, we conduct the convergence analysis through obtaining node distributions for a square
domain with dimensions 100 � 100 mm2 (see Figure 4) in three different cases, given the total number of particles. In
the motion simulation, the time step size is set as Δt = 0.5 s.

Analyze the performance of the PMD
To focus on the performance of the PMD itself, we assign the boundary nodes, the particle injection positions, and the
total number of particles during the initialization stage. The injection positions are uniformly distributed inside the
mesh domain and set as Sij = [xi, yi], where

xi ¼�45þ11:25i

yi ¼�45þ11:25j
, ð19Þ

where i = 0, 1, � � �, 8 and j = 0, 1, � � �, 8. The 81 injection positions are uniformly distributed inside the dashed square
(see Figure 4) with dimensions of 90 � 90 mm2. We distributed Nb nodes uniformly (Nb is the integer closest to 100/h)
on each boundary edge of the domain as the boundary edge. Several simulations were conducted and the results are
summarized in Table 3. Nconverge is the total number of simulation time steps; Ninject is the total number of injection time
steps; Nnet = Nconverge � Ninject is the number of simulation time steps after finishing injecting particles. As we can see
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from the table, Nnet for all the seven tests with from 200 to 20,000 particles are around 88 steps. The convergence steps
are almost the same no matter how many particles are involved in the simulation in the tests.

The effect of particles' injection positions
To study the influence of particle injection positions on the convergence, the total number of particles is set as
Ntotal = 2000; the target node distance is set as h = 2.35 mm, and the boundary nodes are set according to the method
discussed in the above. We have run five different tests and the results are shown in Table 4 For the first four cases with
NS = 81, 400, 900, 1600, the injection positions are uniformly distributed inside the dashed square (see Figure 4) with
dimensions of 90 � 90 mm2. In this setting, the particle injection positions roughly distributed uniformly over the
domain, and the net convergence steps Nnet are all around 88 steps. In the last test, the injection positions are set to be
distributed uniformly on the left half of the dashed square shown in Figure 4. The net convergence steps increase dra-
matically and the Nnet = 217, as the particles have to move to the right side of the domain. Therefore, it is better to dis-
tribute the injection positions uniformly over the domain, and the simulation converge quickly in this case, because the
particles are only required to travel a short distance. Also, the total number of the particle injection positions almost
has no effect on the net convergence steps Nnet as long as the injection positions are distributed uniformly over the
domain.

FIGURE 4 2D square domain with dimensions 100 � 100 mm2. The solid line segments represent the boundary edges of the square

domain

TABLE 3 The results of convergence tests given the total number of particles, particle injection positions, and the boundary node

distributions. Nconverge is the total number of simulation time steps; Ninject is the total number of injection time steps; Nnet = Nconverge � Ninject

is the number of simulation time steps after finishing injecting particles

Ntotal 200 500 1000 2000 5000 10,000 20,000

h (mm) 7.75 4.80 3.30 2.35 1.45 1.05 0.73

Nconverge 87 98 101 112 148 211 324

Ninject 2 6 11 23 59 119 241

Nnet 85 92 90 89 89 92 83

TABLE 4 The results of convergence tests given different particle injection positions. The target node distance is set as h = 2.35 mm and

the total number of particles is set as Ntotal = 2000. NS is the total number of injection positions

NS 81 400 900 1600 900 (Left half)

Nconverge 112 90 90 97 220

Ninject 23 5 3 2 3

Nnet 89 85 87 95 217

12 of 31 WANG ET AL.



The effect of projecting particles onto the domain boundary
In this group of tests, we will assign the total number of particles, the particle injection positions, and the target node
distance to analyze the convergence when handling the boundary nodes. The results of the tests are shown in Table 5.
In the tests, the total number of particles are set as Ntotal = 200, 500, 1000, 2000, 5000, 10,000, 20,000, and the target
node distances are set as h = 7.75, 4.80, 3.30, 2.35, 1.45, 1.04, 0.73 mm respectively. The injection positions are uni-
formly distributed inside the dashed square shown in Figure 4. The total number of the injection positions are set as
NS = 81 for the first five tests and NS = 400 for the last two tests to speed up the injection process.

In the first two groups of tests shown in Tables 3 and 4, we observe that the net convergence time steps are almost
independent of the total number of particles and the number of injection positions if the injection positions are uni-
formly distributed over the domain and the boundary nodes are assigned. In the third group of tests (see Table 5), the
boundary node distributions are no longer predefined in the initialization stage; when the number of the particles are
smaller than 5000, the simulation gets converged around 92 steps, which are slightly more than that in the first two
groups of tests, because the extra simulation should be taken to handle the boundary node distributions. Compared to
the test with 200 particles, the test with 20,000 particles have more than 100 times the number of particles, while the
simulation time steps for the two tests have the same order of magnitudes. Therefore, for the simulation with millions
of particles, it is expected that the convergence time steps are in the same order of magnitude as that of the tests with a
few thousand particles, if the particle injection positions are uniformly distributed over the domain.

In the following section, the performance of the PIMesh is demonstrated through generating node distributions for
various 2D and 3D domains.

2.4.2 | 2D node distributions

Figure 5A shows uniform node distributions for the domain shown in Figure 1A. The target node distance between
neighbor particles are set as h = 2 mm and two fixed particles are set at xf = [70.0, 70.0;95.0, 70.0]. Figure 1B shows the
plot of Δdavg/h and the total number of particles with respect to the simulation time step number. The initial target
number of particles is estimated as 2388, and it takes six simulation time steps to inject the particles inside the domain.
At the time step 69, the target number of particles is updated using Equation (12) and 50 new particles are injected
inside the domain at sparse areas obtained through the algorithm shown in Table 2. At the time step 78, the target
number of particles is updated again and 30 new particles are injected inside the domain at updated injection positions.
After 54 time steps, the simulation is converged. It takes total 132 time steps to obtain the resulting node distributions,
which have 2468 particles. Figure 1C shows the histogram of Li (see Equation (11)), which can be considered as a mea-
surement of the regularity of the node distribution. As we can see from Figure 1C, more than 98% of Li fall in the range
of (1.8, 2.2).

