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Autonomous Single-Image Drone Exploration With
Deep Reinforcement Learning and Mixed Reality

Alessandro Devo “, Jeffrey Mao

Abstract—Autonomous exploration is a longstanding goal of
the robotics community. Aerial drone navigation has proven to
be especially challenging. The stringent requirements on cost,
weight, maneuverability, and power consumption do not allow ex-
ploration approaches to easily be employed or adapted to different
types of environments. End-to-End Deep Reinforcement Learning
(DRL) techniques based on Convolutional Networks approxima-
tors, which grant constant-time computation, predefined memory
usage, and deliver high visual perception capabilities, represent
a very promising alternative to current state of the art solutions
relying on metric environment reconstruction. In this work, we
address the autonomous exploration problem with aerial robots
with a monocular camera based on DRL. Specifically, we propose
a novel asymmetric actor-critic model for drone exploration that
efficiently leverages ground truth information provided by the
simulator environment to speed up learning and enhance final
exploration performances. Furthermore, in order to reduce the
sim-to-real gap for exploration, we present a novel mixed reality
framework that allows an easier, smoother, and safer simulation
to real-world transition. Both aspects allow to further exploit the
great potential of simulation engines and contribute to reducing
the risk associated with directly deploying algorithms on a physical
platform with no intermediate step between the simulation and the
real world. This is well-known to create several safety concerns
and be dangerous when deploying aerial vehicles. Experimental
results with a drone exploring multiple environments show the
effectiveness of the proposed approach.

Index Terms—Aerial Systems: Applications, reinforcement
learning, deep learning for visual perception.

1. INTRODUCTION

NMANNED Aerial Vehicles (UAVs) often called drones
are highly versatile robotic platforms with great poten-
tial. They can be used to address a wide range of tasks: from
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surveillance to monitoring of agricultural crops, from search and
rescue operations to delivery of goods, from human assistance
to cinematography. In many tasks, the drone can be controlled
remotely or be supervised by an expert operator, able to intervene
atany time. In other cases, however, it is desirable to have drones
capable of completing their tasks autonomously, performing
independent maneuvers.

The advances in the area of real-time end-to-end image pro-
cessing, especially through the use of Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) have
opened up new ways of addressing the autonomous decision-
making process leveraging DRL [1]-[3]. There are numerous
studies in which DRL techniques are being successfully applied
in many different areas of robotics, such as visual navigation
[4]-[6], active object tracking [7], and also robotic manipulation
[8]. However, there are several challenges and safety concerns
to both deploy and train DRL agents in the real world. For these
reasons, prior works propose to train the model in simulation
and adapt it in a second phase to real-world settings.

Despite the success that such an approach has shown, we
believe that the advantages of training in a simulated environ-
ment are not yet fully exploited in the field of drone navigation.
For example, most of the simulation environments [9], [10] for
navigation-related tasks can provide ground truth information
to the model, which is, however, not usually employed to en-
hance the training process, but only for reward calculation and
environment management. The main advantages of this process
are therefore increased training speed and easier training man-
agement (e.g., agent and scenario reset management, collision
handling, reward assignment, etc..), rather than an improvement
of the learning quality. Furthermore, models trained in simu-
lation are usually directly deployed on a physical platform in
a real setting, characterized by different motion dynamics and
different visual appearances. Therefore, it is necessary that the
control and perception components of the model are able to
cover the sim-to-real gap simultaneously to perform the task
successfully, avoiding possible dangerous consequences for the
UAVs or the surrounding environment.

In this work, we propose a new single-image DRL method
for autonomous UAV exploration, featuring an asymmetric [11]
actor-critic architecture that fully exploits ground truth infor-
mation from the simulation engine at training time. Considering
that the critic component is only needed to evaluate the policy
during training, there is no need to restrict its input to be the
same as the one of the actor component. Instead, we feed it
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Fig. 1. Inthe top-left image, a grid map represents our agent (green dot) while
exploring the simulated environment. The obstacles (walls and furniture) are
colored in red, the area in blue indicates the undiscovered parts of the scenario,
and, in black, the discovered cells. In the top-right image, a sample frame
captured by the agent is shown. In the bottom picture, our laboratory setting
is presented, where our model controls the physical robot (red circle) to perform
exploration via our mixed reality framework, which manages the communication
and coordination between the simulation and the real world.

