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Abstract—This paper presents a hybrid learning approach for
cooperative fault management in multi-domain optical networks
(MD-ONs). The proposed approach relies on a broker-based MD-
ON architecture for coordination of inter-domain service provi-
sioning. We first propose a self-supervised learning design for soft
failure detection. The self-supervised learning design makes use
of a clustering algorithm for extracting normal and abnormal
patterns from optical performance monitoring data and a super-
vised learning-based classifier trained with the learned patterns for
online detection. To facilitate high soft failure detection accuracy in
the absence of sufficient abnormal data for training, the proposed
design estimates model uncertainties during predictions and identi-
fies instances associated with high uncertainties as also soft failures.
Then, we extend the self-supervised learning design and present
a federated learning framework for the broker plane and DMs to
learn cooperatively while complying with the privacy constraints of
each domain. Finally, a data-driven soft failure localization scheme
that operates by analyzing the patterns of data is proposed as a
complement to the existing approaches. Performance evaluations
indicate that the self-supervised learning design can achieve soft
failure detection accuracy of up to ~ 97% with 0.01% — 0.04%
false alarm rate, while federated learning enables DMs to realize
> 90% soft failure detection rates in the cases of highly unbalanced
data distribution (two of the three domains possess zero abnormal
data for training).
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1. INTRODUCTION

S THE underlying infrastructure of the Internet, optical

networks carry traffic generated from heterogeneous ap-
plications (e.g., social networking, multimedia) at the rate of
a few hundred Gigabits up to Terabits per second per wave-
length [1], [2]. A single component failure in optical networks
can lead to severe service disruptions. Therefore, effective fault
management schemes for optical networks are of vital impor-
tance.

Previous studies have reported extensive designs for failure
detection and localization in optical networks targeting hard fail-
ures (e.g., fiber cuts) [3], [4]. Unlike hard failures that can bring
down connections immediately, soft failures refer to incidents
that cause moderate and gradual performance degradation, for
instance, device aging, equipment malfunctioning, misconfig-
urations, and physical-layer attacks [5], [6]. Prompt detection
and localization of soft failures is highly desired as it enables
optical networks to operate with lower margins (thus, higher
resource efficiency) and prevents expensive hard failures that
these soft failures may eventually evolve to. However, effective
management of soft failures is not straightforward because
they are often covert. Traditional approaches typically apply
threshold-based policies on particular network parameters, such
as the monitored signal power of a lightpath, which suffer from
poor flexibility. In particular, determining a proper value of
threshold entails network experts investigating the behaviors
of the related parameters under a specific system setup. As
network conditions may change (due to changes of topology,
deployment of new equipment or services, etc.), such approaches
need to be constantly refined, prohibiting the fast evolution
of optical networks. Besides, some soft failures can exhibit
sophisticated patterns that cannot be easily characterized by a
simple threshold [7].

Lately, machine learning (ML) has emerged as one of the
key enabling techniques for building next-generation optical net-
works. ML equips network control and management (NC&M)
systems with the potential to learn network rules or operation
policies automatically from data (network traces, past experi-
ences, etc.), thus, largely enhancing the intelligence of network
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Fig. 1. An example of soft failure caused by jamming signal attack.

operations [8]—[10]. In this context, researchers have proposed
a number of ML-based approaches for cognitive fault man-
agement in optical networks [7], [11]-[19]. In [7], the authors
proposed finite state machine-based algorithms for detecting
and identifying bit-error-rate (BER) degradation caused by four
types of soft failures, namely, signal overlap, tight filtering,
gradual drift, and cyclic drift. Later in [11], the same authors
studied ML approaches for localizing these soft failures. In [12],
Shahkarami er al. conducted a performance comparison be-
tween different ML algorithms when applied to soft failure
detection and identification in optical networks. The authors
of [13] presented a neural network-based classifier design for
detecting abnormal signal power variations under different fail-
ure modes. In [14], the authors developed two classification
algorithms, aiming at detecting and identifying jamming signal
attacks of various intensities in optical networks. In [17], the
authors demonstrated a neural network model taking as input
the power spectrum density of a received signal and the filter tap
coefficients to locate the malfunctioning optical switch.

