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The COVID-19 pandemic has highlighted a need for improved
frameworks for drug discovery, repurposing, clinical trial
design and therapy optimization and personalization.
Mechanistic computational models can play an important role
in developing these frameworks. We discuss how mechanistic
models, which consider viral entry, replication in target cells,
viral spread in the body, immune response, and the complex
factors involved in tissue and organ damage and recovery, can
clarify the mechanisms of humoral and cellular immune
responses to the virus, viral distribution and replication in
tissues, the origins of pathogenesis and patient-to-patient
heterogeneity in responses. These models are already
improving our understanding of the mechanisms of action of
antivirals and immune modulators. We discuss how closer
collaboration between the experimentalists, clinicians and
modelers could result in more predictive models which may
guide therapies for viral infections, improving survival and
leading to faster and more complete recovery.
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Introduction

Therapies for viral infection can function in many ways.
For example, small molecules or antibodies can directly
interfere with wviral life cycle, drugs can promote

interferon-induced or other types of antiviral resistance
in target cells, drugs can stimulate cellular responses for
more effective elimination of virus-infected cells, and
drugs can reduce the severity of symptoms resulting from
infection or hyper-immune response [1,2]. The develop-
ment of therapies that minimize the duration and severity
of illness may require multiple approaches to treatment at
different phases of infection. Patient-to-patient variabil-
ity may mean that the choice of drugs, and their dosing
and timing all need to be personalized.

"T'raditionally, the standard pipeline of drug-therapy devel-
opment progresses from a serendipitous guess of drug
candidates, through 7z vitro and in vive drug testing, to
clinical trials in humans, and post-clinical optimization,
with a dramatic drop in the probability of success at each
phase [1]. Data-based methodologies like bioinformatics
and Machine Learning have been able to augment seren-
dipity with extrapolation and structural similarity metrics
for lead identification [3] but have not yet allowed the
design of optimized therapies. T'wo types of mechanistic
computer models which explicitly simulate biological com-
ponents, interactions and dynamics are commonly used in
drug development and therapy optimization: molecular
dynamics (MD) simulations of limited numbers of indi-
vidual molecules allow docking calculations which are
widely used in lead identification [4,5], and models of drug
absorption, transport, metabolism and elimination allow
dosage optimization [6]. However, these molecular-scale
and whole-body-scale models generally neglect the spatio-
temporal complexity of the dynamic multicellular immune
response, the movement of virus within the body, and the
ways in which both virus and immune response can lead to
either pathological outcomes or recovery.

Available blood-based clinical measurements of viral
load, cytokine or immune-cell profiles and imaging-based
measurements of regions and types of damage provide
snapshots of viral infection in individuals, which when
aggregated, allow us to characterize typical patterns of
infection progression. However, these measurements are
usually too limited in frequency and detail to predict
individual immune responses in a way that allows opti-
mized personalized treatments. Our inability to predict
the immune response and immune-viral interactions in
individuals, means that we still have very limited mecha-
nistic understanding of why some individuals have mild

www.sciencedirect.com

Current Opinion in Virology 2021, 50:103-109


mailto:jaglazier@gmail.com
http://https://www.sciencedirect.com/journal/current-opinion-in-virology/special-issue/108QX824NNK
http://https://www.sciencedirect.com/journal/current-opinion-in-virology/special-issue/108QX824NNK
https://doi.org/10.1016/j.coviro.2021.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coviro.2021.07.007&domain=pdf
http://www.sciencedirect.com/science/journal/18796257

104 Anti-viral strategies

Figure 1
Time seconds-months mins-months mins-weeks
Size m cm mm

4000 min.

Lymph Nodes

Central
Velocity
um/min

|

a8

Epith

pressure
(mmHg)

39
I an

Immune cell

6

24

. 12
I 00

12000 min.

‘fl[ Other | ¢——|
Whole Body Organ level Tissue Level
(PBPK/PD) (ODEs & spatial) (Multi-cellular models)

ns-min

Ty’

\ Rele)dw.;
\ e

%

Amglification =

molecules cell
Particles / cell
H)

g

Survival
Probability

Infected Cell Age (h)
Intracellular level
(Viral cycle models)

Molecular Level
(MD Simulations)

Current Opinion in Virology

Spatiotemporal scales in virus infection dynamics.