with much more informative data, such as collision maps and
position coordinates, thus providing it almost complete envi-
ronment state information. In this way, the critic can obtain a
much more precise and deeper understanding of the problem
and can better evaluate the actor policy, which can indirectly
benefit from ground truth information. Furthermore, to ensure
a smoother, safer, and easier real-world deployment of our
method, we introduce a novel mixed reality framework (see
Fig. 1), by which the model can control a physical drone, while
concurrently receiving its feedback data. Similar to [12], our
framework allows to combine real-time sensors measurements
generated in simulation (e.g.: images, laser readings, LIDAR
scans, etc...) with the physical robotic platform dynamics and
position measurements provided by real-world sensors (onboard
or external). Differently from [12], which allows to scan real-
world elements and render them in simulation (feature we plan
to implement in the future), the synthetic environments provided
by our framework are completely generated by a photorealistic
graphic engine (as we explain in Section I'V-A, that is necessary
for procedural environment generation) and it allows to employ
several control layers (position, velocity, attitude, and angular
rate, or motor space) according to the user needs. Therefore, we
believe that the framework can reduce the sim-to-real gap in two
key ways. First, it represents a natural intermediate step between
simulation to real environments that allows testing the control
and perception components of the model separately. Second, it
allows to evaluate the method performance in arbitrarily com-
plex environments tailored for exploration tasks, not available
within laboratory settings, while still flying a physical UAV.
Finally, it also helps to verify the compatibility of control signal
commands with the available robot framework.

This article proceeds as follows. Section II presents our
literature review; Section III describes the asymmetric model
architecture and training procedure; Section IV introduces the
environment setup for training and the proposed mixed reality
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framework; Section V shows the experiments and the results;
finally, Section VI draws the conclusions.

II. RELATED WORKS

Classic approaches to autonomous navigation include map-
based[13], SLAM [14],[15], and SfM [16], [17] methods. While
the first one assumes the availability of a map of the surround-
ings, hence, limiting their applicability to known environments,
SLAM methods compute the map on the fly. However, many of
them rely upon sensors, such as laser, LIDAR, or Kinect, that
can be too expensive or heavy to be used on aerial drones. Other
works [14], instead, make use of RGB cameras, like also SfM
algorithms [16], [17], which, however, still need a good amount
of computational resources to process the incoming data, update
the map, estimate a path, and perform control maneuvers, in
real-time. Other approaches include information-theoretic [18],
[19] and frontier-based [20], [21] strategies, for which similar
arguments apply since they typically rely upon other methods
to generate maps or require extracting particular environment
information while processing sensor data. These methods also
need a large amount of information. These aspects contribute to
increase their computational and memory requirements depend-
ing also on the scenario complexity and, hence, limiting their
generalization capabilities. Bug algorithms are another category
of exploration methods that, unlike those just described, are
more computationally efficient, and therefore more suitable to be
employed on aerial platforms. In [22], this technique was used to
train a swarm of small drones to cover an unknown environment,
by moving along the border of walls and obstacles, and then
return to the starting point. This strategy is optimal in the case
of environments with connected walls, but is more challenging
to exploit in more complex environments that do not respect that
condition. Furthermore, such algorithms also uses sensors, i.e.,
lasers, which are typically more expensive than a simple camera.

More recent approaches focus on end-to-end deep learning
solutions based on CNNs and RNNss. In [23], the authors present
a model trained by using Imitation Learning (IL) on a dataset
of trajectories ended in crashes. In [24] the authors propose
a modular architecture for drone racing trained to imitate an
expert policy. The two main problems with supervised learning
methods is that they require a substantial amount of labeled
data, and they often overfit the training data distribution. As a
consequence, during testing, if the model substantially deviates
from the experts’ policy it was trained on, it can lead to very
poor performances and catastrophic failures. Conversely, DRL
approaches are notoriously more challenging to train but are
able to achieve higher final performances and better gener-
alization. For these reasons, DRL techniques are becoming
increasingly popular in many robotics areas. [25] presents a
closed-loop predictive control for soft robotic manipulators,
trained with DRL. In [8], the authors trained a DRL model to
perform complex dexterous in-hand manipulation. Conversely,
the work in [5] introduces a novel framework and a modular
architecture for target-driven visual navigation whereas in [7],
a novel continuous control approach for visual active track-
ing is described. [26] proposes a combination of IL and RL
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to train an autonomous agent for visual navigation, however,
still relying upon maps and position data. Many works employ
DRL algorithms specifically for autonomous drone navigation.
In [27], an image-based visual servoing controller for aerial
robots is presented. In [28], NAVREN-RL is introduced as a
new approach for UAV navigation in real indoor settings. In
[29], a vision-based DRL approach for coverage path planning
with aerial robots is presented. [ 1] describes a DRL-based model
for UAV platforms that takes into account stationary, as well as
moving elements, to achieve collision-free indoor navigation.
In [30], the authors address the problem of collision-free indoor
flight in real scenarios, by proposing a DRL-based method
trained exclusively with 3-D CAD models, but do not focus
on the exploration problem. Compared to most state-of-the-art
vision-based exploration approaches, we do not require an en-
vironment map or any additional localization data at testing
stage. Furthermore, we better exploit the benefits of simulation
environments for enhanced training speed performance quality,
and efficiency and sim-to-real adaptation.

