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Building digital twins of the human immune system: toward
a roadmap
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Digital twins, customized simulation models pioneered in industry, are beginning to be deployed in medicine and healthcare, with
some major successes, for instance in cardiovascular diagnostics and in insulin pump control. Personalized computational models
are also assisting in applications ranging from drug development to treatment optimization. More advanced medical digital twins
will be essential to making precision medicine a reality. Because the immune system plays an important role in such a wide range of
diseases and health conditions, from fighting pathogens to autoimmune disorders, digital twins of the immune system will have an
especially high impact. However, their development presents major challenges, stemming from the inherent complexity of the
immune system and the difficulty of measuring many aspects of a patient’s immune state in vivo. This perspective outlines a
roadmap for meeting these challenges and building a prototype of an immune digital twin. It is structured as a four-stage process
that proceeds from a specification of a concrete use case to model constructions, personalization, and continued improvement.
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INTRODUCTION
Today, nearly every industry that deals with complex technologies
use sophisticated “digital twin” computer simulations to forecast
how individual pieces of equipment should perform under ever-
changing real-world conditions. For instance, a digital twin of a jet
engine receives continuously updated operational data streamed
over the “internet of things” while the engine is in flight. Any
deviation between the digital twin’s prediction and the actual
engine’s state can provide an early warning of a potential
problem, which can be resolved before it becomes critical/
catastrophic.
The medical analog is only in its infancy. Medical digital twins

could find many uses and take many forms. They could predict
disease trajectories in individual patients, allowing diagnosis
before the onset of serious symptoms. They could be used to
optimize the timing of suggested medical care and to investigate
the effects of potential treatments in a patient-tailored manner.
They could help identify biomarkers or elucidate drug mechan-
isms of action. They could be data-driven or based on mechanistic
computational models of biological function, or a combination of
both. Currently, digital twins of the human heart improve
diagnosis, prognosis, and therapies1,2. Automated workflows for
generating cardiac digital twins could serve as a blueprint for the
generation of other types of medical digital twins. Another
example of an operational medical digital twin is the artificial
pancreas that aids Type I diabetic patients in insulin manage-
ment3. Of particular importance are digital twins that capture key
features of the immune system, with its ubiquitous influence on
human disease. Being able to predict an individual’s immune
response to infection or injury could be lifesaving in many ways,
for instance in designing optimal individualized treatments4.

This perspective describes a high-level outline of a roadmap for
building an immune digital twin (IDT), depicted in Fig. 1. It
advocates a partnership between the international not-for-profit
scientific community, the commercial sector, and government
funding agencies. Such an approach requires a collaborative
infrastructure and broad agreement on the nature of the final
product. For instance, the recently formed European-led DigiTwin
consortium, which includes academic, clinical, and industrial
partners from 32 countries, aims to create digital twins for every
European citizen for a range of conditions5, and could become a
model for some aspects of a global consortium for immune digital
twins.

DEVELOPMENT STAGES
The construction of an immune digital twin will broadly follow the
four-stage paradigm for industrial digital twin development (see
Fig. 2).
Stage 1: Define a specific application and construct an

appropriate generic template model.
The crucial first step is to determine a specific application of a

personalized immune simulation model. Applications can be
“online,” e.g., to predict the efficacy of a particular treatment
based on frequent measurements of a patient’s condition, or
“offline,” e.g., to develop novel drugs using simulated patient
populations. Defining the application helps to narrow down the
components of the immune system to include in the model, and
to define the data available for model construction and operation,
resulting in a generic “specification” of the digital twin design.
As there are many patient-specific immune system measure-

ments that are currently infeasible, the choice of application is
crucial for success.

