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Physics-Inspired Temporal Learning of Quadrotor
Dynamics for Accurate Model Predictive
Trajectory Tracking

Alessandro Saviolo ", Guanrui Li

Abstract—Accurately modeling quadrotor’s system dynamics is
critical for guaranteeing agile, safe, and stable navigation. The
model needs to capture the system behavior in multiple flight
regimes and operating conditions, including those producing highly
nonlinear effects such as aerodynamic forces and torques, rotor
interactions, or possible system configuration modifications. Clas-
sical approaches rely on handcrafted models and struggle to gen-
eralize and scale to capture these effects. In this letter, we present a
novel Physics-Inspired Temporal Convolutional Network (PI-TCN)
approach to learning quadrotor’s system dynamics purely from
robot experience. Our approach combines the expressive power
of sparse temporal convolutions and dense feed-forward connec-
tions to make accurate system predictions. In addition, physics
constraints are embedded in the training process to facilitate the
network’s generalization capabilities to data outside the training
distribution. Finally, we design a model predictive control approach
that incorporates the learned dynamics for accurate closed-loop
trajectory tracking fully exploiting the learned model predictions in
a receding horizon fashion. Experimental results demonstrate that
our approach accurately extracts the structure of the quadrotor’s
dynamics from data, capturing effects that would remain hidden
to classical approaches. To the best of our knowledge, this is the
first time physics-inspired deep learning is successfully applied to
temporal convolutional networks and to the system identification
task, while concurrently enabling predictive control.

Index Terms—Aerial systems, model learning for control,
optimization and optimal control, robot learning.

I. INTRODUCTION

NMANNED Aerial Vehicles (UAVs), such as quadrotors,
U have become important platforms to help humans solve
a wide range of time-sensitive problems including logistics,
search and rescue for post-disaster response, and more recently
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Fig. 1. Top: Long-exposure photo showing multiple laps over Lemniscate

trajectory when using the nominal (NOM) and the proposed (PI-TCN) dynam-
ics. The reference trajectory (white) is approximately projected on the image
based on real-world experiments for illustrative purposes. Bottom: Density
histograms of accelerations. The quadrotor reaches accelerations up to 13 ms ™2
and 32 rads 2.

reconnaissance and monitoring during the COVID-19 pan-
demic. These tasks often require robots to make fast decisions
and agile maneuvers in uncertain, cluttered, and dynamic en-
vironments. In these scenarios, to safely control a UAYV, it is
critical to accurately model the system dynamics to capture
the highly nonlinear effects generated by aerodynamic forces
and torques, propellers interactions, vibrations, and other phe-
nomena. However, such effects cannot be easily measured or
modeled, thus remain hidden. Moreover, for some UAV appli-
cations, the platform may be extended with external payloads
that would significantly change the dynamics by varying the
mass and moment of inertia [1]. Overall, failing to model such
system changes would result in significant degradation of the
flight performance and may cause catastrophic failures.
Classic modeling of the quadrotor’s dynamics is performed
using physics-based principles approaches which result in non-
linear ordinary differential equations [2]-[6]. However, these
nominal models only approximate the actual system dynamics
and do not take into account external effects caused by aggres-
sive maneuvers or system modifications. To circumvent this
issue, recent works have investigated data-driven approaches
for modeling system dynamics. Several methodologies exist,
from combining nominal models with learned residual terms
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[7]-[9] to fully predicting the system dynamics using neural
networks [10]-[13].

Successfully learning accurate dynamics directly from data
would have a terrific impact on the development of new robotic
systems, enabling fast modeling and high-performance control
in multiple operating conditions with the potential to scale to
any type of platform. Therefore, the goal of this work is to fully
leverage the expressive power of deep neural networks to extract
the quadrotor’s system dynamics purely from data. We propose
a Physics-Inspired Temporal Convolutional Network (PI-TCN)
that combines a temporal convolutional network that encodes
time-correlated features from a history of past states and control
inputs with a multi-layer perceptron. The latter decodes the
latent temporal representation into an accurate prediction over
the quadrotor’s dynamics. The learned dynamical model can
then be employed for accurate predictive trajectory tracking, as
shown in Fig. 1. Following the recent exciting developments in
physics-inspired learning [14]-[16], we constrain the network’s
predictions to be consistent with physical laws by introducing a
physics-inspired loss term during training. The composite loss
fosters the network’s generalization performance on data outside
the training distribution, leading to a more stable convergence.

