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Abstract— Aerial robots can enhance their safe and agile
navigation in complex and cluttered environments by efficiently
exploiting the information collected during a given task. In
this paper, we address the learning model predictive con-
trol problem for quadrotors. We design a learning receding–
horizon nonlinear control strategy directly formulated on the
system nonlinear manifold configuration space SO(3) × R

3.
The proposed approach exploits past successful task iterations
to improve the system performance over time while respecting
system dynamics and actuator constraints. We further relax
its computational complexity making it compatible with real-
time quadrotor control requirements. We show the effective-
ness of the proposed approach in learning a minimum time
control task, respecting dynamics, actuators, and environment
constraints. Several experiments in simulation and real-world
setup validate the proposed approach.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) such as quadrotors have

become very popular platforms to help humans solve a wide

range of time-sensitive problems in constrained outdoor and

indoor environments including logistics, search and rescue

for post-disaster response, and more recently during COVID-

19 pandemic reconnaissance and monitoring. These time-

sensitive tasks would require robots to make fast decisions

and agile maneuvers in uncertain, cluttered, and dynamic

environments by intelligently exploiting the environment

information to improve their performances over time. In this

work, we investigate a Learning Model Predictive Control

(LMPC) for quadrotors exploiting past successful task it-

erations to improve its task performance over time while

respecting system dynamics and actuator constraints.

Several works have investigated the use of MPC

for quadrotor control with perception and actuator con-

straints [1]–[4]. Other works [5], [6] improve MPC per-

formance by refining the system dynamics in a data-driven

fashion. Conversely, approaches such as [7] approximate the

system dynamics directly using neural networks. However,

these methods are quite computationally expensive since they

rely on a sampling approach that is generally performed

in parallel using Graphics Processing Units (GPUs). Itera-

tive learning control techniques [8] have been successfully

combined with MPC in a Batch Model Predictive Control

(BMPC) approach to control chemical processes [9] and re-

fine their performances over multiple task iterations. In [10],
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Fig. 1: The LMPC iterates over the same task while learning

minimum time trajectories and improving its performances.

[11] a learning MPC approach is proposed and applied

to ground vehicles. In this approach, the vehicle collects

the states and their corresponding costs, across multiple

successful iterations of the same task. The vehicle learns

from the collected data to explore new ways to decrease

cost in the same task as long as it maintains the ability to

reach a state that has already been demonstrated to be safe

during previous iterations. The approach does not require a

reference trajectory as in previously mentioned works; thus,

it is especially versatile and useful during tasks where the

desired trajectory is not known or difficult to compute due to

the system complexity or parameter uncertainty. This is the

typical case of drone racing competitions [12]–[15] that have

recently inspired researchers to design autonomy algorithms

with the goal to grant vehicles the ability to execute agile

maneuvers with superior performances compared to human

controlled vehicles. Therefore, inspired by [10], [11], we

propose an LMPC approach for quadrotors. Common multi-

rotor platforms including quadrotors evolve on the nonlin-

ear manifold configuration space SO(3) × R
3 making the

LMPC problem substantially different and more complex

for these types of systems compared to ground vehicles. We

address the challenges of building a safety set that includes

members of the rotation group SO(3). Also, we consider

an appropriate numerical integration approach for the group

elements to ensure that the forward integration results adhere

to the SO(3) structure once employed in the discrete MPC

formulation. In addition, we carefully add several design

considerations to make the approach compatible with real-

time control requirements of small aerial robots and show its

feasibility in a learning minimum time control problem.

The contribution of this paper is threefold. First, we

propose an LMPC for quadrotors. We tackle the challenges

related to transitioning this class of MPC to multi-rotor
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aerial systems. The data collected across multiple iterations

incorporates elements of the nonlinear manifold SO(3).
Furthermore, this aspect also makes the numerical MPC

integration substantially more complex since at each inte-

gration step it is necessary to guarantee that the obtained

elements still lie in the rotation group. Second, we relax the

computational complexity of the proposed approach making

it suitable for real-time quadrotor control applications. Fi-

nally, we show a specific instance of the proposed method

in a learning minimum time control task. Several simulation

and experimental results show the ability of our approach

to successfully exploit collected data to improve system

execution time performances.

