INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS 1.
EVEN-HOLE-FREE GRAPHS OF BOUNDED DEGREE
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ABSTRACT. Treewidth is a parameter that emerged from the study of minor closed classes of
graphs (i.e. classes closed under vertex and edge deletion, and edge contraction). It in some
sense describes the global structure of a graph. Roughly, a graph has treewidth k if it can be
decomposed by a sequence of noncrossing cutsets of size at most k into pieces of size at most
k+1. The study of hereditary graph classes (i.e. those closed under vertex deletion only) reveals
a different picture, where cutsets that are not necessarily bounded in size (such as star cutsets,
2-joins and their generalization) are required to decompose the graph into simpler pieces that
are structured but not necessarily bounded in size. A number of such decomposition theorems
are known for complex hereditary graph classes, including even-hole-free graphs, perfect graphs
and others. These theorems do not describe the global structure in the sense that a tree
decomposition does, since the cutsets guaranteed by them are far from being noncrossing. They
are also of limited use in algorithmic applications.

We show that in the case of even-hole-free graphs of bounded degree the cutsets described in
the previous paragraph can be partitioned into a bounded number of well-behaved collections.
This allows us to prove that even-hole-free graphs with bounded degree have bounded treewidth,
resolving a conjecture of Aboulker, Adler, Kim, Sintiari and Trotignon [arXiv:2008.05504]. As
a consequence, it follows that many algorithmic problems can be solved in polynomial time for
this class, and that even-hole-freeness is testable in the bounded degree graph model of property
testing. In fact we prove our results for a larger class of graphs, namely the class of Cy-free
odd-signable graphs with bounded degree.

1. INTRODUCTION

All graphs in this paper are finite and simple. A hole of a graph G is an induced cycle of G of
length at least four. A graph is even-hole-free if it has no hole with an even number of vertices.

Even-hole-free graphs have been studied extensively; see [23] for a survey. The first polynomial
time recognition algorithm for this class of graphs was obtained in [9]. This algorithm is based on
a decomposition theorem from [8] that uses 2-joins and star, double star, and triple star cutsets
to decompose the graph into simpler pieces. Later, a stronger decomposition theorem, using
only star cutsets and 2-joins, was obtained in [12], leading to a faster recognition algorithm.
Further improvements resulted in the best currently known algorithm with running time O(n?)
[6,15]. This progress required deep insights into the behavior of even-hole-free graphs; however
the global structure of graphs in this class is still not well understood. Moreover, there are several
natural optimization problems whose complexity for this class remains unknown (among those
are the vertex coloring problem and the maximum weight stable set problem). The key difficulty
is to make use of star cutsets, and in particular to understand how several star cutsets in a given
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graph interact. In this paper we address this problem, by showing that star cutsets in an even-
hole-free graph of bounded degree can be partitioned into a bounded number of well-behaved
collections, which in turn allows us to bound the treewidth of such graphs.

Let G = (V, E) be a graph. A tree decomposition (T, x) of G is a tree T'and a map x : V(T') —
2V(G) guch that the following hold:

(i) For every v € V(G), there exists t € V(T such that v € x(¢).
(i) For every vjvy € E(G), there exists ¢t € V(T') such that vy, vy € x(%).

(iii) For every v € V(@), the subgraph of T induced by {¢t € V(T) | v € x(t)} is connected.

If (T, x) is a tree decomposition of G and V(T') = {¢1,...,t,}, the sets x(t1),...,x(t,) are
called the bags of (T, x). The width of a tree decomposition (7', x) is max,cy (7 [x(t)] — 1. The
treewidth of G, denoted tw(@G), is the minimum width of a tree decomposition of G.

Many NP-hard algorithmic problems can be solved in polynomial time in graphs with bounded
treewidth. For a full discussion, see [5]. While tree decomposition s, and classes of graphs of
bounded treewidth, play an important role in the study of graphs with forbidden minors, the
problem of connecting tree decompositions with forbidden induced subgraphs has so far remained
open. Clearly, in order to get a class of bounded treewidth, one needs to forbid, for example,
large cliques, large complete bipartite graphs, large walls, and the line graphs of large walls.
However, all of these obstructions , except for large cliques, contain even holes. Further, in [20],
a bound on the treewidth of planar even-hole-free graphs was proven. On the other hand, [21]
contains a construction of a family of even-hole-free graphs with no K4, and with unbounded
treewidth. The graphs in this construction have both unbounded degree and contain large clique
minors. In [1] it was examined whether both of these are necessary. They show that any graph
that excludes a fixed graph as a minor either has small treewidth or contains (as an induced
subgraph) a large wall or the line graph of a large wall. This implies that even-hole-free graphs
that exclude a fixed graph as a minor have bounded treewidth (generalizing the result of [20]).
Furthermore, the following conjecture was made (and proved for subcubic graphs) in [1]:

Conjecture 1.1. For every § > 0 there exists k such that even-hole-free graphs with mazximum
degree at most 0 have treewidth at most k.

The main result of the present paper is the proof of Conjecture 1.1, in fact, the following
slight strengthening of it. We sign a graph G by assigning 0,1 weights to its edges. A graph
G is odd-signable if there exists a signing such that every triangle and every hole in G has odd
weight. Thus even-hole-free graphs are a subclass of odd-signable graphs.

Theorem 1.2. For every § > 0 there exists k such that Cy-free odd-signable graphs with maxi-
mum degree at most § have treewidth at most k.

It follows from Theorem 1.2 that vertex coloring, maximum stable set, and many other NP-
hard algorithmic problems can be solved in polynomial time for even-hole-free graphs with
bounded maximum degree. Another consequence of Theorem 1.2 is that even-hole-freeness is
testable in the bounded degree graph model of property testing, since even-hole-freeness is ex-
pressible in monadic second-order logic with modulo counting (CMSQO) and CMSO is testable on
bounded treewidth [4]. See [1] for an excellent survey that motivates the study of Conjecture 1.1
and surrounding problems, and in particular contains a detailed discussion of property testing
algorithms.

1.1. Outline of the proof of Theorem 1.2. A graph G has bounded treewidth if and only
if every connected component of G has bounded treewidth. Therefore, we prove that connected
Cy-free odd-signable graphs with bounded degree have bounded treewidth.

In [14], a number of parameters tied to treewidth are discussed. Let G be a graph, let ¢ € [%, 1),
and let k be a nonnegative integer. For S C V(G), a (k, S, ¢)*-separator is a set X C V(G)
with |X| < k such that every component of G \ X contains at most ¢|S| vertices of S. The
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separation number sepi(G) is the minimum % such that there exists a (k, S, c)*-separator for
every S C V(G). The separation number is related to treewidth through the following lemma.

Lemma 1.3 ([14]). For every graph G and for all ¢ € [%, 1), the following holds:

1
sepi(G) < tw(G) +1 < 1

—C

sepi(G).

A set § C V(QG) is d-bounded if there exist v1, ..., vy, with d < d, such that S C Nd[vl] U
...UN%uvg]. For a graph G and weight function w on its vertices, if X is a subgraph of G or
a subset of V(G), then w(X) is the sum of the weights of vertices in X. Let G be a graph and
let w: V(G) — [0,1] be a weight function of G such that w(G) = 1. By w™®* we denote the
maximum weight of a vertex in G. A set Y C V(G) is a (w, ¢, d)-balanced separator of G if Y is
d-bounded and w(Z) < ¢ for every component Z of G\ Y. The following lemma shows that if
G is a graph with maximum degree § and G has a (w, ¢, d)-balanced separator for every weight
function w : V(G) — [0, 1] with w(G) = 1, then G has bounded treewidth.

