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Abstract—Multi-robot systems such as swarms of aerial robots
are naturally suited to offer additional flexibility, resilience, and
robustness in several tasks compared to a single robot by enabling
cooperation among the agents. To enhance the autonomous robot
decision-making process and situational awareness, multi-robot
systems have to coordinate their perception capabilities to col-
lect, share, and fuse environment information among the agents
efficiently to obtain context-appropriate information or gain re-
silience to sensor noise or failures. In this letter, we propose a
general-purpose Graph Neural Network (GNN) with the main goal
to increase, in multi-robot perception tasks, single robots’ inference
perception accuracy as well as resilience to sensor failures and
disturbances. We show that the proposed framework can address
multi-view visual perception problems such as monocular depth
estimation and semantic segmentation. Several experiments both
using photo-realistic and real data gathered from multiple aerial
robots’ viewpoints show the effectiveness of the proposed approach
in challenging inference conditions including images corrupted by
heavy noise and camera occlusions or failures.

Index Terms—Aerial systems applications, deep learning for
visual perception.

I. INTRODUCTION

I
N the past decade, robot perception played a fundamen-

tal role in enhancing robot autonomous decision-making

processes in a variety of tasks including search and rescue,

transportation, inspection, and situational awareness. Compared

to a single robot, the use of multiple robots can speed up the

execution of time-critical tasks while concurrently providing

resilience to sensor noises and failures.

Multi-robot perception includes a wide range of collaborative

perception tasks with multiple robots (e.g., swarms of aerial or

ground robots) such as multi-robot detection, multi-robot track-

ing, multi-robot localization and mapping. They aim to achieve

accurate, consistent, and robust environment sensing, which is

crucial for collaborative high-level decision-making policies and
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Fig. 1. Multi-robot collaborative perception with GNN. In this case, images
are the inputs and monocular depth estimation and semantic segmentation are
the downstream tasks.

downstream tasks such as planning and control. There are still

several major challenges in multi-robot perception. Robots must

efficiently collaborate with each others with minimal or even

absence of communication. This translates at the perception

level in the ability to collect and fuse information from the

environments and neighbour agents in an efficient and meaning-

ful way to be resilient to sensor noise or failures. Information

sharing is fundamental to accurately obtain context-appropriate

information and provides resilience to sensor noise, occlusions,

and failures. These problems are often resolved by leveraging

expert domain knowledge to design specific and handcrafted

mechanisms for different multi-robot perception problems.

In this work, we address the multi-robot perception problem

with GNNs. Recent trend of deep learning has produced a

paradigm shift in multiple fields including robotics. Data-driven

approaches [1] have outperformed classical methods in mul-

tiple robot perception problems, including monocular depth

estimation, semantic segmentation, object detection, and ob-

ject tracking without requiring expert domain knowledge. The

single-robot system can benefit from the thrive of deep neural

networks and collaboration with other agents. Graph Neural

Networks (GNNs) can exploit the underlying graph structure

of the multi-robot perception problem by utilizing the message

passing among nodes in the graph. The node features are updated

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: New York University. Downloaded on October 03,2022 at 18:57:50 UTC from IEEE Xplore.  Restrictions apply. 



2290 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

by one or multiple rounds by aggregating node features from

the neighbors. Various types of graph neural networks have

been proposed, including GNN [2], Convolutional GNNs [3],

Graph Attention Networks [4]. These methods have proved to

be effective for node classification, graph classification, and link

prediction. Recently, researchers also started to apply GNNs on

multi-robot systems for communication [5] and planning [6].

However, there is still no work exploiting the expressiveness of

GNNs for multi-robot perception problems.

This work presents multiple contributions. First, we propose a

generalizable GNN-based perception framework for multi-robot

systems to increase single robots’ inference perception accuracy

which is illustrated in Fig. 1. Our approach is flexible and takes

into account different sensor modalities. It embeds the spatial

relationship between neighbor nodes into the messages and em-

ploys the cross attention mechanism to adjust message weights

according to the correlation of node features of different robots.