The paper is organized as follows. In Section II, we

review the MPC and LMPC approaches. In Section III,

we specifically address the challenges and show how to

design LMPC for quadrotors, whereas, in Section IV, we

consider a particular instance of this approach employed to

solve a minimum time control task. Section V presents our

experimental results and Section VI concludes the paper.

II. OVERVIEW

In this section, we provide a brief review of the MPC

formulation and how it transforms into LMPC.

A. Model Predictive Control

MPC is a predictive control method that finds a sequence

of system inputs, U = {u0,u1, · · · ,uN−1} with uk ∈
R

nu , within a fixed time horizon of N steps. It optimizes

a given objective function – with a running and terminal

cost h(·, ·) and Q(·) respectively – while accounting for

constraints and system dynamics

min
u0,u1,··· ,uN−1

N−1
∑

k=0

h (xk,uk) +Q (xN ) ,

s.t. xk+1 = f (xk,uk) , ∀k = 0, · · · , N − 1

x0 = x(t0),

g (xk,uk) ≤ 0,

(1)

where xk+1 = f (xk,uk) represents the system dynamics

and xk ∈ R
nx is the system state. The optimization occurs

with initial condition x0 while respecting system dynamics

f(x,u) and additional state and input constraints g (x,u).

B. Learning Model Predictive Control

In this section, we review the LMPC, an iterative learning

model predictive control method that can improve task

performance over many trials [10]. The task is repeated at

each iteration starting from the same initial state, xs. The

task is considered complete when the system reaches a global

terminal state, xF , without violating constraints. During each

task iteration, the system records the state and cost and

uses the recorded data to ensure control convergence to a

locally optimal solution. We denote state and cost recorded

during the jth iteration as the jth closed-loop trajectory. In

the following, we first introduce preliminary concepts for

LMPC such as safety set and its corresponding terminal cost

function. Then we will introduce the LMPC formulation.

1) Safety Set: The states and inputs for a trajectory at

each jth iteration is defined as

xj =
[

x
j
0,x

j
1, ...,x

j

T j

]

, uj =
[

u
j
0,u

j
1, ...,u

j

T j−1

]

, (2)

where T j is the time stamp when the task is completed at

the jth iteration. The recorded data points from each iteration

generate a sampled safety set

SSj =







⋃

i∈Mj

T i

⋃

t=0

xi
t







, (3)

where M j is a set of indexes that represents the iterations

that successfully completed the task. In short, SSj is a set for

the jth iteration which contains the recorded state trajectories

from previous successfully completed tasks.

2) Cost Function: The cost-to-go for the state x
j
t at time

t of the jth iteration in the safety set is defined as

J
j

t−→T j (x
j
t ) =

T j

∑

k=t

h
(

x
j
k,u

j
k

)

. (4)

The cost-to-go for any state can be determined with eq. (4)

which is needed to satisfy LMPC formulation as discussed in

Section II-B.3. Furthermore, the optimal cost of a given state

is obtained from the minimum cost-to-go across all previous

successful iterations

Qj(x) =

{

min
(i,t)∈F j(x)

J i
t−→T i(x), if x ∈ SSj

+∞, if x 6∈ SSj

}

, (5)

F j(x) =
{

(i, t)|i ∈ [0, j], t ≥ 0 with x = xi
t, for xi

t ∈ SSj
}

.

Eq. (5) assigns every state the respective minimum cost-to-go

across all iterations.

3) LMPC Formulation: The LMPC builds upon the gen-

eral MPC formulation as described in Section II-A by

appending a safety set constraint for the terminal state and

assigning eq. (5) as the terminal cost

J
LMPC,j
t−→t+N

(

x
j
t

)

= min
ut|t,...,ut+N−1|t

t+N−1
∑

k=t

h
(

xk|t,uk|t

)

+ Qj−1
(

xt+N |t

)

,

(6a)

s.t. xk+1|t = f
(

xk|t,uk|t

)

, ∀k ∈ [t, · · · , t+N − 1], (6b)

g
(

xk|t,uk|t

)

≤ 0, (6c)

xt+N |t ∈ SSj−1, (6d)

xt|t = x
j
t . (6e)

The optimal control problem in eq. (6) computes a solution

for the jth iteration at a given time stamp t of the task, over a

finite horizon N . The eqs. (6b), (6c), (6e) define the system

dynamics, state, and input constraints, and initial condition of

the system, respectively. The safety set constraint in eq. (6d)

forces the terminal state xt+N |t to visit a discrete safety set

state in SSj−1. In principle, this guarantees a closed-loop

solution that pushes the system to a final state xF .