All of the above works apply supervised learning approaches,
which demand for large sets of labeled data for successful
training. A major factor that limits the applicability of these
approaches is the scarcity of abnormal data since real optical net-
works operate under normal states most of the time. Moreover,
the trained supervised learning models can only recognize soft
failures having been identified by human experts, i.e., related
features and labels must be provided in the training sets. To
overcome this issue, our previous work in [15] devised a hybrid
unsupervised and supervised learning approach working directly
on unlabeled data. The rationale is that abnormal behaviors
typically show unique patterns deviating from those of normal
ones [20], and therefore, by analyzing the patterns of data
through data clustering (unsupervised learning), arbitrary type
of soft failures can potentially be detected. Then, a supervised
learning-based classifier is trained with the patterns learned by
unsupervised learning to facilitate online detection with low time
complexity. Fig. 1 shows an example of soft failure caused by a
jamming signal attack launched at node D [6]. By examining the
power of A; along the routing path, we can observe a pattern that
differs from a normal fluctuation (profiled by the dashed line)
despite that the power values may still locate within normal
ranges. Following a similar idea, the authors of [16] proposed a
dual-stage approach, which makes use of only BER and signal
power information at the first stage while exploiting a more
comprehensive digital spectrum features at the second stage if a
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soft failure is detected. More recent works also made attempts
to detect soft failures by learning a mapping from original data
to a space where normal and abnormal data can be more easily
distinguished [18], [19].

Nevertheless, existing works only considered single-domain
scenarios where network administrators possess full domain
visibility. It is known that the Internet infrastructure is composed
of multiple autonomous systems/domains and assuring high
quality and availability of inter-domain services is indispens-
able [21]. Based on domain privacy considerations, domain
managers (DM) tend to advertise only limited intra-domain in-
formation, making effective fault management in multi-domain
optical networks (MD-ONs) a non-trivial task.

In this work, we propose to realize cooperative fault manage-
ment in MD-ONs with a hybrid ML approach. The proposed
design takes advantage of a broker-based MD-ON architecture
for coordination of inter-domain service provisioning. We first
refine our previous work in [15] to present a self-supervised
learning approach for soft failure detection. Our approach in-
corporates estimations of model uncertainty during inferences
to facilitate high soft failure detection rate even in the absence of
sufficient abnormal data for training. Then, a federated learning
framework is proposed to enable cooperative learning between
the broker plane and DMs while complying with the domain
privacy constraint. Finally, we present a data-driven soft failure
localization scheme that operates by analyzing the patterns of
data. Performance evaluations conduced with data collected us-
ing the VPItransmissionMaker Optical Systems simulator verify
the effectiveness of the proposed design.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the cooperative fault management
architecture. In Sections Il and IV, we detail the hybrid learning
design and show the corresponding performance evaluations.
Finally, Section V summaries the key paper contributions.

II. NETWORK ARCHITECTURE

Optimizing service provisioning in MD-ONs entails a pow-
erful NC&M system that can well coordinate the operations of
multiple domains while complying with the domain autonomy
constraints [21]. Thanks to the unprecedented network pro-
grammability offered by software-defined networking (SDN)
and the recent breakthroughs in ML, previous works have
demonstrated a broker-based MD-ON architecture facilitating
cognitive inter-domain networking [8], [22]. This work exploits
such an architecture and develops a cooperative fault manage-
ment framework.

Fig. 2 illustrates the layout of the proposed framework. We
consider an MD-ON of three hierarchies, namely, data, DM,
and broker planes. The data plane carries aggregated client
traffic with lightpaths established by proper configuration of
optical transmission equipment, i.e., transponders, wavelength-
selective switches, etc. Each DM adopts the SDN paradigm to
operate its data plane. Specifically, a centralized SDN controller
is employed to interact with the data plane equipment for col-
lecting network state information and distributing configuration
instructions. For instance, making use of network telemetry
techniques [23], the SDN controller of DM-2 can actively surveil
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Fig. 2.