This letter presents multiple contributions. First, we design
and present PI-TCN for learning quadrotor dynamics. To date,
this is the first time physics-inspired learning is applied to
temporal convolutional networks since most of the approaches
have only focused on feed-forward and recurrent neural net-
works [15], [16]. Second, we perform an extensive evaluation by
comparing the predictive performance of the proposed method-
ology against nominal, residual, and learning methods on unseen
test maneuvers in both simulation and real-world settings. We
experimentally validate the network’s design choices and pro-
pose several ablation studies to evaluate their roles in capturing
quadrotor’s dynamics from data, even highly nonlinear effects
that remain hidden to classical and residual approaches. Finally,
we propose a model predictive control framework that leverages
the learned dynamical model and we extensively test it to track
multiple aggressive maneuvers.

II. RELATED WORKS

Consider a dynamical system with state x and control input
u. Solving the system identification problem requires to find a
function h, parameterized by @, that maps from state-control
space to state-derivative space:

x = h(x,u;0).

Based on h formulation, system identification methods can be
categorized into nominal, residual, and learning methods.
Nominal Methods: Nominal methods formulate h using
physics-based principles [2]. Such models have been further
refined by using blade element momentum theory [3], kinematic
constraints [4], Hamiltonian and Lagrangian mechanics [5],
[6]. In general, these nominal models are computationally ef-
ficient and describe the quadrotor’s system dynamics well in
low-speed regimes and basic platforms, where external forces
and torques are negligible. However, as speed increases or
additional payloads are applied to the platform, external com-
plex effects increase as well, significantly degrading the flying
performance [17], [18]. Moreover, nominal models depend on
the physical system parameters. Parameter identification ap-
proaches can be used to empirically identify their values [19],
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[20]. However, uncertainties remain due to the nonlinearity of
external effects that make them difficult to be estimated.

Residual Methods: Inspired by the success of deep neural
networks, several works proposed to combine nominal methods
with data-driven techniques for learning the residual terms not
being modeled by physics-based principles. G. Shi et al. [7]
extended the nominal model with a residual term predicted by a
feed-forward neural network to capture the aerodynamic forces
affecting the linear acceleration of a quadrotor during land-
ing. However, the generalization capabilities of the proposed
residual method remain unknown due to the limited number of
experiments involving a single trajectory used both for training
and testing. G. Torrente et al. [8] combined the nominal model
with residual forces predicted by a Gaussian process. A major
drawback of Gaussian process regression is computational com-
plexity. Since these models are non-parametric, their complexity
increases with the size of the training set. This implies the
need to carefully choose a subset of the training data which
best represents the true dynamics. However, since the dynamics
are unknown, selecting these points might be challenging. L.
Bauersfeld ez al. [9] refined the nominal model leveraging blade
element momentum theory to better characterize motor forces
when affected by aerodynamic effects. Subsequently, they com-
bined the model with learned residual force and torque terms rep-
resented by deep neural networks. The proposed residual model
benefits from the generalization guaranteed by physics-based
principles and the flexibility of learning-based function approx-
imations. However, as for all residual methods, the relationship
between the complex effects and the true dynamics is assumed
to be well known and the learning techniques are adopted only
to predict the residual additive terms. Conversely, we relax the
hard physical constraint imposed by embedding the nominal
model and train the network to extract the true dynamics from
the data using physical laws only as a soft constraint to direct the
training convergence to well-generalizable solutions. Therefore,
the network is concurrently able to exploit the physical model
and explore the loss landscape.