Figure 6A shows nonuniform node distributions for the domain shown in Figure 1A. Two fixed points are set at
xf = [70.0, 70.0;95.0, 70.0]. The target node distance is set as h = 2 mm at the inside circular boundary edges and top
right sharp corner, and h = 6 mm at other boundary edges. Figure 6-b shows the plot of Δdavg/h and the total number
of particles with respect to the simulation time step number. To obtain the nonuniform node distributions, the simula-
tion gets converged with 333 time steps which is more than (but still in the same order of magnitude as) that for the
uniform base, because the initial target number of particles for nonuniform node distributions is estimated based on
the maximum target node distance (see Equation (14)) and thus is seriously underestimated. Only 265 particles are
injected inside the domain initially and the target number of particles Ttotal is updated 7 times. Figure 6C shows the

TABLE 5 The results of convergence tests given different particle injection positions, the total number of particles, and the target node

distance

Ntotal 200 500 1000 2000 5000 10,000 20,000

h (mm) 7.75 4.80 3.30 2.35 1.45 1.04 0.73

NS 81 81 81 81 81 400 400

Nconverge 97 90 119 113 153 162 210

Ninject 3 7 13 25 62 25 50

Nnet 94 83 106 88 91 137 160
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histogram of ei (see Equation (18)), which is the error of the average of the distances from a particle to its three nearest
neighbor particles. As we can see from Figure 6C, the errors of more than 97% nodes are smaller than 0.1.

Figure 7A shows nonuniform distributions for a 100 � 100 mm2 domain that is often used in crack analysis. Twenty
fixed points are set at Fi = [�20.0 + 2i, 0.0] where i = 0, 1, 2, � � �, 20. The target node distance is set as h = 2 mm near
the locations of the fixed nodes, and h = 5 mm at the boundary edges. The target number of particles Ttotal is updated
seven times and it takes 420 time steps to get the node distributions that have 792 particles. Figure 7B shows the histo-
gram of ei (see Equation (18)). As we can see from Figure 1B, the errors of more than 99% nodes are smaller than 0.1.

2.4.3 | 3D node distributions

In this section, the node distributions for 3D domains are demonstrated. Figure 8A shows uniform distributions for the
femur domain shown in Figure 2A. The target node distance is set as h = 5 mm and the resulting node distributions
have 1513 particles. The target number of particles Ttotal is updated four times and it takes 113 time steps to get the sim-
ulation converged. Figure 8B shows the histogram of Li (see Equation (11)), which is the average of the distances from
a particle to its six nearest neighbor particles. The average node distance is 5.17 mm and the standard deviation of node
distance is 0.11 mm.

(A) (B) (C)

FIGURE 5 (A) Uniform node distributions for the domain shown in Figure 1A. Two fixed points are set at xf = [70.0, 70.0;95.0, 70.0]

and the target node distance is set as h = 2 mm. The node distributions have 2468 particles. (B) The plot of convergence information. The

blue line represents the Δdavg/h with respect to the simulation time step number and the orange line represents the total number of particles

during the simulation (color figure can be viewed in the online issue). (C) Histogram of Li shown in Equation (11)

(A) (B) (C)

FIGURE 6 (A) Nonuniform node distributions for the domain shown in Figure 1A. Two fixed points are set at xf = [70.0, 70.0;95.0,

70.0]. The target node distance is set as h = 2 mm at the inside circular boundary edges and top right sharp corner, and h = 6 mm at other

boundary edges. The node distributions have 644 particles. (B) The plot of convergence information. The blue line represents the Δdavg/hmin

with respect to the simulation time step number and the orange line represents the total number of particles during the simulation (color

figure can be viewed in the online issue). (C) Histogram of the target node distance error ei (see Equation (18)) for each particle
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Figure 9A represents the domain for a piece of hipbone, and Figure 9B shows uniform distributions for the hipbone
domain. The target node distance is set as h = 5 mm and the resulting node distributions have 3667 particles. The target
number of particles Ttotal is updated 1 time and it takes 118 time steps to get the simulation converged. Figure 9C shows
the histogram of Li (see Equation (11)), which is the average of the distances from a particle to its six nearest neighbor
particles. The average node distance is 5.25 mm and the standard deviation of the node distance is 0.13.

Figure 10A represents the domain for a 3D liver model, and Figure 10B shows uniform distributions for the liver.
The target node distance is set as h = 5 mm and the resulting node distributions have 6223 particles. The target number
of particles Ttotal is updated three times and it takes 123 time steps to get the simulation converged. Figure 10C shows
the histogram of Li (see Equation (11)), which is the average of the distances from a particle to its six nearest neighbor
particles. The average node distance is 5.19 mm and the standard deviation of the node distance is 0.13.

(A) (B)

FIGURE 7 (A) Nonuniform node distributions for the domain shown in Figure 4. Twenty fixed points are set at xif ¼ �20:0þ2i,0:0½ �
where i = 0, 1, 2, � � �, 20. The target node distance is set as h = 2mm near the locations of the fixed nodes; and h = 5 mm at the outside

boundary edges. The node distributions have 792 particles. The simulation converged at 420 time steps. (B) Histogram of the target node

distance error ei (see Equation (18)) for each particle

(A) (B)

FIGURE 8 (A) Uniform node distributions for the domain shown in Figure 2A. The target node distance is set as h = 5 mm and the

resulting node distributions have 1513 particles. The simulation get converged at 113 time steps. (B) Histogram of Li (see Equation (11)),

which is the average of the distances from a particle to its six nearest neighbor particles
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Figure 11A shows uniform distributions for a cube domain with dimensions of 150 � 50 � 50 mm3. The target node
distance is defined explicitly as

hc xð Þ¼ hminþ xþ75
150

hmax �hminð Þ, ð20Þ

where the origin of the coordinator locates at the center of the cuboid; x = [x, y, z] (x axis is along the length of the
cuboid); hmin = 3 mm; and hmin = 10 mm. The resulting node distributions have 3729 particles. The target number of
particles Ttotal is updated nine times and it takes 412 time steps to get the simulation converged. Figure 11B is the histo-
gram of ei (see Equation (18)), which is the error of the average of the distances from a particle to its six nearest neigh-
bor particles. The average node distance error is eavg = 0.02.

