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Abstract— The study of variable-shape wave energy convert-
ers has been receiving more attention recently. In this work,
a dynamic model for axisymmetric Variable-Shape Buoy Wave
Energy Converters is derived within the context of Lagrangian
mechanics. The assumed modes method is used to approximate
the flexible modes of the buoy. The bang-bang control algorithm
is implemented to power take-off unit. A numerical simulation
case study is presented that demonstrates the utility of the
developed model in studying the behavior of the flexible shell
buoy and the overall performance of the spherical Variable-
Shape buoy Wave Energy Converter.

I. INTRODUCTION

The increase in future energy demand will result in an
increase in energy production from renewable and non-
renewable sources [1]. The U.S. Energy Information Ad-
ministration reported that electricity generation by fossil
fuels was 60.3% in 2020. And to increase the renewable
energy share, more efficient energy harvesting, and storage
technologies have to be produced to in the future energy
production distribution percentages.

Since 1799, multiple Wave Energy Converters (WECs)
are introduced in [2]. These WECs are classified based on
their theory of operation, their closeness to shore, or flexi-
bility/rigidity of shells. One of the most used devices is the
point absorbs (PA). Heave only point observers [3] structure
are made of floating buoy connected to a power take-off unit.
The power take-off unit (PTO) can be a hydraulic cylinder
either attached to a frame on the seabed in shallow waters or
attached to a suspended structure few meters below the sea
level with little movement. The hydraulic fluid is pumped
by the PTO that drives a hydraulic motor coupled with an
electric generator.

The most common approach to simulate the Fluid-
Structure Interaction (FSI) is by coupling computational fluid
dynamics (CFD) solvers with finite element analysis solvers
(FEA); this is usually done using commercial software like
ANSYS [4]. Another approach is to couple a boundary
value problem (BVP) solver with a structural model that
can predict elastic finite element response [5]. However,
these aforementioned methods are computationally expen-
sive. On the other hand, the generalized modes methods
are computationally less expensive where a reduced-order
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structural dynamics WEC system is included in the BVP
solver. In this method, the additional degrees of freedom
(DOF) associated with a pre-selected set of generalized body
modes are included in the frequency domain hydrodynamic
solver [6], [7].

Reference [4] presents high fidelity simulations using two-
way fluid-structure interaction by coupling a CFD solver
(FLUENT) with the Mechanical ANSYS APDL. A passive
control system was applied to the control force, and the
performance of the spherical Variable shape wave energy
converters (VSB WEC) was evaluated and compared to
a corresponding Fixed-Shape Wave energy converter (FSB
WEC). The results showed that the energy harvesting by
the VSB WEC significantly increased by 7.96% over 30 sec
compared to the FSB WEC.

The rate of change of the difference in the harvested
energies of the VSB and FSB WECs in [4] increased during
the first 20 sec of the simulations compared to the last 10
seconds, suggesting more impact for the transient periods.
These results encourage the utilization of latch control or
bang-bang control algorithms [8], [9] to the VSB WEC to
excite the shell’s natural frequencies.

Reference [9] introduced an optimal control approach for
FSB WECs point absorbs. A hybrid control system that
combines the bang-bang control and singular arc control
was found to harvest more power than using any of them
individually.

In this article, a simplified dynamic model for spherical
VSB WEC:s is developed using Lagrangian mechanics. The
approximated modes method along with Legendre Polyno-
mials are utilized to derive the equations of motion for
VSB WECs. This model assumes no rotation and focuses
on the heave-only movement. This model also ignores the
holonomic constraints and other external forces acting on
the WEC shell, other than the buoyant and excitation forces.
The VSB WEC performance is then evaluated with Bang-
Bang control on the Power Take-Off unit (PTO) in simple
regular waves.

II. NOTATIONS

A set of reference frames shall be introduced to describe
an infinitesimal mass on the VSB WECSs’ shell with respect
to an inertial reference frame. An inertial reference frame a
is fixed at a reference position away from the VSB WEC, as
shown in Fig. (1). This reference frame can be either placed
on the seabed or at any non-moving reference position. The
inertial reference frame is represented as:



Fig. 1: Deformed (Black) and Undeformed Shells (Blue)

In addition, a body reference frame s attached to the
buoy’s center of mass is defined, as shown in Fig. (1).
Furthermore, a reference frame “é&” is attached to the origin
of the s frame such that é3 always points at an infinitesimal
mass on the undeformed buoy . Noting that, the angle
between the reference frames axes 3 and é3 is ¢. This angle

¢ does not change in real-time.

