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Abstract

Education can be viewed as a control theory problem in which students seek ongoing
exogenous input — either through traditional classroom teaching or other alternative
training resources — to minimize the discrepancies between their actual and target
(reference) performance levels. Using illustrative data from n = 784 Dutch elementary
school students as measured using the Math Garden, a web-based computer adaptive
practice and monitoring system, we simulate and evaluate the outcomes of using off-line
and finite memory linear quadratic controllers with constraints to forecast students’
optimal training durations. By integrating population standards with each student’s own
latent change information, we demonstrate that adoption of the control theory-guided,
person- and time-specific training dosages could yield increased training benefits at reduced
costs compared to students’ actual observed training durations, and a fixed-duration
training scheme. The control theory approach also outperforms a linear scheme that
provides training recommendations based on observed scores under noisy and the presence
of missing data. Design-related issues such as ways to determine the penalty cost of input
administration and the size of the control horizon window are addressed through a series of

illustrative and empirically (Math Garden) motivated simulations.
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Control Theory Forecasts of Optimal Training Dosage to Facilitate Children’s Arithmetic

Learning in a Digital Educational Application

Mastery of arithmetic competence is a dynamic process that reflects the integration of
idiographic (i.e., individual-specific) learning characteristics and nomothetic (general)
educational practices that target the students at large (Biddlecomb) 2002; Dowker, 2015}
Hackenberg & Lee, |2015; [Lo & Watanabe, [1997). The advent of modern technology in
recent, years has led to increased tendency for schools to use digital educational
applications (apps), particularly in the area of arithmetic training, to supplement
traditional classroom teaching (e.g., Khan Academy |Academy, [2017). Despite the appeal of
digital educational apps in personalizing learning pace, there are other ways in which their
designs can, and should be further optimized. For instance, most educational apps provide
“one-size-fits-all” guidelines (e.g., practice arithmetic problems for 15 minutes a week) that
assume that students are homogeneous, and any idiosyncratic differences or within-student
variations in learning over time can be safely ignored. In reality, such guidelines are far
from adequate (Rose, [2016), and often result in missed opportunities to forecast and

deliver training when improvements are most needed.
Challenges in Traditional Arithmetic Training

Researchers and educators have long been interested in understanding children’s arithmetic
competencies from preschool years through higher education. Compared with arithmetic
operations such as addition and subtraction, the arithmetic operation of division is
particularly challenging as students advance to higher grade levels because division requires
understanding and use of a sequence of operations that even teachers disagree on what
constitutes the best principles (Hadass & Bransky [1991). For example, solving long
division problems (e.g. 200 / 3 = ?) requires students to recursively carry out a sequence
of computations such as “divide-multiply—subtract—bring it down” and they frequently
show systematic errors due to misunderstanding of the place value system (Lee, [2007)).

Solving division with remainder word problems is another type of problem that students
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often find difficult (Li & Silver] 2000) because mastery requires correct interpretations of
the questions as well as successful performance of the computational procedures.

Mulligan and Mitchelmore| (1997) found that students in the second and third grades
typically use four main strategies in performing division tasks: direct counting, repeated
addition, repeated subtraction, and multiplicative operation. Their study suggested that
the strategy of choice varies by developmental stages and reflects the mathematical
structure imposed by the student on the problem at hand. Indeed, increasing evidence has
suggested that some of the current hurdles in mathematical education stem from individual
learning gaps and misconceptions that are difficult to correct in large-group settings.
Graeber and Tirosh| (1990) showed that misconceptions about multiplication and division
were pervasive among fourth and fifth graders, one example of which was the
misconception that division always makes something smaller. Such misconceptions interfere
with accurate understanding of multiplication and division by decimals. Other researchers
concurred with the ubiquitous but idiosyncratic nature of such misconceptions
(Biddlecomby, 2002; Hackenberg & Lee, [2015; |Lo & Watanabe, [1997), and called for early
intervention (e.g., in third grade; Blanton et al. 2015) to help students understand
mathematical equivalence and arithmetic generalization.

The critical “take-home message” from these studies is that arithmetic — and
specifically, division — training often spans multiple grade levels. Early identification of
training deficiencies can yield tremendous returns in the long run, but requires ongoing
monitoring and tailored training that may not be feasible in real-world educational settings.
In the present article, we demonstrate, using a series of illustrative and empirically
motivated simulations, that idiographic and nomothetic learning information can be
integrated and used within a control theory approach to forecast the optimal “training
dosages” for arithmetic training in school-aged students. In particular, the current work is
the first at adapting constrained controllers that are typically designed to drive systems

toward stationarity or stability (i.e., time-invariant means, variances, and covariances;
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Litkepohl, 2005) to an educational context in which the target itself is time-varying (e.g.,
the expectations for children’s arithmetic performance naturally differ across grades). Even
though a group-based model is used as the operating model to circumvent estimation issues
due to the finite number of time points available from each individual, some individual
differences are built into the model by including selected individual-specific parameters as
latent variables. The person- and time-specific model-implied trajectories are integrated, in
turn, with population norms to define the target levels toward which individuals’
performance is driven. Design-related considerations and adaptations made to the
proposed controllers for the educational application at hand are discussed and

demonstrated via a series of illustrative and empirically motivated illustrations.
Education as a Control Theory Problem

In engineering, control theory is routinely used to steer a system to stay as close as possible
to a desired reference state (Astrom & Murray, [2008; Bellman), [1964; Goodwin, Seron, & de
Donl, [2005; Kwon & Han| [2005; Liu, Wang, Golnaraghi, & Kubica, [2010; Wang et al., 2014]),
an application of which is the cruise control system of a car. In this case, the car with the
cruise control is the “system”; the controller (the cruise control) determines the external
input — namely, the engine’s throttle position, which governs the power delivered by the
engine to minimize the car’s deviations from the desired (reference or target) speed. In a
similar vein, education can be viewed as a control theory problem in which students seek
ongoing input, such as training in the forms of classes and online resources, to minimize the
discrepancies between their actual and target performance levels (Savi, van der Maas, &
Maris, |2015). Thus, the optimal amounts of training dosages can be deduced and tailored
to individuals’ performance gaps in times when such training is most needed.

With few exceptions, most applications of control theory principles in the social,
behavioral and health sciences have been limited thus far to theoretical conceptualizations
(Carver & Scheier} 1982). The limited exceptions include the work of |Wang et al.| (2014),

who designed and implemented real-world control theory applications to compute the
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optimal insulin input to control the glucose levels of diabetic patients. Molenaar| (2010))
demonstrated via numerical simulations the plausibility of using control theory
computation to optimize psychotherapy dosages to maintain desired levels of treatment
effectiveness. Rivera, Pew, and Collins| (2007) utilized computer simulation to investigate
the anticipated impact of intervention design choices in developing adaptive interventions.
Still, no studies to date have shown the utility of using such control theory principles with
real-world education data, the forecasting of which requires successful integration of
population- and group-level norms with individual learning characteristics, strengths,
limitations, as well as practical constraints.

The control theory approach and associated novel adaptions proposed in this article
were motivated by the need to optimize the arithmetic performance of n = 784 Dutch
elementary school students as measured using the Math Garden (Klinkenberg,
Straatemeier, & van der Maas|, 2011)), a web-based computer adaptive practice and
monitoring system available at https://www.prowise.com/en/learn (or its original Dutch
version called Rekentuin.nl). Math Garden was designed to bolster mathematical training
in elementary education by providing more time for students to practice and maintain
basic mathematical skills, and a more efficient and effective way of measuring as well as
using the measurement results to improve the ability of individual students in educational
settings. Student data from answering one particular type of arithmetic problem, namely,
division, are used. Training dosage is operationalized in the context of the Math Garden
data as each student’s weekly activity time on the website.

Through a series of simulations, we demonstrate and evaluate the efficacy of the
proposed control theory approaches in forecasting the optimal weekly training durations
that most efficiently reduce the ongoing discrepancies between individuals’ current latent
and target performance levels. Such control theory-based approaches utilize a state-space
model consisting of a measurement model and a dynamic model of latent variables to guide

the decisions on training dosages. Thus, compared to an “observed variable” approach of
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recommending a particular amount of increment in training duration as proportionate to
every unit of under-performance in observed score, the dynamic model and associated
estimation procedures offer recommendations in anticipation of some of the changes that
may unfold at the latent level even and especially on occasions when the observed scores
are missing. In addition, we propose several novel adaptions to standard control theory
procedures by: (1) demonstrating the need and a possible way to incorporate both
population norms and individual change information in constructing person-specific target
levels in the Math Garden application; (2) proposing and investigating ways to improve
ongoing estimation of individuals’ latent performance levels based on all the data collected
within a future moving window; and (3) presenting a way to quantify the costs and benefits
associated with alternative training schemes. Insights and recommendations on ways to
enhance future versions of Math Garden, and possible future adaptations of the proposed
controllers to better tailor to the needs of educational and other applications in the social

and behavioral sciences are discussed.
Modeling Framework

State-Space Model

The state-space model (Durbin & Koopman, [2001; Harvey, [2001; Shumway, 2000)) is a
longitudinal model formulated at discrete, equally spaced time intervals that consists of a
measurement and a dynamic model. The measurement model serves to relate the observed
variables to the latent variables (also known as “state variables”), and may take the form,
for example, of a factor analytic model. The dynamic model is used to delineate the
evolution of the latent variables over time as related to values of the latent variables at
previous time points.

The particular form of state-space model considered in this paper is a linear
discrete-time time-invariant model. That is, the model is characterized by time increments
in the form of integers (e.g., ¢, t + 1, t + 2), has measurement and dynamic functions that

are linear in form, and consists of person- and time-invariant parameters. The
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measurement and dynamic models for the linear state-space model considered are

expressed respectively as:

Y = Anzt + €it, €it ~ N(Oa \Ilﬁ)a (1>

Ny = an’,t—l +Gui1 + Gy Gy ™~ N(07 ‘I’C)a N~ N(ampo)a (2)
where y,, is a p x 1 vector of observed variables for individual ¢ at time t (t =1, ..., T; i =
1,...n); n; is a w x 1 vector of latent variables, also known as state variables; A is a

matrix of factor loadings, €;; is a vector of measurement errors; ¢, is a vector of process
noises or disturbances; and B is a w X w matrix of regression effects among the latent
variables. w;;_; is a 7 X 1 vector of exogenous input or predictor variables at time ¢-1 that
affect the latent variables through the matrix of regression coefficients, G. Critically, the
values of these exogenous variables are what we seek to manipulate —or control — to drive
values of the latent variables to a desired range. One example of such controllable input
variables is shown in Wang et al.| (2014), in which control theory algorithm was used to
determine the optimal amount of insulin to be administered to diabetic patients to
minimize deviations of the patients’ glucose levels from a desired target level.