Lemma 1.4. Let §,d be positive integers with § < d, let ¢ € [%, 1), and let A(d) = d+dS+dé> +
.4+ dé?. Let G be a graph with mazimum degree 8. Suppose that for every w : V(G) — [0,1]
with w(G) =1 and w™* < ﬁ, G has a (w,c,d)-balanced separator. Then, tw(G) < 7=A(d).

Proof. Note that A(d) is an upper bound for the size of a d-bounded set in G. Let S C V(G).
If |S| < A(d), then S is a (A(d), S, ¢)*-separator of G. Now, assume |S| > A(d). Let wg :
V(G) — [0,1] be such that wg(v) = ﬁ for v € S and wg(v) = 0 for v € V(G) \ S. Then,
ws(G) = 1 and w§*™ < ﬁ, so G has a (wg,c,d)-balanced separator. Specifically, for all
S C V(G) such that |S| > A(d), there exists a set X such that |X| < A(d), and wg(Z) < ¢ for
all components Z of G\ X. It follows that X is a (A(d), S, ¢)*-separator of G. Therefore, G has
a (A(d), S, c)*-separator for every S C V(G). It follows that sep’(G) < A(d), and by Lemma
1.3, tw(G) < = A(d). [ |

In this paper, we prove that connected Cy-free odd-signable graphs with bounded degree have
bounded treewidth. Specifically, we prove the following theorem:

Theorem 1.5. Let §,d be positive integers. Let G be a connected Cy-free odd-signable graph
with mazimum degree § and let w : V(G) — [0,1] be a weight function such that w(G) = 1.
Let f(2,6) = 2(0 + 1)2 4+ 1, and let ¢ € [3,1).  Assume that d > 495 + 4f(2,6)5 — 4 and
(1 —¢) + [w™> +3£(2,6)02°(1 — ¢) + 2(5 — 1)2°(1 — ¢)](d + 6?) < % Then, G has a (w,c,d)-
balanced separator.

We can then prove our main result:

Theorem 1.6. Let § be a positive integer and let G be a connected Cy-free odd-signable graph
with mazimum degree 6. Then, there exists ¢ € [%,1) and positive integer d > 9§ such that

tw(G) < 1= (d+dd + dé? + ... + ds?).

Proof. Let f(2,0) = 2(6 + 1)2 + 1. Let d be an integer such that d > 496 + 4f(2,0)6 — 4, and
let A(d) =d+ dé+ds*+ ...+ dd?% Note that there exists ¢ € [3,1) such that (1 —c) + [ﬁ +
3£(2,0)62%(1 —¢) +2(5 — 1)29(1 — ¢)](6 4+ 02) < 3. Let w : V(G) — [0,1] be a weight function
of G such that w(G@) =1 and w™* < ﬁ. Then by Theorem 1.5, G has a (w, ¢, d)-balanced
separator. The result now follows from Lemma 1.4. |

Let us now discuss the main ideas of the proof of Theorem 1.5. We will give precise definitions
of the concepts used below later in the paper; the goal of the next few paragraphs is just to give
the reader a road map of where we are going. A separation (or decomposition) of a graph G is
a triple of disjoint vertex sets (A, C, B) such that AU C U B = V(G) and there are no edges
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from A to B. To “decompose along (A, C, B)” means to delete A. Usually, to prove a result that
a certain graph family has bounded treewidth, one attempts to construct a collection of “non-
crossing separations”, which roughly means that the separations “cooperate” with each other, and
the pieces that are obtained when the graph is simultaneously decomposed by all the separtions
in the collection “line up” to form a tree structure. Such collections of separations are called
“laminar.”

In the case of Cy-free odd-signable graphs, there is a natural family of separations to turn to,
given by Lemmas 4.4, 4.5, and 4.6. A key point here is that all the decompositions above are
forced by the presence of certain induced subgraphs that we call “forcers.” In essence it is shown
that the corresponding decomposition of the forcer extends to the whole graph, and when the
graph is decomposed along the decomposition, part of the forcer is removed.

Unfortunately, the decompositions above are very far from being non-crossing, and therefore
we cannot use them in traditional ways to get tree decompositions. What turns out to be
true, however, is that, due to the bound on the maximum degree of the graph, this collection
of decompositions can be partitioned into a bounded number of laminar collections Xi,..., X,
(where p depends on the maximum degree). We can then proceed as follows. Let G be a
connected Cy-free odd-signable graph with maximum degree § and let w : V(G) — [0, 1] be such
that w(G) = 1. In view of Lemma 1.3, to prove Theorem 1.5, we would like to show that for
certain ¢ and d, G has a (w, ¢, d)-balanced separator; we may assume that no such separator
exists. We first decompose G, simultaneously, by all the decompositions in X;. Since Xj is a
laminar collection, by Lemma 2.1 this gives a tree decomposition of G, and we identify one of the
bags of this decomposition as the “central bag” for Xi; denote it by 5. Then, 8; corresponds
to an induced subgraph of G, and we can show that 81 has no (wy, ¢, d;)-balanced separator for
certain wy and d; that depend on w and d. We next focus on 1, and decompose it using Xo,
and so on. At step ¢, having decomposed by X1, ..., X;, we focus on a central bag ; that does
not have a (wj, ¢, d;)-separator for suitably chosen w;, d;.

The fact that all the separations at play come from forcers ensures that at step i, after
decomposing by X1, ..., X;, none of the forcers that were “responsible” for the decompositions
in X7,...,X; is present in the central bag §; (as part of each such forcer was removed in the
decomposition process). It then follows that when we reach 3, all we are left with is a “much
simpler” graph (one that contains no forcers), where we can find a (wp, ¢, dy)-balanced separator
directly, thus obtaining a contradiction.

The remainder of the paper is devoted to proving Theorem 1.5. In Section 1.2, we review
key definitions and preliminaries. In Section 2, we define laminar collections of separations, and
describe a tree decomposition corresponding to a laminar collection of separations. In Section
3, we prove results about clique cutsets and balanced separators. In Sections 4 and 5, we define
forcers and prove results about forcers, star cutsets, and balanced separators. In Section 6, we
prove a bound on separation number in graphs with no star cutset. Finally, in Section 7, we
prove Theorem 1.5.

1.2. Terminology and notation. Let G and H be graphs. We say that G contains H if G
has an induced subgraph isomorphic to H. We say that G is H-free if G does not contain H. If
H is a set of graphs, we say that G is H-free if G is H-free for every H € H. For X C V(G),
G[X] denotes the subgraph of G induced by X, and G\ X = G[V(G) \ X]. In this paper, we use
induced subgraphs and their vertex sets interchangeably. Let v € V(G). The open neighborhood
of v, denoted N (v), is the set of all vertices in V(G) adjacent to v. The closed neighborhood of
v, denoted N[v], is N(v) U{v}. Let X C V(G). The open neighborhood of X, denoted N(X), is
the set of all vertices in V(G) \ X with a neighbor in X. The closed neighborhood of X, denoted
N[X], is N(X)U X. If H is an induced subgraph of G and X C H, then Ny(X) (Ng[X])
denotes the open (closed) neighborhood of X in H. Let Y C V(G) be disjoint from X. Then,
X is anticomplete to Y if there are no edges between X and Y. We use X Uv to mean X U {v}.
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Given a graph G, a path in G is an induced subgraph of G that is a path. If P is a path in G,
we write P = pi-...-p; to mean that p; is adjacent to p; if and only if |i — j| = 1. We call the
vertices p; and pg the ends of P, and say that P is from p; to px. The interior of P, denoted
by P*, is the set V(P) \ {p1,pr}. The length of a path P is the number of edges in P. A cycle
C is a sequence of vertices pips ... pgp1, kK > 3, such that p; ... pg is a path, p1px is an edge, and
there are no other edges in C. The length of C' is the number of edges in C. We denote a cycle
of length four by Cj.