the status (e.g., signal power, noise level, channel utilization) of
lightpaths LP-A and LP-B that traverse its domain. Above the
SDN controller, each DM deploys various NC&M and service
provisioning applications [24]—[27], such as fault management
and routing and spectrum assignment, for generating operation
policies for the related tasks. When ML is incorporated in the
design of these applications, observe-analyze-act cycle-based
cognitive networking can be realized: i) observe network state,
ii) perform data analytics, iii) take actions leveraging the knowl-
edge acquired. Lying in the top hierarchy, the newly introduced
broker plane coordinates inter-domain service provisioning op-
erations. It works with DMs according to mutual service level
agreements (SLAs) rather than a dictate-comply principle. In
particular, based on the specifications defined in the SLAs, DMs
can report different degrees of abstracted domain data [e.g.,
several available wavelengths on a virtual link (intra-domain
path segment) between two border nodes] to the broker plane,
which in turn, recommends the service schemes to be used. This
way, domain confidentiality can be preserved.

Benefiting from the broker-DM synergy, we devise a hybrid
learning approach for fault management, particularly, soft failure
detection and localization, in MD-ONs. Within each domain,
the fault management application (FMA) first preprocesses and
extracts relevant features from the raw optical performance mon-
itoring (OPM) data with the feature engineering module. Then,
the FMA performs pattern analysis on the obtained features us-
ing unsupervised learning (i.e., clustering) approaches. Because
abnormal network states exhibit patterns dissimilar to those of

L=

LP-A

LP-B

Cooperative fault management framework in broker-based MD-ONs. DM: domain manager.

normal observations and only occur occasionally, data clustering
enables to detect soft failures by identifying outlying instances
that cannot form clusters. Hence, applying unsupervised learn-
ing eliminates the need for prior knowledge about abnormal
network behaviors and potentially allows to detect unseen soft
failures. On the other hand, such an approach can suffer from
scalability issues as it requires revisiting the whole data set every
time a new received instance is to be processed. In this context,
we introduce a self-supervised learning mechanism that further
trains a supervised learning model (e.g., a neural network-based
classifier) with the patterns learned by unsupervised learning.
Once trained, the supervised learning model can perform online
soft failure detection, while its complexity only relates to the
model attributes (e.g., scale). Therefore, scalability concerns can
be mitigated. Upon detecting a soft failure, the FMA triggers
the soft failure localization and reasoning functionalities and
meanwhile raises an alarm to alert the SDN controller. The
broker plane employs an FMA similar to that of a DM for fault
management of inter-domain services. The broker plane FMA
can work with the received abstracted domain features by itself
or initiate cooperative learning procedures with domain FMAs
when the possessed data are inadequate for certain tasks or when
DMs are willing to share knowledge for improved performance.
As for the latter case, the broker plane and domain-level super-
vised learning models exchange cooperative learning signals, for
instance, gradients in a federated learning scheme, which will
be detailed in the next section. In the case when a soft failure
associated with an inter-domain service is detected and localized
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Algorithm 1: Procedures of DBSCAN.

Input: Data set S, ¢, MinPts
Output: Cluster set C, outlier set I/

1: initialize C as an empty set;
2: calculate dist(z,2'),Vr, 2’ € S,
3: foreachx € S do
4: if = is an unvisited core node then
5: set x as the first node of the new cluster;
6: store the neighboring nodes of z in A;
7: while A is not empty do
8: expand the new cluster with A;
9: overwrite A with the neighboring nodes of the
instances in A;
10: remove from A the instances having been
clustered;
11: end
12: end
13: store the new cluster in C;
14: end

15:  store the remaining instances in I/;

by the broker plane, it informs related DMs to conduct further
inspections and works with them to reconfigure the service if
necessary.

III. HYBRID LEARNING DESIGN

This section elaborates on the hybrid learning approach,
including the self-supervised learning design for soft failure
detection, the application of federated learning for broker-DM
synergy, and a data-driven soft failure localization design.