State-space models have been compared to structural equation models, and their
equivalence has been established in cases involving cross-sectional models with 7" = 1, and
panel data extensions in which 7" is small relative to n, and special constraints have been
imposed to ensure equivalence in the initial distribution of the latent variables at time 1

when data just become available (Chow, Ho, Hamaker, & Dolan, 2010).
Bivariate Dual Change Score Model with Exogenous Input (BDCM-X)

In the current study, we examine the coupling relations between individuals” weekly latent
ability and reaction time (RT) under the influence of an exogenous input variable, namely,
weekly training duration. A special case of the state-space model, the bivariate dual
change score model with exogenous variables (BDCM-X), was used. Univariate and

bivariate versions of the dual change model with no exogenous input were proposed
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originally by McArdle and Hamagami (2001) to represent latent processes that unfold
following sigmoid-shaped curves — consonant with the general time trends observed in the
Math Garden data. Variations of the BDCM with no exogenous variable have also been
employed in similar contexts to represent students’ arithmetic growth (e.g., Chow, Grimm,
Guillaume, Dolan, & McArdle, [2013)).

The vector of observed variables, y,,, consists in the present example of two observed
indicators, y1;+ and ys ;+, corresponding, respectively, to individual ¢’s average estimated
division ability at week t obtained from the Math Garden, and the corresponding average
reaction time across all the division items attempted that week. They are used to identify
Nk = [M.4t M), two latent variables that represent individual i’s underlying true division
ability and reaction time, respectively, that are separated from their measurement error
counterparts (McArdle & Hamagami, |2001). Even though the “observed” ability scores
available from Math Garden directly are, in a sense, latent ability estimates produced by
the Elo system (Klinkenberg et al., 2011)), these Elo estimates may still include sources of
occasion- and person-specific variability that would be regarded as “measurement errors” in
the classical test theory sense (Lord & Novickl [1968). The latent ability included in the
vector m},, in contrast, refers to the latent (i.e., measurement error-free) portion of the Elo
scores that shows systematic interindividual differences in dynamics over time as captured
by the BDCM-X model.

The BDCM-X essentially posits that the latent changes (i.e., changes free of
measurement errors) in the two latent processes of interest depend on the levels of these
processes at time t-1, their respective latent person-specific intercepts, ay; and ag;, and a

vector of lag-1 exogenous input variables at time ¢, w;;_1, as:
Ay = a; +Bln;,_y + Glug 1 + ¢ (3)

where Al.] on the left-hand-side of the equation represents latent changes in the values of

the components enclosed in brackets over one time unit, or in Equation , Anl, =
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nl — nit_l. G' is a matrix of regression coefficients relating the latent ability and reaction
time variables to the exogenous input variables. B! is a matrix of coefficients relating the

latent variables at time ¢ to their values at time ¢-1. In particular,

Bl — bii b1z
a1 bao

The diagonal entries, b;; and byy, represent the auto-proportion effects of the processes
from time ¢ — 1 on time t. Adding a unity constant to the auto-proportion parameters bq;
and boy gives rise to what is typically referred to as the autoregression parameters (Chow et
al., 2010)), for reason that will become clear shortly. The reciprocal coupling effects
between the latent processes are captured by byo and by, including influence in the
direction from 7 to m1 4, and from 7y ;4 to 72, respectively.

The person-specific intercepts impose a constant amount of change on each process’s
latent change at each time point. When B! = G! =0, ay; and ay; may be conceived as
individual-specific linear slopes. To allow these constant slope terms to have a random
component, a;; and ag; have to be included as part of a larger latent variable vector, n,, =
[nzltl ayy az; ', and explicitly constrained to be invariant over time, or in other words,
showing no latent changes. In other words, 1}, is only a subvector of the full latent variable
vector, 1,,, as the latter also contains the person-specific intercepts, a; = [a1; as;)’, as
additional latent variables. In addition, using u;,—; to denote an individual’s Math
Garden training duration in the previous week as the sole exogenous input variable in our

application, we obtain a dynamic model of the form:

Mt bii bz 1 O] | Mg 9 Crit
M2it A bar by 0 1 N2it—1 g2 Coit
A = My =M1 = + [Ui,t—l] + . (4)
15t 0 0 0 0 Q15¢—1 0 0
A9;¢ 0 0 0 0 A2 ¢t—1 0 0
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Then, substituting Equation || into n;, = n,, , + An;, yields:

Cit ~ N(O, COV(Cit))

Ny = (T+B)m,y + Guip 1+ Cy,
bin bz 1 0 g1 Crit
byr by 0 1 92 Coit
= I+ Nt + Ujr—1 + ’ (5>
0O 0 0O 0 0
0O 0 0O 0 0
that is, a dynamic model of the form of Equation [2| with:
140611 bi2 10 g1 Clit
b 14+0byp 0 1 5
B 21 22 G- g2 Cand ¢, — Cait ’ (6)
0 0 10 0 0
0 0 01 0 0

where we assume that ¢;, is normally distributed with mean vector 0 and covariance
matrix, Cov((;,) = diag[i11 Y9 ¢ ¢|, where ¢ is a small constant to ensure the positive
definiteness of this covariance matrix. Due to the explicit upper time limit Math Garden
allows for each division item (20 seconds), and the inherent limits in individuals’ learning
capacity, we expect by; and byy to be negative. That is, higher levels on these constructs
are expected to yield reduced latent changes, or specifically, latent growth, thereby driving
these constructs toward their asymptotes, which are made person-specific by the constant
slopes, a1; and ag;. In addition, the signs of the coupling (or cross-regression) parameters,
bi2 and byy, can help shed light on the interplay between an individual’s latent ability and
reaction time as the individual acquires and further solidifies his/her division skills over
time.

As alluded to earlier, the BDCM-X is a special extension of the vector autoregressive
model with exogenous variables (VAR-X). Equation @ highlights that after the algebraic
re-arrangements of the terms from Equation to Equation @, the lag-1 autoregression

parameters for latent ability and reaction time are given respectively by 1+ by; and 1 + bgg,
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with cross-regression parameters, bys and by; (Chow et al., [2010). Convergence of the two
latent processes toward stable equilibrium levels requires that by1, bao, bi2, and by take on
values that render the VAR portion (namely, n,, when ay; = ag; = 0 for all participants) of
the model stable or stationary (e.g., does not show changes in means or variances over time;
Hamilton| [1994; Lutkepohl, [2005)). Still, even if the auto- and cross-regression parameters
fall within this stationary range, the BDCM-X as a whole would still be non-stationary in
most instances because the constant slopes, ay; and as;, would typically lead to over-time
changes in means, F(n,,) and E(y,,), thus violating the stationarity assumptions.

As with all sequentially dependent longitudinal processes, the latent processes have to
be “started up” at time ¢ = 1. The initial values of these latent variables, commonly known

as the initial conditions of the latent processes, are modeled as:

) 2
i1 Hoy Uny i Uny i 0 Uiy

- v v 0| |o 2
T12i1 _ Hogg n M2, il N Unq yUng Vg (7)

2
ay; Hay Ual,i Ual,i 0 0”771 yVaq U”Wzvvﬂl Vay
ag; 7 v v 0 o o o 2
2 a2 az; az,; Uny sVag Ung »Ung Va ,Vag Vng

Here, the initial levels of the two latent processes, 71,1 and 7,1, are composed of group
average initial levels, u,, and p,,, and person-specific deviations from them, v,, , and v, ,.
The model also allows the person-specific intercepts, ai; and ag;, to be a function of the
group average slopes, p,, and p,,, along with person-specific deviations, v,,, and v,,.

The true scores of division ability and reaction time are, in turn, linked to individual
1’s “observed” Elo division ability score and reaction time at time ¢, denoted respectively as

Yrie and Yoy, as:

Mt
Yii 1 0 0 Of [n €14 €14
| = T NN(O,diag {031 ggZD. (8)
Ya2it 01 0 0f |an €24t €24t
24t

where ¢ and o7, are the measurement error variances associated with the observed ability
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scores and reaction time.

To summarize, the BDCM-X used as the motivating model throughout this paper is a
time-invariant group-based model. That is, most of the parameters in the model, except for
the person-specific initial levels and constant slopes, are held constant across individuals
and time. Making this assumption allows researchers to circumvent estimation issues in
situations involving finite time length from each individual, and pre-estimate modeling
parameters using a different sample prior to application of the controller to a new,
validation sample. As shown in our illustrations, model-implied trajectories from the
BDCM-X, which are time- and person-specific, can be combined with population norms to

define the target functions for control purposes.
Estimation Algorithm

Latent Variable and Parameter Estimation via the Kalman Filter (KF)

Before any control theory algorithm can be applied, at least two elements have to first be
estimated: the unknown modeling parameters (e.g., bj;—b22), and the latent variable
values, which are needed for computation of the control input. One well-known approach
for accomplishing these purposes is to use the Kalman filter (KF). The KF estimates values
of the current or future latent variables values (e.g., factor scores) given manifest data up
to the current time point by minimizing prediction errors in the least squares sense
(Zarchan & Musoft, 2000)). By-products from performing the KF can be substituted into a
log-likelihood function, which has known analytic form in the linear, normal special cases
shown in Equations [I[-2, and optimized, for example, via Newton-Raphson procedures to
obtain estimates of the unknown modeling parameters (Chow et al.l 2010; Shumway &
Stoffer, 2006). This requires iterative calls of the KF for repeated evaluations of the
log-likelihood function at different parameter values.