III. APPROACH

In this section, we first describe our task and reframe it as
a classical RL problem. Subsequently, we carefully detail our
model architecture and illustrate the learning procedure.

A. Problem Formulation

The goal of an exploration algorithm is to discover the sur-
rounding environment in the most efficient way possible (in our
case, in terms of time units). Such situation can be formally
defined as a classical RL setting [3], in which an agent repeatedly
interacts with an environment E' by performing actions a;,
in order to collect observations o; and rewards r;. In many
cases, the observation o; coincides with the underlying state
of the environment, usually referred to as s; in the literature.
In the case of an exploration problem, such a state can be fully
represented, for example, by the environment map, the position
and orientation of the agent, and the area explored. However,
since our model observations are represented by just raw RGB
images, which do not contain all the necessary information to
fully describe the true hidden state, the environment is only
partially observable by the agent, and the problem can be framed
as a Partially Observable Markov Decision Process (POMDP).
Therefore, the objective of the agent can be mathematically
solved by finding a policy 7* that maximizes the sum of the
discounted future reward

T
Ry => 4""ri(0sa:), (1)
1=t

where~y € [0, 1) is the discount factor and 7; (0, a;) is the reward
at time 4, given the observation o; and the action a; ~ m(-|0;).
Such a solution can be achieved by evaluating the agent current
policy 7
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0 - move_forwards

1 - turn_left

2 - turn_right

3 - turn_right_move_forward
4 - turn_left_move_forward
5 - turn_right_move_backward
6 - turn_left_move_backward
7 - move_backward

8 - do_nothing

9 - move_left

10 - move_right

Fig. 2. The UAV reference system and action space.

where E[] denotes the expected value of a random variable
given 7. In the following, we describe how this formulation is
adapted to our particular scenario.

B. Tuask Details

The agent objective is to explore an unknown complex en-
vironment relying exclusively upon raw RGB frames as obser-
vations (o;). In our settings, such an agent is represented by a
quadcopter, which is free to move across the X and Y axes of
a three-dimensional space. In particular, the policy () that it
can develop comprehend 11 actions, all discrete, and within the
set depicted in Fig. 2. At the start of the episode, the agent is
spawned randomly in the environment and explores it until the
end of the episode (i.e., after a predefined number of steps).

To incentivize the agent to explore the surroundings, we
design the following reward signal

_ max (M,)
B 1+ ZZZO []\/[Pz] 7

where m is the number of elements of M, and M, is a 2D matrix
representing the map entropy, whose values are

r

3

M W ) if Mei is unexplored (4)
L = j=0lMe; .
‘ otherwise

)

This reward encourages exploration and is also proportional
to the number of visited cells. This is reasonable since the more
cells are explored, the more complex it is to find unvisited cells,
and, hence, a greater reward is earned.

C. Network Architecture

The previous section describes the classic RL framework,
which, however, cannot be used, as it is, for our problem. Since
the agent observations are represented by RGB images, two
major issues arise: i) visual frames are only a partial observation
of the hidden underlining state, and ii) the number of all the
possible combinations of the image pixels forms an extremely
large observation space. For these reasons, simple tables, con-
taining the values of all states and actions, cannot be used, and
more advanced approximation methods and DRL algorithms
are needed. A widespread solution for visual navigation-related
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Fig. 3.

The proposed architecture. The actor component (orange box) is fed with the current RGB frame. The critic component (blue box) is not used during

testing and receives ground truth information that provides more insight about the underlying true system state than a monocular RGB image.

problem is to employ Deep Neural Network (DNN) approx-
imators, specifically CNNs, for image feature extraction, and
RNNs, for memory management, trained using a DRL actor-
critic based method (such as IMPALA [31], which we discuss
in Section III-D).