A. Soft Failure Detection by Self-Supervised Learning

Unsupervised Learning: We apply the density-based cluster-
ing algorithm (dubbed DBSCAN) proposed in [28]. The ratio-
nale is that DBSCAN is able to detect clusters of arbitrary (non-
spherical) shapes and does not require the number of clusters to
be specified as in other clustering algorithms (e.g., K-means).
DBSCAN involves three key elements: distance metric dist(-),
e, and Min Pts. Distance metric (e.g., Euclidean distance) eval-
uates the similarity between data instances. ¢ sets the distance
threshold for two instances to be regarded as neighbors, while
MinPts defines the minimum number of neighboring nodes for
an instance to be counted as a core node. Algorithm 1 shows the
procedures of DBSCAN. The idea is to iteratively form clusters
by repeating the following steps: i) starting with a random and
unvisited core node (Lines 4-5), and ii) continually expanding
the cluster until all the neighbors of the core nodes in the cluster
have been included (Lines 6-11). Finally, instances that cannot
be clustered are detected as outliers/soft failures (Line 15). More
details about the procedures of DBSCAN can be found in [28].

Supervised Learning: We design the supervised learning mod-
ule with a neural network-based classifier that predicts whether
each data instance is abnormal or not. Note that, the distribution
of OPM data can be highly biased, i.e., the vast majority of
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data represent normal network states. Lacking abnormal data for
training can result in poor soft failure detection accuracy when
a regular neural network model is employed. Unlike regular
neural networks whose weights 6 are deterministic variables,
a Bayesian neural network (BNN) [29] models the posterior
distribution of € given an observation of data S, i.e., p(0|S).
Based on the Bayes rule, we have,

p(S|6)p(9)
S p(S|6)p(0)d6”

where p(0) is the prior belief about the distribution of 6 and
p(S]0) is the conditional distribution of S given 6. BNNs allow
us to measure model uncertainty in predictions, which can assist
in meeting the aforementioned challenge. More specifically,
BNNSs facilitate detecting abnormal data instances that are rarely
seen in the training sets as they typically correspond to higher
model uncertainties compared with normal instances.

Inferring p(6|S) with Eq. 1 is often intractable because we
need to enumerate all possible #. A practical implementation
of BNNs is Monte-Carlo (MC) dropout [30]. To realize MC
dropout, we simply introduce dropout layers to the neural
network-based classifier to enable deactivation of a certain por-
tion of neurons (with a probability, e.g., 0.1) during both training
and inference phases. The prediction for each instance = can be
obtained by performing a large number of MC simulations (each
time a neural network model f(6?) is sampled) and estimating
the expectation of inference, i.e.,

p(0lS) = (D

1 .
ply=c)=~ > ply=cla;6),
i€[1,N]
y = argmax {ply =0}, (2)

where C is the set of classes. In the meantime, we can evaluate
the model uncertainty by calculating the mutual information [30]
by,

I=—=> ply=c)logp(y=rc)

ceC

1 . )
TN > ‘ > ply = cla;6")logply = clz;0"). (3)
ceC i€[1,N]

Finally, the proposed approach detects an instance x as abnor-
mal if the prediction result y corresponds to the abnormal class
or the measured uncertainty is higher than a threshold Uy,. We
will describe the method to decide a proper setting for Uy, in
Section I'V. Note that, applying the MC dropout technique for es-
timating classification uncertainties would introduce additional
computational overheads. Such overheads can be mitigated by
parallelizing the feed-forward calculations during each infer-
ence. Alternatively, one can switch to a different uncertainty
estimation technique that does not rely on sampling of models,
for instance, by training a deterministic neural network that
directly learns the distributions of class probabilities [31]. The
application of such techniques in soft failure detection will be
left as one of our future studies.
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TABLE I
PROCEDURES OF THE FEDERATED LEARNING DESIGN

Step 1:  the broker plane randomly initializes O¢.

Step 2:  each DM downloads 6 and assigns ¢ — 64.

Step 3:  each DM trains its classifer with Sq and submits
the encrypted gradients Vg, to the broker plane.

Step 4:  the broker plane aggregates the received gradients
and update 6 accordingly.

Step 5:  execute Steps 2-4 for K times.