Figure 12A is the nonuniform node distributions for the hipbone domain shown in Figure 9A. The target node dis-
tance is set as 3 mm at the bottom part and 6 mm at the upper part. The node distributions have Ttotal = 8299 particles.
The target number of particles Ttotal is updated eight times and it takes 579 time steps to get the simulation converged.

(A) (B) (C)

FIGURE 9 (A) The geometry of a hipbone. (B) Uniform node distributions for the hipbone domain. The target node distance is set as

h = 5 mm and the resulting node distributions have 3667 particles. The simulation converged at 118 time steps. (C) Histogram of Li (see

Equation (11)), which is the average of the distances from a particle to its six nearest neighbor particles

(A) (B) (C)

FIGURE 10 (A) The geometry of a 3D live model. (B) Uniform node distributions for the 3D live domain. The target node distance is

set as h = 5 mm and the resulting node distributions have 6223 particles. The simulation get converged at 123 time steps. (C) Histogram of Li
(see Equation (11)), which is the average of the distances from a particle to its six nearest neighbor particles

16 of 31 WANG ET AL.



Figure 12B is the histogram of ei (see Equation (18)), which is the error of the average of the distances from a particle to
its six nearest neighbor particles. The average node distances error is eavg = 0.03.

3 | MESH GENERATION

Generating unstructured meshes includes two steps: (1) obtaining mesh node distributions and (2) linking the nodes
using Delaunay triangulation (or other schemes) to generate resulting meshes. The algorithm to obtain mesh node dis-
tributions is similar to the algorithm shown in Table 1, and the differences are (1) the calculation of the average edge
distance error (corresponding to the average edge length error eavg for node distributions), and (2) the algorithm to
update the particle injection positions.

(A) (B)

FIGURE 11 (A) Nonuniform node distributions for a cuboid domain with dimensions of 150 � 50 � 50 mm3. The target node

distance is explicitly defined as Equation (20). The node distributions have 3729 particles. The simulation get converged at 412 time steps.

(B) Histogram of the target node distance error ei (see Equation (18)) for each particle

(A) (B)

FIGURE 12 (A) Nonuniform node distributions for the hipbone domain shown in Figure 9A. The target node distance is set as 3 mm at

the bottom part and 6 mm at the upper part. The node distributions have 8299 particles. The simulation is converged at 579 time steps.

(B) Histogram of the target node distance error ei (see Equation (18)) for each particle
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To update the total number of particles Ntotal, we first draw a mesh based on the existing particles. Then we select
all the high-quality triangles with angles greater than 30

�
and smaller than 110

�
to create a sample mesh. The average

edge length error for uniform meshes is obtained as,

eavg ¼ 1
Nedges

XNedges

i¼1

Ei�h
h

, ð21Þ

where Nedges is the total number of sample mesh edges; Ei is the length of the ith edge. The average edge length error for
nonuniform meshes is obtained as, the average edge length error of the mesh is then obtained as,

eavg ¼ 1
Nedges

X xi� xj
�� ���� ���h xi,xj

� �
h xi,xj
� � , ð22Þ

where Nedges is the total number of edges of the sample mesh; xi and xj are the two ends of a mesh edge; h(xi, xj) is tar-
get edge length (see Equation (17)). Then we can insert eavg into Equation (12) to obtain the updated target number of
particles Ntotal(t + Δt).

To update the particle injection positions, similar to the algorithm shown in Table 2, we (1) obtain the length of
each edge of the sample mesh; (2) find the Nnew = Ntotal(t + Δt) � Ntotal(t) longest edges; and (3) the new injections
positions are on the center of the Nnew edges.

3.1 | Comparison to the bubble mesh

The bubble mesh16 has a similar formulation to the PMD, as both methods are based on Newton's second law, and the
forces driving the motion of particles are based on their neighbor particles. Therefore, we make a detailed comparison
between the PMD and the bubble mesh in this section.

In the bubble mesh16 and its modified versions, such as the work of,36 the forces driving the motion of bubbles is
similar to Van der Waals force. However, unlike the method presented here, the aim of bubble mesh is to develop a
“zero force positions” of the nodes where forces among bubbles are zero. Thus, when two neighbor bubbles are too
close to each other, repelling forces are generated to push bubbles away from each other; when the distance between
two bubbles is equal to the target node distance, the forces generated between these two bubbles become zero; when
the distance between two neighbor bubbles is larger than the target node distance, attractive forces will be generated to
bring these two bubbles closer. In the PMD, the forces driving particles' motion keep pushing neighbor particles away
from each other and so there is always “pressure” in the system. The differences in the forces driving the particles'
motion bring essential differences and much improved performance of PIMesh compared to bubble mesh.

• The repelling particles in PIMesh are trying to take all the space of a mesh domain, while the positions of the bubbles
in the bubble mesh are only adjusted locally. Therefore, the bubble mesh requires a high-quality initial bubble con-
figuration to ensure fast convergence.

• The population control algorithm is different. In the PIMesh, the total number of particles is estimated based on
errors between the edge lengths and the target edge lengths, and the calculation of the errors can be parallelized.
While for the bubble mesh, the population is controlled based on local space between neighbor particles. If the gap
between two bubbles is too big, a new bubble will be inserted; if several bubbles too close to each other, extra bubbles
will be removed. The bubble population control algorithm cannot be parallelized. Therefore, the bubble mesh can
suffer if (1) the quality of the initial bubble configurations is low or (2) a great many bubbles are required for a large
mesh domain.