Top row shows schematics of biological systems at different scales. Bottom row shows sample model representations and outputs for the scales
shown in the top row. From left to right: (1) top: Schematic of a whole body, bottom: PBPK model of drug absorption, distribution, metabolism,
and excretion, (2) top: Lung and Lymph node, bottom: model of flow, transport and response in a lymph node (adapted from Ref. [16]), (3) top:
Infection and immune response in a lung epithelial tissue, bottom: multi-cellular simulation of virus, target cells and immune cells in a patch of lung
epithelium [17°]. (4) top: Viral life cycle inside a host cell, bottom: multiscale model of influenza A virus infection (adapted from Ref. [18]), (5) top:
Middle East Respiratory Syndrome virus particles (blue) binding to a VERO EB6 cell (adapted from Ref. [19]), bottom: molecular dynamics model of

ACE2 - SARS-CoV-2 S protein docking (adapted from Ref. [13]).

symptoms, while others develop severe disease in
response to the same virus, or why recovery is complete
in some individuals and long-term consequences like
post-polio syndrome or long-COVID occur in others
[7,8]. Consequently, at present, we usually cannot accu-
rately predict how a particular patient will respond to
treatment with an antiviral drug or immune modulators,
whether for new viruses introduced by a pandemic, or
endemic circulating viruses such as seasonal influenza.

Mechanistic models are most useful when we lack intui-
tive understanding of the significance of experimental
observations and the causal processes that underlie them.
The complex web of interactions between virus, cyto-
kines and immune cells both at the site of infection and in
the Iymph nodes is a classic example of how multiple
feedback cycles can lead initially similar situations to
evolve in very different temporal and spatial patterns
and result in different clinical outcomes. In the immune

system, cytokine levels, immune-cell profiles and damage
patterns can change in complex ways in space and time,
making prediction from qualitative models nearly
impossible.

The complexity of viral infection and immune response
has led to the development of mechanistic computational
models, differing in their mathematical and computational
representation of components, interactions, levels of spa-
tial detail and the time scales they consider. A conceptual
mechanistic model 1s a phenomenological description of the
dynamics of a biological system. In the case of a model of
infection, it is based on biologically motivated hypotheses
identifying the key physical components of viral infection
and immune response, how their interactions lead to
infection dynamics and what key measurable variables
best describe these components and interactions. To
make this model quantitative and dynamic, requires
hypotheses for the specific mathematical forms governing
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the changes of the variables describing these components.
"T'o build a mechanistic computational model, we also need to
decide how to translate the dynamic mechanistic model
into a computer simulation, for example, by deciding if
we will represent individual virions or viral concentra-
tions, or whether changes happen continuously in time or
as stochastic events. For an interesting discussion of the
process of constructing a complex model of immunologi-
cal cross-talk see Ref. [9].

"This short piece cannot cover the many existing relevant
models comprehensively. For a more comprehensive
review see Refs. [10°°,11]. Here we describe successful
models of gradually increasing complexity, and end by
discussing some promising areas of research and devel-
opment that would benefit from more intensive collabo-
ration between experimentalists and modelers.

How understanding viral kinetics and immune
response can assist development of antiviral

therapies

The COVID-19 crisis has revealed significant gaps in our
understanding of within-host viral kinetics and immune
response, which impede the discovery of new therapies,
and the optimization and personalization of existing
therapies. Mechanistic computational models are uniquely
positioned to bridge these gaps.

The dynamics of interaction between a virus, host cells
and the immune response are complex, involving multi-
ple spatial and temporal scales (Figure 1). Infection starts
from viral transport to the site of initial infection, evasion
of host defenses and infection of target cells. As infection
progresses, both virus dissemination and immune
response progressively involve more components and
can spread to different tissues and organs.

At the smallest scale, MD simulations rely on information
on the dynamic properties of macromolecules and can
provide information about details of virus recognition not
accessible using crystallography. For example, flexibility
of the viral peptide presented by the major histocompati-
bility complex (MHC) may play an important role in the
recognition of the peptide by a T cell, leading in some
cases to ‘conformational frustration’ [12]. Molecular-
docking simulations of affinity between SARS-CoV-2
spike and ACE2 in different species [13] were able to
identify the most useful animal models of human infec-
tion. At the largest whole-body scale, physiologically
based pharmacokinetic (PBPK) modeling is a well-devel-
oped framework that models drug absorption, distribu-
tion, metabolism, and excretion (ADME) and may help to
optimize drug treatment in the case of emergent viruses.
For example, a PBPK model was used to scale the optimal
dosing of remdesivir from adults to pediatric patients with
COVID-19 [14].