If v e V(G) and X C V(G), a shortest path from v to X is the shortest path with one end
v and the other end in X. If v € V(G), then N&(v) (or N%(v) when there is no danger of
confusion) is the set of all vertices in V(G) at distance exactly d from v, and NG[ v] (or N?[v])
is the set of vertices at distance at most d from v. Similarly, if X C V(G), N&(X) (or N¢(X))
is the set of all vertices in V(G) at distance exactly d from X, and N¢[X] (or N[X]) is the set
of all vertices in V(@) at distance at most d from X.

Next we describe a few types of graphs that we will need. They are illustrated in Figure 1. A
theta is a graph consisting of three internally vertex-disjoint paths P, = a-...-b, P, = a-...-b,
and P3 = a-...-b of length at least 2, such that no edges exist between the paths except the
three edges incident with a and the three edges incident with b. A prism is a graph consisting of
three vertex-disjoint paths P, = aj-...-b1, Po = a9-...-bg, and P3 = as-...-b3 of length at least
1, such that ajasas and bibybs are triangles and no edges exist between the paths except those of
the two triangles. A pyramid is a graph consisting of three paths P, = a-...-b1, P, = a-...-bo,
and P3 = a-...-bs of length at least 1, two of which have length at least 2, vertex-disjoint except
at a, and such that bibobs is a triangle and no edges exist between the paths except those of the
triangle and the three edges incident with a.

A wheel (H,z) is a hole H and a vertex x such that  has at least three neighbors in H. A wheel
(H,z) is even if x has an even number of neighbors on H. The following lemma characterizes
odd-signable graphs in terms of forbidden induced subgraphs.

a

al

: :bl : :
o z z Y

bo b3 : b2

=

FIGURE 1. Theta, pyramid, prism, and wheel

Theorem 1.7. ([7]) A graph is odd-signable if and only if it is (even wheel, theta, prism)-free.

A cutset C CV(G) of G is a set of vertices such that G \ C is disconnected. A star cutset in
a graph G is a cutset S C V(G) such that either S = () or for some z € S, S C N(x]. A clique
is a set K C V(@) such that every pair of vertices in K are adjacent. A clique cutset is a cutset
C C V(G) such that C is a clique.

2. BALANCED SEPARATORS AND LAMINAR COLLECTIONS

The goal of this section is to develop the notion of a “central bag” for a laminar collection of
separations, and to study the properties of the central bag. The main result is Lemma 2.6, that
connects the existence of a balanced separator in the whole graph with the existence of one in
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the central bag of a laminar collection of separations. Note that in a later paper by the authors
and their coauthors [2], a simpler way to define central bags is given.

For the remainder of the paper, unless otherwise specified, we assume that if G is a graph,
then w : V(G) — [0, 1] is a weight function of G with w(G) = 1, and w™ = max,cy(g) w(v). A
separation of a graph G is a triple of disjoint vertex sets (A, C, B) such that AUC U B =V (G)
and A is anticomplete to B. A separation (4, C, B) is proper if A and B are nonempty. A set
X CV(G) is a clique star if there exists a nonempty clique K in G such that K C X C N[K].
The clique K is called the center of X. A separation S = (A, C, B) is a star separation if C is a
clique star, and the center of S is the center of C. For ¢ € [0, 1], a separation S = (A, C, B) is
e-skewed if w(A) < e or w(B) < e. For the remainder of the paper, if S = (A4, C, B) is e-skewed,
we assume that w(A) < e. Let S; = (A1, C1, B1) and Sy = (Aa, Ca, Bs) be two separations. For
i1 =1,2,let X; = A, UC; and Y; = C; U B;. We say S; and Sy are non-crossing if for some
RS {1,2}, either X; C X3 jand Y3 ; C Y, or X; C Y3 ; and X3 ; CY;. If S and Sy are not
non-crossing, then S; and Sy cross.

Let C be a collection of separations of G. The collection C is laminar if the separations of
C are pairwise non-crossing. The separation dimension of C, denoted dim(C), is the minimum
number of laminar collections of separations with union C.

Let G be a graph and let (T, x) be a tree decomposition of G. Suppose that e = t1t5 is an
edge of T and let 77 and T be the connected components of T\ e, where for i = 1,2, ¢; is a
vertex of T;. Up to symmetry between t; and to, the separation of G corresponding to e, denoted
Se, is defined as follows: S, = (D!, C,, D%), where C. = x(t1) Nx(t2), D! = (UteT1 X))\ Ce,
and D2 = (UteTQ x(t)) \ Ce. The following lemma shows that given a laminar collection of
separations C of G, there exists a tree decomposition (¢, x¢) of G such that there is a bijection
between C and the separations corresponding to edges of (T¢, x¢)-

Lemma 2.1 ([19]). Let G be a graph and let C be a laminar collection of separations of G. Then

(1) for all S € C, there exists e € E(1¢) such that S =S, , and
(i) for alle € E(T¢), Se € C .

We call (Tg, xc) a tree decomposition corresponding to C. Suppose C is a laminar collection
of e-skewed separations of G, and let (T, x¢) be a tree decomposition corresponding to C. For
e € E(Tg), Se = (Ae,Ce, Be), where w(A.) < . We define the directed tree T, to be the
orientation of T¢ given by directing edge e = t1t2 of T¢ from t1 to to if Ae = D! (so e = (t1,12)
in T}), and from ty to ¢1 if Ac = D2 (so e = (t2,t1) in T}). If w(Ae) < € and w(B.) < ¢, then
edge e is directed arbitrarily.

A sink of a directed graph G is a vertex v such that each edge incident with v is oriented
toward v. Every directed tree has at least one sink. A directed tree T' is an in-arborescence if
there exists a root v € V(T') such that for every u € V(T), there is exactly one directed path
from u to v in T'. The following lemma shows that when C is a laminar collection of e-skewed
separations satisfying an additional property, 77 is an in-arborescence.

Lemma 2.2. Let €,69 > 0 be such that € + 9 < % Let G be a graph and let C be a laminar
collection of e-skewed separations of G such that w(C) < &g for all (A,C,B) in C. Let (IT¢, xc)
be a tree decomposition corresponding to C. Then, the directed tree T, is an in-arborescence.

Proof. Let € V(1) be a sink of T/». We prove by induction on the distance from x in T¢ that
for every vertex u € V(T}), the path from u to = in T¢ is a directed path from u to = in T}.
Since x is a sink, the base case follows immediately. Suppose that there is a directed path from
v to x in T} for all vertices v of distance 7 from x, and consider vertex u of distance 7 + 1 from
z. Let P = u-v-v'-...-x be the path from u to = in T¢. By induction, the path v-v'-...-z is
a directed path from v to x in T). Suppose that (v,u) € E(T}). Let T be the component of
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T¢ \ (v,u) containing v, and let T5 be the component of 77 \ (v,v") containing v. Because Sy,
and 5, are e-skewed separations of G, we have that

(1) wl [ U xe® |\ (xe(w) nxe(w) | <e

teTy

(2) w | { U xe® |\ (xe(v) nxe)) | <e.
teTs
Together, (1) and (2) imply that w(G) < 2e+2¢¢ < 1, a contradiction. Therefore, the directed
tree T is an in-arborescence. |

Lemma 2.3. Let c € [3,1) and let d be a positive integer. Let G be a graph, let w : V(G) — [0,1]
be a weight function on G with w(G) = 1, and suppose G has no (w, ¢,d)-balanced separator. Let
S = (A,C, B) be a separation of G such that C is d-bounded. Then, S is (1 — c)-skewed.