Some definitions of notation and key concepts are in order. Let Y, ;. 2

{yij, w;;;j = 1,...,k} denote the array of manifest observations, including exogenous

input, available from time 1 to time k. Three types of state estimates and corresponding
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covariance matrix (for quantifying uncertainty associated with the state estimates) are

usually of interest:

1. The one-step-ahead predicted or forecast state values, 1;,,_, 2 EMylYiii-1), and
the associated covariance matrix, Pj;—q 2 Cov(n;|Yi1:4—1), estimated using

observations up to time ¢t — 1;

2. The filtered state values, 1, 2 E (MY 1), and the associated covariance matrix,

Py 2 Cov(m;| Y1), estimated using observations up to time ¢;

3. The smoothed state values, 7; 2E (n|Yi1.7), and the associated covariance
matrix, Py = Cov(n,|Yi1.1), estimated using observations up to time 7', where T’

may correspond to the last time point of the data, or any later time point beyond ¢.

To compute optimal control inputs in the present study, we are interested in computing —
or specifically, forecasting — estimates of wu;; given Y, 1.,—1. Doing so requires use of all
three sets of the state estimates summarized above. The procedures for doing so are
outlined next.

With some initial guesses of the parameter values, and setting the initial conditions of
the state estimates as: Mitjo = Qo, and P19 = Py (for alternative specifications of these
initial conditions, see also Harvey| (2001)), and Zarchan and Musoff (2000))), the KF
essentially involves sequentially going through a prediction and a filtering phase from time
t=1,...,T to obtain the predicted and filtered state estimates, respectively. During the

prediction phase, we obtain:

Nit—1 = BMi_1p—1 + GUiz—1, and

Pyi1 = BP;, 1B + P (9)
This is followed by the filtering phase, from which we obtain:

Mt = Migje—1 T Kit (yz't - Anit|t71) )

Py, = (I-KuA) Pft\lt,p (10)
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where K;; = Pz-t|t_1A' (APMt_lA' + ‘Ile)il, usually known as the Kalman gain matrix,
determines how heavily the discrepancies between the predicted and actual measurements
are weighted in updating filtered estimates. It may vary in dimension for each individual at
each time point to accommodate partial missingness in some observed variables at
particular time points.

Finally, when 1, and P;; are available from time 1 through T, the smoothed state
estimates and the associated smoothed stated covariance matrix can be computed
backward in time starting from time ¢t =7T,...,1 as:

Nyt = Mg + Py (ni,t+1|T - 7h’,t+1\t>

~/

Piyr = P+ P, (Pz‘,t—l-llT - Pi,t+1|t> P (11)

where P;, = Pit‘tB' (PLHl‘t)_l. This process is one example of a Kalman smoother (KS)
known as the fixed interval smoother (Shumway & Stoffer], 2006; |Zarchan & Musoff, [2000)).
In most circumstances, particularly when process noises are present in the system,
smoothed estimates provide more accurate estimates of the system’s latent variable values
than the filtered estimates because smoothing draws on information from more

observations.
Parameter Estimation by Prediction Error Decomposition (PED)

The difference ey 2 (yit — Anmt,l) shown in Equation |10|is often termed the vector of
innovations, as it represents the difference between the predicted measurements,
E(y;|Yi1t-1) = Ay, and the actual measurements at time ¢, y,;, or in other words,
the new information brought in by the observations at time ¢. This term is also known as
the one-step-ahead prediction errors (e.g., (Chow et al., 2010; |Durbin & Koopman) 2001)).
These prediction errors, the associated innovation covariance matrix,

F 2 Cov(e;) = APmt_lAl + W, together with other by-products from the KF
procedures, can be substituted into a log likelihood function, then optimized via

Newton-Raphson or other similar techniques, which would yield maximum likelihood
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estimates of the unknown parameters in B, G, A, ¥, and ¥..

The log likelihood function can be written as:

1 n
LLkp(0y) = ZZ ( plog(2m) — log|Fy| — e;tF;tleit) , (12)

2:1 t=1

where p is the number of manifest variables, which may be person-dependent in the
presence of missing data. Equation [12]is known as the prediction error decomposition
(PED) function, and maximizing this function with respect to the parameters in B, G, A,
W, and W, results in maximum likelihood (ML) estimates of these parameters (Harvey,
1989; Ljung & Soderstrom), 1983; [Schweppe, [1965; [Shumway & Stoffer, 2006). In addition,
when the parameters are constrained to be invariant across persons, the resultant model
captures the pooled dynamics in the sample as a whole.

In sum, by first setting the parameters to some fixed initial values, each person’s data
are subjected to the KF algorithm and individual state estimates are thus obtained (from
i =1,...n) by treating the parameters as fixed values. State estimates from these n
individuals are then substituted into the PED function, the optimization (with
Newton-Raphson procedures) of which generates updated parameter estimates for another
iteration of the KF. This entire KF <> PED cycle is repeated iteratively until some
convergence criteria are met, at which point the final parameter estimates at convergence
provide ML estimates of the parameters. Using the inverse of the negative numerical
Hessian of the PED function at the point of convergence as an estimate of the asymptotic
covariance matrix of the parameters, we compute standard error estimates as the square
roots of the diagonal elements of this covariance matrix. As described elsewhere (Chow &
Zhangj 2013; Harvey|, 2001)), information criterion measures such as the Akaike information
criterion (AIC; |Akaike, |1973) and Bayesian information criterion (BIC; |Schwarz, 1978)
can also be computed using the PED for model comparison purposes. These procedures
have been implemented in the R package, dynr (Ou, Hunter, & Chow, [2019). We extend

the functions available from dynr to use these KF-related by-products to implement the
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constrained control input estimation procedures described next.
Constrained Control Theory Optimization

In the current context, we examine the extent to which students’ deviations in ability from
their desired levels can be reduced more efficaciously by optimizing, as opposed to dictating
by design, the appropriate amount of training “dosage” to which each individual should be
exposed at each particular time point. Training dosage, namely, u;; as shown in Equation
, corresponds in the Math Garden example to a learner’s weekly activity time using the
app. Our goal is to use constrained control and estimation (Goodwin et al., 2005;
Molenaar, 2010)) to “forecast” the optimal amount of weekly training duration to spend on
Math Garden, and contrast the simulated forecast results obtained using these “controlled”
as compared to other alternative training schemes.

In practice, this constrained optimization of training duration is implemented as
follows. We first fit the BDCM-X using an estimation sample to obtain estimated
parameters, which are then used to set up a controller to be applied to the learning data of
a validation sample of new Math Garden users. This controller provides recommendations
on optimal training dosage (or duration) for each Math Garden user and each week to

tailor to each user’s learning efficacy.

Receding Horizon Linear Quadratic Controller (LQC). Working with the general
state-space model in Equations —, optimal values of u;; may be obtained by
minimizing a quadratic cost function with respect to u;;. In most engineering settings, the
solution for w; is typically derived recursively (i.e., one ¢ at a time) over a control horizon
between time ¢ and ¢ + h, where h > 1 is called the control horizon. The quadratic cost

function is defined as

T= 0, . r
Jit (nz{t—H- }a n. ui,t-i-‘r) - Z

("72 t+h ) Qh(ni,t+h -n"), (13)

nz A+ ) Q(ni,tJr‘r - nr) + u;,t+TRui,t+T +
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where the desired reference levels of the latent processes are denoted as n”. The matrices
Q, Q,,, and R are positive-definite design matrices chosen a priori to reflect, respectively,
how heavily deviations of the latent processes from their desired levels should be weighted
within the control horizon (for 7 between 1 and h — 1), at the end point of the control
horizon (i.e., for 7 = h), and the costs associated with administration of higher training
dosages (i.e., higher values) of w;.

Kwon and Han (2005) showed that optimal values of u;;;, that would minimize the

cost function shown in Equation 1) denoted herein as u;,, ., can be computed as:

u’ = =
it+T T -

Lit:Bn s + 9iriria (14)

—1
where 2 = R™'G’|L, + L; /1, 1GR™'G’ ] , where I, denotes a w-dimensional identity

matrix ; whereas L;. and g, are obtained, starting from time ¢ + h (i.e., 7 = h) as:
Li,t+h = Qh
9it+n — Q" (15)
and then computed recursively backward in time for 7 =h — 1 to 0 as:
Liyyr = B/SilLi,t+T+1B +Q
Girr = B'STlg - QN (16)

To shed light on what these terms mean, it may be helpful to note that at t =t + h,

uj, g, =E2Q), [77’” — Bn, ;44| Thus, values of u},,, are determined as proportionate to the
amounts of deviations of the states” projected values, Bm, ;. ;, from their target levels, n".
How much these deviations are weighted depends on the state deviation penalty matrix,
Q;,, and also the “input gain” matrix, Z, which compares how important and costly it is to
not reduce state deviations relative to the cost of administering the input, R. These
recursions allow backward propagation of the state values and target levels through L; ;-

and g, ., respectively. They eventually yield estimates for u;, that, when incurred on the

states at time ¢ 4 1, help minimize the states’ deviations from their target levels over the
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control horizon.

The control theory algorithm summarized in Equations (14)—(16) is one kind of
controller known as the receding horizon Linear Quadratic Controller (LQC). It is linear in
terms of the underlying state-space model linked to the controller, quadratic in the sense of
the quadratic form of the cost function adopted in Equation , and the receding horizon
refers to the property that the input is iteratively updated with a receding (declining or
shrinking window) of future state values. This controller can be regarded as
“deterministic” in the sense that it was originally designed for systems in which perfect
knowledge of the latent states is available. In the present context, the controller is paired
with different state estimators, thus resulting in different variations of the receding horizon

LQC. These variations are described next.