Proper understanding of the immune response to a viral
infection requires modeling at multiple scales simulta-
neously. Picking the correct level of detail for each scale
requires us to decide which elements are critical to the
behaviors of the system [15]. Often, we need to represent
the intermediate scales with the most detail. For exam-
ple, a weather forecasting model of hurricane trajectory
and strength might include a detailed submodel of the
winds in the hurricane, and less detailed submodels
representing heat flow in the ocean beneath and weather
patterns across the globe, which provide boundary con-
ditions for the detailed hurricane submodel. Multi-level
models of factories, traffic in cities and agent-based
models in epidemiology also often represent the inter-
mediate-scale components in the most detail. To under-
stand and control the interaction between a virus and the
immune system, we need models that cover intermediate
scales between molecules and the whole body. We will
focus on models at these intermediate scales, including
population-dynamics models, models of viral life cycle,
multi-cellular models and their integration into multi-
scale models.

The challenge of understanding the immune response in
HIV infection has shaped the field of mathematical
modeling in immunology. A target-cell-limited model
initially proposed to understand the dynamics of HIV
infection [20,21] established a framework for within-host
modeling that later was extended in multiple ways and
applied to different viral infections. The simple target-
cell-limited model has three variables: uninfected sus-
ceptible target cells, infected virus-producing cells, and
the viral load. Fitting this model to the viral-load data
allowed estimation of the rate of production of virions by
infected cells and the life-spans of infected target cells
and virus particles [20]. These early models provided the
groundwork for later development of greatly improved
HIV therapies.

Interferons (IFNs) are the frontline defenders of the
innate immune system, both interfering with infection
of host cells and reducing viral replication inside infected
cells. Recent models have explored the importance of
innate immune response feedback pathways in determin-
ing the outcome of disease in individuals [22°23]. The
target-cell-limited modeling framework has been
extended to analyze the effect of interferon-a therapy
in treatment of Hepatitis C virus (HCV) infection [24]
and to evaluate the relative importance of the two modes
of IFN action (reducing production of virions by infected
cells and reducing de novo rates of cell infection) [24]. The
model allowed estimation of the otherwise unobservable
death rate of infected cells, and showed that its variation
correlated closely with the variability in patient outcomes,
with higher cell death rates during the first two weeks of
IFN therapy predicting eventual cure, with virus unde-
tectable by polymerase chain reaction after 3 months.
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Results of this kind can help personalize the optimal
duration of therapies.

The failure of the simple target-cell-limited model to
explain observed primary HIV dynamics in an infected host
suggested a role for cytotoxic T lymphocytes (CTLs) and
cytokine suppression of viral replication in controlling the
viral load after the initial acute viral-load peak [25]. Models
including the adaptive immune response have provided
insights with significant therapeutic value. For example, a
model of effector-cell response and exhaustion explained
the ‘post-treatment control’ of HIV viral load observed in
some HIV patients [26], and suggested that boosting eftec-
tor-cell response through therapeutic vaccination [27]
before termination of antiretroviral treatment might
increase the chances of post-treatment control of viral load.
Arecent extension of the model [26] explored four different
mechanisms behind post-treatment control of Simian
immunodeficiency virus (SIV) in macaques and showed
that the primary mechanism differs between individuals, an
important step towards using modeling to personalize treat-
ment [28°°]. The target-cell-limited modeling framework
was adapted to model viral-load dynamics under antiviral
treatment and to explore three different mechanisms of
action [29°] and to compare within-host SARS-CoV-2,
MERS-CoV, and SARS-CoV dynamics. The model pre-
dicted a shorter time from symptom onset to viral-load peak
for SARS-CoV-2 infection compared to MERS-CoV and
SARS-CoV, suggesting that controlling SARS-CoV-2 infec-
tion using antivirals would be more difficult.

The cost and toxicity of direct-acting antiviral (DAA)
therapy led to models optimizing the length of the
therapy. Dahari ez /. [30] demonstrated that viral-kinetic
models applied to early viral-kinetic data under drug
treatment can predict the duration of DAA therapy
needed to achieve cure in patients infected with HCV
(a virus able to cause a persistent infection in humans),
and thus personalize the treatment. Interestingly, the
model predicted that the one patient who relapsed under
standard 12-week DDA therapy would have benefitted
from an additional week of sofosbuvir + ledipasvir. Goyal
et al. [31] extended these models [30,32] by assuming that
HCV RNA in serum includes both infectious and non-
infectious virus, explaining the ability of ultrashort DAA
therapy to cure some individuals. Baral ez a/. [33] explored
the hypothesis that the viral decline induced by DAAs
during chronic HCV treatment reversed the exhaustion of
CTLs, which then cleared the infection after treatment.
Estimating the parameters defining the C'TL response for
individual patients allowed the model to predict the
necessary duration of DAA therapy for each patient
and thus personalize the treatment.