1Department of Medicine, University of Florida, Gainesville, FL, USA. 2Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde - Genhotel, Univ
Evry, Evry, France. 3Lifeware Group, Inria, Saclay-île de France, 91120 Palaiseau, France. 4Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
5Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT, USA. 6European Bioinformatics Institute, European Molecular Biology Laboratory
(EMBL-EBI), Hinxton, Cambridge, UK. 7Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
✉email: reinhard.laubenbacher@medicine.ufl.edu

www.nature.com/npjdigitalmed

Published in partnership with Seoul National University Bundang Hospital

12
34

56
7
89

0(
):,
;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00610-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00610-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00610-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00610-z&domain=pdf
http://orcid.org/0000-0002-9143-9451
http://orcid.org/0000-0002-9143-9451
http://orcid.org/0000-0002-9143-9451
http://orcid.org/0000-0002-9143-9451
http://orcid.org/0000-0002-9143-9451
http://orcid.org/0000-0002-9687-7426
http://orcid.org/0000-0002-9687-7426
http://orcid.org/0000-0002-9687-7426
http://orcid.org/0000-0002-9687-7426
http://orcid.org/0000-0002-9687-7426
http://orcid.org/0000-0003-4549-9004
http://orcid.org/0000-0003-4549-9004
http://orcid.org/0000-0003-4549-9004
http://orcid.org/0000-0003-4549-9004
http://orcid.org/0000-0003-4549-9004
http://orcid.org/0000-0003-3130-4659
http://orcid.org/0000-0003-3130-4659
http://orcid.org/0000-0003-3130-4659
http://orcid.org/0000-0003-3130-4659
http://orcid.org/0000-0003-3130-4659
http://orcid.org/0000-0003-0705-9809
http://orcid.org/0000-0003-0705-9809
http://orcid.org/0000-0003-0705-9809
http://orcid.org/0000-0003-0705-9809
http://orcid.org/0000-0003-0705-9809
http://orcid.org/0000-0002-5719-6003
http://orcid.org/0000-0002-5719-6003
http://orcid.org/0000-0002-5719-6003
http://orcid.org/0000-0002-5719-6003
http://orcid.org/0000-0002-5719-6003
http://orcid.org/0000-0003-3634-190X
http://orcid.org/0000-0003-3634-190X
http://orcid.org/0000-0003-3634-190X
http://orcid.org/0000-0003-3634-190X
http://orcid.org/0000-0003-3634-190X
https://doi.org/10.1038/s41746-022-00610-z
mailto:reinhard.laubenbacher@medicine.ufl.edu
www.nature.com/npjdigitalmed


The design steps are as follows.

1. Identify a specific purpose for the IDT. For example, it could
be used to identify how to generate an immune response
sufficient for effective viral clearance while avoiding
excessive inflammatory tissue damage in a given patient.
Identify all required inputs and read-outs of the IDT for the
intended purpose.

2. List all components of the immune system, organ systems,
physiology, and any organismal features, as well as their
processes (behaviors and interactions), required to capture
the mechanisms and features relevant for the intended
purpose and the available interventions.

3. Create a conceptual map of the generic model that
integrates all these components and features.

4. Build and implement an executable version of the generic
model, parametrize and validate it, using data from humans,
if available, as well as animal models and other experimental
systems.

5. Carry out uncertainty quantification of model behavior.
Stage 2: Personalize the template model to an individual

patient.
The calibration and contextualization of the generic

template model with appropriate patient-specific data lead

to a patient-specific digital twin. This stage creates an IDT
model prototype that replicates key relevant features of an
individual patient and passes an initial validation. The steps
are as follows.

6. Determine patient measurements needed as IDT inputs and
their frequency. Determine model outputs and their
frequency. Inputs could consist of one-time measurements,
such as immune cell counts to determine immune status at
the time of a particular therapeutic intervention, or
frequently repeated measurements, such as blood cytokine
levels. Outputs could consist of one-time binary outputs,
such as TREAT/DO NOT TREAT, or dynamic outputs such as
deviation over time from a predetermined set of health
parameters.

7. Determine any patient-specific parameter values or ranges
of values in the IDT, such as determinants of liver function,
as well as anatomical or other characteristics that are part of
the model, and integrate them.

8. Perform an initial validation of the model by collecting a
sufficient number of input/output values to test IDT
performance. Adjust model characteristics as needed.
Stage 3: Final IDT testing and uncertainty quantification.
This stage requires two steps.

9. Test the IDT extensively under a variety of conditions and

Fig. 1 The construction and use of a digital twin. At each relevant physiological scale, known biology and relevant mechanisms are
characterized through data collection that informs one or more computational models. The models at the individual scales are then
integrated into a comprehensive multiscale base model. In the second step, this base model is personalized by parameterizing it with data
collected from an individual patient. The resulting digital twin can then be used for clinical decision-making for this patient. (The images are
public domain images from Servier Medical Art (https://smart.servier.com/smart_image/tendon-anatomy/), https://all-free-download.com/
free-vector/flat-screen-computer-monitor.html, and https://pixabay.com/vectors/man-male-boy-human-people-persons-2099114/). All other
images were produced by the authors).