Off-line and Finite Memory Linear Quadratic Controllers. We consider three
approaches for obtaining state estimates for computation of the control input in Equation
(14). The first is an off-line implementation of the fixed interval smoother (hence forth
simplified as the Kalman smoother or KS) that provides estimates of the states conditional
on the whole collection of time series (from ¢ = 1, ... T). This approach is said to be
off-line because the state estimates are computed for the entire time series after all the
data have already been collected, as opposed to on-line as the data arrive. Because the
effects of the control input on the state processes are not taken into consideration in
computing the state estimates, this first approach parallels an open-loop approach (Kuo,
1991)). This specific LQC is referred to herein as the off-line LQC with KS state estimates.
The second and third approaches utilize a window of measurements to compute the
state estimates in that particular window. Kwon and Han| (2005) referred to these
variations as Linear Quadratic Finite Memory Controllers. Such estimators are sometimes
referred to as moving horizon estimators, and we refer to them herein as finite memory
LQCs (FMLQCs). FMLQCs typically use a window of measurements of size ny, prior to

the current time ¢, where ny is known as the moving horizon window, to compute the state
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estimates (Bavdekar, Bhushan Gopaluni, & Shah| 2013;|J.B., Mayne, & Diehl, 2017). The
second approach we considered combines the LQC algorithm with the KF for estimating
the state values up to time ¢ sequentially, based on observed data up to time t. We refer to
this as the KF-based FMLQC. The KF-based FMLQC is a closed-loop estimation approach
because effects of past control input values (up to time ¢ — 1) are taken into account in
updating the state estimates at time ¢ (Kuo, [1991). However, future effects of the control
input on state values beyond time ¢ are not incorporated into the state estimates.

The third approach is designed to apply the KS to a window of observations from
time ¢ to t 4+ h in estimating the state values at time ¢. As such, it uses the same future
horizon of estimation window as the computation of the control input w}, in Equation (14)).
Because current and future measurements (t + 1, ..., t + h) are used in updating the state
estimates at time ¢, these smoothed estimates take into consideration the effects of the
control input on future state values in computing the control input values at time ¢. As
such, this approach is also a closed-loop estimation approach. In summary, the three
approaches we adopted for state estimation give rise to three variations of the LQC: (1)
The off-line LQC based on off-line KS state estimates; (2) the FMLQC with KF state
estimates administered for ¢t € [t — ny, ..., t]; and (3) the FMLQC with KS state estimates
administered for ¢t € [t,...,t+ h).

The quadratic cost function in Equation used in the present context may diverge
from the needs of most educational applications in the sense that both positive and
negative deviations from the target function are penalized equally. In practice, performing
above the target function does not constitute a problem in instructional settings. In fact,
over-performing may even be encouraged. We circumvent this limitation by adding

constraints to the recommended input values to fall between the lower and upper limits of
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Wiower,i AN Uypper,i, Tespectively. That is, we constrain that:

* . *
U, if ulower,i > uz‘t > uupper,i

Rx*
. = . *
Uy Wypper,i it ul, > Wypper.i (17)

Wiower,i if ufy, < Uoweri-
For all our illustrations, we set Wjoper,i to 0. Thus, even though a quadratic cost function is
optimized, recommendations to reduce training durations are automatically ignored. Other
approaches that utilize alternative (e.g., asymmetric) cost functions to more heavily
penalize deviations in one direction than the other are highlighted in the Discussion section
but are not considered here.

For design purposes, it is of interest to derive some indices for quantifying the costs
and benefits associated with using a set of control inputs. We propose using the cost and

benefit functions:

n T-—1

Cost__State = Z [("’h‘,t - ng,t)/Q(ni,t )|+ (M — 1) Qu(nir —n")
i=1 t=1
n T

Cost_Input = > ) w; Ry,

i—1t=1
BaseCost,_ State — Cost__ State

Relative Benefit = ,
BaseCost_ State

t I t—B t I t
Relative Cost = Cost_Inpu aseCost_Inpu , (18)
BaseCost_ Input

where Relative Benefit quantifies the change in the quadratic cost associated with state
deviations under the current control input scheme relative to the quadratic state cost in a
baseline condition, BaseCost_ State, (e.g., when no control input is used). Positive
(negative) values represent a reduction (increase) in state deviations from the target
trajectory compared to baseline. In a similar vein, Relative Cost quantifies the change
(specifically, increase) in the quadratic cost associated with the current control input
scheme relative to the quadratic input cost in a baseline condition, BaseCost_ Input, (e.g.,

when input values are not determined by the LQC). Positive (negative) values represent an
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increase (decrease) in input costs compared to baseline.
Illustrative Simulations

To demonstrate the effects of the proposed LQCs , we simulated data using a univariate
dual change score model, that is, a univariate special case of the BDCM-X in Equations
in which all terms associated with 7;; and yo;; were dropped.

We present five simulations designed to demonstrate the effects of the control theory
input under: (I) a scenario in which some external shocks were applied to 7y; to induce
transient effects in lowering individuals’ latent ability levels; (II) a scenario in which the
external shocks were applied both to 71 and ay;, leading to irreversible reductions in the
individuals’ asymptotic performance levels; (III) a scenario in which we contrasted the
effects of the control input under conditions with static (i.e., person- and time-invariant) as
compared to person- and time-specific target trajectory, n”; (IV) different choices of
penalty weight for the input cost through variations in R, and (V) use of the off-line LQC
and other FMLQC variations. We also demonstrate within the context of these
illustrations the advantages of the control theory approaches relative to a simpler, observed
linear approach that recommends increments in practice duration as proportionate to
individuals’ observed negative deviations in performance scores in the absence of an
operating state-space model.

In all five illustrations, we set T = 20 time points, n = 3 individuals, and adopted the

following dynamic and measurement parameter values:
— — _ 2 _
b11 = —020,91 = 0.70,w11 = 000, O, = 05,
and the following initial condition-related parameter values:

figy = 1.00, 1o, = 0.50,07 = 0.13,0,,, 4, =0.001,07 = 0.10.

Ual

These parameter values were chosen to mirror parameter estimates obtained from previous

longitudinal modeling of student arithmetic learning using variations of the BDCM (Chow
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et al., |2013)). The process noise variance, 1, was purposefully set to 0 to yield relatively
smooth latent change trajectories that saliently reflect the effects of interest.

For all illustrations, we applied the following constrained control scheme: we set

o 10
Q=Q.=AA=| |[1 0| -
0 0 0

whereas the input cost matrix, which consists of a single scalar, R, was varied by design of
the illustrative simulations. The code for all the illustrations is included as supplementary

material with this article.
Illustration I: Shocks to Latent Ability

A single exogenous variable, u;, was generated with zero value for all individuals and
all time points. Two randomly selected “shock points” were incurred on each individual’s
time series within the time window 2 <=1t <= 10 , with shock magnitudes that were
randomly sampled from a uniform distribution in the interval between -2.5 and -0.5. This
demonstration is intended to mirror the arithmetic learning trajectories of students who
display decrements in performance on two occasions due to unforeseen circumstances (e.g.,
due to illness or social distress), followed by gradual recovery from the shocks over time to
return to their otherwise relatively smooth learning trajectories. Imagine now that it is
possible to deliver u; to boost the students’ training via an app such as the Math Garden.
As opposed to devising a “one-size-fits-all” booster training scheme to each individual, we
illustrate the outcomes of using the constrained control input, w},, in accelerating the
students’ return to their original learning trajectories.

We applied the off-line LQC in this illustration with two choices of control horizon
window, h = 4 and 10. We set R to 10, namely, a relatively large value compared to the
values in Q, the cost matrix for deviations of state values. This choice was specifically
made to emulate the scenario where administration of higher training dosage would be
costly, as dictated by having an R value that was much higher than those in Q and Q.

Additionally, we set " to be time-varying and person-specific, with the value of 0}, for
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each person and time point set to be the person’s predicted curve based on the univariate
dual change score model. In other words, the reference levels of the latent processes are
themselves dynamic, and are taken to be the individuals’ predicted learning trajectories in

the absence of any shocks or disturbances, namely,

My = an‘,t—l

We further assumed that all parameters were known and fixed at their true values.
Furthermore, we imposed lower and upper limits on the permissible values of u%* such that
0 < wu}, < 2. The upper limit was deliberately set to be low to constrain the effects of the
control input to be small.

The true latent trajectories of one out of the three hypothetical individuals (ID 1)
generated using uZ* and u; = 0 are plotted in Figure , in the top two panels. It can be
seen that in this illustration, immediately following the shock points, the individual’s latent
ability level, ny;; (top left panel), but not constant slope, aq; (top right panel), showed
abrupt reductions in level that eventually dissipated over time as T approached 20. With
the use of the off-line LQC, higher dosages of u%* were automatically determined and
delivered immediately following these shock points, and the resultant, “controlled” latent
trajectories (see the solid line marked with the symbol ‘C’) clearly show quicker return to
the unperturbed trajectories compared with the original trajectories without the control
input (see the solid line marked with the symbol ‘N’).

As expected, the dosage strength was proportionate to the extent of deviations from
the target latent trajectories. For instance, surges in the dosage of uf* were observed in ID
1 following the occurrence of two closely located shock points. The shape of the shaded
region in the top two plots of Figure , which depicts values of uf*, also helps provide a
glimpse into the control input scheme devised for this individual. Given the relatively
conservative control scheme used in this particular illustration, the administered u* never

actually pushed the imposed upper limit of 2. Due to the imposition of a lower constraint
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of 0 on uf*, some “overcorrections” (i.e., ability exceeding and staying above the target

level) were observed in this particularly individual.

Deriving control input dosages that are proportional to the amount of deviations
from some target level is a key strength afforded by the control theory approach. But what
exactly does such an approach add compared to a simpler, observed linear approach that
recommends a fixed amount of increment in practice duration with every point that an
individual performs below the target level? One key strength of the LQC and related
approaches resides in its formulation within a state-space modeling framework and
corresponding estimation algorithms that allow the computations of control input based on
the latent variable estimates even on occasions where the observed data are missing. To
demonstrate this point, we fitted a linear regression model predicting individuals’ practice
durations based on their observed negative deviations from the target performance levels
(i.e., magnitudes of under-performance) at the previous time point, time ¢ — 1. The
resultant intercept and regression coefficient estimate were used to compute predicted
durations at time ¢ based on individuals’ negative deviations in performance level at time
t — 1. In addition, we randomly set 7 of the 20 occasions (35%) to be missing, and for these
missing occasions for which no observed data were available to indicate the amounts of
under-performance, we set the recommended training duration to be 0.