B. Broker-DM Synergy by Federated Learning

To realize cooperative learning between the broker plane and
DMs without the need for data sharing, we extend the design
discussed in Section III-A by applying a federated learning
mechanism. Table I summarizes the procedures of the pro-
posed design. Each of the broker plane and DMs employs a
neural network classifier of the same architecture. Let 6, and
04(d € D) denote the sets of model weights of the broker plane
and domain d, respectively. The learning process starts with the
broker plane randomly initializing 6 and consists of K training
iterations (Steps 2-4). In each iteration, DMs first synchronizes
their models with 6 copied from the broker plane (Step 2). In
Step 3, each DM performs independent training of M epochs on
the local data set S; using a standard training algorithm (e.g.,
Adam [32]) at learning rate n4. Then, DMs submit the encrypted
gradients Vj, to the broker plane. Finally, in Step 4, the broker
plane aggregates the received gradients by,

1
=== I8v 4
S 4] 2170 @

where |S;| represents the number of data instances in Sz, and
updates 0 with learning rate 7¢.

Va

C. Data-Driven Soft Failure Localization

Traditional correlation-based failure localization schemes re-
quire the routing information from multiple lightpaths [33],
which can be difficult to obtain in MD-ONs. While recent
studies have investigated several ML-assisted cognitive ap-
proaches [17], these approaches rely on large sets of data related
to different failure scenarios for training, leading to restricted
practicability. In this work, we exploit the results from data
clustering and propose a data-driven soft failures localization
approach as a complement to the existing designs. The idea
of the proposed approach is to look into the patterns of data
and attempt to localize positions where deviations of pattern
originate. For the sake of clarity, we reuse S to denote the set of
data composed of OPM information from different locations of
lightpaths, for instance, readings of signal power at domain bor-
der nodes for inter-domain lightpaths. In other words, S convey
spatial characteristics of lightpaths. For each abnormal instance
x detected, we pick an instance s* € S that has the minimum
distance to x. If s* is an abnormal instance, we presume that x
falls into the pattern same as that of s. Otherwise, we calculate
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the distance between x and s* in each dimension, which can be
represented as,

h(va*) = [hl(xvs*)v' : 'vhJ(mvs*)]' ©)

where J is the number of dimensions of each data instance. We
also obtain the gradient of h(z, s*) as,

Vh(z,s") = [h'(z,s"), h?(x, s*) — ' (x,5%),- - -,
h'(z,s%) — h'!(x, s%)]. (6)

Then, we infer the location where the pattern of = deviates
from that of s* [i.e., the location of soft failure, which can be
a node (for intra-domain cases) or a domain (for inter-domain
cases)] by computing,

j* = argmax {h’ (z,s*) + v/ h(z,s")} . @)
J

Recall the example in Fig. 1, it is obvious that we get j* = 4
and thus, successfully localize the attack at node D. For an inter-
domain case, the broker plane informs the related DM to conduct
further localization operations.

IV. PERFORMANCE EVALUATION

We valuated the performance of the proposed design with
data collected using the VPItransmissionMaker Optical Systems
simulator. Fig. 3 shows the system setup with the simulator for
data generation. We set up lightpaths consisting of five nodes
(from node A to E). The three I/Q modulator blocks, each fed
by eight wavelength division multiplexing (WDM) lasers, were
used to generate signals of interest (Ao) as well as to inject
background signals. Each Co-Tx operated at a maximum baud
rate of 224 Gbauds (28 Gbauds per wavelength) and adopted one
of {4QAM, QPSK, 8PSK} as the modulation format.! Each node
was connected to its neighboring nodes by standard single-mode
fibers of 100 km. We compensated the fiber loss between two
nodes by using gain-controlled amplifiers with a noise figure of
4 dB. The optical spectrum analyzers placed along the lightpaths
monitored the power of signals continuously.