III. LMPC FOR QUADROTORS

In this section, we address the challenges related to

designing LMPC for quadrotors. These systems evolve on
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matrix of the aforementioned minimum norm problem which

turns out to be q and tune the coefficients. Alternatively, a

one time re-scaling step can also be applied.

C. LMPC Relaxation

1) Convex Safety Set: Inspsired by [11], we approximate

the safety set SSj by taking its convex hull CSj as

CSj = Conv(SSj) =
[

x0, · · · ,xj
]

λ
>, (12)

where

λ =
[

λ0
0, λ

0
1, · · · , λ

0
T 0 , ..., λ

j
0, λ

j
1, · · · , λ

j

T j

]

,

λ ≥ 0, ‖λ‖1 = 1.
(13)

Eq. (12) represents the barycentric approximation of SSj .

In this way, any state in the convex hull can be written as a

convex combination of points in the safety set. Each element

in λ corresponds to a positive weighted scalar value for each

state in the convex hull. Similarly, an approximation of the

terminal cost function can be derived. Therefore, we obtain

Q̃j(x) = Conv(Qj(x)) = min
λ≥0

[

J
j

0−→T 0(x
0
0), J

j

1−→T 0(x
0
1) ,

..., J
j

0−→T j (x
j
0), ...

]

λ
>.

(14)

Using the convex hull of the safety set transforms the NMIP

into a Quadratic Program with linear constraints defined by

eq. (12) and eq. (13).

It should be noted that for sake of simplicity, in eq. (12)

we used the same notation to represent the weighted average

operations for both the state variables in the Euclidean space

and the variables in the rotation group SO(3). However, in

fact, for SO(3) elements, it cannot be achieved in the same

way as for elements in the Euclidean space. The notion of

Karcher mean [18] choosing L2-norm as metric among two

rotation elements guarantees to find the convex set. However,

the procedure does not have a closed-form solution and does

not guarantee the existence of a unique mean [18], thus

making it difficult to incorporate it in the MPC. However

in our task, the rotations are distributed around the identity

element of SO(3) group and we can simply compute the

convex safety set CSj
xq

for the rotation part by lifting all

the sample in the tangent space since they lie in the same

parameter subgroup [19] as

CSj
xq

= exp

(

P
∑

l=0

λl log (xq,l)

)

where the exp and log operation is defined in [16], xq refers

to the quaternion vector as a subset of its corresponding state

vector, and l indicates a selected state in CSj among P

number of states.

2) Local Safety Set: In order to further reduce the com-

putational load, we chose to reduce the size of the safety set

by choosing a subset, SS
j
t , of SSj at each time t

SS
j
t =







j
⋃

i=p

⋃

k∈Ki

xi
k







. (15)

Ki = {ki1, · · · , k
i
n} is a set of time stamps for the corre-

sponding states in the ith iteration, where i ∈ {p, ..., j} and

Fig. 3: Illustrative example on creating a local safety set

in the X-Y position only. At time t − 1 in jth iteration,

the LMPC forecasts states over the horizon, N , including

the terminal predicted state xN |t−1 (green × in this figure).

The local safety set, SS
j−1
t , at time t (red circles with blue

outline) is made up of xN |t−1’s nearest neighbors in SSj−1.

p ∈ [0, j−1] is an integer that determines how many previous

iterations to consider in the safety set. All the sets Ki have

an equal size of n. The time index in Ki corresponds to the

n-nearest neighbor states around the predicted terminal state

from the predicted trajectory at t−1. Fig. (3) illustrates how

the n-nearest neighbors are selected for the local safety set.

Furthermore, using eq. (12), we approximate the subset by

taking the convex hull

CS
j
t = Conv(SSj

t ) =
[

x
p

k
p

1

, ...,x
p

k
p
n
...,x

j

k
j

1

, ...x
j

k
j
n

]

λ
>
s = x.

(16)

where

‖λs‖1 = 1, λs =
[

λ
p

k
p

1

, ..., λ
j

k
j
n

]

. (17)

Eqs. (15)-(17) create a sparse convex hull with non-negative

λs elements.