In age-structured models, the rate of production of viral
particles and the death rate of infected cells depend on
how long a cell has been infected [34]. All viruses share

steps in their replication: attachment to a target cell in a
host, release of viral genetic material into the host cell,
replication using host-cell machinery, assembly of new
viral particles and release of viral particles from the
infected cell. Mechanistic models can determine which
of these steps should be blocked for the fastest and most
effective treatments. For example, models can explore
how multiplicity of infection affects viral replication rate
[35]. Model simulations can also predict the effects of
drug-based perturbations when viral-replication pathways
contain both positive and negative feedback. Age-struc-
tured models with detailed submodels of the viral life
cycle allow systematic exploration of new drug targets
[32,18]. A multi-scale model of influenza A virus infection
[18] combined an intracellular model of the synthesis of
new viral particles with an extracellular model of virus
spread to new host cells to explore how drugs affecting
different stages of the viral life cycle might affect the
dynamics of viral titer. The model allowed ranking of the
effectiveness in decreasing viral titer of potential anti-
virals targeting different stages of the viral life-cycle,
including viral entry, nuclear trafficking, viral RNA and
protein synthesis and viral particle assembly and release.

Often simulations show that changes in particular model
parameters change model dynamics in ways that could
correlate with improved clinical outcomes. Drugs that
control these parameters become promising drug candi-
dates. In both iz vive and clinical trials, the savings in
time, labor and cost can be substantial. In Ref. [36°],
exhaustive combinatorial sensitivity analysis for all pair-
wise parameter changes in a model of the SARS-CoV-2
viral life cycle predicted that drugs targeting viral genome
replication (like remdesivir) and protein synthesis would
result in the most effective reduction of viral titer.

In cases where we have a highly effective antiviral, we
might expect that the optimal treatment strategy would
be to treat as soon as possible after infection or diagnosis.
Delaying antiviral therapy carries a risk of tissue damage
from the virus and immune response. However, carly
antiviral treatment might prevent triggering of the adap-
tive immune response and hence the development of
long-term protective immunity. A model by Stromberg
et al. [37] explored this trade-off and suggested a limited
time window after infection during which antiviral ther-
apy could limit disease symptoms without inhibiting
development of long-term immunity, thus ensuring that
those infected receive the benefits of vaccination with
reduced risk from the disease.

While the within-host models described above model
mean levels of virus and immune components clinically
measurable in the blood, patterns of infection and
immune response are spatially localized within an
infected individual. In respiratory disease, lesions are
usually highly localized and develop in different places
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at different times, even within a single individual [38]. In
the models discussed above (PBPK, ODE-population
models) in each compartment, each cell senses the same
level of, for example, cytokines. In cellular automaton
(CA) and agent-based models (ABM), cells are discrete
and occupy explicit volumes in space, and chemicals are
expressed as concentration fields. CA and ABMs can
explore the effects of spatial heterogeneity on the pro-
gression of infection, immune response and therapy
[17°,39], and improve estimates of parameters and their
typical ranges of variation for the non-spatial models we
described above.

Figure 1 shows a tissue-scale agent based multicellular
simulation of COVID infection and immune response
(‘tissue level’, bottom row). This simulation represents
the dynamic evolution of a small (typically 1 mm x 1 mm)
patch of host tissue, the extracellular viral and cytokine
concentrations, and various immune-cell types and their
functions [17°,39]. Individual host cells contain indepen-
dent models of viral entry, replication, and release. Mod-
els of this type can explore the effects of stochasticity at
the subcellular, cell and patch level in determining local
outcomes and the effects of viral spread, interferon,
antiviral and immune modulators. These models are
often coupled to pharmacodynamic (PD) and PBPK
models of therapeutics and to models of lymph-node
response to allow more detailed understanding of hetero-
geneity in patient response and treatment optimization
[17°,36°]. They can also be coupled to larger-scale spatial
models of transport within and between organs, as has
been done for bacterial infections like tuberculosis [40°],
or generated from calibrated non-spatial models, as has
been done for influenza infections [41,42].