Second, we show the proposed approach in two multi-view vi-

sual perception tasks: collaborative monocular depth estimation

and semantic segmentation and we discuss how to employ the

proposed framework with different sensing modalities. Finally,

we show the effectiveness of the proposed approach in chal-

lenging multi-view perception experiments including camera

sensors affected by heavy image noise, occlusions, and failures

on photo-realistic as well as real image data collected with aerial

robots. To the best of our knowledge, this is the first time that

a GNN has been employed to solve a multi-view/multi-robot

perception task using real robot image data.

The letter is organized as follows. Section II presents a litera-

ture review. Section III presents our GNN architecture whereas

Section IV shows two instances of our method to address in two

multi-view visual perception problems. In Section V, several

experiments are presented to validate the proposed approach.

Section VI concludes the letter.

II. RELATED WORKS

Single-robot scene understanding benefited from the expres-

sive power of deep neural networks. Among these frame-based

perception tasks, semantic segmentation [7]–[9] and monocular

depth estimation [10], [11] are among important perception

problems which have been widely studied in computer vision

and robotics community. For both tasks, researchers generally

adopt an encoder-decoder structure deep neural network. [7] first

employs a fully convolutional network for semantic segmenta-

tion. UNet [8] introduces the skip connection, and Deeplab [9]

focuses on improving the decoder of the network architecture in

order to exploit the feature map extracted from it. In [10], the

authors also use deep neural networks to solve monocular depth

estimation. Most recently, unsupervised learning methods such

as Monodepth2 [11] still follow the encoder-decoder network

structure for monocular depth estimation.

Many tasks of interest for the robotics and computer vision

communities such as 3D shape recognition [12], [13], object-

level scene understanding [14], and object pose estimation [15]

can benefit from using multi-view perception. This can improve

the task accuracy as well as increase robustness with respect

to single robot sensor failures. Multi-robot perception also in-

cludes the problems related to communication and bandwidth

limitation among the robot network. Who2com [16] proposes a

multi-stage handshake communication mechanism that enables

agents to share information with limited communication band-

width. The degraded agent only connects with the selected agent

to receive information. When2com [17] as its following work

further investigates the multi-agent communication problem

by constructing communication groups and deciding when to

communicate based on the communication bandwidth. They

validated their approach on semantic segmentation with noisy

sensor inputs. Conversely, in our work, we study the multi-robot

perception problem employing a general GNN-based framework

which directly operates on the graph structure. The proposed

framework enables to resolve the multi-robot perception prob-

lem by leveraging the representation power benefits of modern

GNN methods. We experimentally demonstrate the robustness

to heavy exogenous (sensor and environment) noise or sensor

corruption.

GNNs can model problems with structures of directional and

un-directional graphs. The graph neural network propagates and

aggregates messages around neighbor nodes to update each node

feature [2]. In addition to nodes, the edges can also embed

features [18]. Researchers focus on various approaches to create

individual node embeddings. GraphSAGE [19] learns a function

to obtain embedding by sampling and aggregation from neighbor

nodes. Graph Attention Networks [4] introduces a multi-head

attention mechanism to dynamically adjust weights of neigh-

bor nodes in the aggregation step. MAGAT [20] introduces a

key-query-like attention mechanism to improve the communi-

cation efficiency. GNNs have been applied in different fields

of robotics [5], [6], [20]–[22] including multi-robot path plan-

ning, decentralized control, and policy approximation. These

works show the potential of GNNs in the multi-robot system by

modeling each robot as a node in the graph. Leveraging GNN,

the method can learn efficient coordination in the multi-robot

system and can be generalized to different graph topology

with shared model parameters. There are few perception-related

works exploiting the power of GNNs. [23] studies the multi-

view camera relocalization problem whereas Pose-GNN [24]

proposes an image-based localization approach. In these works,

node features are initialized from image inputs by convolutional

neural network encoders. Both methods treat their problems as

supervised graph node regression problems.

III. METHODOLOGY

A. Preliminaries

We denote with N the number of robots in a multi-robot

perception system. We consider each robot i as a node vi.
If robot i and robot j have communication connection, we

construct an edge eij between vi and vj . Hence, we construct a

graph G = (V, E),V = {vi}, E = {eij}, i, j ∈ {1, . . . , N}, ac-

cording to the communication connection between robots. The

communication topology can be determined by considering a

distance threshold between robots or the strength of the com-

munication signal. The proposed multi-robot perception system,

illustrated in Fig. 2, takes observations {xi}i=1...N of sensors

from all robots, and returns the output {yi}i=1...N after the GNN

processing. We denote the neighbor nodes of vi as N(i). We

assume the graph structure does not change between the time that
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Fig. 2. System overview of the proposed GNN.