3) LMPC Problem Formulation: Finally, the relaxed

LMPC for quadrotor system can be fully defined as following

J̃
LMPC,j
t→t+N (xj

t ) = min
λs,ut|t,··· ,ut+N−1|t

t+N−1
∑

k=t

h(xk|t,uk|t)

+ Q̃
j−1
t (xt+N |t),

(18a)

s.t. xk+1|t = fRK4(xk|t,uk|t), ∀k ∈ [t, t+N − 1], (18b)

g(xk|t,uk|t) ≤ 0, xt|t = x
j
t (18c)

xt+N |t ∈ CS
j−1
t , ‖λs‖1 = 1, λs ≥ 0. (18d)

where

Q̃
j−1
t (xt+N |t) = min

λs≥0
[Jp

k
p

1
−→Tp(x

p

k
p

1

), J
p

k
p

2
−→Tp(x

p

k
p

2

), ...

J
j

k
j

1
−→T j

(xj

k
j

1

), ...]λ>
s . (19)
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Our system considers hardware limitations by constraining

the control inputs

fmin ≤f ≤ fmax, (20)

Ωmin ≤Ω ≤ Ωmax, (21)

where fmin and fmax are the maximum and minimum

thrusts, whereas Ωmin and Ωmax are the maximum and

minimum angular velocity, respectively.

IV. LEARNING OPTIMAL TIME CONTROL

In this section, we show a particular instance of the

LMPC approach to learning optimal time trajectories. This

approach can be leveraged for autonomous racing tasks

by naturally discovering the minimum lap time through

reference-free iterations. Each task begins with a quadrotor

at xs which maneuvers to a predefined goal xG. A track is

created by setting intermediate waypoints and corridors to the

goal. An initial safety set, SS0, is created by flying steadily

and suboptimally through the track. The LMPC formulation

in eq. (6) is relaxed as discussed in Section III and the

following cost function

t+N−1
∑

k=t

[

1
(

xk|t

)

+ u>
k|tRuuk|t

]

+ Q̃
j−1
t

(

xt+N |t

)

, (22)

where

1 (x) =

{

1, if xQ 6= xG

0, Else

}

. (23)

The running cost is defined by two main components. First,

it includes a binary cost which depends on whether the

quadrotor has reached the goal position. This cost represents

the minimum time control. Second, there is a penalty applied

on the inputs to minimize the control effort with Ru as

constant diagonal matrix to tune the penalty on the control.

It is important to note that lower values in Ru favor a

minimum-time solution, but this may yield aggressive control

and with possible non-smooth control inputs. Therefore,

there is a trade-off between these two objectives and tuning

the weights is useful to achieving desired performances.

While the binary cost can be implemented in simulation,

it proves time consuming in real-time application. Thus,

eq. (22) is approximated with a sigmoid function

h(xk|t,uk|t) =

∥

∥xQ,k|t − xG

∥

∥

2

2
√

∥

∥xQ,k|t − xG

∥

∥

4

2
+ 1

+u>
k|tRuuk|t. (24)

Furthermore, a track must be defined for the racing case.

This can be done with corridors that are defined between two

waypoints. A linear constraint is added to the LMPC formu-

lation to guarantee the quadrotor stays within the track. The

position of two distinct consecutive waypoints is defined as

rw, rw+1, respectively. The direction from the first waypoint

to the quadrotor is defined as ri = xQ−rw. The normalized

direction between each waypoint is r̂c =
rw+1−rw

‖rw+1−rw‖
2

. rn is

the difference between ri and the projection of ri onto r̂c as

rn =
[

I − r̂cr̂
>
c

]

(xQ − rw) . (25)

Physically, rn represents the quadrotor’s distance to the

center axis of the corridor in space. Therefore, a single

corridor constraint applies bounds on rn

−δ ≤ rn ≤ δ. (26)

Therefore, eq. (26) is a linear constraint which matches the

form of eq. (18c) as

bmin ≤ AxQ ≤ bmax. (27)

V. EXPERIMENTS

We propose several simulations and experiments with a

quadrotor to validate the proposed LMPC during a learning

minimum time trajectory task.

A. Task Overview

We consider an optimal time control problem as specified

in Section IV. The task is successfully accomplished if the

quadrotor can pass through a given gate while staying within

a given track and stop after passing it. Fig. 1 illustrates an

example of the proposed task. This is obtained considering

an L-shape track, which is constructed using the approach in

Section. IV both in simulations and real-world experiments.