We emulated various network configurations by setting up
lightpaths with different: /) modulation formats, ii) symbol rates,
and iii) launch power. Table II summarizes the configuration of
the system parameters. To emulate evolving network conditions,
we created time-varying link loads (by changing the number
of background signals inserted) and meanwhile introduced a
0.3 dB or 0.6 dB reduced gain to the amplifier in node C. We
picked 15 out of these configurations to further create abnormal
network states. Specifically, we followed a common practice in
literature and applied one of the five soft failure cases to each of
the configurations: Case 1) amplifier malfunctioning [12], [16]
(emulated by introducing 10 dB attenuation to the amplifier in
node D), Case 2) high-power jamming attacks [6], [14] (emu-
lated by injecting a signal of 3 mWatt on A3 in node D), Case 3)
misconfiguration [7] (emulated by activating simultaneously the

'Despite that 4QAM and QPSK are identical in their most known forms, the
simulator modulates symbols with different sets of amplitudes and phases for
the two modulation formats, leading to slightly different transmission charac-
teristics.
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Fig. 3. System setup for data generation.
TABLE I
LIST OF SYSTEM PARAMETER CONFIGURATIONS
Modulation | Symbol Rate Launch Power (mWatt)
Format (Gbauds) Co-Tx ID Range
1 1.3—-3.6
4QAM 23 — 28 2 22-25
3 0.22 —0.25
1 1.4—-3.3
QPSK 23 —28 2 22—-24
3 0.22 —0.24
1 0.8—-1.2
8PSK 9—-10 2 1.5—-1.6
3 1.5—-1.6

laser working on 19 in Co-Tx 2), Case 4) laser central frequency
drift [7], [16] [emulated by drifting the laser central frequency
over a distance (half of channel spacing)], and Case 5) tight
filtering [7], [16] (emulated by narrowing the bandwidth of the
lowpass filter at the receiver side by 0.2x).

We collected the signal power monitored at each node and
the BER values measured at the receiver side, and processed
these information to generate two data sets, namely, temporal-
characteristic and spatial-characteristic data sets. Each instance
of the temporal-characteristic data set is composed of the BER
values of a lightpath monitored at five continuous time points,
describing the temporal behaviors of the lightpath. The spatial-
characteristic data set conveys the spatial behaviors of lightpaths,
i.e., each instance is a concatenation of the power monitored
along a lightpath and the BER value at a specific system time.
Overall, 3000 and 2880 normal instances were generated for two
data sets, respectively, while both contain 15 abnormal instances.

A. Soft Failure Detection

1) Self-Supervised Learning: We first assessed the perfor-
mance of the self-supervised learning approach in soft failure
detection, assuming that the whole data sets are possessed by
a single entity (the broker plane or a DM). For data clustering,
we implemented the DBSCAN algorithm with the Euclidean
distance metric. We fixed MinPts = 4 and decided the setup
for ¢ with the approach in [15] other than by trial and error
that is typically used in training supervised learning models.

4 -€ =2.29
10 : !
0 1 2 3 4 5
€
10% 5 R e
LT (b)
— False Positive
- - --False Negative | -
Ratio of Outliers
0.1 0.15 0.2 0.25

€

Fig. 4. Results of false positive rate, false negative rate, and ratio of outliers
detected as functions of € with (a) The temporal-characteristic and (b) The
spatial-characteristic data sets.

Specifically, based on the distribution of the measured distances
for a given data set, we set arange of € and evaluate the evolution
of the ratio of outliers detected as a function of €. The dash-dot
curves in Fig. 4 show the related results for the two data sets.
When ¢ takes a relatively small value, most of the instances are
detected as outliers as they can hardly be identified as neighbors
and thereby form clusters. As € keeps increasing, the ratios of
outliers first decrease sharply and then turn stable from certain
points. These inflection points reflect the correct setups of ¢
which allow normal instances in the majority to be clustered
while leaving the abnormal instances outlied. That is, the re-
flection points indicate the marginal distances between normal
instances. Such an approach is data-driven and can be executed
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Fig. 5. Distribution of uncertainty for the temporal-characteristic data set.

automatically without human intervention. For the two data sets,
we determined the setup of € to be 2.29 and 0.02, respectively.
We also plot the results of false positive and false negative rates
in Fig. 4. It can be seen that with the setup of ¢ determined, the
algorithm can achieve 100% soft failure detection rate (zero false
negative rate) with negligible false positive (false alarm) rates,
i.e., 0.1% and 0.07%. Note that, the results are presented in the
logarithmic scale and therefore, break offs of curve represents
zero values.