Proof. Since C'is d-bounded and G has no (w, ¢, d)-balanced separator, we may assume w(B) > c.
Since 1 = w(G) > w(A) +w(B) and w(B) > ¢, it follows that w(4) < 1—¢, and so S is (1 — ¢)-
skewed. |

Let G be a graph with maximum degree §. Note that § 4+ 62 is an upper bound for the
maximum size of a clique star in G. Let  C V(G). For a laminar collection X of e-skewed star
separations of G, 8 is perpendicular to X if BN A= for all (A,C,B) € X.

Lemma 2.4. Let § be a positive integer, let c € [3,1), and let m € [0,1], with (1—c)+m(6+6%) <
3. Let G be a connected graph with mazimum degree § and let w : V(G) — [0,1] be a weight
function on G with w(G) =1 and w™* < m. Let X be a laminar collection of (1 — c)-skewed
star separations of G. Let (Tx,xx) be a tree decomposition corresponding to X. (Note that
since (1 — ¢) +w™®(5 + 02) < 3, it follows from Lemma 2.2 that T’ is an in-arborescence.) Let

v be the root of T% and let B = xx(v). Then § is connected and perpendicular to X.

Proof. Suppose (A, C, B) € X. Then, C'is a clique star, so |C| < §+6% and w(C) < w™(5+52).
First, we show that § is connected. Let eq,..., e, be the edges of Tx incident with v and let
Seys- -8, be the corresponding separations, where S, = (Ae,, Ce,, Be;) and w(A4e,) <1 —c.
Then, V(G) \ B = U;i~; Ae;.  Since A, ..., A, are pairwise disjoint and anticomplete, for
every connected component D of G\ 8 there exists 1 < ¢ < m such that D C A.,. Since
N(A,)Np C Ce, and C,; C N[K,] for some clique K., C C,,, it follows that the neighborhood
in B of every connected component of G \ 8 is contained in a unique connected component of
B. Therefore, since G is connected, 3 is connected.

Now we show that £ is perpendicular to X. Let (A,C, B) € X, let e = t;t5 be the edge of Tx
such that S, = (A, C, B), and let T} and T be the components of Tx \ e containing ¢; and to,
respectively. Up to symmetry between T1 and Ts, assume that A = (User, xx (¢)) \xx (£2). Then,
e = (t1,t2) in T%. Since v is the root of T%, it follows that v € V(T3), and thus S C Uen, xx (t).
Therefore, BN A =0, so 8 is perpendicular to X. |

Let G be a connected graph with maximum degree § and let X be a laminar collection of &-
skewed star separations of G, where & +w™(§ + §2) < % Let (Tx, xx) be a tree decomposition
corresponding to X. Let v € V(Tx) and § = xx(v) be as in Lemma 2.4; then 8 is connected
and perpendicular to X. We call 8 the central bag for Tx. Let eq,..., ey be the edges of Tx
incident with v where e; = v;v, and let S, , ..., Se,, be the corresponding separations of G, where
Se, = (Ae,, Ce,, Be,). Since Ce; = xx(v) N xx(v;), it follows that Ce, C xx(v) = B for every
ie{l,...,m}.
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For every C.,, let K., be a center of C¢,. We let ve, € K., chosen arbitrarily be the anchor
of Ce,. Forv e V(G), let I, C {1,...,m} be the set of indices 7 such that v is the anchor of C,.
Then, the weight function wx on B with respect to Tx is a function wx : 8 — [0, 1] such that
wx (v) = w(w) + 3 e w(Ae,) for all v € .

Lemma 2.5. Let § be a positive integer and let ,m € [0,1], with e +m(5 + 6%) < 4. Let G be
a connected graph with mazimum degree § and let w : V(G) — [0, 1] be a weight function on G
with w(G) =1 and w™* < m. Let X be a laminar collection of e-skewed star separations of G.
Let (Tx, xx) be a tree decomposition corresponding to X, let B be the central bag for Tx, and let
wx be the weight function on B with respect to Tx. Then, wx(8) = w(G) = 1. Furthermore, if
every clique K of G is the center of at most one star separation in X, then w§** < w™* + 2¢.

Proof. By the definition of wx, we have wx(8) = ) cswx(v) = ZUEV(G)\U;llAei w(v) +
S w(Ae) = w(G) = 1.

Suppose every clique K of G is the center of at most one star separation in X. Because the
maximum degree of G is d, every vertex v € V(G) is in at most 2° cliques of G. Tt follows that
every vertex v € V(@) is the anchor of at most 27 separations of X, so |I,| < 2. Since X is a
collection of e-skewed separations, w(A.,;) < ¢ for all i € I,. Therefore, w§ < w™* + 2%, W

The following lemma shows that if G does not have a (w, ¢, d)-balanced separator and X
is a laminar collection of star separations of GG, then the central bag for Tx does not have a
(wx, ¢, d — 2)-balanced separator.

Lemma 2.6. Let §,d be positive integers with d > 2, let ¢ € [%,1), and let m € [0,1], with
(1—c)+m(6+6%) < 3. Let G be a connected graph with mazimum degree 8, let w : V(G) — [0, 1]
be a weight function on G with w(G) = 1 and w™* < m, and suppose that G does not have a
(w, ¢, d)-balanced separator. Let X be a laminar collection of star separations of G. Then, the
central bag B for X exists (in particular, B is perpendicular to X ), wx(8) =1, and B does not
have a (wx,c,d — 2)-balanced separator.

Proof. Since X is a collection of star separations, it follows that C' is 2-bounded for every
(A,C,B) € X. Since G does not have a (w, ¢,2)-balanced separator Lemma 2.3 implies that
every separation in X is (1 — ¢)-skewed. Let (T'x, xx) be a tree decomposition corresponding to
X. Then, by Lemma 2.4, the central bag § for X exists, and by Lemma 2.5, wx(5) = 1.
Suppose that Y is a (wx, ¢, d — 2)-balanced separator of 5. We claim that Ng [Y]isa (w,c,d)-
balanced separator of G. Since Y is (d — 2)-bounded, it follows that NN, g [Y] is d-bounded. Let
Q1,...,Q¢ be the components of 5\ Y. Let t € V(Tx) be such that 8 = xx(¢). Let e1,...,em
be the edges of T'x incident with ¢, let S,,...,Se,, be the corresponding separations, where
Se; = (Ae;, Ce;, Be;) and w(Ag,) < 1—c¢, and let ¢, be the anchor of C¢, for i = 1,...,m. Then,
V(G)\B = UL, Ae; and A, is anticomplete to A, for i # j. Forv € V(G), let I, € {1,...,m}

be the set of all i such that v is the anchor of Ce,. Fori=1,..., ¢, let A; = 0, (Ujelv Aej>,

(1) Z; is anticomplete to Zj for i # j.

Suppose there is an edge e from Z; to Z;. Since @) is anticomplete to Q} and A; is anticom-
plete to A;, we may assume that e is from A, to Q;-, where A, C A;. Since N(A,, )N C Ce,,,
it follows that C, N Q; #0. Let v e Ce, N Q; and let P be a shortest path from c., to v
through 3. Since c.,,v € C¢, and Ce, is a clique star, it follows that P is of length at most 2.
Since ¢, € Q; and v € Qj, it follows that P goes through Y and thus P is of length exactly 2.
Let P = cc,-y-v, where y € Y. Then, v € N3[y] € N3[Y], a contradiction (since v € Q). This
proves (1).
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(2) If ce, € Y, then A, is anticomplete to Z; for j € {1,...,L}.