Computational fluid dynamic (CFD) flow models consider
transport at the level of entire organs. Immune response is
orchestrated by chemokines and depends on leukocyte
migration in infected tissues and lymph nodes (LNs).
The models of Jafarnejad ez a/. [16,43] showed how lymph
flow (Figure 1, ‘whole organ level’), fluid exchange with
blood vessels, chemokine binding, and cell response deter-
mine immunosurveillance and response in LNs. Such
understanding may allow development of improved immu-
nomodulatory therapies and clarify the way in which innate
and adaptive immune responses coordinate after vaccina-
tion, allowing the design of improved adjuvants and vac-
cines. CFD models have also been valuable in determining
the distribution of aerosol-delivered drugs in the lungs
[44,45] and the localization of infectious virus after inhala-
tion and in estimating the infectivity of individuals with
lung infections during different activities [46].

Mathematical approaches can help us prioritize experi-
ments to improve understanding of immune response.
Classical numerical sensitivity analysis identifies condi-
tions where the model predicts that small changes of

parameters or different hypothesized model structures
will lead to different quantitative or qualitative outcomes.
When these parameters are ones which can be manipu-
lated in experiments, the model can be used to design
maximally discriminatory experiments to test hypotheses,
optimizing experimental time, cost and effort.

While the models mentioned above vary in scope and
methodology, they can all be useful in optimizing windows
for time, dosage, and personalization of treatment (see
recent work on patient heterogeneity in SARS-CoV-2
pathogenesis [47]). When modelers collaborate with
experimentalists to develop therapy-design models which
predict the effects of experimentally changeable biological
parameters, the models become a powerful tool to reduce
the cost, time and effort of antiviral drug discovery.

Conclusion

Mechanistic computational models can help us to understand
the heterogeneous outcomes of infection in different indi-
viduals, distinguish between mechanistic hypotheses,
extrapolate from /7 vitro and animal experiments to humans
and infer parameters that would be difficult to measure
directly in experiments, using synthetic data sets. Using
computational models, we can design Virtual Clinical Trials
[48] to test the efficacy of complex combination therapies,
where the number of possible combinations is challenging
to test in animal or human trials. The models can suggest
previously overlooked vulnerabilities of viruses (including
repurposing drugs developed in other contexts). Simula-
tions can help identify the most informative experiments to
test hypotheses and improve the design of clinical trials
[49]. Often, the process of building a self-contained, mean-
ingful model will reveal critical missing information,
whether in the form of pathways, relationships between
stimuli and outcomes, parameters, or inter-individual vari-
ability. Indeed, model building is brutally effective at
revealing what we don’t know.

Mechanistic computational models are not an alternative to
bioinformatics and Omics data-driven statistical models.
On the contrary, combining these approaches along with
the modeler’s intuition and knowledge will usually work
better than any approach alone. New data emerge almost
daily from modern Omics studies, and as the sample size
increases, information connecting an individual’s charac-
teristics (age, sex, pre-existing conditions, level of prior
immunity, etc.) with disease-course outcomes will pro-
vide correlative data that can help to develop mechanistic
models. Integrating machine learning with mechanistic
multiscale modeling could be especially beneficial [50].

A new generation of mathematical models may help us
solve some of the key puzzles in immune response, such
as the determinants of the duration and amplitude of T-
cell and B-cell memory, the onset and severity of septic
responses, and viral evolution and escape from immune
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control. Models could help us understand how to handle
coinfections, where you might need separate therapies for
each virus and specific approaches to deal with viral-
immune-viral interactions, like giving an IFN booster
after IAV infection to reduce the pathogenic effects of
secondary respiratory viral infections.

While the promise of mechanistic computational models to
improve the development and use of antiviral therapies is
strong, their successful creation and implementation will
require more than the current over-the-fence approach
which separates modelers from therapy developers and
clinicians. Currently, we face a bootstrapping problem.
Contemporary models are not always sufficiently predic-
tive to be useful to therapy developers, so the motivation to
do experiments specifically to enable modeling is limited.
However, current experiments often measure end points
with limited time-series data, which limits our ability to
build and validate models. We can’t infer dynamics from
even a limitless number of single-time-point snapshots if
they are done in different individuals. Building useful
dynamic models requires expensive and demanding
experiments which measure key metrics (viral load, cyto-
kine levels, fraction of infected cells) frequently in indi-
vidual samples, animals or patients. Similarly, if modelers
design models without considering the needs and priorities
of therapy developers from the beginning, they are likely to
deliver models which solve the ‘wrong’ problems. T'o build
experimentally and clinically useful models, modelers
need experimentalists to be clear about what they can
practically measure and manipulate. Ultimately, effective
model building requires team effort at all stages from
exploratory research to therapeutic application.
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