Fig. 3. Message with spatial encoding.

sensors capture information and the time that the GNN provides

the results. The GNN first encodes the observation {xi}i=1...N

into the node feature {hi}i=1...N where h0
i = fEncode(xi). At

each level l ∈ 1 . . . L of the message passing, each node vi
aggregates messages ml

ij from its neighbor nodes {vj}j∈N(i)
.

We consider two different message encoding mechanisms: a)

spatial encoding and b) dynamic cross attention encoding. These

mechanisms make the messages on bidirectional edges of the

graph nonidentical. After each level of the message passing, the

node feature hl
i is updated. Once the last level L of message

passing is executed, the final result yi is obtained by decoding

the node feature hL
i .

In the following, we detail our proposed method. We explain

how to use the determined spatial encoding to utilize the relative

spatial relationship between two nodes in Section III-B. We also

show the way to encode feature map correlation into messages

by cross attention in Section III-C. The message passing mecha-

nism is introduced in Section III-D whereas the design of feature

decoder in Section III-E.

B. Messages With Spatial Encoding

For robotics application, relative spatial relationship of the

multi-robot network can be obtained by the multi-robot system

itself [25] or from other systems [26]. If we have access to the

relative spatial relationship between nodes, we can encode it into

the messages shared between the node pairs. We illustrate the

message generation mechanism with spatial encoding in Fig. 3.

We can represent the relative pose between robot i and robot j
which contains rotation Rij and translation tij = [txij , t

y
ij , t

z
ij ].

In [27], a continuous rotation representation R′
ij which takes

first two columns of Rij

Rij =

⎡

⎢

⎣

r1 r4 r7
r2 r5 r8
r3 r6 r9

⎤

⎥

⎦
,R′

ij =

⎡

⎢

⎣

r1 r4
r2 r5
r3 r6

⎤

⎥

⎦
, (1)

pij = [txij , t
y
ij , t

z
ij , r1, r2, r3, r4, r5, r6]. (2)

Compared to common rotation representations including rota-

tion matrix, quaternion and axis angles, this continuous rota-

tion representation is easier to learn for neural networks [27].

We feed the continuous relative pose representation pij

into the spatial encoding network to produce {aij ,bij} =
{(aij)k, (bij)k}k=1,...,C , (aij)k ∈ R, (bij)k ∈ R where C is

number of channel of the node feature hl
i. For simplicity, we

implement the spatial encoding network as two fully connected

layers withReLU. Inspired by FiLM [28], we embed the relative

robot pose pij and the node feature hl
i to compose the message

from the node vi to the node vj . The k-th channel of the message

transforms mij as

(aij ,bij) = FiLM(pij), (3)

(ml
ij)k = (aij)k(h

l
i)k + (bij)k1, (4)

where 1 is a matrix of ones with the same dimension as the

node feature. {(aij)k, (bij)k}k=1,...,C serves as a set of affine

transformation parameter applied on the node feature mij . It

embeds the relative spatial relationship between robot i and robot

j onto the node feature hl
i to compose the message ml

ij shared

from the node vi to the node vj in the GNN.

C. Messages With Dynamic Cross Attention Encoding

We also propose another message encoding mechanism with

dynamic cross attention between different node features inspired

by Graph Attention Networks [4]. This message encoding mech-

anism takes the dynamic feature relationship of neighbor robots

into account and weights the messages from neighbor nodes

accordingly. We illustrate this message encoding mechanism in

Fig. 4. Consider the node vi and the node vj , we take cross

attention of the node features hl
i and hl

j to obtain a single

scaled value as the attention weight of node feature hl
i. We
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Fig. 4. Message passing with cross attention.

first concatenate both feature maps hl
i,h

l
j , and transform the

concatenated feature map to αl
ij ∈ R by a linear transform

moduleF(·) and a nonlinear layerLeakyReLU(·). The output of

the transform module is a single scaled value. We use Softmax
to normalize the attention scoreαl

ij on the incoming edges eij of

the node vj in order to make attention scores more comparable

across different neighbor nodes as

ml
ij = Softmaxi(α

l
ij)h

l
i,

αl
ij = LeakyReLU

(

F[hl
i‖h

l
j ]
)