Learning Methods: Inspired by the promising results of resid-
ual methods and the rather simple data collection procedure
that does not involve any expensive manual labeling, several
works have been investigated to entirely learn the governing
equations of system dynamics from data. For example, [11]
adopted a shallow feed-forward neural network for learning the
full system dynamics for quadrotor flight. While feedforward
neural networks allow modeling highly complex phenomena,
they are not designed for learning time-correlated features.
When modeling time-series data, recurrent neural networks
provide better architectures. However, recurrent neural networks
have some important limitations, from vanishing and exploding
gradient problems to the difficulty to process long sequences.
Such limitations make these networks complex to properly train
and poorly suited for online robotics applications [21]. Recently,
convolution-based approaches have emerged as a superior alter-
native to Recurrent Neural Networks (RNNs) [22]. C. Lea et
al. [23] introduced the temporal convolutional network (TCN)
to perform fine-grained action segmentation. Unlike RNNs,
TCNs take advantage of asynchronous and parallel convolution
operations, avoid gradient instability problems, and offer flexible
receptive field size thus better control of the model’s memory
size while still inherently accounting for temporal data structures
like RNNs. Thanks to their favorable characteristics, TCNs
have then been successfully employed in multiple sequences
and time-series modeling tasks [12], [13], [24], [25]. Related to
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TABLE I
NOTATION TABLE

inertial, body frame
m mass of quadrotor in 7

p ER3 position of quadrotor in Z

v ER3 linear velocity of quadrotor in Z

qeER? orientation of quadrotor with respect to Z
weR? angular velocity of quadrotor in 3

uecR* motor commands generated by quadrotor’s controller
v ER3 linear acceleration of quadrotor in B

weR? angular acceleration of quadrotor in B

feRr total thrust of quadrotor

T ERS3 torque of quadrotor in B

J € R3%3  diagonal moment of inertia matrix of quadrotor
kg rotor thrust constant

k- rotor torque constant

l length of the quadrotor arm

g gravity constant

O] quaternion-vector product

quadrotor control, [12] trained multiple TCNs to learn directly
from raw sensory data an end-to-end policy for performing
acrobatic maneuvers. For quadrotor’s system identification, [13]
incorporated the entire system in a TCN and demonstrated
the utility and applicability of these network’s architectures
for learning the full system dynamics. However, the learned
model is obtained from data in a limited flight regime and the
generalization beyond the training distribution is not considered.
It also strongly relies on accessing future control inputs which
are certainly useful, but impractical in real-world scenarios. In
addition, the learned model is not used within a receding horizon
control framework to exploit its predictive nature. Conversely, in
this work, we do not make any assumptions over future control
and demonstrate the learned dynamics for accurate closed-loop
trajectory tracking in real-world experiments.

Existing learning methods either decouple linear and angular
accelerations or only estimate the former. This limits the pre-
dictive performance of the neural networks that can capture the
hidden dependencies that bound forces and torques. Instead, we
predict the entire dynamics jointly.

III. METHODOLOGY

We first introduce the nominal model of the quadrotor’s sys-
tem dynamics that will be used by the proposed physics-inspired
loss function and then formulate the system identification prob-
lem using PI-TCN. Table I lists the relevant variables used in
the letter.

A. Nominal Formulation

Nominal methods model the quadrotor’s system dynamics
by using nonlinear ordinary differential equations. Specifically,
consider the quadrotor system modeled by the state vector x =
[p" v q" w']" and the control input u, then the quadrotor’s

nominal dynamics evolve as follows

o) v
. 1
Lo f)+
w= [V = | ROt e, M
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where J = diag(Jys, Jyy, J=-) is the diagonal moment of in-
ertia matrix, while the collective thrust f and torque 7 of the
quadrotor are defined as

kgl (u% +u? —u3 — ug)
kel (—ud+ud+ud—ud)|. @

3

f=ky Z ui, T =
=0 kr (ud —ui + u3 —uj)
The parameters Jy., Jyy, J.2,m, k¢, k-, are related to the
physical system and strictly define the nominal model hyop-
Accurately identifying their values is key for guaranteeing
high-performance flight control while using nominal dynamics.
However, precisely modeling the system’s parameters is very
difficult due to the nonlinearity of external effects that make the
estimation process difficult.