• The viscous forces to stabilize the motion are also different. In the PIMesh, the viscous force for a particle is based on
the particle's momentum rate, and the viscous constant kv can be any value between 0 < kv <1; therefore, the viscous
constant can be optimized to speed up the convergence (see Section 2.2.1 for the details). While for the bubble mesh,
the viscous force is based on a bubble's velocity. The viscous constant should be carefully selected to ensure that the
viscous force can stabilize the motion simulation.
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3.2 | Comparison to the SPH based mesh generation methods

As both SPH based mesh generation methods18,19 and PMD based mesh generation methods simulate the motion of
particles over the domain, we make a direct comparison between the PIMesh and SPH based mesh generation
methods18,19 through generating a mesh for the Zalesak's disk. As the target edge length settings in the work by Fu
et al.18 is not given explicitly, we set the target edge length as h = 0.37 mm (uniform mesh). Figure 13A is the plot of
the mesh generated for the Zalesak's disk using the PIMesh. The mesh has 5041 particles and the total number of parti-
cles is updated four times. The convergence information is shown in Figure 13B. Figure 13C is the histogram of the
angles of the mesh, with maximum angle θmax = 101.58

�
and minimum angle θmin = 36.78

�
. The quality of the resulting

mesh is similar to the mesh generated by the SPH based mesh generation method.18

Table 6 shows the comparison between the PIMesh and SPH18 and improved SPH19 based mesh generation
methods. Note that even though the mesh in Figure 13 is uniform, it is still reasonable to make comparisons between
the PIMesh and other SPH based methods, because the convergence of the uniform and nonuniform node distributions
are in the same order of magnitude (typically the nonuniform node distributions take about four times time steps to get
converged). The core difference between the PIMesh and SPH based mesh generators is in forces driving the motion of
the particles. For the PIMesh, the forces are the repelling forces calculated through PMD; for the SPH based mesh gen-
eration methods, the forces are calculated based on the gradient of pressure among the particles. This difference in the
forces results in the advantages of the PIMesh over the SPH based mesh generation methods:

• Compared to the SPH based mesh generation methods, the PMD for the PIMesh avoids the complex calculation of
density, the gradient of pressure, and the gradient of velocities that are required in the SPH based mesh generation
methods; therefore, the PIMesh is much more concise than the SPH based mesh generation method.

• The PIMesh does not require any initial node distributions and the population of the particles is updated dynamically
using the PID controller-based particles population control algorithm. The PID controller can ensure the resulting
mesh size is very close to the target size, while the mechanism in the SPH based mesh generation methods to ensure
the mesh size is not clear in the work.18,19

(A) (B) (C)

FIGURE 13 (A) Uniform mesh with 5041 particles with two fixed particles at the two concave corners. The average edge length error is

1.95%. (B) The mesh is converged at 133 steps and Ttotal is updated 4 times. (C) The histogram of the angles of the mesh, with θmax = 101.58
�

and θmin = 36.78
�

TABLE 6 The comparison between the PIMesh and SPH18 and improved SPH19 based mesh generation methods through generating

meshes for Zalesak's disk

Dynamics Initial nodes Nodes outside Convergence steps Ntotal

PIMesh PMD No No 113 5041

Improved SPH SPH Yes Yes 4200 ≈5047

SPH SPH Yes Yes ≈45,000 5047

Abbreviations: PIMesh, particle injection mesh generator; PMD, pseudo-molecular dynamics; SPH, smoothed-particle hydrodynamics.
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• The PIMesh does not require any initial boundary node distributions, while the SPH based methods require
high-quality boundary node distributions at the initial stage. For the 3D cases, obtaining boundary node distri-
butions is essentially a high-quality 3D surface mesh generation task. This further complicates the SPH based
methods.

• The SPH based mesh generation methods employ ghost particles (that require extra computation) rather than the
projection method in the PIMesh to handle particles outside the mesh domain. A possible reason is that if the projec-
tion method rather than ghost particles is employed, excessive particles will move onto the boundaries of the mesh
domain and the resulting meshes could have many mesh elements with small angles near the boundary. This could
be caused by two reasons. (1) The particles are driven by the gradient of pressure, and without ghost particles outside
the mesh domain, the pressure near the boundaries is always lower than that inside the domain; therefore, excessive
particles will be pushed to the boundaries. (2) Unlike the PIMesh which employs the PID controller to control the
population of the particles, the SPH based methods allow extra particles to move outside the mesh domain and thus
adjust the population of particles. If the projection-based method is employed, the particles which are supposed to
move outside the mesh domain are projected back onto the boundaries. Thus, excessive particles will be on the
boundaries.

• In the tasks of generating meshes for the Zalesak's disk, the PIMesh is converged at 113 steps, which is an order of
magnitude faster than the improved SPH based mesh generation method, and two orders of magnitude faster than
the SPH based mesh generation method.

It is worth noting that most of the parallel computing techniques for the SPH can also be used for the PMD.
Injecting particles can also be parallelized but it may not be necessary, because the task is very simple, and only random
velocities are assigned to particles at given positions. Therefore, it is expected that the PIMesh can be used to generate
meshes with millions of nodes efficiently when parallel computing techniques are employed. In the following section,
the performance of the PIMesh is demonstrated through generating 2D and 3D meshes.

3.3 | 2D Results

3.3.1 | Uniform mesh

Figure 14 shows a uniform mesh for the mesh domain shown in Figure 1A. In Figure 14A, the target length is set as
2 mm. The resulting uniform mesh has 2845 nodes and the average edge length is 2.04 mm (the average edge length
error is 2.0%). Figure 14B shows the histogram of the angles of the mesh triangles. The maximum angle is
θmax = 103.65

�
and the minimum angle is θmin = 37.42

�
.

3.3.2 | Nonuniform meshes

Figure 15 shows a nonuniform mesh for the mesh domain shown in Figure 1A. Two fixed points are set at xf = [70.0,
70.0;95.0, 70.0]. The target edge length is set as h = 2 mm at the inside circular boundary edges and top right sharp cor-
ner; and h = 6 mm at other boundary edges. The resulting mesh has 765 nodes and the average edge length error
eavg = 0.26%. The simulation is converged at 363 steps. Figure 15B is the histogram of the angles of the mesh triangles
The maximum angle is θmax = 101.2426 and the minimum angle is θmin = 35.6300, and the mesh quality is similar to
the uniform mesh shown in Figure 14A.