Results from this observed linear scheme are depicted in Figure [1| (marked with the
symbol ‘L’; see the first two rows of plots). It can be seen that the observed linear scheme
did indeed produce recommended training durations that were close to those generated
with the off-linear LQC, as proportionate to the amounts of under-performance shown by
each individual. However, the observed linear scheme performed slightly worse than the
off-line LQC, providing delayed duration forecasts to help close the performance gaps
especially when the missing data were located close to the shock points. Thus, the LQC
and related approaches provide a more “holistic” approach to optimizing the magnitudes of

inputs needed to minimize the hypothesized (negative) deviations from the person-specific
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target functions.

Finally, we repeated computation of the off-line LQC control input using h = 10.
Relatively little differences were observed between the two control horizon windows. One
relatively trivial difference was that the larger window size of h = 10, as compared to h =
4, tended to factor into consideration more of the incurred shocks, hence diagnosing higher
dosages of input for the exact same amounts of shocks. This, coupled with R = 10, at times
led to even greater overcorrections in the latent ability trajectories, yielding latent ability
values that were greater above the specified target curve than when h = 4 was used.

Illustration II: Shocks to Latent Ability and Constant Slope

The shocks incurred in Ilustration I were designed to impact individuals’ ability
levels in a transient way. That is, these shocks acted as unusual process noises, the effects
of which persisted for some time but eventually dissipated over time. Thus, in the absence
of further shocks, the individuals would, by nature of the hypothesized model, still return
to their target trajectories even in the absence of any control input — albeit more slowly.
However, in real-life educational settings, shocks to individuals’ learning are unlikely to be
transient, and might change individuals’ learning dynamics or outcomes, leading to
irreversible training disparities. To simulate this scenario, we incurred shocks to
individuals’ latent ability levels as in Illustration I, but additionally, also to their constant
slopes, ay;, by drawing from a uniform distribution that ranged from -0.1 to -0.01. Other
settings were held identical to those in Illustration I. Such negative shocks to individuals’
slopes are known to yield irreversible reductions in the asymptotes of individuals’
trajectories (Chow, Hamaker, & Allaire, |2009). Thus, the shocks due to illness or social
distress in the previous illustration are no longer a fleeting “nuissance” but rather, would
prevent individuals from ever realizing their full potentials in the absence of any
interventions.

The resultant trajectories of 7y, and ay; for the same hypothetical participant (ID 1)

are plotted in the middle row of Figure [l and the trajectories of two additional participants
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are shown in the bottom row. Plot of ay; from ID 1 (middle right panel) highlights that the
individual’s constant slope was shocked at two distinct time points. Such shocks to the
constant slope altered the asymptotic performance level of the individual. Specifically, in
the absence of any control input, the individual’s latent ability level (the line marked with
the symbol ‘N’) approached a plateau at around 2, in contrast to around 3 as shown by the
target trajectory. In this case, the off-line LQC essentially recommended continuous
elevated input values, which had the effect of bringing the individual’s controlled trajectory
close to the target trajectory. The recommended control schemes for two other individuals
(see bottom row of Figure 1)) had distinct, individual-specific shapes, but shared the same
characteristic of a heightened, sustained level of control input. In fact, the constant slope
in this model is one example of a latent variable that is uncontrol lable.ﬂ Thus, this
particular illustration demonstrated a scenario where individuals were subjected to external
influences that could lead to permanent, irreversible performance disparities relative to
their original asymptotes (their maximum potentials). Even though the solution provided
by control theory algorithm might not be ideal (i.e., continuous delivery of input is
required), it is still of some utility in highligting the amounts of input needed by different
individuals to close the disparities in ability levels.

Illustration III: Effects of Static, One-Size-Fits-All Target Level

This illustration was designed to demonstrate the consequences of using a
person-invariant, or in other words, a “one-size-fits-all” target function for 7y; for all
individuals in a study, defined as the fixed effects curve, nj; = fta1 + b11714t, starting

identically at 11,1 = i, for all . The resultant latent ability trajectories for all participants

L' A dynamical system is said to be controllable if it is possible to drive the system into a particular state
through the use of manipulable control inputs (e.g., interventions, treatment, training). Technically, a
system is controllable when the w x (w + r) controllability matrix,

C=[G BG B°G ... B"'G] (19)

has rank w (Zarchan & Musoff, [2000). The BDCM-X model is uncontrollable when constant slopes are
included as latent variables.
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are shown in Figure [2| (see right panel), with the trajectories from Illustration I (see left
panel) shown here for all participants on the same scales to facilitate comparisons. In this
case, only the participants’ latent ability levels, but not their constant slopes, were shocked
at two randomly selected time points. For the same participants with otherwise identical
trajectories in the absence of any control input (see the trajectories marked with “No
Control”), the algorithm now hardly recommended any control input for IDs 1 and 2
because these individuals were consistently performing above the target function. An
unconstrained control algorithm would have recommended negative input values, but the
constraint that u}, be positive led to the control input profile see in the top right panel of
Figure 2l In contrast, for ID 3, an individual who was performing distinctly below the fixed
effects curve, much higher positive values of v, were recommended throughout the study
span (see bottom right panel) compared to the recommendations obtained under
person-specific target functions (see bottom left panel). Forcing such universal standards
on all students without regard to their own strengths and limitations might not serve any
individual well in the end (Rose, |2016). This illustration thus pointed to the importance of
selecting target functions that can infuse some population standards with each individual’s
unique learning characteristics in designing control theory interventions.

Illustration IV: Effects of Different Control Input Penalty Weights, R

This illustration serves to clarify the effects of changing the value of R, the cost for
input administration. We varied the value of R to be .1, .5, 1, 2, 5, 10, and 100, while
keeping the cost matrices for state deviations, Q and Q,,, at the same values. The total
quadratic costs associated with administering the input, Cost_ Input, and the relative
benefit gained in terms of reducing overall state deviations from the target level (see
Equation are plotted in Figure 3, under the scenarios considered in Illustrations 1 —3.
Because no input was administered in the original scenario (i.e., BaseCost_Input = 0 in
the baseline condition), RelativeCost as shown in Equation [18]is not defined. Thus, we

only plotted RelativeBenefit against Cost_Input.
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The plots, shown in Figure [3| indicate that under the scenario considered in
[lustration I, the values of relative benefit were positive (indicating a reduction in total
state deviations relative to target trajectories) only at larger values of R, suggesting that
an overly liberal scheme to deploy control input (i.e., when the values of R were small, such
as < 1) yielded control input costs that greatly outweighed the relative benefits. When
only individuals’ latent ability levels were shocked, the preferred value of R that maximized
relative benefit occurred around R = 10 whereas when both latent ability and constant
slope levels were shocked (as in Illustration II), the slightly lower control input cost of 5
(compared to 10) led to greater reduction in total state deviations under the scenario
considered in Illustration II. In addition, when both of these latent components were
shocked, the total costs associated with administering the input clearly increased.

Additionally, in the one-size-fits-all scenario with shocks to individuals’ latent ability
levels only, the input costs and relative benefits showed less variations as a choice of R.
Slightly larger values of R (e.g., 2 < R < 10), were still preferred, but the cost-and-benefit
curve generally assumed a narrower range in relative benefits compared to the earlier
scenarios. Overall, the results suggested that the optimal balance of relative benefits and
costs of input from the control algorithm depended on the choice of R, and a thorough
evaluation of such costs and benefits is imperative.

For comparison purposes, we also added the total input costs and relative benefits
associated with the linear observed scheme to the plots, shown as light-shaded, vertical and
horizontal lines, respectively, marked with the symbol ‘L. It can be seen that across all
illustrations, the offline LQC provided higher relative benefits than the observed linear
scheme at R = 5 and 10. It should be cautioned, however, that at other less optimized
values of R, however, the observed linear scheme actually yielded greater relative benefits
than the offline LQC, at comparable total input costs, and much reduced computational
time. The reduced total input costs reflected in large part our simulation setting, which

recommended no training whenever data were missing at time ¢-1. Regardless, this simpler
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alternative scheme serves as a viable alternative especially in situations where there would
be limited missingness from the participants, and underscored the importance of proper
selection of the penalty weights, R and (), in designing and use of the controllers.

Illustration V: Offline Compared to FMLQCs

In the illustrations presented thus far, the control inputs were computed after all the
data have already been collected. In other words, the effects of “real-time”
implementations and delivery of the control inputs were not reflected in the generated state
trajectories, thus increasing the likelihood of “over-corrections” in some individuals’ ability
in the earlier illustrations. In this illustration, we used the KF- and KS-based FMLQCs in
which state estimates were updated in a moving window by incorporating the control
inputs computed for that moving window. As shown in Figure 4| (top panel), the real-time
update of the control input via the KS-based FMLQC outperformed the other LQC
variations by yielding more targeted and timely reductions of control input. The state
trajectory controlled under these KS-FMLQC regulated input values (see trajectory
labelled as “FMLQC w/ KS”) now approached the target level more precisely and showed
less over-corrections. Note that positive deviations in performance were generally
disregarded based on our constraints on the control input, uff. Thus some over-corrections
were still present in some of the illustrative cases. The corresponding costs and benefit
comparisons in the bottom panel suggested that the FMLQCs led to comparable cost and
benefit curves compared to the off-line LQC. However, the KF-based FMLQC, in contrast
to both the off-line and KS-based FMLQC, yielded less pronoounced increases in total
reductions in state deviations compared to the baseline condition when no control input
was used (see the dashed horizontal reference line).

Summary of Illustrations: We demonstrated the effects of three LQC through five
illustrative simulations. These illustrations highlighted the effects of administering
constrained control input under relatively simple scenarios with no process noises and a

limited number of shocks to the system.
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Empirically Motivated Simulations

To demonstrate the feasibility and utility of using control theory optimization in a
real-world scenario, we used a subset of national Dutch elementary school students’ data on
the Math Garden in the current application. Math Garden is a computerized adaptive
practice system that utilizes the Elo rating system developed for chess competitions to
perform both person and item parameter estimations on the fly (Maris & van der Maas,
2012)), thus allowing educators and researchers to bypass the need to implement expensive
pre-testing of the item bank (Klinkenberg et al., [2011). Training dosage was operationalized
in the context of the Math Garden data as each student’s average weekly activity time on
the website in hours, calculated using the timestamps associated with the users’ responses.