B. Model Learning

In this work, we approximate h using a physics-inspired
temporal convolutional network and leverage past flight states
and control inputs to predict the quadrotor’s full dynamic state.
Formally, the state-derivative at time ¢ is given by

x; = hprren (X, Uy; 09), (3)
where X; =[x/ ,...x]]T and U; = [u] ;... u]]" are his-
tories of states and control inputs of length 7", while 6 represents
the network’s parameters. Therefore, solving the system iden-
tification problem corresponds to learning the parameters 6 of
the network hpr.tcN.

The proposed network hpprcn, illustrated in Fig. 2, con-
sists of two sub-networks, a temporal convolutional network
(TCN) and a multi-layer perceptron (MLP). The TCN extracts
time-correlated features from a sequence of past flight states
and control inputs and outputs a compact hidden-state vector.
Such hidden state is passed in input to the MLP which predicts
the quadrotor’s full system dynamics. Such encoder-decoder
architecture fully leverages the qualities of the TCN and MLP
models. TCNs are sparse networks defined by dilated (causal)
convolutional layers, which allow to process long history se-
quences in parallel while encoding the temporal structure of the
input time series in their output feature vector. Conversely, MLPs
are dense networks, which makes them better suited for making
predictions from a compact hidden state representation.

We provide as input to the network a history of states and
control inputs of length 7', with samples temporarily equally
spaced (see supplementary material for an in-depth study of
the network’s performance with different history lengths). Each
state consists of linear velocity v, attitudes q, angular velocity
w, and the control inputs are the motor commands u. Therefore,
the network’s input is a tensor of shape 14 x T'. The network’s
output is the full dynamic state of the quadrotor. However, since
position and orientation derivatives are already provided as in-
put, we restrict the prediction to linear and angular accelerations.
Consequently, the network’s output is a 6 x 1 tensor. Note that
we do not provide position information as the linear and angular
accelerations are position-independent.

C. Physics-Inspired Loss

Learning the dynamics purely from data poses the challenge to
make the network generalizable outside the training distribution.
However, it is necessary to concurrently guarantee that the net-
work matches physical principles. Motivated by this observation
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Fig. 2. PI-TCN’s architecture. The network receives an history of past flight inputs and states from time % — 7" to time 7. A TCN extracts a sequence of

time-correlated features, which are then processed by a MLP to predict the full system dynamics.

and inspired by [14]-[16], where it is clearly shown the benefits
of constraining the network to physical principles, we embed
physics constraints in the training process by including the
physics laws in (1) in the loss function. Specifically, at each
training iteration, we minimize the composite loss

L = Lvsg + ALpr, “4)
where Lysg is the mean squared error prediction loss between
the training labels and the network’s predictions, Lp; is the
physics-inspired loss between the physics laws’ solution and
the network’s predictions, and A is a hyper-parameter that should
reflect how confident we are in the physical constraints of our
system. If we have access to an unreliable physical model, A
should be small to let the neural network fully explore the loss
landscape. On the other hand, if we are confident in the available
physical model, A can be large to fully exploit the prior. The loss
functions are

|Br|
1 _
LMsE = @ ; [ (xi,0;) — hprren (X4, Ugs 0) [], - (5)
1 |Bp|
Lp = @ Z [[ANom (%, 1;) — hprren (X5, Uj;0) ],
Jj=1

(6)

where h gives the label for the data point (x;, u;), Br is a batch
of training data points, Bp is a batch of points sampled from the
entire input space. While Lysg ensures that the network learns
the full dynamics purely from data, Lp; constraints the predic-
tions to match the underlying equations derived from physics-
based principles. Lp gives the network a physical interpretation
of its internal states and can be viewed as an unsupervised
regularizer that fosters the network’s generalization performance
by stabilizing the training process.

We further improve the training process convergence by
adopting a curriculum learning strategy. We train the network
for half the training process by setting A = 0. This ensures that
the network fully explores the optimization space in a self-
supervised fashion. Then, we restart the training using A = 1 for
the remaining training iterations to stabilize the training process
convergence. At every training iteration, the physics-inspired
loss is computed over a batch of points sampled from the entire

state-input space. Selecting these points is trivial if the consid-
ered past flight history is unitary. However, in our scenario, we
would need to randomly generate consistent sequences of points
from the state-input space. Therefore, in this work, we extract a
batch of | Bp| points from the state-input space before starting
the training process and use it at every training iteration.