. (5)

In order to enrich the model capacity, we also introduce a

multi-head attention mechanism. We use D different transform

layer Fd instead of a single-head attention mechanism to embed

the concatenated node feature [hl
i‖h

l
j ]. Each attention head

generates a message (ml
ij)

d
. The final message is the average

of the D messages

ml
ij =

1

D

D
∑

d=1

(ml
ij)

d
, (6)

(ml
ij)

d
= Softmaxi((α

l
ij)

d
)hl

i, (7)

(αl
ij)

d
= LeakyReLU

(

Fd[hl
i‖h

l
j ]
)

. (8)

D. Message Passing Mechanism

The message passing mechanism aggregates messages mji

among neighbor nodes vj and vi, and update the node next

level feature hl+1
i . We simply use an average operation as the

aggregation operation instead of other options with extra param-

eters to keep computation and memory consumption suitable for

real-time robotics application

hl+1
i =

1

#N (i)

∑

j∈N (i)

ml
ji. (9)

E. Feature Decoder

We introduce the feature decoding mechanism in Fig. 5. After

the final levels of message passing, the node feature of each

node has aggregated the information from other related robots

according to spatial relationship by determined spatial message

encoding or feature relationship by dynamic cross attention

message encoding. We concatenate the original node feature h0
i

with the last updated node featurehL
i without losing the original

Fig. 5. Node feature maps aggregation and feature decoder.

encoded information as

yi = fDecode[h
0
i ‖h

L
i ]. (10)

F. Task-Related Loss

We train our entire framework with supervised learning. The

task-related loss is designed as the mean of objective functions

of all robots. The objective function Floss(·) can be designed

according to the specific sensor modalities and tasks. In Sec-

tion IV, we show the design for the multi-view visual perception

case. The term yi is the prediction obtained from the proposed

method, y∗
i is the target ground truth.

L =
1

N

N
∑

i=1

Floss(xi,yi,y
∗
i ). (11)

IV. MULTI-VIEW VISUAL PERCEPTION CASE STUDY

Our framework is generalizable to different sensor modalities.

In order to show its effectiveness, we demonstrate the pro-

posed approach in two multi-view visual perception problems,

semantic segmentation and monocular depth estimation. We

leverage Deep Graph Library (DGL) [29] Python package and

PyTorch [30] to design our approach.

We take 2D images I ∈ R
H×W as sensor observations xi.

Therefore, we use a differentiable 2D Convolutional Neural

Network (CNN) as feature encoder. In order to meet the real-time

requirement of the embedded robotic application, we employ

MobileNetV2 [31] as a lightweight network for feature en-

coding. The dimension of the node feature hl
i is C × h× w,

where (h,w) are the scaled dimension of original image size

(H,W ). The message encoding presented in Section III-B and

Section III-C uses a 2D convolution operator and matches the

dimension of the node feature. The k-th channel of the message

transforms mij as

(ml
ij)k = (alij)k(h

l
i)k + (blij)k1

h×w, (12)

where 1h×w is a matrix of ones with the same dimension as

the node feature hl
i ∈ R

C×h×w when the input modality is a 2D

image. The transform module F(·) described in Section III-C is

based on two 2D convolution layers to reduce the dimension of

the feature map to 1/8 of the original size, then it flattens it to

1D feature vector. Subsequently, the transform module applies

a fully connected layer to transform the 1D feature vector to a

single scaled value.

At the feature decoder stage introduced in Section III-E, in

order to recover the concatenated feature map to the original size,
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Fig. 6. Real data collected by five aerial robots with cameras.

we use 2D transposed convolution with ReLU(·) as a nonlinear

activation function to enlarge the size of the feature map through

5 layers. We keep the design of the decoder simple compatible

with our case studies: semantic segmentation and monocular

depth estimation.