Suppose ¢,; € Y. Then, C,, € N3[Y]. Since N(Ac,) N C C,, it follows that A, is anticom-
plete to Q; for all j =1,...,¢. Therefore, A, is anticomplete to Z; for all j = 1,...,¢. This
proves (2).

Let Iy C {1,...,m} be the set of all i such that ¢., € Y. Then, V(G)\Ng[Y] = (Uz’ely Aei> U

<U§:1 Zj>. Suppose Z is a component of V(G) \Ng [Y]. It follows from (1) and (2) that either
Z C A, for some i € Iy, or Z C Z; for some j € {1,...,¢}. Since wx(Q;) < ¢, it follows

that w(Z;) < ¢ for all i = 1,...,£. Further, since every separation in X is (1 — ¢)-skewed and
¢ € [3,1), it follows that w(A.,) < (1 —¢) < ¢ for all i € Iy. Therefore, w(Z) < ¢, and NE[Y] is
a (w, ¢, d)-balanced separator of G, a contradiction. |

3. BALANCED SEPARATORS AND CLIQUE SEPARATIONS

In this section, we show that if G is a connected graph with no balanced separator, then there
exists a connected induced subgraph of G with no balanced separator and no clique cutset. The
central bag from Lemma 2.6 is the primary tool for finding such an induced subgraph.

A separation (A, C, B) of a graph G is a clique separation if C is a clique. A clique cutset C
is minimal if every ¢ € C has a neighbor in every component of G\ C. Note that in a connected
graph G, |C| > 1 for every minimal clique cutset C of G.

Lemma 3.1. Let G be a connected graph and let C be a collection of clique separations of G such
that C is a minimal clique cutset for all (A,C,B) € C and for every two distinct separations
(A1,C1, By), (A2,C9, By) € C, C1 # Co. Then, dim(C) = 1. In particular, C is laminar.

Proof. Let S1 = (A1,C1, B1) and Sy = (As, Co, Bs) be clique separations of G such that C; and
C5 are minimal clique cutsets of G. Since C] is a clique and As is anticomplete to Bs, either
CiNAy =0 or C; N By =0. We may assume that C; N Ay = (). Similarly, we may assume that
ConA;=0. If AyN Ay =0, then Ay C By and Ay C By, so S and Sy are non-crossing (since
Ay UCy C B1UC) and A1 UC) C BoUCCy). Therefore, we may assume that A; N As # (). Since
Cy # Cy, either C1 N By # () or Oy N By # (. Assume up to symmetry that C; N By # 0. Since
Ay C AU By and Aj is anticomplete to Bs, every component of A; is either a subset of Ay or a
subset of By. Since A;NAs # 0, there exists a connected component A of Ay such that A C As.
Let ¢ € C1 N By. Then, ¢ is anticomplete to A, contradicting that Cy is a minimal clique cutset.
It follows that S; and Sy are non-crossing. Therefore, dim(C) = 1. [ |

Let G be a graph and let C' be a minimal clique cutset of G. The minimal clique separation
S for C is defined as follows: S = (A, C, B), where B is a largest weight connected component
of G\C and A=V(G)\ (BUC).

Lemma 3.2. Let c € [%, 1). Let G be a graph, let w: V(G) — [0,1] be a weight function on G
with w(G) = 1, and suppose G has no (w,c,1)-balanced separator. Let C be a minimal clique
cutset of G. Then, the minimal clique separation S for C is unique and S is (1 — ¢)-skewed.

Proof. Since G has no (w,c,1)-balanced separator, C' is not a (w, ¢, 1)-balanced separator. It
follows that if B is a largest weight connected component of G \ C, then w(B) > ¢. Since
ce [%, 1) and w(G) = 1, the largest weight connected component of G \ C' is unique, and thus S
is unique. Since C is a 1-bounded set and G has no (w, ¢, 1)-balanced separator, it follows from
Lemma 2.3 that S is (1 — ¢)-skewed. |

In the following lemma, we prove that if k£ is the minimum size of a clique cutset in G and
C is the collection of all minimal clique separations of G for clique cutsets of size k, then the
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central bag 8 for C does not contain a clique cutset of size less than or equal to k. Note that a
minimum size clique cutset is a minimal clique cutset.

Lemma 3.3. Let § be a positive integer, let k be a nonnegative integer, let ¢ € [%, 1), and let
m € [0,1], with (1 —¢) + m(6 + 62) < 3. Let G be a connected graph with mazimum degree §
and let w : V(G) — [0,1] be a weight function on G with w(G) = 1 and w™* < m. Suppose
G does not have a (w, ¢, 1)-balanced separator, and suppose the smallest clique cutset in G has
size k. Let C be the collection of all minimal clique separations of G such that |C| =k for every
(A,C,B) € C. Then, C is laminar, and if (T¢, xc) is the tree decomposition of G corresponding
to C and B is the central bag for T, then B does not have a clique cutset of size less than or
equal to k.

Proof. Since G is connected, k > 1. Since G does not have a (w, ¢, 1)-balanced separator and
c € [%, 1), it follows that every minimal clique cutset of size k in G corresponds to exactly one
minimal clique separation in C. Therefore, by Lemma 3.1, C is laminar, and by Lemma 3.2, every
separation in C is (1 —c¢)-skewed. Let v € V(1) be such that 8 = x¢(v) is the central bag for T¢,
and suppose (5 has a clique cutset of size less than or equal to k. Let (A, Cy, By) be a minimal
clique separation of 3 such that |Cy| < k. Let vy, ..., v, be the vertices of T¢ adjacent to v, let
e; = vv; be the edge from v to v; for s =1,...,m, and let S,,, ..., S, be the clique separations
corresponding to e1,. .., en, where Se, = (D¢, Ce,, D¢?) as in Section 2. Since 8N xc(v;) = C,
and C¢, is a clique, it follows that Ce, N A, =0 or C., N B, =0 forall i =1,...,m. Let A be the
union of A, and all D¢ for ¢ such that C,, N B, = (@, and let B be the union of B, and all Dy
for i such that D¢ & A. For i # j, D{i and D:j are disjoint and anticomplete to each other. By
properties of the tree decomposition, fUJ;~; Dy* = V(G). Therefore, it follows that (A, C,, B)
is a clique separation of G with |C,| < k.

Since the smallest clique cutset in G has size k, it follows that |Cy,| = k. Let S = (X, C,,Y) be
the minimal clique separation for C), in G. It follows that S € C, so by Lemma 2.4, 5 C C, UY.
But since (A, Cy, B) is a clique separation of G, it follows that two components of G\ C), intersect
[, a contradiction. |

In the following theorem, we use Lemmas 2.6 and 3.3 to find an induced subgraph of G that
has no clique cutset and no balanced separator.

Theorem 3.4. Let §,d be positive integers, with d > 25 — 2. Let ¢ € [%7 1) and let m € [0,1],
with (1—c)+[m+(6—1)2°(1—¢)](6+6%) < 3. Let G be a connected graph with mazimum degree
0, let w: V(G) — [0,1] be a weight function on G with w(G) = 1 and w™* < m, and suppose G
has no (w, ¢, d)-balanced separator. Then, there exists a sequence (g, wp), (1, w1), ..., (g, wyr)
such that &' < 6, (o, wp) = (G,w) and for i € {0,...,d'}, the following hold:
e «; is a connected induced subgraph of G and w; is a weight function on «; such that
wi(o) = 1 and wP™ < w™> +§29(1 — ¢).
e «; has no (w;,c,d — 2i)-balanced separator.
o Ifi > 0 then oy is the central bag for a tree decomposition corresponding to a collection

of minimal clique separations of c;_1.
e ag does not have a clique cutset.