D. Control Design

We consider the quadrotor trajectory tracking problem, where
the platform is required to follow a given desired trajectory
of states Xqes,; and inputs uges ;. We combine the predictive
nature of Model Predictive Control (MPC) and the proposed
network to accurately track trajectories while respecting phys-
ical or dynamic constraints. MPC formulates an optimization
problem that finds a sequence of inputs within a fixed time
horizon with IV discretized steps by optimizing a given objective
function. The optimization problem is formulated to minimize
X; = Xdes; — %X; and 0; = Uges; — u;, which are the errors
between the desired state and input and the actual state and
input. Formally, the MPC framework is defined as follows

min
ug,...,UN-1

liTQi +J§ 1iTQ 5<-+1ﬁTQ ;
9 N Rz AN vars 9 i ) 2 i uUg

S.t. Xi+1 = iLPl—TCN(Xia Ul, 9),VZ = O, ‘e
9(xi,u;) <0,

N1

where Q,, Q. are constant positive diagonal weight matrices in

the cost function and hprten (X;, Uy; 0) is the system dynamics
constraint defined as

hprren(Xi, Uy;0) = RK (hprton(Xi, Uiz ). (8)
The RK in (8) is the Runge-Kutta 4th order numerical integra-
tion function that numerically integrates the states derivative,
given by the PI-TCN model, within a given time step. The
optimization occurs with initial condition xo while respecting
system dynamics X;.1 = ilp[_TCN(Xi,Ui;e) and additional
state and input constraints g(x;,u;) < 0 such as actuator or
perception constraints.
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IV. EXPERIMENTAL SETUP

A. System

We learn the dynamical system of a 250 g quadrotor equipped

with a Qualcomm SnapdragonTM board and four brushless
motors based on our previous work [26]. We run the MPC on a
laptop computer at 100 Hz and send via Wi-Fi the desired body
rates and collective thrust to the low-level quadrotor control.
We develop and train the neural networks using PyTorch and
implement the controller using CasADi [27] and ACADOS [28].
However, since CasADi builds a static computational graph and
postpones the processing of the data, it is not compatible with
PyTorch which directly performs the computations using the
data. We solve this issue by implementing our network directly
in CasADi.

B. Collected Data

We collect the data by controlling the quadrotor in a series
of flights both in simulation and in the real world, resulting in
two datasets with analogous trajectories. The simulated flights
are performed in the Gazebo simulator, while the real-world
flights are performed in an indoor environment 10 X 6 X
4 m’ at the Agile Robotics and Perception Lab (ARPL) at
the New York University. The environment is equipped with
a Vicon motion capture system that allows recording accurate
position and attitude measurements at 100 Hz. Additionally, we
record the onboard motor speeds. Each dataset consists of 68
trajectories with a total of 58'03” flight time. The trajectories
range from straight-line accelerations to circular motions, but
also parabolic maneuvers and lemniscate trajectories. All the
trajectories are performed for any axis combination (i.e., x — v,
x — z, y — 2z) and with different speeds and accelerations. To
capture the complex effects induced by aggressive flight, we
push the quadrotor to its physical limits reaching speeds of
6 ms~1, linear accelerations of 18 ms~2, angular accelerations
of 54 rads™2, and motor speeds of 16628 rpm. We recover
unobserved accelerations from velocity measurements filtered
by a UKF. Moreover, we filter the recorded attitudes and motor
speeds measurements using a 4th order Butterworth lowpass
filter with a cutoff frequency of 5. We scale the motor speed
data by multiplying them by 0.001 such that the scale of all the
data components is equally distributed (i.e., the neural network
will give equal importance to all data components). Finally,
we randomly select 60 trajectories for training, while using the
remaining 8 for testing (Fig. 3). See supplementary material for
more details on the collected data.