As a task-related loss, we employ objective functions which

are widely used for semantic segmentation [7] and monocular

depth estimation [11]. For monocular depth estimation, we use

smooth L1 loss and edge-aware smooth loss

Fdepth(xi,yi,y
∗
i ) = LL1(yi,y

∗
i ) + αLs(yi,xi),

LL1(yi,y
∗
i ) =

{

0.5 (yi − y∗
i )

2 /β, if |yi − y∗
i | < β

|yi − y∗
i | − 0.5β, otherwise

,

Ls(yi,xi) = |∂xyi| e
−|∂xxi| + |∂yyi| e

−|∂yxi|. (13)

where ∂x(·), ∂y(·) represent the gradient operations that apply

on 2D depth prediction yi and original 2D image xi. The edge-

aware loss encourages the gradient of the depth prediction to be

consistent with the original image.

Conversely, for semantic segmentation, we use a cross entropy

loss function

Fsemantic(yi,y
∗
i ) = LCE(yi,y

∗
i ). (14)

Our method can also be easily employed with different sensor

modalities by changing the dimension of node features and the

design of encoder and decoder structures. For example, it is

possible to use a recurrent neural network (RNN) to encode

IMU measurements or a 3D convolutional neural network to

encode 3D LiDAR measurements. The user also needs to adapt

the task-related loss for other tasks. Takes visual object pose

estimation for example, the user should use the distance between

points on the ground truth pose and the estimated pose as the

task-related loss.

V. EXPERIMENTS

A. Dataset

We collected photo-realistic simulation and real-world multi-

robot data. We simulate different categories of sensor noises

similarly to [32]. We consider four datasets with different proper-

ties to validate our approach in different scenarios. All simulated

datasets contain depth and semantic segmentation ground truth.

The real-world dataset contains depth ground truth. In the four

datasets, we simulate the sensor corruption or sensor noise by

corrupting images and varying the number of affected cameras

as described below.

1) Photo-Realistic Data: Airsim-MAP dataset was first pro-

posed in When2com [17]. It contains images from five robots

flying in a group in the city environment and rotating along

their own z-axis with different angular velocities. In the noisy

version of the dataset, Airsim-MAP applies Gaussian blurring

with random kernel size from 1 to 100 and Gaussian noise [16].

Each camera has over 50% probability of being corrupted and

each frame has at least one noisy image in five views [17]. We

use this dataset to show that our approach is robust to sensor

corruption.

Industrial-pose, Industrial-circle and Industrial-rotation

datasets are generated leveraging the Flightmare [33] simulator.

We use five flying robots in an industrial harbor with various

buildings and containers. In all the datasets, the robots form a

circle. Industrial-pose dataset has more variations in terms of

relative pose combination among the vehicles and the robots

fly at a higher altitude compared to the other two datasets.

In the Industrial-circle dataset, the overlapping region sizes

across the robots’ Field of View (FoV) are larger compared

to the Industrial-rotation dataset. Specifically, robots in the

Industrial-circle are pointing to the center of the team whereas

robots in the Industrial-rotation are pointing out of the cir-

cle. We project the robots’ FoV to the 2D ground plane and

calculate the ratio between the union and the sum of the pro-

jected FoVs, where the ratio of Industrial-circle is 24.4% and

the ratio of Industrial-rotation is 18.4%. Industrial datasets

use [32] to generate noise. The noise types include motion

blur, Gaussian noise, shot noise, impulse noise, snow effects,

and JPEG compression effects. These datasets select the first

N(0− 2) cameras to perturb. Compared to Airsim-MAP, noise

on industrial datasets is less severe, but presents a larger variety.

We use Industrial-pose dataset to show that our approach is

robust to different sensor noises and the Industrial-circle and

Industrial-rotation to verify the robustness of the proposed

method to different overlap areas between robots’ FoV.

2) Real Data: ARPL-r4 dataset was collected in an indoor

flying arena of 10× 6× 4m3 at the Agile Robotics and Per-

ception Lab (ARPL) lab at New York University using multiple

aerial robots based on our previous work [34] equipped with

RGB camera that autonomously fly and observe a feature-rich

object (see Fig. 6). We use this dataset to validate our method

in real-world scenarios. The vehicles are performing extreme

maneuvers creating motion blur. The robots form a circle and

point their front camera towards the object in the center to

maximize their overlapping visual area. We simulate different

noise patterns on one or two robots.