Fig. 3 shows the proposed model architecture for our explo-
ration task. Many works [32], [33] implement both actor and
critic in a one single network to reduce the total number of
parameters and take advantage of the weight sharing between
the policy and the value function. Conversely, as observed in
Fig. 3, we employ two different asymmetric neural networks [11]
with completely separate parameters. The main advantage of this
solution is the possibility to feed the actor and critic components
with completely different inputs. This is particularly valuable
if using synthetic environments since only the actor needs to
be used at test time (and, therefore, is required to be fed with
RGB images only), the critic can make use of any ground
information available from the simulation. Feeding the critic
with the underlying environment state, for example, helps it to
better evaluate the actor behaviour, resulting in a more robust
policy and higher final performance (as we prove in Section V).

The actor component takes as input an 84 x 84 RGB frame
that is processed by 4 convolutional layers with 16, 16, 32,
32 channels, 8, 4, 3, 3 kernel size, and 4, 2, 1, 1 stride, re-
spectively. Each of those has a ReLU activation, followed by
a GroupNorm layer. The features extracted are fed to a fully
connected layer, with 750 neurons, then to a Gated Recurrent
Unit (GRU) [34], with 256 hidden units, and, finally, to two
additional fully connected layers, with 256 and 128 neurons,
respectively. Every layer, except for the last one, is followed by
a ReLU activation. The final output vector is passed through a
softmax layer to produce 11 probabilities, i.e., the policy 7, or, in
other words, the likelihood of choosing each one of the available
actions.

Conversely, the critic is fed with different inputs so that it can
leverage information not available at test time, such as:

® Obstacle Map (M,): a 35 x 35 2D grid, where each cell is

set to 1 if occupied by an obstacle, 0 otherwise;

e Agent Position Map (M)): itis a 35 x 35 2D grid, where

each cell is set to 1 if occupied by the agent, O otherwise;

e Entropy Map (M,): a 35 x 35 2D grid that encodes the

uncertainty of the environment, as described in Eq. 4;

e Visibility Map (M,,): a21 x 11 x 3 3D grid that represents
an egocentric view description of the agent field of view;

® Yaw (yaw): it is the agent heading;

e Distance, angle, and hit ((distance, angle, hit)): these
three values represent the agent distance from the origin
point, the angle between the agent and the x-axis, and if
the agent hit an obstacle with its last action, respectively.

M,, My, and M, are firstly stacked to obtain a 35 x 35 x 3

3D grid, and then processed by 4 convolutional layers with 16,
16, 32, 32 channels, 4, 3, 3, 3 kernel size, and 2,2, 1, 1 stride,
respectively. Each layer is followed by a ReLu activation and by
a GroupNorm layer. M, is fed into 4 convolutional layers with
16, 16, 32, 32 channels, 3, 3, 3, 3 kernel size, and 2, 1, 1, 1 stride,
respectively. They are all followed by a ReLu activation and by
a GroupNorm layer. The yaw is fed to a fully connected layer
with 100 neurons and ReLu activation. The extracted features
are concatenated together and further elaborated by a fully
connected layer, a GRU network, both with 256 hidden nodes,
and by two fully connected layers, with 128 and 64 neurons, all
with ReLu activation. The final output is the value function V.

D. Training Algorithm

We train our agent by using the Importance Weighted Actor-
Learner Architecture (IMPALA) [31]. We create several copies
of our agent and place them in as many independent simulated
environments. The agent copies interact with their correspond-
ing environments, collecting different trajectories composed of
observations, actions, and rewards. These are first collected in
a common replay buffer [35], and then retrieved to train the
model. The actual learning process takes place through the use
of a central shared model, which computes the three standard
IMPALA losses. The first one fits the V-trace targets v, for the
critic

1

b =5 (v = Vo (00))?, Q)

where Vi (0;) is the estimated value, parameterized by €', for
observation o,. The second one concerns the policy 7

L, = prlogmer (ator) (re + yvep1 — Vor (0r)) (6)

where p, is one of the truncated importance sampling weights.
It should be noticed that, given the asymmetric nature of our
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Fig. 4. Top-down view of our simulated training setting. There are 8 different
environment instances where each agent independently collects trajectories.

actor-critic model, the parameters 6” of the policy my and the
parameters #’ of the value function Vp are necessarily different.
The third loss promotes entropy in action selection, and it is
employed to help exploration

lo.=— Zﬂe” (alot) log mgr (aloy) - @

As it processes the data, it updates its weights to match
the designed reward signal and asynchronously updates all the
copies, which continue to gather new trajectories in parallel.
For a more detailed description of the IMPALA losses and the
V-trace algorithm, see [31].