C. Baselines

We implement PI-TCN’s architecture as a TCN with 4 hidden
layers each of size 16 and an MLP with 3 hidden layers of sizes
64, 32, 32. Each layer of the TCN is stacked with a ReL.U acti-
vation function, batch normalization, and a Dropout regularizer
with rate 10%, whereas each layer of the MLP is stacked with
a ReLU activation function. We provide as input to the network
a history of states and control inputs of length 7" = 20, with
samples temporary equally spaced with 6¢ = 10 ms, resulting in
atemporal window of the system evolution over the past 200 ms.
We train PI-TCN on the real-world dataset for 10000 epochs
using Adam stochastic gradient descent algorithm, batches of

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

|Br| = |Bp| = 1024 samples, and a constant learning rate
of 1074

We validate PI-TCN by comparing its predictive performance
on unseen real-world trajectories against the nominal model
in (3) (NOM), a residual TCN (RES-TCN), a TCN trained
without the physics-inspired loss (MSE-TCN), and a multi-layer
perceptron (PI-MLP). We keep the architecture for all TCN
and MLP models the same as PI-TCN for a fair comparison.
RES-TCN and MSE-TCN are trained on the real-world dataset
using the MSE loss in (5) for 10000 epochs, Adam stochastic
gradient descent algorithm, batch sizes |Br| = |Bp| = 1024,
and a constant learning rate of 10~4. The same training process
is used to train PI-MLP but using the composite loss in (4).
Moreover, we train PI-TCN and PI-MLP only on simulation data
(PI-TCN*, PI-MLP¥) to study the generalization capabilities of
the learned models to significant domain changes (sim-to-real
in this case). See supplementary material for more details on the
baselines.

V. RESULTS

We design our evaluation procedure to address the following
questions. i) Can model learning approaches extract quadrotor’s
system dynamics from robot experience? ii) How does PI-TCN
compare to the baseline models on simulated and real-world
data? iii) What is the contribution of the learned dynamics in a
closed-loop tracking task?

A. Predictive Performance

We compare the predictive performance of PI-TCN and the
baselines on unseen trajectories collected in the real world.
The trajectories’ speeds and accelerations cover the entire per-
formance envelope of our quadrotor’s platform, making the
controller highly sensitive to model inaccuracies. For these ex-
periments, we use the root mean squared error (RMSE) between
ground truth and predicted accelerations.

Table II reports the predictive performance in terms of ac-
curacy and computational time of PI-TCN and the baselines,
while Fig. 5 illustrates the predictive performance over a sample
aggressive maneuver (see supplementary material for additional
prediction results). All the models offer accurate predictive
performance over low-speed trajectories, such as Ellipse and
WarpedEllipse. However, as speeds and accelerations increase,
complex aerodynamic effects acting on the quadrotor’s platform
significantly degrade the flight performance. Particularly, NOM
is no longer capable of guaranteeing accurate predictions, which
may lead to fatal control or navigation failures. Conversely,
learning-based approaches demonstrate consistent performance
over all maneuvers, capturing all the complex non-linear ef-
fects, and performing accurate predictions. The results also
demonstrate the importance of embedding physical laws as
soft constraints in the learned dynamics. PI-TCN consistently
outperforms RES-TCN and MSE-TCN despite requiring the
same computational cost. The improved generalization capabil-
ities of PI-TCN may be explained by the fact that the physical
constraints can be interpreted as a regularization term that favors
well-generalizable solutions lying in large flat valleys of the loss
landscape while skipping poorly-generalizable solutions located
in sharp regions [29]. Moreover, the results show that encoding
the states and control inputs history in a more compact hidden
representation improves the accuracy of PI-MLP predictions.
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TABLE II
COMPARISON OF PI-TCN WITH ALL THE BASELINES
Vmax [M872]  Wmax [rads™2] NOM RES-TCN MSE-TCN PI-MLP* PLTCN* PI-MLP PI-TCN
Ellipse_1 1.10 5.26 0.40 0.07 0.10 0.48 0.36 0.25 0.07
Ellipse_2 5.89 7.34 1.49 0.21 0.22 2.61 0.92 0.73 0.16
WarpedEllipse_1 4.92 4.76 0.69 0.12 0.21 0.93 0.53 0.43 0.11
WarpedEllipse_2 9.99 12.76 2.02 0.99 0.48 2.14 1.17 1.01 0.20
Lemniscate 13.14 31.98 9.16 1.88 1.39 9.19 5.73 1.62 0.39
ExtendedLemniscate 7.76 27.95 1.34 1.01 0.69 2.74 0.90 0.49 0.19
Parabola 5.91 6.57 1.03 0.88 0.33 2.17 0.77 0.38 0.15
TransposedParabola 17.86 54.90 7.94 1.48 1.01 9.01 3.46 1.59 0.51
Inference [ms] 0.001 1.735 1.735 0.229 1.735 0.229 1.735
Ellipse WarpedEllipse Parabola Lemniscate ExtendedLemniscate TransposedParabola
2 2] 2! 2 2 2
e as >e R
o1 1] ’ 1] s : 1 1] § 1
Q| 2 | 2 | 2 | 2 I 2 2
2, 0 2, ,/;20 2, 0 02, 4° 3, ,;/20 3, ,_/20
pxIml 6~ p,[m] pxIml 6 = p,[m] px[ml 6 = p,[m] pxIml’ 6 = p,[m] pxIml' 6 ~ p,[m] px[ml” 6 — pym]
Fig. 3.  Testing trajectories.