We first provide the quadrotor with a feasible and slow

reference trajectory for the quadrotor MPC controller to

track, like the one shown in the black color in the Figs. 4

and 6. During the trajectory tracking, the quadrotor records

its state history to build the initial safety set. Subsequently,

we run the LMPC controller and repeat the same process

by sending the quadrotor to the same start position at the

end of each task iteration. The only information provided

to LMPC is the safety set and the corresponding cost-

to-go over the recorded safety set. The LMPC will then

start to find the optimal time trajectories that minimize the

travel time while respecting the system dynamics, actuator

constraints, and track constraints. The attached multimedia

material provides several additional experiments as well. We

solve the proposed LMPC problem in eq. (18) with cost

as eq. (22) via Sequential Quadratic Programming (SQP)

using ACADOS [20], [21] as a solver. For the LMPC

controller parameters, we choose the prediction time horizon

the discretized time step dt as 0.1 s, the horizon length

N = 10 and corridor width δ = 0.8 m.

B. Environments

1) Simulation: For simulation, we use a custom simulator

available in the lab developed in ROS1 with full system

dynamics simulated using 4th order Runge-Kutta method.

2) Real World: The real-world experiments are performed

in an indoor testbed with a flying space of 10×6×4 m3 at the

ARPL lab at the New York University. We leverage a Vicon2

motion capture system at 100 Hz for control purposes. The

quadrotor platform setup is similar to our previous work [22].

The control and estimation frameworks are developed in

ROS. The proposed LMPC method can run on-board at

100 Hz on a common laptop.

1www.ros.org
2www.vicon.com
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Fig. 4: Iteration trajectories for the L-shaped track in simu-

lation.

Fig. 5: Trajectory and velocity profiles across several itera-

tions for the L-shaped track in simulation.

TABLE II: The total travel time (s) of different iterations in

simulation and real-world experiments

Iter Init 1 2 3 4 5 6

Real 10.0002 3.5291 3.6993 3.9895 3.6296 3.7494 3.7292
Sim 14.1291 2.0900 2.4000 2.4300 2.4600 2.5299 2.5800

C. Results

We show the simulation and real-world test results of a

quadrotor traveling through an L-shape track with the LMPC.

The results of the simulation are shown in Figs. 4 and 5

whereas the real-world experiments in Figs. 6 and 7. The

travel time for each iteration is reported in Table II. As we

can observe from the plots, both in the simulation and real-

world experiments, the quadrotor can explore the track and

find a locally optimal time trajectory which ends up a much

faster trajectory than the initial one. In Table II, we observe

that as the iterations continue, the LMPC converges similar

and stable travel time along the track. This proves that the

LMPC can utilize the recorded states and costs in the past

iteration and explore new faster trajectories for the quadrotor

to accomplish the task. However, we notice that the final

lap time varies around a given value after convergence. We

believe this behavior is mostly due to a mismatch between

real and modeled dynamics including our approximation to

first-order attitude dynamics in eq. (8).

Fig. 6: Iteration trajectories for the L-shaped track in real-

world experiments.

Fig. 7: Trajectory and velocity profiles across several itera-

tions for the L-shaped track in real-world experiment.

VI. CONCLUSION

In this paper, we presented an LMPC for quadrotors.

We addressed the challenges associated with the system

evolution on a nonlinear manifold configuration space which

requires careful considerations in the LMPC problem formu-

lation as well as in its forward numerical time integration. We

showed how to reduce its computational complexity to make

it compatible with the stringent requirements for real-time

control of quadrotors as well as its usefulness in a learning

minimum time trajectory problem.

Future works will investigate the trade-offs between the

incorporation of the dynamics till rotor speeds in the pro-

posed approach to improve the system’s performance, agility,

and the corresponding increase in computational complexity

which may affect the system real-time performances. We

will leverage Bayesian machine learning techniques to refine

the system dynamics incorporating unmodelled dynamical

effects across multiple runs thus allowing us to further push

the system performances and agility limits. We will also con-

sider employing this method for drone racing tasks extending

the proposed experiments to a full racing track. Finally, we

will investigate the use of different cost functions and how

the availability of reference trajectories can potentially be

exploited to improve the task performances.
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