Figure 16 shows a nonuniform mesh for the mesh domain with dimensions 100 � 100 mm2. Twenty fixed points
are set at xfi = [�20.0 + 2i, 0.0] where i = 0, 1, 2, � � �, 20. The target edge length is set as h = 2 mm near the locations of
the fixed nodes, and h = 5 mm at the boundary edges. The resulting mesh has 948 nodes and the average edge length
error eavg = 1.43%. The simulation is converged at 478 steps. Figure 16B is the histogram of the angles of the mesh trian-
gles. The maximum angle is θmax = 104.49

�
and the minimum angle is θmin = 32.39

�
.

In the above 2D uniform and nonuniform triangular meshes, all the angles of the meshes are fall in the range of
(30

�
, 105

�
). Therefore, there are no bad triangles in the meshes. Even without post-processing algorithms, the 2D trian-

gular meshes are of high-quality.
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3.3.3 | 3D meshes

For 3D meshes, even though the particles are distributed sparsely, the Delaunay triangulation can create a few tetrahe-
drons that with small dihedral angles. Therefore, we employ the optimization algorithm base on face swapping
method37 to remove the tetrahedrons with small dihedral angles.

Figure 17 shows a uniform mesh for the mesh domain shown in Figure 2A. The target length is set as h = 5 mm.
The resulting uniform mesh has 2217 nodes and the average edge length error is eavg = 1.91%. The simulation is con-
verged at 192 time steps. Figure 17B shows the histogram of the dihedral angles of the mesh. The maximum angle is
θmax = 149.93

�
and the minimum angle is θmin = 20.06

�
.

Figure 18 shows a uniform mesh for the mesh domain shown in Figure 10A. The target length is set as h = 8 mm.
The resulting uniform mesh has 2720 nodes and the average edge length error is eavg = �1.79%. The simulation is con-
verged at 206 time steps. Figure 18B shows the histogram of the dihedral angles of the mesh. The maximum angle is
θmax = 150.02

�
and the minimum angle is θmin = 20.06

�
.

(A) (B)

FIGURE 14 (A) A uniform mesh for the mesh domain shown in Figure 1A. The mesh has 2845 particles, with two fixed points at

xf = [70.0, 70.0;95.0, 70.0]. The target edge length is h = 2 mm and the average edge length of the resulting mesh is 2.04 mm. The simulation

is converged at 107 steps. (B) The histogram of the angles of the mesh triangles (θmax = 103.65
�
and θmin = 37.42

�
)

(A) (B)

FIGURE 15 (A) A nonuniform mesh for the mesh domain shown in Figure 1A. Two fixed points are set at xf = [70.0, 70.0;95.0, 70.0].

The target edge length is set as h = 2 mm at the inside circular boundary edges and top right sharp corner; and h = 6 mm at other boundary

edges. The mesh has 765 nodes with the average edge length error eavg = 0.26%. The simulation is converged at 363 steps. (B) The histogram

of the angles of the mesh triangles (θmax = 101.24
�
and θmin = 35.63

�
)
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Figure 19 shows a uniform mesh for the mesh domain shown in Figure 9A. The target length is set as h = 5 mm.
The resulting uniform mesh has 5536 nodes and the average edge length error is eavg = 1.77%. The simulation is con-
verged at 204 time steps. Figure 19B shows the histogram of the dihedral angles of the mesh. The maximum angle is
θmax = 155.66

�
and the minimum angle is θmin = 16.51

�
.

Figure 20A is a nonuniform mesh for the mesh domain shown in Figure 9A. The target edge length is set as 5 mm
at the bottom part and 10 mm at the upper part. The resulting uniform mesh has 2925 nodes and the average edge
length error is eavg = 2.56%. The simulation is converged at 350 time steps. Figure 20B shows the histogram of the dihe-
dral angles of the mesh. The maximum angle is θmax = 149.42

�
and the minimum angle is θmin = 16.94

�
.

For all the 3D meshes generated in the above, the average edge length errors are all smaller than 3.0%. Meanwhile,
more than 97% dihedral angles are in the range of (30, 150) degrees. There are only a few dihedral angles smaller than
30

�
but greater than 15

�
, and less than 0.5% dihedral angles that are in the range of (150, 155) degrees. Therefore, the

average edge length is accurately controlled and there are no flatten tetrahedrons in the meshes generated in this work.

(A) (B)

FIGURE 16 (A) A nonuniform mesh for the mesh domain with dimensions 100 � 100 mm2. Twenty fixed points are set at

xif ¼ �20:0þ2i,0:0½ � where i = 0, 1, 2, � � �, 20. The target edge length is set as h = 2mm near the locations of the fixed nodes, and h = 5 mm

at the boundary edges. The resulting mesh has 948 nodes and the average edge length error eavg = 1.43%. The simulation is converged at 478

steps. (B) The histogram of the angles of the mesh triangles. The maximum angle is θmax = 104.49
�
and the minimum angle is θmin = 32.39

�

(A) (B)

FIGURE 17 (A) A uniform mesh for the mesh domain shown in Figure 2A. The mesh has 2217 particles. The target edge length is

h = 5 mm and the average edge length error is eavg = 1.91%. The simulation is converged at 192 steps. (B) histogram of the dihedral angles of

the mesh. The maximum angle is θmax = 149.93
�
and the minimum angle is θmin = 20.06

�
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4 | CONCLUSION AND FUTURE WORK

The PIMesh proposed in this work can be used to generate node distributions and unstructured meshes for an object in
any shape with minimum (or even no) user intervention. The performance of the PIMesh is demonstrated by generat-
ing node distributions and meshes for several 2D and 3D domains. As the kernel function in the PMD is essentially the
same as the window function of meshless methods, the quality of the node distributions is guaranteed. The resulting
meshes show that the qualities of the meshes are good and the accuracy of edge length can be guaranteed. Particularly,
no post-processing procedure is required for generating high-quality 2D triangular meshes. The convergence of the
PIMesh is almost independent of the total number of particles, and depends on the distributions of particle injection
positions as well as the estimated number of particles at the initial stage. The results indicate that all the simulations
can get converged within a few hundred time steps. Additionally, the motion simulation of the PMD and SPH share a