Specifically, dilated convolutional layers better capture time-
correlated features than dense layers. Finally, learning-based ap-
proaches showcase high generalization capabilities when trained
in simulation and directly deployed on unseen real-world data.
Even though the performance of these models lightly degrades
during the domain shift, they are still significantly more accurate
than NOM. The drawback of learning-based approaches is the
computational time required to generate the predictions. Even
though PI-TCN makes more accurate predictions with respect
to the simpler PI-MLP, this comes at an 8x time cost.

B. Robustness to Defective Physical Prior

The predictive performance of PI-TCN is controlled by the
introduction of the physics-inspired loss during the training
process. This loss is regulated by the A hyper-parameter which
reflects how confident we are in the physical constraints of
our system, i.e. how much we want to trade-off between the
exploitation of the available nominal model and exploration
of the loss landscape. If our confidence is well-placed, i.e. an
accurate physical prior is available and A > 0, the predictive
performance of the dynamical model is significantly improved,
as demonstrated by Table II. However, we may be erroneously
overconfident about the available physical prior. In such a
scenario, including the physics-inspired loss would inevitably
degrade the predictive performance of the trained model. In
this section, we conduct an in-depth analysis of the predictive
performance of NOM, RES-TCN, and PI-TCN models when
different physical priors are available. Specifically, we first
perturb the diagonal moment of inertia matrix J,,, J,. and the
rotor thrust and torque constants ky, k, and then evaluate the
models’ predictive performance over the testing data. Note that
RES-TCN and PI-TCN had to be trained from scratch for each
combination of the physical parameters.

Fig. 4 illustrates the results of these experiments. Each cell of
the heatmaps corresponds to a different physical prior configura-
tion and its color intensity corresponds to the RMSE between the

predicted and ground-truth accelerations. Each heatmap central
cell coincides with the physical prior configuration adopted
in Table II. The predictive performance of NOM is strongly
affected by the choice of the parameters, resulting in poor
prediction results when introducing even small perturbations to
the physical prior. Contrarily, RES-TCN benefits from the ex-
pressive power of the temporal convolutional network to balance
the degraded physical prior, demonstrating accurate predictive
performance with relatively small perturbations. However, as the
perturbations increase, RES-TCN can no longer guarantee accu-
rate predictions. In fact, by learning only the residual dynamics,
the model does not explore sufficiently the loss landscape and
the learned term is not sufficient to balance the physical prior in-
accuracy. This limitation is overcome by PI-TCN which embeds
the physical prior only as a soft constraint to direct the training
process. Theresulting learned dynamical model is more robust to
prior changes and the predictive performance experiences only
a minor performance reduction.

C. Closed-Loop Tracking Performance

We validate the learned dynamical model against the nominal
model in the real-world setting. Specifically, we employ the
MPC formulated in Section III-D to control our quadrotor to
track multiple trajectories with different models. We compare
the tracking performance based on the positional RMSE. Due to
the computational cost imposed by the temporal convolutional
network on the controller optimization, we perform the tracking
task using the PI-MLP model. Moreover, to make the compar-
ison fair with NOM in terms of available information, we set
T=1.