IV. TRAINING AND TEST SETUP

In this section, we first describe the training scenarios, and
then we detail the proposed mixed reality framework.

A. Training Scenarios

Training an RL agent directly using aerial robots is very
challenging and can also be potentially dangerous. Therefore,
we design a simulated environment (see Fig. 4) using the
photo-realistic graphics engine Unreal Engine 4 (UE4)." The
environment consists of a large empty floor organized in rooms
and corridors, in which the agent is always spawned randomly.
One of our main objectives is to achieve generalization to more
complex and photo-realistic settings, thus we apply domain ran-
domization [36] to our synthetic scenario, continuously varying
several environmental attributes. In particular, when an episode
ends, the wall structure, lightning conditions, and all texture
patterns are randomly changed.

B. Mixed Reality Framework

To have an easier and smoother simulation to real-world
transition, we develop a novel mixed reality framework, which
we use for our model deployment into a physical quadrotor.
The framework’s role is to manage the communication between
the model, the simulation, and the robot. In particular, it has to
translate the model action for the low-level robot controller and
transfer the physical robot trajectory back into the simulation.
It should be also highlighted that the framework is completely

"https://www.unrealengine.com
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Fig. 5. Our mixed reality diagram.

platform-independent, which means that can be employed with
every kind of robot, aerial or not.

In Fig. 5, we show a diagram of our mixed reality framework
and how it interacts with the other involved entities. The sim-
ulation engine provides all the information the model requires,
in our case, RGB images. In our setup, the model resides in the
same machine that runs the simulator, so the communication
is straightforward, however, this is not a necessary condition
and can easily be changed according to the user needs. Once the
model receives the inputs, it produces the action to be performed
according to its policy. This is not send back to the simulation
but it is first translated by the framework and sent to the robot.
The component referred to as Action Translator converts the
action ID (see Fig. 2) to a corresponding robot waypoint that is
understandable by the robot’s planner. For example, if the current
drone position in (z,y, z) coordinate is (1,0,1) (expressed
in metres), the current orientation is 0, w.r.t. the z-axis, the
predefined speed is 10 cm/step, and the action to perform is 0,
then the respective waypoint generated by the Action Translator
is (1.1,0,1). The robot’s planner is responsible to convert the
waypoint into line trajectories imposing the robot a linear path
from its current position to the final one. A desired velocity
and acceleration is chosen by the user to determine how fast
the trajectory traverses this linear path and accelerates from
the starting location or decelerates toward the goal. The line
trajectory is then executed through a nonlinear controller [37]
responsible to send low-level control such as the robot thrust and
moments based on the desired trajectory and feedback from the
robot position.

Once the trajectory is executed, the physical platform pro-
cesses the measurements provided by the real-world sensors
(like the drone onboard sensors, or other external systems) and
used them to estimate the current position, which is then sent
back to the simulator. The framework cannot use the desired
position directly but it always requires feedback from the real
system, since, due to actuator noise, controller accuracy, mea-
surement precision, or other disturbances, the actual robot and
desired positions can differ. Finally, the real position is processed
by the Reference System Manager, which converts it to the
simulation coordinate system. For example, if the simulated
environment is twice as large (in the z and y axes) as the real one,
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Fig. 6. Example of Realistic Environment from two different perspectives: (a)
top-down view, (b) frontal view.

and their origin points are (10, 10, 0) and (0, 0, 0), respectively,
then a real-world position of (1,1, 1) corresponds to (12,12, 1)
in simulation. The simulated environment can be scaled to
match the size of the real settings, however, its complexity (i.e.:
environment structure, number of rooms and corridors, furniture,
obstacles, etc...) must be compatible with the available physical
test area, the drone size, and the measurements accuracy.

Finally, the simulated agent position is updated accordingly
and the process is repeated.

V. EXPERIMENTS

In this section, we describe the implementation details of
our approach and we introduce the metrics and the baselines
used to validate our model performances. Finally, we present
the experimental setups and discuss the results.