(A) (B)

FIGURE 18 (A) A uniform mesh for the mesh domain shown in Figure 10A. The target length is set as h = 8 mm. The resulting

uniform mesh has 2720 nodes and the average edge length error is eavg = �1.79%. The simulation is converged at 206 time steps. (B) The

histogram of the dihedral angles of the mesh. The maximum angle is θmax = 150.02
�
and the minimum angle is θmin = 20.06

�

(A) (B)

FIGURE 19 (A) A uniform mesh for the mesh domain shown in Figure 9A. The target length is set as h = 5 mm. The resulting uniform

mesh has 5536 nodes and the average edge length error is eavg = 1.77%. The simulation is converged at 204 time steps. (B) The histogram of

the dihedral angles of the mesh. The maximum angle is θmax = 155.66
�
and the minimum angle is θmin = 16.51

�
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lot of similarities in technical details, such as searching for neighbor particles and the use of kernel functions, etc.
Therefore, the PIMesh has a very good potential to generate node distributions and meshes with millions of nodes effi-
ciently if parallel computing techniques are employed.

Creating 3D models using CT scan images and 3D scanned images is common in the medical healthcare community
nowadays. Therefore, it is completely possible that a healthcare educator can provide 3D models required in surgical
training scenarios. In the future, we will develop a surgical simulator integrating the PIMesh which is used to automati-
cally generate meshes and node distributions for the 3D models to run the surgical simulation. Besides, we will employ
parallel computing techniques to improve the efficiency of the PIMesh. Furthermore, other triangulation algorithms
and post-optimization algorithms will be investigated to link and move particles to generate tetrahedron meshes with
better qualities. The ultimate goal is to publish the PIMesh as an alternative open source mesh generator.
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APPENDIX A: CALCULATING THE PARTICLE INJECTION POSITIONS FOR 2D MESH DOMAINS

The algorithm to calculate particle injection positions S for a 2D domain is shown in Table A1. Ntri is the total number
of triangles of the 2D domain. Ai and Ci are the area and centroid of the ith triangle of the 2D domain (see Figure A1).
Using the algorithm shown in Table A1, we can obtain the particles' injection positions, S¼ S1,S2, � � �,SNsf g (Ns is the
number of the injection positions).

APPENDIX B: CALCULATING THE PARTICLE INJECTION POSITIONS FOR 3D MESH DOMAINS

The algorithm to calculate particle injection positions S for a 3D mesh domain is shown in Figure B1. A tetrahedron
mesh M3d can be generated based on the vertices of the triangular surface mesh representing the 3D mesh domain
using 3D Delaunay triangulation. Ntet is the total number of tetrahedrons of the tetrahedron mesh M3d. Vtet

i is the vol-
ume of the ith tetrahedron. The volume summary of the tetrahedrons of M3d is calculated iteratively. When the summa-
tion Vs is greater equal than 18Vt0 after adding the volume of the ith tetrahedron Vtet

i , the centroid Ci of the tetrahedron
is added to the injection positions S and Vs is then set zero (Vs = 0). Repeat this process for all the tetrahedrons, the
injection positions S¼ S1,S2, � � �,SNsf g is obtained and Ns is the total number of the injection positions of the particles.

TABLE A1 The algorithm to calculate particle injection positions for a 2D domain

1 Let Asum = 0, j = 1, A0 = h 2.

2 For i = 1, 2, � � �, Ntri:

2.1 Asum = Asum + Ai:

2.2 If Asum ≥ A0:
Calculate the centroid of the ith triangle Ci.
The centroid Ci is the jth particle resource, Sj = Ci.
Let Asum = 0, j = j + 1.

3 S¼ S1,S2, � � �,SNSf g are the Ns = j � 1 particle resources.

FIGURE A1 The triangular mesh following the OBJ format represents a 2D domain. The solid line segments are the boundary edges.

Ai and Ci are the area and centroid of the ith triangle of the domain respectively
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APPENDIX C: ADDING EXTRA BOUNDARY VERTICES FOR 2D AND 3D MESH DOMAINS

C.1 | Adding boundary vertices for 2D mesh domains

The method to add boundary vertices for a 2D mesh domain is demonstrated through an example shown in Figure C1.
The background uniform grid drawn in dotted line segments is the uniform cells for the FCD technique. A particle p is
motioning across the boundary edge Eab of the 2D mesh domain. To detect whether the particle p is near the boundary
of the 2D mesh domain, we search for the boundary vertices of the 2D mesh domain in the particle p's neighbor cells.
However, since there is no boundary vertex in the neighbor cells, we cannot detect that the particle p is near the bound-
ary of the mesh domain. Therefore, the particle p can motion outside the mesh domain without detection. To solve this
kind of problem, extra boundary vertices are added at

FIGURE B1 The algorithm to calculate particle injection positions. Vtet
i is the volume of the ith tetrahedron. Vt0 is set to equal Vt0 ¼ h3

6
ffiffi
2

p .

S are the injection positions and Ns is the total number of S

F IGURE C1 The background uniform grid drawn in dotted line segments is the uniform cells for the FCD technique. Extra vertices ab

(1), ab(2), bc(1), cd(1), cd(2), and da(1) are added on the boundary edge. Since the boundary vertices ab(1) and ab(2) are in the neighbor cells

of the particle p, we can detect that the particle p is near the boundary edge Eab of the 2D mesh domain. FCD, fast collision detection
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vab ið Þ ¼ vaþ vb� va
Neþ1

� i,Nab ¼ vb� vaj jj j
4h

�1


 �
, ðC1Þ

along the edge Eab, where i = 1, 2, …, Nab, Nab the total number of extra vertices added along the edge Eab. As a result,
two extra vertices (Nab = 2) ab(1) and ab(2) are added on the boundary edge Eab. When the particle p is crossing the
edge Eab, the vertices ab(1) and ab(2) are in the particle's neighbor cells and therefore we can use the two extra bound-
ary vertices ab(1) and ab(2) to detect that the particle p is near the boundary of the mesh domain.