B. Evaluation Protocol

In our experiments, we compare the performance of different

methods on the monocular depth estimation and semantic seg-

mentation. We use Abs Relative difference (Abs Rel), Squared

Relative difference (Sq Rel) and Root Mean Squared Error

(RMSE) as the metric for monocular depth estimation [10].

We use mIoU as the metric of semantic segmentation. The

bolded numbers in the table are the best case, and the underlined

numbers in the table are the second-best case. We compare

different variants of our proposed methods and baseline with

different numbers of noisy/corrupted cameras (ranging from 0

to 2). We use a single-robot baseline with the same encoder and

decoder structure. The baseline is trained on the clean dataset
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Fig. 7. Monocular depth estimation qualitative results varying the number of
noisy cameras from a corrupted sensor. Methods from left to right: ground truth,
baseline, mp, mp-pose. From top to bottom: 0, 1 and 2 noisy cameras.

Fig. 8. Semantic segmentation qualitative results varying the number of noisy
cameras. Methods from left to right: ground truth, baseline, mp, mp-pose. From
top to bottom: 0, 1 and 2 noisy cameras.

where the number of noisy cameras is 0, and we test the baseline

with all datasets with different number of noisy cameras. Our

methods are trained and tested on the same datasets with all

different numbers of noisy cameras. We also use a multi-robot

baseline-mp which takes all the images as inputs and produces

the desired outputs of all inputs. We study three different variants

of our method: mp-pose represents multi-robot perception with

spatial encoding messages, mp-att represents multi-robot per-

ception with cross attention encoding messages, and mp repre-

sents multi-robot perception using messages without encoding,

which are the previous-level node features. We use mp for

ablation study to show the spatial and cross attention encoding

effectiveness.

C. Qualitative Result

In Figs. 7 and 8, we show the result of baseline, mp, mp-pose

with different number of noisy cameras. By increasing the num-

ber of noisy cameras, the performance of baseline decreases,

and our methods: mp-pose, mp-att still preserve high-quality

results. We can also see the effects of message encoding by

comparing the details of the object boundaries and the perception

accuracy of small and thin objects. In Figs. 9 and 10, we use

Fig. 9. Monocular depth estimation qualitative results for different types of
sensor noise. Methods from left to right: images, ground truth, baseline, mp,
mp-pose, mp-att.

Fig. 10. Qualitative results of semantic segmentation for different types of
sensor noises. Methods from left to right: images, ground truth, baseline, mp,
mp-pose, mp-att.

images from different datasets with different types of sensor

corruption and noise. We highlight the area of object boundaries

and small objects in the figures. Single-robot baseline creates

wrong object boundaries and misses small and thin objects while

our methods recover the information from corrupted images and

preserve the perception details on both tasks. These results show

that the proposed method outperforms single-robot baseline and

is robust to different types of image corruptions and noises. This

qualitative result shows that our method is robust to different

numbers of noisy cameras in the robot network.

D. Quantitative Result

1) Effects of Message Encoding: To show the the effects of

the message passing with spatial encoding, we use Airsim-MAP

dataset with sensor corruption and Industrial-pose dataset with

sensor noises. In Table I, we observe that mp-pose outperforms

baseline on both tasks among all datasets with different number

of noisy cameras. Comparing mp-pose and mp, we find that

the spatial encoding improves the performance of both tasks

in most of the experiments. We also demonstrate the effects of

the cross attention message encoding on Airsim-MAP dataset

and Industrial-pose dataset. In Table I, we show that mp-att

outperforms baseline on all cases in both tasks, and mp-att

outperforms mp on most cases in both tasks. We also demon-

strates the necessity of GNN in the multi-robot perception task

by comparing baseline-mp with other methods, which shows

that baseline-mp are outperformed by all other methods, since it

cannot learn the correspondence of features by message passing.