Based on the results from data clustering, we labeled the
data sets and trained classifiers implemented by neural networks
(NNs) of four layers, i.e., [5,10,10,2] and [6,10,10,2] for the
two data sets, respectively. The hidden layers make use of ELU
as the activation function while the output layers employ the
Softmax function. For the proposed uncertainty-aided approach,
we introduced a dropout rate of 0.1 for the hidden layers and
conducted 100 feed-forward calculations to obtain the prediction
for each instance (after the NNs had been trained). Fig. 5 shows
the distribution of uncertainty for the temporal-characteristic
data set when performing inference on a testing set (20% out
of the entire data set). There exists an obvious trade-off in the
choice of the uncertainty threshold Uy, as a lower threshold
facilitates soft failure detection but can lead to excessive false
alarms. Similar to the method used for deciding the setup of ¢,
we can set Uy, a value from which the uncertainty distribution
curve flattens so that only a small number of inferences are with
uncertainties higher than Uy, (e.g., less that 3% in Fig. 5). In par-
ticular, we chose Uy, = 0.05, which also applies to the spatial-
characteristic data set. We compared the proposed approach
with a baseline relying on purely the predictions from regular
NNs without dropout. Table III summarizes the results of false
negative and false positive rates for the temporal-characteristic
data set with different proportions (denoted by ~y) of data used for
training. For v = 0.2, 0.4, 0.6 and 0.8, the numbers of abnormal
instances used for training and testing are (3,12), (6,9), (9,6),
and (12,3), respectively. Each result is obtained by averaging the
outcomes of 100 independent experiments. We can see that the
proposed approach can achieve almost 90% soft failure detection
rate when only 20% of the data are used for training, whereas the
accuracy from the baseline is only ~ 64% in this setting. Such
a performance gain only leads to a 0.3% raise in false positive
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TABLE III
COMPARISON BETWEEN THE UNCERTAINTY-AIDED APPROACH AND THE
BASELINE FOR THE TEMPORAL-CHARACTERISTIC DATA SET

¥ 0.2 0.4 0.6 0.8
Regular NN 0.359 | 0.260 | 0.195 | 0.157
o Uncertainty-Aided | 0.101 | 0.067 | 0.047 | 0.035
Regular NN 0 0 0 0
Jr Uncertainty-Aided | 0.003 | 0.003 | 0.003 | 0.004
TABLE IV

COMPARISON BETWEEN THE UNCERTAINTY-AIDED APPROACH AND THE
BASELINE FOR THE SPATIAL-CHARACTERISTIC DATA SET

¥ 0.2 0.4 0.6 0.8
Regular NN 0.190 0.137 0.095 0.072
I Uncertainty-Aided | 0.060 0.042 0.029 0.023
Regular NN 0 0 0 0
Tz Uncertainty-Aided | 0.0001 | 0.0002 | 0.0001 | 0.0001

rate. With 80% of data used for training, the false negative rate
from the proposed approach decreases to 3.5%, while that from
its counterpart is 15.7%. The resultant raise in false positive
rate is still as low as 0.4%. Table IV shows the results for the
spatial-characteristic data set, where similar observations can be
drawn. With only 20% of data used for training, the proposed
approach realizes a soft failure detection rate of 94% while
introducing an addition of 0.01% to the false positive rate.