Repeating this process for all the boundary edges of which the length is greater than 4 h, extra boundary vertices bc
(1), cd(1), cd(2), and da(1) are added onto the boundary edges Ebc, Ecd, and Eda. After adding the extra boundary verti-
ces, since the maximum distance between two boundary vertices on an edge is less equal than 4 h and the uniform cell
size for FCD is equal to 2 h, whenever a particle is near the boundary of the mesh domain, there must be at least one
boundary vertices in the particle's neighbor cell. Thus, it is guaranteed that a particle can be detected when crossing a
boundary edge.

C.2 | Adding boundary vertices for 3D mesh domains

Similar to the 2D case, a particle can motion across the boundary of a 3D mesh domain through a boundary edge or tri-
angle without detection. For example, a particle p can crossing Tabc without detection (see Figure C2A). Therefore, extra
boundary vertices are added on the boundary edges and boundary triangles.

The method to add extra boundary vertices on the boundary of a 3D mesh domain is discussed through the example
shown in Figure C3. Eab is the longest edge and Ebc is the shortest. First, extra boundary vertices, such as vab(1), vab(2)
on edge Eab, and vbc(1) on edge Ebc, are added on the boundary edges of the 3D domain using the same method for the
2D case (see Figure C3B). Extra vertices

(A) (B)

(C) (D)

FIGURE C2 The triangle Tabc is a boundary triangle of a 3D mesh domain. Eab is the longest edge and Ebc is the shortest. (A) A particle

p can motion outside the 3D object through the triangle Tabc without detection. (B) Extra boundary vertices vab(1), vab(2), vbc(1), vca(1), and vca
(2) are added on the edges. (C) The line segment Lvbc 1ð Þ ,vbc 1ð Þ,ab 3ð Þ are parallel to Eab and vbc(1),ab(1) and vbc(1),ab(2) separate Lvbc 1ð Þ ,vbc 1ð Þ,ab 2ð Þ into three

equal pieces. vbc(1),ca is the intersection vertex between line segment Lvbc 1ð Þ ,vbc 1ð Þ,ab 3ð Þ and edge Eca. (D) Removing the vertices vbc(1),ab(2) and vbc
(1),ab(3) that are outside the triangle Tabc, the remaining vertices are the extra boundary vertices added on the boundary triangle.

28 of 31 WANG ET AL.



vbc ið Þ,ab jð Þ ¼ vbc ið Þ þ va� vb
Nabþ1

j, ðC2Þ

are then added on the plane of the triangle Tabc, where i = 1, 2, � � �, Nbc and j = 1, 2, � � �, Nab + 1; Nab = 2 and Nbc = 1
are the number of extra boundary vertices added on edges Eab and Ebc respectively. Therefore, vbc(1),ab(1), vbc(1),ab(2), and
vbc(1),ab(3) are added (see Figure C3C). Additionally, the intersection points on edge Eca,

vbc ið Þ,ca ¼ xcþ va� vc
Nbcþ1

i, ðC3Þ

where i = 1, 2, � � �, Nbc (in the case of Figure C3C, there is only one intersection point vbc(1),ca). Removing the vertices
outside the triangle Tabc (such as the vbc(1),ab(1) and vbc(1),ab(2)) and the repeated vertices, the remaining vertices include
three types: (1) vertices on edges such as vab(1), vab(2), vbc(1), vca(1), and vca(2); (2) vertices inside the triangle, such as vbc
(1),ab(1); (3) intersection points on edge Eca, such as vbc(1),ca (see Figure C3D). Repeating this process for all the boundary
triangles, we can obtain all the extra boundary vertices on the boundary edges and surfaces of the 3D mesh domain. In
this way, whenever a particle is crossing the boundary surface of the 3D mesh domain, it can be detected since there is
at least one boundary vertex located in the particle's neighbor cells.

APPENDIX D: DETERMINING THE LOCATION OF A PARTICLE

D.1 | 2D mesh domain

The algorithm to determine whether a particle inside the 2D mesh domain is illustrated through an example shown in
Figure D1. nab and nbc are the normal vectors of the boundary edges Eab and Ebc of a 2D mesh domain. Points a, b, c,
and d are the boundary vertices. nb is the normal vector of the boundary vertex b. particles pi (i = 1, 2, 3, 4) motion near
the boundary of domain. To determine whether the particle pi inside the mesh domain, we first obtain the projection
points p0i onto the mesh domain boundary, and then the projection points' normal vector, which is equal to the normal
vector of the boundary edges or vertices where the projection points locate. For example, since p01 is on the edge Ebc, the
normal vector on p1 is np01 ¼nbc. Similarly, we can obtain np03 ¼nbc, np04 ¼nab, and np02 ¼nb. Then we compare the pro-
jection points' normal vector np0i and the vector vp0ipi ¼ xpi �xp0i from the projection point p0i to the particle pi.

• If vp0ipi �nbc <0, the particle pi (e.g., the particle p1) is inside the mesh domain.
• If vp0ipi �nbc >0, the particle pi (e.g., the particle p2 and p3) is outside the mesh domain.
• If vp0ipi �nbc ¼ 0, the particle pi (such as the particle p4) is on the boundary of the mesh domain.

FIGURE D1 The edges Eab, Ebc, and Ecd are boundary edges of a 2D mesh domain. Points a, b, c, and d are the boundary vertices. p1 is

a particle inside the domain; p2 and p3 are two particles outside the domain; p4 is a particle on the boundary of the mesh domain. p01, p
0
2, p

0
3,

and p04 are the four projection points of p1, p2, p3, and p4 on the domain boundary respectively. The position of p02 is the same as the position

of the vertex b. Since p4 is on the domain boundary, p04 and p4 are at the same location. nab and nbc are the normal vectors of the boundary

edges Eab and Ebc respectively. nb is the normal vector of the vertex b
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D.2 | 3D mesh domain

The method to project particles outside the 3D mesh domain onto its boundary is similar to the method for the 2D mesh
domain in the previous part. When a particle pi is near the boundary, we should obtain the projection point p0i on the
3D mesh domain and the projection points' normal vector. As shown in Figure D2, a particle's projection point can be
on a triangle surface, a boundary edge, or a boundary vertex of the mesh domain. p01 is the projection point of the parti-
cle p1, and the normal of p01 is the surface normal vector of triangle Tabc (np01 ¼nabc). p02 on the edge Eac is the projection
point of the particle p2, and the normal vector of p02 is set as the edge normal vector nac ¼ nabcþnacd

knabcþnacdk (np02 ¼nac). The
boundary vertex c is the projection p03 of the particle p3, and normal vector of the p03 is equal to the normal vector of the
boundary vertex c (np03 ¼nc).