We can conclude that both message encoding including the

spatial encoding and the cross attention encoding improves the
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TABLE I
EFFECTS OF SPATIAL ENCODING AND CROSS ATTENTION. OUR METHOD IS ROBUST TO SENSOR NOISE

TABLE II
STUDY OF THE EFFECT OF SIZES OF OVERLAPPING AREAS ACROSS ROBOTS’ FOV BETWEEN ROBOTS. LARGER OVERLAP AREAS BETWEEN ROBOTS FOV

NATURALLY PROVIDE MORE BENEFITS FROM MESSAGE PASSING WITH SPATIAL ENCODING

TABLE III
REAL-WORLD MONOCULAR DEPTH ESTIMATION EXPERIMENTS. OUR METHODS OUTPERFORM THE BASELINE ON BOTH TASKS

accuracy of both tasks, and its robustness with respect to different

numbers of corrupted and noisy image cameras.

2) Effects of Overlap Between Robots: In Table II, we

study how the overlapping areas between robots’ FoV affect

the proposed message passing with spatial encoding. We use

Industrial-circle dataset and Industrial-rotation for this study.

We find that our method mp-pose outperforms baseline for both

datasets, which indicates that our method is robust to different

sizes of overlapping areas across robots’ FoV in the robot

network. Comparing the performance gap between mp-pose

and mp on both datasets, we can find that this is smaller for

Industrial-circle dataset rather than Industrial-rotation, espe-

cially for the mIoU metric in the semantic segmentation case.

This result shows that the message passing with spatial encoding

can be affected by the overlapping pattern. Therefore, for limited

overlapping areas, we correctly obtain reduced benefits from the

message passing mechanism.

3) Real-World Experiments: We demonstrate our approach

on a real-world dataset ARPL-r4. We use onboard visual-

inertial odometry to calculate the relative pose between robots.

Since we have access to the relative spatial relationship between

robots, we use messages with spatial encoding. In Table. III, we

show that our method mp-pose with spatial encoded message

outperforms the baseline as well as the one without spatial

encoding in most cases.

E. Discussion

In the following, we discuss the bandwidth requirements for

the proposed and the corresponding benefits compared to a

direct exchange of sensor data among the robots as well as the

advantages and disadvantages for the two encoding mechanisms.

We employ MBytes per frame (MBpf) as the metric to measure

the bandwidth requirements of our approach. By learning and

communicating encoded messages, the communication band-

width for one message between two robots for one level is 2.5

Mbpf, while the communication bandwidth of directly sharing

raw sensor measurements is 6 Mbpf. The levels of the GNN are

usually limited to prevent over-smoothing of the GNN. In the

demonstrated case, we do not have more than 2 levels which

makes the approach communication-efficient than sharing the

original information. Also, the message passing can reduce the

computation requirements by spreading the computations to

each agent, which makes the computation requirements feasible

for the robot team. This further shows the ability to scale the

proposed approach to larger teams. It is possible to further reduce
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communication bandwidth by adopting smaller network encoder

or learning communication groups as shown in [17]. For other

sensing modalities, similar bandwidth trade-offs are expected.

The bandwidth requirements is equivalent for the two pro-

posed encoding mechanisms, but these have different properties.

The results in Section V confirm that the spatial encoding

can utilize relative poses when this information is accessible,

but it cannot dynamically capture the correlation between the

sensor measurements. Conversely, the dynamic cross attention

encoding can utilize the correlation relationship among features

when the relative pose is not accessible. Geometric-aware tasks

like monocular depth estimation benefits more by spatial encod-

ing since the relative poses contain important geometric cues,

while semantic-aware tasks like semantic segmentation do not

favor either one of the mechanism. In the future, it would be

interesting to investigate how to combine the advantages of both

mechanisms.

VI. CONCLUSION

In this work, we proposed a multi-robot collaborative percep-

tion framework with graph neural networks. We utilize message

passing mechanism with spatial encoding and cross attention

encoding to enable information sharing and fusion among the

robot team. The proposed method is a general framework which

can be applied to different sensor modalities and tasks. We

validate the proposed method on semantic segmentation and

monocular depth estimation tasks on simulated and real-world

datasets collected from multiple aerial robots’ viewpoints in-

cluding different types of severe sensor corruptions and noises.

The experiment shows that the proposed method increases the

perception accuracy and robustness to sensor corruption and

noises. It can be an effective solution for different multi-view

tasks with swarms of aerial or ground robots.

In the future, we will extend this framework to other sensor

modalities and tasks. We will also explore how to use the graph

neural network to integrate perception, control and planning

framework for aerial swarm systems.
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