Table III reports the tracking performance results on the tested
trajectories. The NOM model captures some gross dynamics
that allow tracking the reference trajectory up to some degree.
However, the tracking performance degrades significantly for
more aggressive trajectories, in particular when the angular
acceleration mismatch between the nominal prediction and
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TABLE III
TRACKING PERFORMANCE IN REAL-WORLD

Trajectory Nominal Ours
Ellipse_1 0.061 +0.001  0.059 £ 0.002
Ellipse_2 0.126 £0.011  0.088 £ 0.023
WarpedEllipse_1 0.051 £0.012  0.044 £ 0.009
WarpedEllipse_2 0.098 +0.014  0.069 + 0.017
Lemniscate 0.199 £ 0.032  0.098 £ 0.011
ExtendedLemniscate ~ 0.272 + 0.033  0.101 £+ 0.019
Parabola 0.111 +0.006  0.092 + 0.021
TrasposedParabola 0.322+0.049  0.162 £ 0.051

Conversely, PI-TCN better captures the highly nonlinear
angular accelerations and this results in an improved flight
performance with a positional RMSE decrease by up to x2.7.
Generally, over the entire set of test trajectories, the learning
model consistently and significantly outperforms the nominal
dynamics. This empirically demonstrates that the learned model
can extract the system’s dynamics structured in the data better
than the simpler nominal model.

Fig. 1 illustrates the tracking performance on the Lemniscate
trajectory. By leveraging PI-TCN dynamical model, the MPC
can reach higher linear and angular accelerations (as illustrated
by the histograms) while still guaranteeing stable control. Con-
sequently, the tracking performance using PI-TCN improves the
positional RMSE error by over 50% compared to NOM.

D. Ablation Studies

PI-TCN is based on several components that are designed to
improve its predictive performance and generalization capabil-
ities. We validate our design with an ablation study to evaluate
the roles of the different network components. In particular, we
ablate the following components: (i) the importance of extracting
a history of past flight states and control inputs, and (ii) the
improved training performance induced by the physics-inspired
loss.

Table IV shows that every component is important, but some
of them have a larger impact than others. Specifically, the
network trained with the combination of physics-inspired and
mean squared error losses better generalizes outside its training
set. However, the most important contribution to the network’s
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predictive performance is the history of past states and control
inputs. Without this component, the network increases its sen-
sitivity to noise in the data and thus its predictive performance
degrades significantly.

VI. CONCLUSION

In this letter, we proposed PI-TCN, a deep neural network
that extracts quadrotor’s dynamics purely from data by leverag-
ing the expressive power of temporal convolutional networks
and the generalizability offered by instilling physics laws in
the training process. Furthermore, we showed how to exploit
the network’s predictive performances for accurate predictive
trajectory tracking. The proposed learning method provides
several demonstrated advantages over existing methods in the
literature. While classic approaches only rely on present in-
formation to estimate the system’s dynamics, PI-TCN takes
advantage of a history of states and control inputs to capture
time-dependent features that would otherwise remain hidden.
Moreover, extending the present with past information makes the
model less subject to noise in the data. We demonstrated these
capabilities in several experiments where PI-TCN performs
accurate predictions both in simulation and real-world settings,
consistently outperforming the classical nominal model and the
learning-based baselines. While other learning-based methods
decouple linear and angular accelerations or only estimate the
former, jointly learning linear and angular accelerations allows
capturing the hidden dependencies that bound forces and torques
for nonholonomic and underactuated systems like the quadrotor.
This advantage is also empirically demonstrated by embedding
the learned-based model in an MPC framework and accurately
tracking trajectories in different flight regimes.

One limitation of the proposed approach is the computational
time required by the MPC to solve its online optimization
problem. Future works will improve the efficiency of our im-
plementation and leverage GPU parallel computation to fully
exploit PI-TCN in the controller horizon. Finally, we plan to use
the proposed MPC framework, leveraging the learned dynamical
model, as a privileged expert to teach a control policy even more
agile maneuvers, such as stunts, flying through narrow windows
and thrown hoops [12], [26].
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