The reference frame ¢ is attached to a deformed infinites-
imal mass with ¢z perpendicular to the deformed buoy.
The angle ¢ is the angle between $3 and ¢3. Due to the
axisymmetric assumption for the WEC deformation, all the
second components of the aforementioned reference frames
are always pointing inside the page, as demonstrated in Fig.
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III. VSB WEC KINEMATICS

The deformation vector of an infinitesimal mass can be
described by 7 4mc(¢,t) such that:

Fame(0,1) = [ug(dyt) 0 u(¢,8)]" (1)

where ug(¢,t) and u,(¢,t) are the displacement in the é;
and eé3 directions, respectively (Fig. 1). These vectors are
computed using the approximated modes method as:
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where N is the number of prescribed polynomials. 7(¢) is
unknown functions of time, and ¥¥(¢) and ¥"(¢) are trial
functions.

Combining Eq. (1) with Egs. (2) and (5), we get:
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Egs. (5) and (6) represent the shape (trial) functions
composed of Legendre polynomials of the first type as they
satisfy the geometric boundary conditions of the VSB [10],
[11].
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where v is Poisson’s ratio. From Fig. (1), the vector describ-
ing the location of an infinitesimal mass on the deformed
shell in the inertial frame is expressed as:

dea = ?sa + ch + dec (8)
and its derivative after applying the transport theorem is:

adea - saana + Cseéeh - [Cse(chs + e"_:drnc)]xc’vas
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where C;; is a transformation from the j'* to the i

reference frame. Assuming that the buoy does not undergo
any rotations, Eq. (10) can be reduced to

a?dma = Csaa"._:sa + Oseéeﬁ (10)



IV. THE EQUATION OF MOTION OF VSB WEC

The equations of motion for VSB WEC point absorber
is derived in this section (heave only) using lagrangian
mechanics. This is done by calculating the total kinetic, the
total potential, and the total strain energies; subsequently,
applying Lagrange Equation expressed in Eq. (11) yields the
desired equation of motion:
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where @ is the generalized external force.
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A. Total Kinetic Energy Calculation

The kinetic energies in the system arise from two main
motions; the translation motion of the CG and the deforma-
tion of the buoy’s shell. The total kinetic energy is calculated
using the following integral:

1 . .
T = 7/ a'f:dma ' a'f:dmadm (12)
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After carrying out the dot product and integration with
respect to the buoy’s mass, then ignoring all the terms

associated with the product of “#,, and 7, we get:
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where M is the total system mass matrix, m is the VSB
WEC mass, and 1 = [1; 1 13] is an identity matrix.
Also, the vector of generalized coordinates % and M, are
expressed as [11]-[13]:
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where r and h are the buoy’s shell external radius and
thickness, respectively, and p is the material density.

B. Total Potential Energy Calculation

The total potential energy of the buoy is the combination
of two energies, the gravitational energy, and the strain
energy, as shown in Eq. (17).
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where K. is the stiffness matrix of the buoy’s shell, and it
is calculated using the following equation [11], [13]:
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By subtracting Egs. (14) and (17), the Lagrangian for the
full system can be expressed as [13], [14]:

L=T-=-YV
1. LS mgl
= XM - 5T hng;e] (19)
From Egs. (19) and (11) we can write:
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X is the vector of generalized coordinates, D is the damp-
ing matrix that accounts for the transnational D, and internal
material damping D. matrices. Q,;, is the generalized
control force and @, 4,, is the generalized hydrodynamic
force.

In the following subsections, regular excitation waves and
bang-bang PTO force will be applied on the WEC.