Proof. We may assume that G has a clique cutset, otherwise the result holds with § = 0. If
6 = 1, then G consists of a single edge, contradicting the assumption that G has a clique cutset.
Therefore, § > 2 and so d > 2. Since the maximum degree of G is § and every vertex in a minimal
clique cutset C' has a neighbor in every component of G \ C, it follows that every minimal clique
cutset of G has size at most § — 1. Let jg be the size of the smallest clique cutset of G. Note that
since G is connected, jo > 1. Since G has no (w, ¢, d)-balanced separator and d > 1, G has no
(w, ¢, 1)-balanced separator. Let C; be the collection of all minimal clique separations of G that
correspond to clique cutsets of size jo. By Lemma 3.2, every separation in C is (1—c)-skewed and
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for every two distinct separations (A1, Cy, B1), (Az2, Ca, By) € Cy, C1 # Cy. Therefore, by Lemma
3.1, Cy is laminar. Let (T¢,, xc,) be the tree decomposition of G corresponding to C;. By Lemma
2.6, the central bag for T, exists and does not have a (we, , ¢, d—2)-balanced separator. Let o be
the central bag for T, and let w; = we,. By Lemma 2.5, w1 (a1) = 1 and wiP™ < w™>42°(1—c).
Since (1 — ¢) + w™™(§ 4+ 02) < (1 — ¢) + [w™™* + (§ — 1)29(1 — ¢)](§ + 6%) < 3, by Lemma 2.4,
aq is connected. It follows from Lemma 3.3 that «q does not have a clique cutset of size less
than or equal to jo. If a; does not have a clique cutset, then & = 1 and the sequence ends.
Otherwise, for i € {2,...,d — 1}, we define (o, w;) inductively. For i € {2,...,6 — 1}, suppose
(aj—1,w;—1) are such that «;_j is the central bag for a tree decomposition corresponding to a
collection of minimal clique separations of «; 5 and w;_1 is the corresponding weight function
on a;_1, @;—1 is a connected induced subgraph of G with no (w;_1, ¢, d;—1)-balanced separator
for di_y =d—2(i — 1), wi_1(ci_1) = 1, and wP¥ < w™* 4 (i — 1)29(1 — ¢). Further, suppose
the smallest clique cutset in «;_; has size j;_1, where § > j;_1 > i.

Since § > i and d > 26—2, it follows that d—2(i—1) > 1. Since a;—1 has no (w;_1, ¢, d—2(i—1))-
balanced separator, it follows that «;_; has no (w;_1,¢, 1)-balanced separator. Let C; be the
collection of all minimal clique separations of «;_; that correspond to clique cutsets of size j;—1.
By Lemmas 3.2 and 3.1, C; is laminar. Since w®¥ < w™* 4 (j —1)2°(1 —¢) and i < 4, it follows
that (1 —¢) + WP (6 + 62) < (1 — ¢) + [w™™ + (§ — 1)2°(1 — ¢)](6 4+ 62) < 3. Since d > 26 — 2,
i < 6,and § > 2, it follows that d;_1 = d—2(i —1) > d—2(6d —2) > 2. Since a;—1 has no
(wi—1,¢,d—2(i—1))-balanced separator, d;—1 > 2 and (1 —c¢) +w¥(5+62) < 3, it follows from
Lemma 2.6 that the central bag for C; exists and does not have a (we;,, ¢, d;)-balanced separator,
where d; = di—1 —2=d —2i > 1. Let T¢, be the tree decomposition of «;_1 corresponding to
C;. Let o; be the central bag for T¢, and let w; = w¢, be the weight function on o; with respect
to T¢,. By Lemma 2.5, w;(a;) = 1 and w® < w8 4 29(1 — ¢) < w™* 4429(1 —¢).  Since
(1 —¢) + wiha(§ + §2) < %, by Lemma 2.4, «; is connected. If ; has no clique cutset, then
¢’ = 1 and the sequence ends. Otherwise, let j; be the size of the smallest clique cutset in ;. By
Lemma 3.3, it follows that j; > j;_1, so j; > 7 + 1. Since the maximum size of a minimal clique
cutset in G, and thus in «;, is § — 1, j; < . Thus, minimal clique cutsets used in this proof are
of sizes in {1,...,6—1}, so & < 4. Therefore, the sequence (aq,w1), ..., (ag, ws) is well-defined
and satisfies the theorem. Further, by construction, as does not have a clique cutset. |

We call ag the clique-free bag for G.

4. STAR CUTSETS AND FORCERS

Let G be a graph. A cutset C of G is a clique star cutset of G if C' is a clique star. Recall
that a star separation S = (A, C, B) is proper if C is a clique star cutset. In this section we
study properties of separations associated with clique star cutsets. In particular, we establish the
notion of a canonical separation that corresponds to a given clique, and show how to partition a
set of canonical clique separations into a bounded number of laminar collections; this is done in
Lemma 4.2. Then we list several lemmas showing that certains subgraphs are clique star cutset
forcers (Lemmas 4.4, 4.5, and 4.6, summarized in Lemma 4.7). Finally we show that repeatedly
taking central bags leads to a forcer-free subgraph (this is done in Theorem 4.11).

In the following lemma, we show that if two proper star separations cross, then their centers
are not anticomplete to each other.

Lemma 4.1. Let G be a theta-free graph with no clique cutset, let K1 and Ky be cliques of G,
and let S1 = (A1,Ch, B1) and Sy = (Ag, Co, Bs) be proper star separations such that Ch1 C N|[Kj]
and Cy C N[K3]. Suppose S1 and So cross. Then, K1 and Ky are not anticomplete to each
other.
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Proof. Suppose K is anticomplete to Ko. Then, K1 N N[Ks] = (), so K; is contained in a
connected component of G\ Cs. Similarly, K5 is contained in a connected component of G\ Cj.
Up to symmetry between A and B, assume that K3 C By and Ky C By. Then, C1 N Ay = ) and
CyN Ay = (. Since S1 and So cross, it follows that Ay N As # 0. Let A = A; N As. Suppose
C1 C By. Then, C is anticomplete to A. Because A C A; and A; is anticomplete to B, it
follows that Bj is anticomplete to A. Finally, since A1 NCy = (), it follows that A1\ A C Bs, so A
is anticomplete to A1 \ A. Therefore, A is anticomplete to G\ A, a contradiction, so C1 NCy # ().

Let C = C1NCy, let A’ be a connected component of A, and let C’ = Ng(A’). Suppose there
exists c1,co € O’ such that cico € E(G). Then, G contains a theta between ¢; and ¢z through
A’, K1, and Ko, a contradiction. Therefore, C’ is a clique. Since A1 N As is anticomplete to By
and By, it follows that N(A) C C, so N(A’) = C’. Then, A’ is a connected component of G\ C’,
so C' is a clique cutset of G, a contradiction. |

The next lemma shows that if Y is a set of cliques of size at most k, then there exists a
partition of Y into (k 4 0k) Z?;& (?) + 1 parts such that every two cliques in the same part are
anticomplete to each other.

Lemma 4.2. Let 6,k be positive integers with k < 6 and let f(k,d) = (k+ k) Z?;& (j) +1. Let
G be a graph with mazimum degree § and let Y = {K1,..., K} be a set of cliques of G of size at
most k. Then, there exists a partition (Y1, ..., Yyu.s)) of Y such that for every £ € {1,..., f(k, )}
and K;, K; €'Yy, K; is anticomplete to K;.