Fig. 2 Immune digital twin workflow. The 11 steps in the four-stage workflow to construct an immune digital twin.
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adjust model features and parameters as needed to improve
accuracy.

10. Perform uncertainty quantification of the model. There are
likely to be sources of parametric, structural, algorithmic,
and observational uncertainties in the IDT. It is crucial to
carry out a well-designed program to reduce and estimate
the effect of these uncertainties on model predictions.

Stage 4: Continue to collect individual patient data for ongoing
improvement of the IDT.
Ongoing collection of additional patient data over time of the

type used to calibrate and personalize the generic model provides
a richer data set to further reduce model uncertainty. This stage
also addresses the fact that each patient is changing over time,
and their IDT needs to be recalibrated periodically. Thus, Stage 4
represents an ongoing learning process to improve model
performance and allow the IDT to evolve with the patient.
This process creates an IDT prototype for use in the fashion

specified for the purpose determined at the outset. But a medical
digital twin will likely never be a finished product. One critical
reason for the success of industrial digital twins is that they
incorporate a mechanism for continuous model improvement,
where systematic deviations between model predictions and
actual observations are used to refine model parameters or to
suggest improvements to model structure/hypotheses. As a result,
each time any digital twin is used, all digital twins of the same
type improve based on its experience in operation. Stage 4
captures this feature.
Because immune responses to different situations share many

components and processes, the components of an IDT developed
for one purpose may be reused to facilitate the construction of
IDTs for other purposes. As the repertory of available components
grows, one could construct a “core” model that represents
commonly shared features of the immune response which can
then be extended and customized with additional components for
specific applications.

REQUIREMENTS AND CONSIDERATIONS
Collaborative and federated model development and
validation
The effort outlined here will require a large, carefully coordinated,
collaborative effort between immunologists, modelers, clinicians,
computational scientists, and software engineers. The required
expertise and resources go beyond the capabilities of any single
organization, whether commercial or academic. In many ways,
establishing the team-science human infrastructure is the most
important and most difficult project feature. A large part of the
expertise and knowledge base for IDTs resides in the academic
community. Academic laboratories around the world have
independently developed computational models of aspects of
the immune response in various contexts6–14. We need to support
the integration of these “local” efforts by developing enabling
infrastructure and connecting the modeling community closely
with experimentalists and clinicians. Spurred on by the SARS-CoV-
2 pandemic, several community efforts emerged to create large-
scale computational models of within-host disease dynamics, with
approaches ranging from discrete to continuous mathematical
modeling, e.g., refs. 15–23. Much can be learned from these
experiences.
The organizational structure must provide leadership in

mapping out project tasks and managing execution while
respecting the autonomy of individual collaborators. Contributors
of models, data, and clinical work must receive appropriate credit
for their efforts and retain intellectual ownership of their
contributions while enabling their sharing, interconnection, and
reuse. How these issues will be resolved will depend in large part
on whether an organizational structure relies on a dedicated

implementation team that leverages community expertize and
extant models and data, or, instead, emphasizes enabling
individual laboratories to themselves develop and integrate
models, code, and data for an IDT project.

Software infrastructure
Lowering barriers to collaboration requires the development of
software infrastructure to encourage and support model integration.
Such shared infrastructure should allow participants to develop
individual component models which can interconnect with each
other with minimal extra effort and overhead. Implementation of
common standards is one way to accomplish this. This infrastructure
could be grafted onto the conceptual map of the IDT and can
provide a template for what component models need to be
included where. Dependency between sub-models needs to be
minimized to avoid problems during model simulation.
Creating this infrastructure requires the solution of many specific

technical problems. For example, a pipeline-like approach could
help create a unified space for launching simulations of many
different model components24–26. A shared set of analytical tools
might include topological analyses to delineate model structure and
identify core modules and concepts, dynamic analyses of discrete
logic-based models27–30, and systems of ordinary differential
equations (ODEs) representing different biological phenomena
(gene regulation, signaling, and metabolism) across time scales.
Several available technologies address some aspects of IDT

infrastructure. The IDT template model could be composed of
many different modules combined in a plug-and-play fashion, for
instance using the Python-based hub-and-spokes architecture
proposed in ref. 31. This approach has the advantage that all sub-
models access and modify the global model state only, without
interacting with each other directly. Cell Collective32 is a web-
based modeling platform for collaborative construction, simula-
tion, and analysis of large-scale dynamic models of biological
processes which supports logical and constraint-based models
and extensive model annotation at multiple levels, enabling users
to provide detailed biological evidence that supports model
interactions, in addition to other logical model resources33.