C. Power Take-off Unit Force
The bang-bang control can take the form [9]
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where ~ is the maximum thrust used in the bang-bang
control. The virtual work of the VSB WEC is calculated
as the multiplication of force and distance as follows [13],
[14]:
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and in the matrix form, can be expressed as:
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D. Hydrodynamic Forces

Only two forces are assumed to act on the flexible buoy
shell: the buoyant and the regular excitation forces. The
submerged volume of the VSB changes continuously with
time; to calculate this submerged volume, the buoy is divided
into a set of horizontal disks (partitions).

The buoyant force acting on the i** partition is calculated
using Eq. (30)

Fyi = puwVsig (30)

Afterward, the trapezoidal rule is used to calculate the total
submerged volume. The volume of the i*" disk is calculated
as:
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The excitation force on the i* disk is calculated by Eq.
(32),

Fepi = fex;coswt = Poy A coswt (32)

where P,., is the excitation pressure; uniform excitation
pressure distribution around the buoy is assumed, and A;
is the circumferential surface area of the i** disk and is
calculated by the trapezoidal rule using Eq. (33)
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The trapezoidal rule used in the volumes and areas cal-
culations is a second-order accurate method; to increase the
accuracy of the calculation, a refinement loop is performed
such that the size of the partitions is refined until there
is a negligible change in the calculated total submerged
volume/area at every time step.

The hydrodynamic force fhydm is expressed as
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where m is the number of volume partitions (disks),
and the —ve sign in the above mentioned equations arises
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Fig. 2: Model Block Diagram

because the hydrodynamic forces always act in the negative
¢3 direction. The generalized force can be calculated using
Eq. 37) [14]:
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After substituting Eq. (36) into Eq. (37), we get:
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V. RESULTS AND DISCUSSION

The radius of the WEC is 2 m, and thickness is 0.01 m.
The material density, Poisson’s ratio, and young’s modulus of
elasticity are 2700 kg/m?, 0.3 and 2e6 Pa, respectively. The
maximum thrust used is v = 8000, the simulation time is 60
sec, and seven truncated trial functions are used, i.e., N = 7.
Fig. 2 shows a block diagram for the solution procedure and
the bang bang control force calculation, where the variable
time step fourth-order Runge Kutta Method is applied for
the integration.

The excitation pressure around the WECs is assumed
to have uniform distribution, with a periodic time of 2.5
sec. The deformation of the VSB occurs as a result of the
summation of the excitation and buoyant forces. The resulted
heaving velocity is shown in Fig. (3); the pk-pk velocity for
the VSB is 1.09 m/sec compared to 0.96 m/sec for the FSB,
i.e. an increase of 13.48 %. Also, the steady state response
of the FSB and VSB WECs are in phase.

The square waves generated by bang-bang PTO control is
shown Fig. (4). The control force varies from 8000 to -8000
N depending on the heave velocity sign, as explained in Eq
.@27).

Figures (5) and (6) show the excitation forces in the a;
direction and the total buoys’ volume change with time.
Although a similar pressure field wave is applied on both
VSB and FSB, the resulting excitation force in the heave
direction for the VSB decreased; however, the total WEC
volume increased. From Eq. (36) both excitation and buoyant
forces contribute to the buoy’s total hydrodynamic forces.
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Fig. 4: PTO Force

The transient effects on the volume change are seen
clearly in the first 10 seconds in Fig (6). Also, it can be
noticed that after the transient effect vanishes (10 seconds),
the particular solution follows the same frequency as the
excitation force. The harvested energy increased 16.99% for
the VSB compared to FSB.

VI. CONCLUSION

This paper derives the equation of motion for a heaving
VSB WECs; the VSB shell is assumed to vibrate axi-
symmetrically. The effect of bang-bang control on the per-
formance of VSB WEC is investigated. The dynamic model
was developed using the approximated modes method, and
performance assessment was conducted in the vicinity of
Bang Bang control system, the maximum thrust used was
8000 N, over a period of 30 seconds. Within the limitations
of the assumptions made in developing the dynamic model,
the results show an increase of 16.99% for harvested energy
of the VSB WEC compared to the FSB WEC.

Further investigation on the performance of the VSB WEC
by coupling the developed equation of motion with a fluid
solver is required, the fluid solver can be either a computa-
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tional fluid dynamics solver or a hydrodynamics solver where
the added mass and radiation forces are included.
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