Proof. Let H be a graph with vertex set V(H) = {x1,..., 2}, and for z;,z; € V(H), i # j,
let x;2; € E(H) if and only if K; is not anticomplete to K; in G. Let z; € V(H) and let
zj € Ng(x;). Then, Kj is not anticomplete to K, so K;NN[K;] # (. Let v € K;NN[K;]. Then,
K; C N[v]. Since |N[K;]| < k+ 0k and |N[u]| < 6 for all u € V(G), it follows that K; is not

anticomplete to at most (k + dk) Z?;é (j) cliques of size at most k. Therefore, the maximum

degree of H is at most (k + dk) Z?;& ).

J
Since the maximum degree of H is at most (k + dk) Z;:é (j), it follows that the chromatic

number of H is at most (k + 0k) Z;’;& (j) +1=f(k,9). Let C:V(H) = {1,...,f(k,0)} be a
coloring of H and let Y1, ..., Yy 5) be the color classes of C. Then, (Y1,..., Y} ) is a partition
of Y such that if £ € {1,..., f(k,0)} and K;, K; € Yy, then K; is anticomplete to Kj. |

Let G be a graph with weight function w and let K be a nonempty clique of G. A canonical
star separation for K, denoted Sk, is defined as follows: Sk = (Ax,Ck, Br), where Bk is a
largest weight connected component of G\ N[K] if G\ N[K]| # () and Bx = 0 otherwise, Ck
is the union of K and the set of all vertices v € N[K] such that v has a neighbor in By, and
Arx =V(G)\ (Bk UCk). The following lemma shows that if G has no balanced separator, then
the canonical star separation is unique.

Lemma 4.3. Let c € [%, 1). Let G be a graph with no (w,c,2)-balanced separator and let K
be a nonempty clique of G. Then, the canonical star separation S for K is unique and Sk is
(1 — ¢)-skewed.

Proof. Since G has no (w, ¢, 2)-balanced separator, N[K] is not a (w,c,2)-balanced separator.
It follows that if Bg is a largest weight connected component of G \ N[K], then w(Bg) > c.
Since ¢ € [%, 1) and w(G) = 1, the largest weight connected component of G\ N[K] is unique,
and thus Sk is unique. Since Ck is a 2-bounded set and G has no (w, ¢, 2)-balanced separator,
it follows from Lemma 2.3 that Sk is (1 — ¢)-skewed. |

Let G be a graph. Let X,Y, Z be disjoint subsets of V(G). We say that X separates Y from
Z if there exist distinct components Cy,Cyz of G\ X such that Y C Cy and Z C Cyz. Recall
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that a wheel (H,z) of G consists of a hole H and a vertex x that has at least three neighbors
in H. A sector of (H,z) is a path P of H whose ends are adjacent to x, and such that x is
anticomplete to P* (recall that P* is the set of interior vertices of P). A sector P is a long
sector if P* is nonempty. We now define several types of wheels that we will need. They are
illustrated in Figure 2.

A wheel (H,z) is a universal wheel if z is complete to H. A wheel (H,z) is a twin wheel if
N(z)N H induces a path of length 2. If (H, z) is a twin wheel and z1-x9-z3 is the path of length
2 induced by N(z) N H, we say x2 is the clone of x in H. Note that if (H,z) is a twin wheel and
xg is the clone of x in H, then ((H \ {z2}) U {z},x2) is also a twin wheel. Suppose (H,z) is a
twin wheel contained in a graph G and 9 is the clone of x in H. We say (H, x) is x-rich if there
is a path in G from z to V(H) \ N[z] containing no neighbors of xs other than x, and x2-rich
if there is a path in G from z5 to V(H) \ Nz] containing no neighbors of = other than z5. We
say (H,x) is x-poor if it is not z-rich, and zg9-poor if it is not zo-rich. We say that (H,z,xs) is
a terminal twin wheel if (H,z) is a twin wheel and x5 is the clone of z in H, and (H,x) is either
x-poor or xe-poor. A wheel (H,z) is a short pyramid if |[N(z) N H| = 3 and z has exactly one
pair of adjacent neighbors in H. A wheel is proper if it is not a twin wheel or a short pyramid.
If (H,z) is a short pyramid ( resp. proper wheel), then z is said to be the center of a short
pyramid ( resp. proper wheel) in H.

FIGURE 2. Universal wheel, twin wheel, and short pyramid

The following three lemmas show that proper wheels and short pyramids generate clique star
cutsets.

Lemma 4.4 ([3], [12]). Let G be a Cy-free odd-signable graph that contains a proper wheel (H, x)
that is not a universal wheel. Let x1 and x4 be the endpoints of a long sector Q of (H,x). Let W
be the set of all vertices h in H N N(x) such that the subpath of H \ {x1} from x2 to h contains
an even number of neighbors of x, and let Z = H \ (Q U N(x)). Let N' = N(x) \ W. Then,
N'U{z} is a cutset of G that separates Q* from W U Z.

Lemma 4.5 ([11]). Let G be a Cy-free odd-signable graph that contains a universal wheel (H,x).
If G = Nlz| then for every two non-adjacent vertices a and b of H, N|x]\ {a,b} is a cutset of G
that separates a and b. If G\ Nx] # 0 then for every connected component C of G\ N|x], there
exists a € H such that a has no neighbor in H, i.e. N[z]\ {a} is a cutset of G that separates a
from C.

Lemma 4.6. ([8]) Let G be a Cy-free odd-signable graph that contains a wheel (H,x) that is
a short pyramid. Let x1,x2 and y be the neighbors of x in H such that xixo is an edge. For
i € {1,2} let H; be the sector of (H,x) with ends y,x;. Then, Hy and Hs are long sectors of
(H,z), and S = N(z) UN(y) is a cutset of G that separates Hy \ S from Ha \ S.

Let G be a graph. A forcer F' = (H,K) in G consists of a hole H and a clique K such that
one of the following holds:

e (H,z) is a proper wheel of G and K = {z}.
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e (H,z) is a short pyramid of G, N(z) N H = {x1,x2,y} where z1z2 is an edge, and
K = {x,y}.
o (H,x,x2) 1s a terminal twin wheel of G, (H,x) is xg-poor, and K = {x}.
If F = (H,K) is a forcer, we say that K is the center of F. The forcer described in the first
bullet is referred to as a proper wheel forcer, the one in the second bullet as a short pyramid
forcer, and the one in the third bullet as a twin wheel forcer. A forcer F = (H, K) is strong if it
is not a twin wheel forcer. The following lemma shows that forcers generate clique star cutsets.

Lemma 4.7. Let G be a Cy-free odd-signable graph and let F' = (H, K) be a forcer in G. Then,
K is the center of a clique star cutset in G.

Proof. If (H,x) is a proper wheel that is not a universal wheel, then by Lemma 4.4, x together
with some of its neighbors is a clique star cutset in G. If (H,z) is a universal wheel, then by
Lemma 4.5, x together with some of its neighbors is a clique star cutset in G. If (H,z) is a
short pyramid and y is the common node of the two long sectors of (H,x), then by Lemma 4.6,
x,y and its neighbors form a clique star cutset in G. It follows that if ' = (H, K) is a strong
forcer, then the result holds. Therefore, assume F = (H, K) is a twin wheel forcer. It follows
that there exist x € V(G),z9 € V(H) such that (H,x,z2) is a terminal twin wheel, (H,z) is
xo-poor, and K = {z}. Then, it follows that N[K]\ z2 is a clique star cutset that separates z
from H \ N[K]. [ |

The following lemma shows that if F = (H, K) is a forcer and Sk = (Ak,Ck, Bg) is the
canonical star separation for K, then Ax N H # .