Modeling considerations
IDTs are complex computational structures whose sub-
components may include both mechanistic models and/or data-
driven statistical and machine learning algorithms. The specific
use and data availability for each component will determine how
it is implemented. For instance, well-developed AI approaches to
image/pattern analysis could interpret CT or MRI images of
infectious lesions, while mechanistic physiological and pharma-
cokinetic models would be appropriate to describe drug absorp-
tion distribution metabolism and elimination or signaling and
feedback between immune cells components. Other cases may
employ a hybrid approach that incorporates as many known
mechanisms as possible, with data-driven models standing in for
missing mechanistic information.

Information management
Effective and comprehensive information management is essen-
tial if a project of this complexity is to be used in life-critical
biomedicine and healthcare delivery. One solution is to use a
dedicated team that manages information intake, organization,
curation, and access by contributors. A more open approach
would provide an information management system that allows all
contributors to upload and curate their own information, linking it
to other parts of the project through navigation tools. Both have
their own advantages and disadvantages to be weighed in
making a choice. Perhaps the most important component will be a
flexible specialized repository of models and data sets, similar to
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existing general repositories such as Cell Collective32, SimTk34, and
BioModels35. The European Bioinformatics Institute (EMBL-EBI) is
developing a “search engine” for computational models, Mod-
eleXchange, which will be able to integrate and search across
model repositories to find models of interest.

DISCUSSION
This perspective provides a high-level roadmap for developing
immune digital twin technology for biomedical and clinical
applications. While IDTs present formidable scientific and technical
challenges, even rudimentary instantiations for a given application
would help focus ongoing data collection and other improvements,
leading to progressively better-personalized simulation models over
time. We propose the establishment of a Consortium for Predictive
Immunology that works to integrate the currently fragmented trans-
disciplinary researchers to make IDTs a reality. This collaborative
human infrastructure, closely integrating modeling and clinical
deployment would help transform the nature of biomedical
research, greatly accelerating the bench-to-bedside pipeline and
enabling currently unreachable medical goals. It would also provide
numerous opportunities for new training paradigms for both
biomedical and computational researchers.
We envision a two-stage project extending over 7 years. An initial

planning effort will extend over 2 years. During this time the
application(s) will be determined, a conceptual map of the IDT will
be established, the necessary infrastructure will be put in place, and
the composition of the group of collaborators will be determined.
The first step is to assemble key stakeholders to define goals and
approaches: modelers, immunologists, clinicians, software engi-
neers, commercial entities, and funders. Our aim is to build: (1) a
small number of promising applications of IDT technology; (2) a
steering group that can initiate and coordinate the next steps; and
(3) an outline of available funding sources, beginning with funds for
a planning phase. During the next 3 years, the Consortium will
construct and validate a prototype version of the IDTs and their
supporting computational infrastructure. The final 2 years will
validate the IDTs in patient trials. The Consortium needs to be
funded as a coherent single project with distributed performance
sites, including resources for modeling and software development,
as well as experimental and clinical testing and validation.
We emphasize that the challenges to be met in such a project

are formidable. Its cost and complexity are comparable to the
Cancer Moonshot Program, funded at $1.8 B US Dollars through
the US National Institutes of Health for a duration of 7 years.
Depending on initial applications, it might require novel
measurement technologies. And major new scientific discoveries
and technological developments will be needed to achieve
immune digital twins that are robust and accurate enough to
approach industrial standards.

CONCLUSION
Immune system digital twin technology is within our reach. Since
the immune system plays a role in essentially all major diseases
faced by humankind, including infectious, heart, respiratory and
autoimmune diseases, the impact will potentially be extremely
high. The time to begin is now.
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