Math Garden contains 15 games covering the math curriculum of elementary schools,
including arithmetic operations such as addition, subtraction, multiplication, and division.
For illustrative purposes, we used weekly ability estimates and reaction time data on the
division task only as dependent variables for model fitting and control theory testing
purposes. Previous analyses of the Math Garden data have focused primarily on students’
performance on the addition and multiplication tasks (e.g., Jansen, Hofman, Savi, Visser,
& van der Maas, 2016]). Here, we chose to focus on the division task because student
performance on this task showed clear improvements over time and across multiple grade
levels, but also frequent shifts and deviations from an idealized population curve.

We demonstrate, by using the BDCM-X as our operating model, that a student’s
performance on the division task can be more efficaciously driven toward a pre-defined
target level via the KS-based FMLQC. We focused on simultaneous modeling of
individuals’ latent ability and reaction time given the known reciprocal effects between
reaction time and latent ability and their corresponding estimates. Inclusion of reaction
time would allow us to address questions such as: among individuals with the same reaction
time (or controlling for the effects of reaction time), whether longer training duration at the

previous week helped promote more growth in division ability this week. Students’ original
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ability estimates from Math Garden lied on a Rasch-type scale (Brinkhuis et al., [2018).
Prior to model fitting, the ability scores were recoded by adding a minimum constant to
the scores so a score of zero corresponded to the minimum observed division ability in the
sample. No recoding was performed on the covariate (training duration) or reaction time.

We sought to address the following questions:

1. In what ways, if at all, are the KS-based FMLQC-recommended training durations
“better” compared to a fixed, one-size-fits-all training scheme in which all individuals
adhered to a strict weekly practice duration of 14.36 minutes (the median practice
duration of the whole population of Math Garden users; coinciding also with the

approximate practice duration recommended by the app developers)?

2. In what ways, if at all, are the KS-based FMLQC-recommended training durations

“better” compared to the original practice durations recorded for these students?

3. What are the effects of using a target function based strictly on population
standards, such as the grade-normed median, as compared to one that integrates
population standards and some person-specific information, such as each student’s

unique model-implied trajectory as in the illustrative simulations?

We answered these questions through a series of empirically-motivated simulations.
Specifically, we first estimated the values of @ = [biy, b1, o1, baa, g1, g2, Y11, Yas, 02, 02,
Tu()s 03(_)]’ , where ag(.) and o, denote all the variance and covariance parameters for the
random effects shown in Equation (7). Other parameters are as defined in Equations
and . This was done by fitting the BDCM-X model to data from approximately half of
the sample (n = 400; referred to herein as the estimation sample). Then, using the data
and change characteristics (e.g., observed training durations, initial level and constant
slope estimates) from the remaining n = 384 validation sample, we conducted a series of

empirically motivated simulations to address our questions of interest.

To fit the BDCM-X model, an equally spaced model to the estimation sample,
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missing data were inserted for the weeks during which no Math Garden activity was
recorded. For these weeks with missing data, we imputed the value of 0 for training
duration, and left the missing data for the ability and reaction time as they were to be
handled via full-information maximum likelihood. After removing participants with
excessive missingness (i.e., missing rate of > 70% or less than 6 non-missing observations),
a sample of 784 students were retained. These students worked on the division task at their
own schedules or as recommended by their schools, contributing data ranging from 6 to 282
weeks (median = 90 weeks) as they attended 3rd to 12th grade (median = 5th grade).
After imputation of the missing training duration values with 0, corresponding to weeks on
which the participants did not attempt any activities in Math Garden, the average amount
of weekly Math Garden training duration recorded by the system was 0.12 hour (7.2
minutes), with a median of 0 and SD of 0.20. The median training duration prior to
imputation was 0.24 hour (14.36 minutes).

Plots of the division ability scores from a sample of 100 randomly selected
participants and their corresponding reaction time data are shown in Figure (A) and
(B), respectively. As a comparison, we also plotted the median ability score of all
Sth-grade (the median grade in the sample) students in the entire Math Garden database.
The plot indicated that the current sample started out with an initial ability level that
coincided closely with the Hth-grade median. Whereas some improvements were observed
in many students over weeks, there was considerable heterogeneity in each individual’s

learning trajectory.
BDCM-X Modeling Results with the Estimation Sample

Results from fitting the BDCM-X model to the estimation sample suggested that with the
exception of the measurement error variance for the division ability score, the process noise
variance for reaction time, and some covariance terms among the random effects, all other

parameters were significantly different from zero. Parameters that were not reliably

2

2, were then fixed at zero, and empirical results from

different from zero, except for o
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fitting the refined model are shown in Table [T} The estimated means of the initial levels of
ability and reaction were positive (u,, and f,,) and close to the empirical means of the
observed ability scores and reaction time at time 1, with substantial interindividual
differences. As noted, some of the covariances between random effects were not reliably
different from zero, and were fixed at zero. Covariances that were retained and remained
statistically significant included covariances between the random effects of initial division
ability and initial reaction time (o, ., ), and between initial division ability and the
constant change parameter for division ability (o, ., ). Estimates for these covariance
terms as shown in Table [1| suggested that individuals who tended to have higher initial
division ability also showed slightly longer reaction time, and those with higher initial
ability were associated with higher constant slopes, ay;.

The auto-proportion parameters for both latent ability and reaction time were both
negative and significantly different from zero, suggesting that reduced latent growth in
division ability tended to be observed for an individual when the individual’s previous
ability level at the previous week was high, especially as the individual approached his or
her personal asymptote. Relatedly, there were small, reciprocal positive couplings between
ability and reaction time, indicating that higher previous ability and higher reaction time
at the previous week were associated, respectively, with greater latent changes in reaction
time and latent ability this week. These findings were consistent with the design and
adaptive nature of Math Garden — that is, a higher previous latent ability would prompt
the system to present a student with more difficult items on the next trial. Taking the time
to get these more challenging items correct (as opposed to resorting to hints or venturing
guesses haphazardly), in turn, would yield a higher ability estimate for the student.

Previous week’s training duration (activity time in Math Garden as measured in
hours) was found to have significant positive effects on the current week’s latent changes in
division ability as well as reaction time. A larger amount of change was observed in latent

ability level than in reaction time in seconds per hour of change in training duration,
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possibly due to the limited changes individuals could display on reaction time under the
system-imposed time limit. Although a direct comparison of the magnitudes of these
control input-related coefficients would not be meaningful due to scaling differences
between the constructs, the overall results from model fitting suggested that previous
week’s training duration could be a viable candidate as a control input to drive future
changes in individuals’ division ability.

Empirically Motivated Simulations Using the Validation Sample

Fixing the parameter values in 0 to the estimated values obtained from the estimation
sample, we then performed a series of empirically motivated simulations to evaluate the
effects of applying the KS-based FMLQC to the validation sample. Briefly, data were
simulated in ways that mirror as closely as possible to the empirical characteristics of the
validation sample. Specifically, we first applied the KS with @ fixed at those obtained with
the estimation sample to yield initial level and slope (i.e., n151, 72i1, @14, and ay;) estimates
for each individual in the validation sample. These initial level and slope estimates were
used to generate simulated data sequentially (for ¢ = 2, ..., T;) based on Equations ([5)- (),
and also to define person-specific target functions in some of the subsequent simulations.
Process noises and measurement noises were added to the simulated data based on the
normality assumptions outlined in Equations () and (g).

In short, our simulation specifications allowed us to make targeted manipulations of
individuals’ training durations according to different training schemes, while holding all
other confounding factors constant — including initial conditions, parameter values, and
sequences of process and measurement noises. We organized our simulation results based

on the research questions outlined earlier. As in the illustrative simulation, we set
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with the goal of the Math Garden app to improve students’ arithmetic performance, we
imposed a lower limit of wjwer; = 0, and a constant, person-invariant upper limit as given
by the 99th percentile of all students’ weekly training duration, namely, w,pper = 1.01 hours
(corresponding approximately to an average of 8.67 minutes per day). Finally, we set the

finite memory window, n, of the KS-based FMLQC to be 20.

Empirical Illustration I: KS-Based FMLQC-Recommendations Compared to Prac-

ticing at the Median Duration

Our first question of interest was whether and to what extent the KS-based
FMLQC-recommended training durations led to greater training efficacy compared to a
simpler, one-size-fits-all training scheme whereby all individuals adhered to a strict weekly
practice duration. To test this question, we selected 14.36 minutes, the pre-imputation
median practice duration of the whole population of Math Garden users as the fixed
training duration against which the KS-based FMLQC-recommended training durations
were compared. We set the target function to be each individual’s grade-level median.

To compare the costs and benefits associated with the two training schemes, we
computed and plotted the Relative Costs and Relative Benefits (see Equation
associated with the LQC training scheme, as compared to the fixed-duration scheme as a
baseline across a range of values of input cost weight, R from 1 to 200. The corresponding
relative cost and benefit values are shown in Figure @ In the plot, positive (negative) values
on the ordinate (vertical axis) indicate reductions (increases) in total state deviations
under the LQC-recommended as compared to the fixed-duration training scheme. In
contrast, the abscissa (horizontal axis) serves to highlight relative increases in total input
cost, with positive (negative) values indicating increases (decreases) in total input cost
under the LQC-recommended as compared to the fixed-duration scheme. Based on Figure
[6] values of R that were equal to or higher than 2 were found to yield relative reductions in
total state deviations compared to the target function (the grade-level median).

Of particular interest is the upper left region of that plot with an arrow. This region
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captures instances where the KS-based FMLQC training scheme led to a reduction in total
state deviations as well as a reduction in total input cost. That is, with values of R set at
100 or 200, it is possible for the students to practice less and still show lower total
quadratic deviations in ability compared to the grade median. Note that even though the
cost functions utilized are quadratic functions, instances where individuals performed
above the grade median (i.e., positive deviations in ability levels) would automatically be
ignored by the proposed FMLQC training scheme because of the constraint that u}, > 0.
Thus, if the goal is for the students to perform at least as well as the grade median, the
preferred FMLQC training scheme appeared to one that suggested relatively high penalty
of administering training (R of 100 or 200), recommending training only for those instances
where the students performed below the grade median, and in amounts that were

proportionate to the deviations from the target function.