2) Federated Learning: Having demonstrated the effective-
ness of the self-supervised learning approach, we next evaluated
the benefit of cooperative learning between the broker plane and
DMs in a multi-domain setting (an MD-ON of three domains).
We considered two data division schemes, namely, uniform and
nonuniform. In the uniform scheme, we evenly distributed the
normal and abnormal data instances to the three DMs. Whereas
in the nonuniform scheme, we created a biased distribution
of abnormal data by assigning all the abnormal instances to
DM-1. We compared the federated learning approach with an
independent learning mechanism, where each DM trains its
models independently with the local data sets. The federated
learning models were implemented by the ‘TensorFlow Fed-
erated’ package, with M = 10 and K = 30. The uncertainty
threshold was set to be 0.005 and 0.05 for federated learning and
independently learning, respectively, according to the method
discussed in the previous section. Again, we performed 100
experiments for each approach and data division scheme and
obtained the averaged results. In all the experiments, 80% of the
normal data and 60% of the abnormal data (i.e., nine instances)
were used for training, and the rest were used for evaluation.
Table V shows the results for the temporal-characteristic data
set. Under uniform data distribution when DM possess indepen-
dently and identically distributed (i.i.d.) data, federated learning
does not dominate its counterpart. Federated learning leads to
3.5% — 6% higher false negative rates but also more than 10x
lower false positive rates, which is mainly caused by the different
choices of the uncertainty threshold. However, the advantage
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TABLE V
COMPARISON BETWEEN FEDERATED LEARNING AND INDEPENDENT LEARNING FOR THE TEMPORAL-CHARACTERISTIC DATA SET
Uniform Data Distribution | Nonuniform Data Distribution
Domain ID 1 2 3 1 2 3
f Independent Learning | 0.055 | 0.045 0.020 0.005 0.665 0.635
" Federated Learning 0.090 | 0.105 0.070 0.070 0.090 0.100
f Independent Learning | 0.044 | 0.036 0.049 0.066 0.003 0.002
! Federated Learning 0.003 | 0.003 0.004 0.0004 | 0.0006 0.0005
TABLE VI
COMPARISON BETWEEN FEDERATED LEARNING AND INDEPENDENT LEARNING FOR THE SPATIAL-CHARACTERISTIC DATA SET
Uniform Data Distribution | Nonuniform Data Distribution
Domain ID 1 2 3 1 2 3
s Independent Learning 0 0 0 0 0.145 0.10
" Federated Learning 0.015 0.010 0.015 0 0.005 0
! Independent Learning | 0.058 0.053 0.067 | 0.049 | 0.002 0.001
! Federated Learning 0.0001 | 0.0001 0 0 0.0001 0.0001
TABLE VII V. CONCLUSION

LOCALIZATION ACCURACY FOR EACH SOFT FAILURE CASE

Case ID 1 2 3 4 5
3/3 | 3/3 | 2/3 | 173 | 0/3

Accuracy

of federated learning becomes evident when nonuniform data
distribution was applied. Without abnormal data used for train-
ing, DM-2 and DM-3 can hardly detect soft failures (33.5%
and 36.5%, respectively). By exploiting knowledge from data
of multiple domains, federated learning enables DMs to achieve
false negative and false positive rates comparable to those under
uniform data distribution. Table VI shows the results for the
spatial-characteristic data set. We can observe similar trends for
the two approaches. Overall, the results verify the benefit of
cooperative learning in MD-ONSs.

B. Soft Failure Localization

Finally, we assessed the performance of the proposed data-
driven soft failure localization approach using the spatial-
characteristic data set. The accuracy results are presented in
Table VII. We can see that the proposed approach can success-
fully localize amplifier malfunctioning (Case 1) and high-power
jamming attack (Case 2) as they lead to variations of signal
power which can be captured by analyzing the patterns of
data. Two of the three misconfigurations (Case 3) are correctly
localized, as overlapping of signals also influences signal power
but less notably compared with the first two cases. Whereas for
Case 4 and Case 5, the proposed approach can hardly localize
the positions where soft failures are introduced. The reason is
that frequency drift and tight filtering have negligible impact
on signal power [7], necessitating data sets representing more
features than just signal power. We will leave this as one of our
future works.

In this paper, we demonstrated a hybrid learning approach for
cooperative fault management in MD-ONs. We first presented
a self-supervised learning design for soft failure detection.
The self-supervised learning design makes use of a clustering
algorithm for extracting normal and abnormal patterns from
data and a supervised learning-based classifier aided by model
uncertainty analysis for online detection. Then, we proposed a
federated learning framework for cooperative learning between
the broker plane and DMs. Finally, a data-driven soft failure
localization scheme was presented. Performance evaluations
show that the proposed self-supervised learning design can
achieve high soft failure detection accuracy when only a few
abnormal data instances are used for training and that federated
learning enables effective knowledge sharing between DMs
under highly unbalanced data distributions. A potential future
research work could be investigating more comprehensive soft
failure localization approaches exploiting the latest advances in
ML, such as graph neural networks.
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