A. Implementation details

We train our model by employing 8 IMPALA [31] agents in
parallel, for 1500 episodes, each composed of 1800 steps. As
optimizer, we use RMSprop with a learning rate of 0.0002, a
batch size of 24, and a sequence length of 50. The discount
factor v is set to 0.99 and the shape of the matrix M, is
35 x 35. When an episode starts, a new environment is randomly
generated and an agent spawned in it. The goal of the agent is to
explore the environment as fast as possible before the maximum
number of steps per episode is reached. The training and the
experiments run using a workstation with 2xNVIDIA GTX
2080Ti with 11GB of VRAM, an Intel Core processor i7-9800X
(3.80 GHzx 16), and 64GB of DDR4 RAM. The aerial robot is
a quadrotor based on our previous work [37].

B. Test Environments, Baselines and Metrics

We evaluate our model performances, in 3 scenarios:

® Standard: the type used during training (see Fig. 4);

® Large: similar to the Standard environment, but it spans
four times its area;

® Realistic: this is the environment that employs the proposed
mixed reality approach. It is a photorealistic environment
that resembles a real-world office, with numerous objects,
details, and furniture (see Fig. 6). By using the mixed reality
framework, which manages the communication between
the simulator and a physical drone (see Section IV-B), it
is possible to perform real-world tests in such complex
scenarios in safer conditions, and without real-world space
limitations.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

TABLE I
AVERAGE COVERAGE ACROSS ENVIRONMENTS
Ours Ours (M) Ours (MV) B Sym. Rand
Standard | 58.2% 54.8% 2.9% 27.8%  26.9% 6.4%
Large 39.3% 42.3% 0.8% 27% 19.3% 4.2%
Real. #1 | 76.3% 16.4% 2.8% 27.4% 9.2% 3.6%
Real. #2 | 61.1% 39% 2.2% 30% 7.8% 3%
Real. #3 | 69.7% 4.2% 2.8% 31.3% 4.5% 5.3%
Real. #4 | 63% 20.2% 2.7% 31.3% 6.6% 2.9%
Real. #5 | 57.6% 39.5% 2.8% 21.9% 8.7% 5.9%
Real. #6 | 76.6% 20.5% 2.9% 25.4%  13.1% 5.1%

We test our proposed model against 5 baselines:

e Random: a uniformly distributed random policy;

® Symmetric: symmetric variant of our approach, in which
the critic component is exactly equal to the actor, and it is
also fed with the same input, i.e., RGB images;

e Nav: a state-of-the-art baseline model, whose architecture
has been used in different navigation tasks [5], [6], [33]
(with some small variations between implementations).
Our particular settings, it features a first convolutional layer
with 16 8 x 8 filters with stride 4, a second one with 32
4 x 4 filters with stride 2, a fully-connected and a GRU
layer, both with 256 neurons and ReL.U activation. For a fair
comparison, our implementation shares the same discrete
action set of the others methods (see Fig. 2);

® QOurs (MP): a variant of our approach, in which the
critic component is not fed with the global maps and the
(distance, angle, hit) vector;

® QOurs (M): a variant of our approach, in which the critic
component is not fed with the global maps.

In order to evaluate the exploration capabilities of the models,

we consider the coverage percentage as a metric.

C. Standard and Large Environments Results

Both environments are procedurally generated with random-
ized textures, lighting conditions, and floor structure. Each runis
composed of an episode with a duration of 1800 and 7200 steps,
for the Standard and Large environments, respectively. All the
scores are calculated by averaging 20 runs in 20 different floors
for each of the two scenarios.

The first two rows of Table I summarizes the results in terms
of the coverage percentage at the end of the episode. As it can be
noted, the proposed approach (Ours) reaches the highest final
coverage for both kinds of environments. Specifically, compared
against Random, Symmetric, and Nav our method performance
is dramatically superior, proving that the proposed asymmetric
approach can take advantage of the ground truth information pro-
vided by the simulator to learn a much more effective exploration
policy, compared to the one produced by a standard symmetric
architecture. Furthermore, by looking at Fig. 7(a)-7(b), which
shows the coverage percentage as a function of the number of
steps elapsed, it is clear that our method performance varies
greatly between different environments. Careful analysis of our
model behaviour shows that this is mainly related to the walls and
floor textures, which seem to affect greatly the final performance.
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Fig. 7. Models’ performance in terms of percentage of coverage as a function of the number of steps elapsed, in the 3 types of environments considered: (a)

Standard, (b) Large, and (c) Realistic. The colored lines represent the models’ average performances (Ours in blue, Ours (M) in purple, Ours (MP) in brown,
Nav in green, Symmetric in red, and Random in yellow.), while the corresponding faded areas define the range between the worst and best scores across all the

experiments.