Empirical Illustration II: KS-Based FMLQC-Recommended Durations
Compared to the Original Durations. Our second question of interest was whether
and to what extent the LQC-recommended training durations would yield improved
training efficacy compared to the original practice durations of the Math Garden users. As
in illustration I, we computed and plotted the Relative Costs and Relative Benefits (see
Equation associated with the KS-based FMLQC training scheme, but now as compared
to the original observed training durations, again across a range of values of input cost
weight, R, from 1 to 200.

The relative benefits and costs, as plotted in Figure [7], were similar to those observed
in Illustration 1. That is, by setting the value of R to 100 or 200, it is possible for the
students to practice less and still show lower total quadratic deviations in ability compared
to the grade median. The only minor difference was the slight decreases in input costs

compared to those observed under Empirical Hlustration I.

Empirical Illustration III: Population Compared to Hybrid Target Functions
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The first two illustrations were built on a nomothetic target function based on the
population median. In practice, this target function might not serve the training goals of
all individuals well. In this illustration, we explored the effects of using a hybrid target
function that integrates population standards as well as some person-specific (idiographic)
information, such as each student’s own trajectory as implied by the BDCM-X model
under no additional training.

We selected the alternative, hybrid target function by setting 0", the target ability to
be max (grade median, E (Nt - Mig—1, Wit = 0)), namely, the higher value of the
grade-normed median level, or individual i’s BDCM-X model-implied latent ability
trajectory. The latter was computed by setting the parameter values to those estimated
using the estimated sample, and additionally, with each individual’s initial level and
constant slope set to the corresponding smoothed estimates for that individual at ¢ = 1.
This trajectory, appearing as a sigmoid-shaped curve, provided a set of alternative target
functions toward which individuals’ Elo scores could be driven if they happened to perform
above their grade-level medians. The cost and benefit comparisons in Figure [§] revealed
that when the hybrid target function was used, the KS-based FMLQC-recommended
training scheme still yielded less total state deviations at reduced total input costs from
this target function at R = 100 and 200 when compared to both a fixed-duration scheme
(left panel), as well as the original observed training durations (right panel).

To inspect the ways in which the FMLQC-recommended training durations differed
in magnitude and timing compared to individuals’ original training durations, we plotted
in Figure [0} individuals’ observed ability (marked as “Observed”) scores for four selected
individuals (IDs 2, 3, 4 and 6); their predicted ability trajectories generated using the
students’ original durations, F(ability;|original duration,, ), denoted as “Original
predicted ability” in the figure; their corresponding predicted ability generated using the
FMLQC-recommended training durations, E/(ability,|u},), marked as “Predicted ability

with new u”; and the KS latent variable estimates obtained in finite memory (FM-KS)
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windows (denoted as “FM KS estimates”). We also plotted the FMLQC-recommended
and original training durations as shaded regions and unshaded regions marked with
slanted lines, respectively. The absence of shading corresponded to periods during which
the FMLQC recommended no training (uj, = 0).

The four illustrative students were selected from the larger validation sample of n =
384 because they underwent at least one transition to a higher grade during the observed
span of the study, and are characterized by a range of ability levels. For instance, the
target function for participant 6 was based largely on the grade-normed median curve. In
contrast, participants 1, 3 and 4 consistently outperformed the grade median levels, and
were thus assigned target trajectories based on their BDCS-X-implied growth trajectories.
These students’ observed Elo scores (marked as “observed in the plots) were interspersed
with periods of positive as well as negative deviations from their target functions.

At R =100 (the top and middle rows of Figure E[), the LQC training scheme
recommended more concentrated training durations on the occasions when individuals fell
below their target levels (e.g., around ¢ > 45 for ID 3), and at amounts that were
proportionate to the magnitudes of negative deviations (i.e., how much the individual
under-performed) from the individuals’ target trajectories. Such heterogeneity in
recommended training durations and timing further confirmed that using only one static
population standard as the target level or a fixed-duration scheme might not be adequate
to help each individual student realize his/her full learning potential.

To clarify the effects of using a smaller R, we plotted in the last row of Figure [J] the
LQC-recommended training scheme and corresponding trajectories (“Controlled”) for IDs 1
and 3 under R = 10. With the lower penalty value, greater magnitudes were generally
recommended during the same periods of under-performance for the two individuals.
However, because the FMLQC-recommended training “interventions” were never actually
administered, the KS estimates of the latent variables used for computing w},, which

comprised weighted combinations of the observed data and model-implied trajectories
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(similar in form to the sigmoid-shaped target trajectory) continued to suggest
under-performance from the target trajectory as the state estimates were pulled down by
these individuals’ actual Elo scores. As a result, the last plot for ID 3 in Figure [J]
underscored specifically a scenario where the KS-FMLQC algorithm did not work well.
That is, this scenario may correspond to real-world situations where the training might not
yield the intended outcomes for some individuals — for example, when the training
delivered did not help improve learning for subgroups of students, or the recommendations
were ignored altogether by the students. In this case, continuing to deliver the training
recommendations at low R value would not help to reduce the total deviations, and
additionally, could become very costly.

Note that the use of the FM-KS provided latent variable estimates that closely
tracked the observed ability levels of the participants, and additionally provided imputed
ability values for occasions with missing data. This is a useful property of the KF /KS
procedures — that is, through a weighted average of model predictions and observed data,
these procedures can yield latent variable estimates that track the observed data relatively
closely even if the dynamic model used for forecasting purposes is imperfect. These latent
variable estimates can, in turn, be used to compute optimal control input values. Despite
the usefulness of these latent variable estimates, the discrepancies of the predicted ability
scores (i.e., model-implied ability values without conditioning on observed data) relative to
the FM-KS or observed ability scores still highlighted some inadequacies of the BDCM-X
model in capturing the change characteristics of the students. We address some of these
inadequacies in the Discussion section.

Overall, our three empirically motivated simulations served to demonstrate the utility
and feasibility of using a constrained controller in conjunction with a group-based
state-space model to improve the training efficacy of educational apps such as Math
Garden. We found that with appropriate choice of input penalty, R, the LQC training

schemes could yield increased benefits (in terms of minimizing deviations from target
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performance levels) and reduced training durations compared to alternative training

schemes such as the fixed-duration and the original observed training schemes.
Discussion

In this article, we proposed and evaluated three variations of the LQC with constraints to
forecast the optimal weekly training durations for individual users of Math Garden, an
educational app designed to enhance arithmetic learning for elementary school students.
Population-level performance standards and individual learning information were used to
construct person- and time-specific target performance trajectories, the deviations from
which would trigger proportionally scaled training dosage to accelerate closing of such
performance gaps. We demonstrated one possible way of integrating population standards
with each student’s own latent change information through a series of illustrative and
empirically motivated illustrations, and showed that adoption of the control theory-guided,
person- and time-specific training dosages could yield increased training benefits at reduced
costs compared to students’ actual observed training durations or a fixed-duration training
scheme. In addition, actual user training data were used to guide the selection of the
constraints on training. In the Math Garden application, these constraints included
imposing an upper limit that was no more than one hour of training each week, and
disregarding positive deviations, namely, instances where students over-performed
compared to target levels.

We note here that the goal of our control theory application — namely, to control or
manipulate some input (training duration) to minimize discrepancies from an objective
function — has some conceptual similarity to the adaptive nature of the Elo system to
tailor the difficulty levels of the assigned items to an individual’s estimated ability level on
the fly (Klinkenberg et al., 2011)). However, the nature of the problems and estimation
algorithms needed to fulfill these respective purposes are distinct because the matching of
item and person characteristics is passive in adaptive systems such as the Elo system. That

is, in the Elo system, the goal is to assess an individual’s ability accurately (Park, Joo,
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Cornillie, van der Maas, & Van den Noortgate, [2019), not to change, improve — or
specifically, control — the ability of that person. In contrast, in a control theory
application, the goal is to actively control the endogenous process (ability) by manipulating
some exogenous variables in ways that would minimize discrepancies from an objective
function of choice. To our knowledge, the current Math Garden-inspired application was
the first application of such constrained control theory principles to large-sample real-world
data in the social and behavioral sciences. The current work was also novel as a first
attempt at combining a group-based state-space model that is non-stationary, namely, the
BDCM-X, which postulates over-time changes in means as well as variance-covariance
functions, with constrained LQCs. In the control theory literature, constrained LQCs are
typically applied to stationary control problems, and at the individual level. Such direct
application of the constrained LQCs was made possible through our use of person- and
time-varying target functions. In addition, as distinct from previous applications that
utilized true or strictly model-implied latent variable scores to compute control input
values (Molenaar], 2010; Wang et al. 2014)), we demonstrated the feasibility of using KS
estimates, which combined information from model predictions and observed data beyond
the current time point, for control input estimation at time ¢.

Promising applications of this technology in Math Garden and similar systems may
focus on further refinements of the proposed algorithm to provide recommendations for
durations spent on different types of exercises within games, as well as the selection of the
games themselves. Examples of other applications that may benefit from use of control
theory principles include apps that help individuals regulate their daily physical activity
levels, educational apps targeting other learning domains such as reading, and mobile
health devices that help individuals regulate their affect intensity and arousal levels.

Some software innovations are also available as part of this paper. We extended
functions from the R package, dynr (Ou et al., 2019)), to use by-products from the

KF-related routines from this package to automate efficient computation of control input.
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We provided the code for the illustrative simulations as supplementary material with this
paper in hopes of facilitating further extensions and adoptions across a broad array of
settings. In terms of computational time, there are notable discrepancies in the requisite
computational time for applying the off-line LQC to all individuals’ training durations at
once after all the data have already arrived, as compared to applying FMLQCs as the data
are collected. In the case of off-line LQC, it took only 32.66 seconds for us to forecast the
input for all individuals and time points in our validation sample on a Mac computer with
2.3 GHz Intel Core 19 and 15 GB of 2400 MHz DDR4 memory. To perform KS-based
FMLQC estimation of the training durations with a finite memory window of n, = 20,
repeated passing of information between R and the underlying C code in dynr is required.
In this case, the computational time increased substantially to approximately 42.9 minutes.
We note, however, that in most applications, FMLQCs only need to be applied to compute
training durations one time step (or specifically, window) ahead as new data arrive. Each
set of one-window-ahead forecasts for the entire validation sample requires approximately
2.612 seconds on the same computer.