Then we compare the vector vp0ipi ¼ xpi �xp0i to the normal np0i assigned for the projection point p0i.

• If vp0ipi �np0i <0, the particle pi is inside the 3D mesh domain.
• if vp0ipi �np0i >0, the particle pi is outside the 3D mesh domain. For example, p1, p2, and p3 are outside the mesh

domain.
• if vp0ipi �np0i ¼ 0, the particle pi is on the boundary surface of the 3D mesh domain.

APPENDIX E: CONSTRUCT DISCRETE MESH SIZE FUNCTIONS

To easily make the algorithms work for a mesh domain in any shape, the mesh size function is constructed in a discrete
format and illustrated through an example shown in Figure E1. The shape drawn in solid line segments is the boundary
of a 2D mesh domain. Assume that the mesh element size at the points 1, 2, 3, 4, and 5 are set as hi (i = 1, 2, 3, 4, 5)
respectively. hmin is the minimum mesh element size, hmin ¼min h1,h2,h3,h4,h5f g. To construct the discrete mesh size
function, a bounding box Bb1b2b3b4 covering all the 2D mesh domain is set and discretized into a uniform mesh grid (rep-
resented by dashed line segments) with gird size equal to hmin/4. The element size at the four vertices b1, b2, b3, and b4
are set as hmin. A background triangular mesh drawn in dotted line segments is generated based on the positions of the
four vertices of the bounding box Bb1b2b3b4 and the positions of points (point 1, 2, 3, 4, and 5) where element sizes are
assigned.

With the background triangular mesh, the target mesh element size can be assigned for each cell of the uniform
mesh grid. For example, the element size of the cell Cc56c57c67c66 is set as h5 since the point 5 is inside the cell Cc56c57c67c66 .

FIGURE D2 The triangles are parts of a 3D object boundary. p1, p2, and p3 are three particles outside the object. p01, p
0
2, and p03 are the

three projection points of p1, p2, and p3 on the object respectively (the position of p03 is the same as the position of the vertex c).

vp0ipi ¼ xpi �xp0i (i = 1, 2, 3) are three vectors from the projection points to the particles. nabc and nacd are the normal vector of triangles Tabc

and Tacd respectively. nc is the normal vector of the vertex c on the object
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For other cells, such as Cc62c63c73c72 , the element size is not directly assigned. We can calculate the element size for these
cells using linear interpolation. c0 is the centroid of the cell Cc62c63c73c72 and is inside the triangle Tb4h2h5 of the back-
ground triangular mesh. Since xc0 ¼ αxb4 þβxh2 þ γxh5 , the element size for the cell Cc62c63c73c72 is set as

h c62c63c73c72ð Þ¼ αhminþβh2þ γh5:

Repeating this process, we can obtain the target mesh element size for the uniform mesh grid. The discrete mesh
size function can then be defined as

hd xð Þ¼ h Cid xð Þð Þ, ðE1Þ

where Cid(x) is the ID of the cell where x locates. For example, the target mesh size for the ith and jth particle in
Figure E1 is hd(xi) = h(c33c34c44c43) and hd(xj) = h(c34c35c45c44) respectively.

FIGURE E1 The shape drawn in solid line segments is the 2D object for which the mesh will be generated. The box Bb1b2b3b4 is the

bounding box for the 2D object. hi where i = 1, 2, 3, 4, 5 are the target edge length at the points 1, 2, 3, 4, and 5 respectively.

hmin ¼min h1,h2,h3,h4,h5f g is set as the target edge length at the four vertices of the bounding box Bb1b2b3b4 . The dashed line segments slice

the bounding box Bb1b2b3b4 into uniform cells, and the c0 is the centroid of the cell Cc56c57c67c66 . A triangular mesh drawn in dotted line

segments is generated based on the positions of points where target edge length are given. Points i and j are two particles at xi and xj
respectively.

WANG ET AL. 31 of 31


	PIMesh: An automatic point cloud and unstructured mesh generation algorithm for meshless methods and finite element analysi...
	1  INTRODUCTION
	2  ADMISSIBLE NODE DISTRIBUTIONS FOR MESHLESS METHODS
	2.1  Initialization for obtaining uniform node distributions
	2.1.1  Estimate the target number of particles
	2.1.2  Initialize the particles' injection positions
	2.1.3  Set fixed mesh nodes

	2.2  Simulation of the particles' motion
	2.2.1  Pseudo-molecular dynamics
	2.2.2  Handle the fixed mesh nodes constraints
	2.2.3  Project particles that are outside domains
	2.2.4  Update the target number of particles based on a PID controller
	2.2.5  Terminate the motion simulation
	2.2.6  Speed up the motion simulation

	2.3  Nonuniform node distributions
	2.3.1  Estimate the target number of particles
	2.3.2  Construct nodes distance function
	2.3.3  Update the target number of particles

	2.4  Results
	2.4.1  Convergence analysis
	Analyze the performance of the PMD
	The effect of particles' injection positions
	The effect of projecting particles onto the domain boundary

	2.4.2  2D node distributions
	2.4.3  3D node distributions


	3  MESH GENERATION
	3.1  Comparison to the bubble mesh
	3.2  Comparison to the SPH based mesh generation methods
	3.3  2D Results
	3.3.1  Uniform mesh
	3.3.2  Nonuniform meshes
	3.3.3  3D meshes


	4  CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	Endnote
	REFERENCES
	  Adding boundary vertices for 2D mesh domains
	  Adding boundary vertices for 3D mesh domains
	  2D mesh domain
	  3D mesh domain