Indeed, with some types of texture, the coverage can even reach
a value very close to 100%. Conversely, with others, the model
fails to perform the task correctly (see Fig. 7(a)-7(b)). This
behaviour can also be noticed for the Large environment, for
which a similar argument applies. The results in this second
environment also demonstrate that our model can scale to much
larger environments compared to those in which it is trained on.

To evaluate the role and importance of the critic inputs during
training phase, we compare Ours also against Ours (M) and
Ours (MP). As can be observed, Ours (M), whose critic has
been trained without global maps, can achieve quite similar per-
formance to Ours, suggesting that, for these kinds of scenarios,
such inputs do not impact final performance particularly. On
the contrary, Ours (MP) shows extremely poor performances in
both settings, demonstrating that the sole Field of View (FoV)
map and agent yaw are not at all sufficient to allow the critic to
learn anything useful.

D. Realistic Environment Results

Compared to the other types of scenarios, the Realistic en-
vironment cannot be generated procedurally, since it is charac-
terized by the presence of a large variety of furniture objects
that cannot be randomly spawned. These need to be carefully
placed in order for the environment to appear like a real-world
office. For this reason, we manually design 6 different floors,
each one with a different structure and objects disposition. For
each scenario, we perform 5 different runs, with 1800 steps each
for each tested approach.

The other main difference between the Realistic and the other
kinds of environments is the use of the proposed mixed reality
framework. The experiments are conducted in an indoor testbed
with a flying space of 10 x 5 x 4m? of the Agile Robotics and
Perception Lab (ARPL) lab at New York University. In Fig. 8, we
can see UAV flying in our flying arena. Real-world position data
is collected using an 8 camera Vicon? motion capture system
running at 100Hz. The Vicon data is used as the real-world
position data feedback to our Reference System Manager and

Zhttps://www.vicon.com/

Fig. 8. Real-world setup for the mixed reality framework. The drone (red
circle) is free to move over a large carpet.

controller from Section IV-B. The data can also be obtained
using onboard sensing trough visual inertial odometry as shown
in [37], which, however, does not offer the same level of accuracy
as the Vicon system. The quadrotor system sets as 0.15m/s and
0.1m/s? the velocity and acceleration parameters respectively.

The results achieved by the tested approaches are reported in
Fig. 7(c) and in the last six rows of Table I. Differently from the
results obtained in other environments, our model does not only
substantially outperform the other methods, but also shows much
more consistent performances across different runs. As already
discussed in Section V-C, our model fluctuating performance is
mainly caused by particular textures, which, however, are not
present in the Realistic scenario. As a consequence, the cov-
erage percentage remains high and stable in all the considered
floors, as can also be noticed in Fig. 7(c). Interestingly, even
Ours (M) performs quite poorly, suggesting that the global
maps somehow helps the development of better generalization
capabilities.

These results prove that our model is capable to generalize to
environments that differ significantly in terms of visual appear-
ance (like the simulated training and realistic environments) and
that the proposed mixed reality framework successfully manages
the simulation and real-world synchronization. It should also
be highlighted that without such a framework, it would have
been very challenging to test the models on a physical platform
in such complex environments without compromising user and
environment safety or accuracy of the measurements.
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VI. CONCLUSION

In this work, we presented a new End-to-End approach for
autonomous exploration with aerial vehicles. Its asymmetric ar-
chitecture enabled the proposed approach to exploit the benefits
of training in simulation, by leveraging the highly informative
ground truth data provided by the simulator itself. The results
show that this feature allows our model to achieve higher per-
formances compared to its symmetric counterpart. Finally, it
manages to successfully explore larger environments compared
to those used for training, and, by leveraging the proposed
mixed reality framework, also to be capable to handle complex
photorealistic scenarios, while controlling a physical robotic
platform. This enables a smooth transition to real-world settings,
which is particularly important due to safety requirements when
deploying drones in the real world. Future works will consider
the deployment of the algorithm on-board the robot using direct
feedback from the drone camera. Finally, we aim to investigate
the collaborative exploration problem with multiple robots to
speed up the overall task efficiency and enhance its resilience.
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