The current study has several limitations. Currently, we used only a subset of the
data from the Math Garden data base. These participants were specifically selected to have
at least b practice sessions on the Math Garden. The extent to which our current results
are generalizeable to all users of Math Garden is unclear and warrants more thorough
investigation. In addition, the BDCM-X was specifically selected for this application
because it captured the functional forms of the learning trajectories we observed in the
empirical data. That is, we regarded this model more as a useful model rather than the true
model of change. Knowledge concerning what omitted variables are responsible for driving
real-world change processes is often limited in social and behavioral science applications.
Our view was that the BDCM-X was useful as a building block to help individuals set
learning target and obtain recommendations for training durations than other alternative

(e.g., linear) training schemes. Caution would have to be exercised in drawing causal
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inferences based on this model. As well, applicability of the proposed algorithms to other
models, contexts, sample sizes, and design configurations will have to be examined more
extensively. In addition, due to the widespread use of the Math Garden app in the
Netherlands, population norms are available for designing the control theory algorithm in
our empirical application. The plausibility of real-time adoption of the control theory
algorithm recursively in other newer apps would have to be investigated with caution.
Several other design considerations have to be investigated more thoroughly in future
studies to enable real-life adoption of the proposed approaches. First, our design may be
regarded as a serendipitous design because computation of the control input takes no
special considerations of the presence of the constraints in the first place (Goodwin et al.,
2005)). Such serendipitous designs may have reduced efficiency compared to designs that are
truly optimized for constrained control purposes. A better alternative would be to perform
direct constrained optimization by means of quadratic programming or other related
estimation approaches (Bemporad, Morari, Dua, & Pistikopoulos, 2002 |(Goodwin et al.
2005; Seron, Goodwin, & De Dona, [2003)). Second, even though a stochastic state-space
model was used in the present article, the input values were computed via a deterministic
LQC. That is, the state values were assumed “known and fixed” at the values of the
conditional mean estimates from the KF or KS. This kind of control schemes works well
when the separable principle holds, namely, when optimal control and state estimation can
be decoupled under regularity conditions (Alspach |1975). This was the case in the model
considered in the present article, but this assumption may not hold in other empirical
scenarios. In such cases, other stochastic control schemes may have to be utilized instead
(Alspach) 1975 Bar-Shalom & Tse, [1976; |Lu & Zhang, [2016)). In addition, the values of the
cost matrices, Q, Q,, and R, were selected in the current application heuristically through
repeated trials. In the future, other more formal selection criteria or measures should be
considered and further evaluated to help guide the selection of these cost matrices.

Finally, the quadratic cost function in Equation penalizes positive deviations
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from the target functions just as heavily as negative deviations. In practice, negative
deviations (i.e., performing below the target functions) are of much greater concerns than
positive deviations. We circumvented this limitation by using constraints to bypass
recommendations to reduce training durations. An alternative would be to utilize nonlinear
cost functions to explicitly target deviations in one direction (e.g., [Taguchi, Chowdhury, &
Wul 2005; van den Berg, [2014; Zhang, i, Wang, & Jin, [2014). Given the initial promise
shown by our proof-of-concept simulations, further optimizations of the proposed

estimation approaches are warranted.
Closing Remarks

The constant influx of new training options and educational apps in this digital age has
provided students, educators, and training institutions with better and more inclusive ways
of training students. Unfortunately, one-size-fits-all training is known to be inefficient. The
appeal of personalized educational pathways is clear to many educators; however, the
burden on the instructors to provide personalized training recommendations can be heavy.
In this article, we presented and evaluated several variations of a constrained LQC that
automate the delivery of optimal training dosage much in the way that the cruise control
unit of a car regulates discrepancies between actual and target driving speed. While the
overall designs and some of the results are still nascent, we hope that the proposed
approach nevertheless provides a preliminary computational backbone to inspire more work

to personalize the future of digital education.
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Table 1
Results from Fitting the BDCM-X to the Empirical Math Garden Division Scores and
Corresponding Reaction Time.

Estimate Std. Error t value cilower ci.upper Pr(>|t|)

b -0.034 0.002 -20.674 -0.037  -0.03L  0.000

by -0.013 0.002 -7.830 -0.016  -0.009  0.000

b 0.036 0.008 4276 0019  0.052  0.000

b 0.001 0.000  3.009  0.000  0.001  0.001

g 0.634 0.026 24775 0584  0.684  0.000

g 0.025 0.010 2520  0.006  0.045  0.006

Y 0.720 0.008 88255  0.704  0.736  0.000

o2 0.001 0.001 1400 -0.000  0.002  0.081

o2 4615 0.052 88101 4512 4717 0.000

oy 10.986 0.217 50.734 10.562 11411  0.000

Moy 0.451 0.046 9700 0360  0.542  0.000

o 6.584 0.087 75668 6414  6.755  0.000

fay  0.099 0.010 9393 0078 0119  0.000

2 I8TAT 1.323 14165 16153  21.341  0.000

o e, 0.525 0.067  7.799  0.393  0.657  0.000
Togny 1128 0.365 3.087 0412 184  0.001
2. 0058 0.007 8646  0.045  0.071  0.000
2.195 0.196 11.222 1811 2578  0.000

Ung

0.001 0.000 5.706 0.001 0.001 0.000
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ability levels, ny;; (left plot), but not the constant slope, ay; (right plot). Bottom row:
Simulated trajectories from Illustration II, with shocks to the latent ability levels, ny; (left
plot), but also the constant slope, ay; (right plot). The plots depict the participants’ latent
ability levels, target trajectories, shock points, and trajectories with and without use of the
control input, uff*. In the plots of the model-implied ability scores for ID 3 (first two rows,
column 1), we also added the trajectories and recommended durations based on the

observed linear scheme (‘Linear’). Note that two ordinates are used on the left and right

sides of the plot to better reflect the scales of the latent variable and control input,
respectively.
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Figure 2. Simulated trajectories from Illustration I with person-specific target trajectories

(left panel), and Hlustration III with a person-invariant, one-size-fits-all target trajectory

(right panel) plotted on the same scales.
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() Costs and Benefits: Shocks to bty Only (1) Costs and Benefts: Shacks to Abilty and Constant Slope (1) Costs and Benefis: One-Size-Fits-All Target
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Figure 3. The total quadratic costs associated with administration of the off-line LQC
input, Cost_ Input, plotted against the relative reduction in total state deviations,

Relative Benefit, under Illustration I, with shocks to individuals’ latent ability levels only
(left); under Hlustration II, with shocks to both their latent ability as well as constant
slope levels (middle); and under Illustration III, with shocks to indviduals’ latent ability
levels only, but with a one-size-fits-all target function as defined by the fixed effects curve.
In all plots, only the off-line LQC costs and benefits under a control horizon window of h =
4 are shown. The total input costs and relative benefits associated with the linear observed
scheme are shown as light-shaded, vertical dashed and horizontal dotted lines, respectively,
marked with the symbol ‘L.").
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Figure 4. (Top) State trajectories and control inputs computed off-line in comparison to
using KF- and KS-based FMLQCs in Illustration V. (Bottom) The corresponding total
quadratic costs associated with input administration, Cost_ Input plotted against the
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(A) Math Garden division ability by week
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Figure 5. Plots of (A) Average weekly division ability estimates from 100 randomly
selected Math Garden users; (B) Average weekly per-item reaction time on the division

300
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task for these randomly selected users. In each plot, the thick solid line with shaded region

is the smoothed loess curve and its corresponding 95% confidence intervals. The Math

Garden time limit for the division items was 20 seconds.
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Empirical Illustration I: LQC vs. Fixed-Duration
Training Scheme

Costs and Benefits Compared Practicing at 14.36 min/week
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Figure 6. A summary of the cost and benefit values of empirical illustration I. The abscissa
(horizontal axis) depicts the relative increases (4 indicates increased costs; - indicates
reduced costs) in total input costs of the LQC-recommended training durations compared
to the total input costs associated with practicing at a constant scheme of 14.36 minutes
per week across different values of R. The ordinate (vertical axis) shows the corresponding
relative reductions (4 indicates reduction; - indicates increase) in total state deviations
under the LQC-recommended as compared to the fixed-duration training scheme.
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Empirical Illustration II: LQC vs. Original Training
Durations

Costs and Benefits Compared to the Original Durations
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Figure 7. A summary of the cost and benefit values of empirical illustration II. The
abscissa (horizontal) axis depicts the relative increases (+ indicates increased costs; -
indicates reduced costs) in total input costs of the MHE-LQC-recommended training
durations compared to the total input costs associated with the participants’ original
observed training durations across different values of R. The ordinate (vertical) axis shows
the corresponding relative reductions (+ indicates reduction; - indicates increase) in total
state deviations under the LQC-recommended as compared to the constant training
schemes.
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Empirical Illustration III: Hybrid Target Function

Costs and Benefits Compared Practicing at 14.36 min/week Costs and Benefits Compared to the Original Durations
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Figure 8. A summary of the cost and benefit values of empirical illustration III, with
hybrid target function that integrates grade-norm median and person-specific change
information. The left panel summarizes the costs and benefits under the KS-based
FMLQC training scheme compared to the constant-duration training scheme; the right
panel plots the cost and benefit comparisons under the KS-based FMLQC training scheme
as compared to the observed training scheme.
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Figure 9. Top and middle rows: Results from applying the FMLQC with KS state
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estimates at R = 100 to the Math Garden data. Bottom row: Corresponding results at R
= 10 to the Math Garden data. Predicted ability refers to model-implied ability
trajectories generated in the absence of process noises. Observed = observed ability scores;

FM KS = latent ability estimates from the KS-based FMLQC; Old u = original training

durations; New u = KS-based FMLQC-recommended training durations, «/**; Grade 50th
= grade median scores; Target = Reference target, n".
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