Lemma 4.8. Let G be a Cy-free odd-signable graph. Let F = (H,K) be a forcer in G and let
Sk = (Ak,Ck, Bk) be a canonical star separation for K. Then, Ax N H # (. Furthermore, if
force [%, 1), G has no (w, ¢, 2)-balanced separator, then Sk is a proper star separation.

Proof. Let (H,z) be the wheel such that F = (H, K). Suppose first that (H,z) is a wheel such
that there exist two long sectors S1, S2 of (H,z). Lemmas 4.4 and 4.6 imply that N[K] separates
S1\ N[K] from Sy \ N[K]. It follows that for some i € {1,2}, S; N Ax # (), and so H N Ax # 0.

Next, suppose that (H,z) is a proper wheel with exactly one long sector S. If Bx N H = (),
then S* N Ak # (), so we may assume that S* C Bg. By Lemma 4.4, for some a € N(x) N H, a
has no neighbor in Bg. Therefore, a € A and Ax N H # 0.

Now, suppose that (H, x) is a universal wheel. We may assume that G # N[K] (since otherwise
Bi =0 and Ag = H). Then, it follows from Lemma 4.5 that for every component C of G\ N[K],
there exists a € H such that a has no neighbor in C. In particular, there exists a € H such that
a has no neighbor in Bg. Therefore, a € Ci and a € Bk, so a € Ax and HN Ax # 0.

Finally, suppose that (H,z) is a twin wheel, and let z9 be the clone of  in H. Then,
(H,z,z2) is a terminal twin wheel, (H,z) is xe-poor, and K = {z}. Consider G \ N[K]. If
(H \ {z1,72,23}) N Bx = 0, then Ax N H # 0, so assume (H \ {z1,x2,23}) C Bg. Since
(H,z) is xe-poor, it follows that zo does not have a neighbor in Bg. Therefore, zo € Ag, and
Axg N H # 0.

Now, suppose that ¢ € [%, 1) and G has no (w, ¢, 2)-balanced separator. Then, G\ N[K] # 0,
and thus Bg # (0. Since Ax # (), it follows that Sk is proper. |

Let G’ be an induced subgraph of G. A forcer F' = (H, K) is active for G' it H C G’ and
KCd@.

Lemma 4.9. Let § be a positive integer, ¢ € [1,1), and m € [0, 1], with (1—c)+m(5+6%) < 3.
Let G be a connected Cy-free odd-signable graph with mazimum degree §, let w : V(G) — [0,1] be
a weight function on G with w(G) =1 and W™ < m, and suppose G does not have a (w,c,2)-
balanced separator. Let F be a set of forcers, let Y = {K : (H,K) € F} be the set of centers
of F, and let C be the collection of canonical star separations for centers in Y. Suppose C is
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laminar and let (Te, xc) be the tree decomposition of G corresponding to C. Then, the central bag
B for C exists and no forcer in F is active for 3.

Proof. By Lemma 4.3, every separation in C is (1 — ¢)-skewed. By Lemma 2.4, the central bag
B for C exists ( in particular, 8 is perpendicular to C). Suppose F' = (H, K) is a forcer in F and
let Sk = (Ak, Ck, Bk) be the canonical star separation for K. Then, since f§ is perpendicular
toC, BN Ak = 0, and hence 8 C Ckx U Bg. By Lemma 4.8, it follows that H N A # 0, so
H ¢ B and F is not active for 5. |

The following theorem generalizes the results of Lemma 4.9. Recall the definition of clique-
free bag from the end of Section 3: the clique-free bag of a graph G is an induced subgraph «
of G, formed by taking repeated central bags, such that « does not have a clique cutset. (See
Theorem 3.4 for details).

Theorem 4.10. Let 6,d be positive integers, let k be a nonnegative integer, let f(2,5) =
20+ 1)+ 1, let ¢ € [5,1), and let m € [0,1], with d > 2f(2,0)5 + 25, and (1 — ¢) +
[m+ f(2, §)629(1 — 0] (6+62) < % Let G be a connected Cy-free odd-signable graph with maxi-
mum degree 0, let w : V(G) — [0, 1] be a weight function on G with w(G) =1 and w™ < m, and
suppose that G does not have a (w, ¢, d)-balanced separator. Let F be a set of forcers of G. Then,
there exists a sequence (B1,w1), ..., (Baks1, Wokr1), where Bogr1 C Por C ... C B C By = G,
k< f(2,9), and fori € {1,...,2k + 1}, w; is a weight function on B;, with w;(3;) = 1, such
that:
o fori€{0,....k}, Boit1 is the clique-free bag for Ba;,
o fori € {0,...,k— 1}, Boiyo is the central bag for a tree decomposition corresponding to
a laminar collection of proper star separations of Bai+1 with clique centers of size 1 or 2
(of size 1 if F does not contain a short pyramid forcer),
o fori€{0,...,k}, Bait1 is connected and does not have a (wait1, ¢, d2iy1)-balanced sepa-
rator, for doiy1 =d — 216 —2(6 — 1), and fori € {0,...,k — 1}, Boi12 is connected and
does not have a (wait2, ¢, dai1+2)-balanced separator for dejro =d — 2(i 4+ 1)0,
o WM, < WM 4 f(2,6)02%(1 —¢) + (5 — 1)2°(1 — ¢),
e no forcer in F is active for Bogi1,
o [opy1 has no clique cutset.

Proof. Let Y = {K : (H,K) € F} be the set of centers of forcers in F. For all K € Y,
|K| € {1,2}, and if (H, K) is not a short pyramid forcer, then |K| = 1. Let (Y1,...,Y}2s))
be a partition of ¥ as in Lemma 4.2 and let Fi,...,Fros) be a partition of F such that
Y;={K:(H,K)eF}, forie{l,...,f(2,0)}. Let 81 be the clique-free bag for G and let w;
be the weight function on 81 from Theorem 3.4. By Theorem 3.4, 51 has no clique cutset and no
(w1, ¢,d — 2(6 — 1))-balanced separator, where wy(81) = 1 and W™ < w™ + (§ — 1)2°(1 — ¢).
If no forcer in F is active for 81, then £ = 0, and the sequence ends.

Otherwise, assume that there is a forcer in Fy active for 81. Let X7 = {Sk : K € Y1} be the
set of canonical star separations of 1 for centers in Y;. Since 5 has no (wy,c,d —2(§ — 1))-
balanced separator and d —2(6 — 1) > 2, by Lemma 4.3, every clique K appears as a center of at
most one separation in X; and every separation in X is (1 — ¢)-skewed. Since f; has no clique
cutset and cliques in Y7 are pairwise anticomplete, and by Lemma 4.8 the separations in X; are
all proper, it follows from Lemma 4.1 that X7 is laminar. Since X is a laminar collection of star
separations of 81 and (1 — ¢) + wi™(J + 6%) < (1 —¢) + [w™™ + (§ — 1)29(1 — )] (6 + 6%) < 3,
by Lemma 2.6, the central bag /3 for X; exists and B2 does not have a (wx,, ¢,d — 26)-balanced
separator. Let wy = wx, be the weight function on B> with respect to Tx,, where T, is
the tree decomposition of f; corresponding to X;. By Lemma 2.5, wa(f2) = 1 and wi?* <
WP 4 20(1 — ¢) < W™ 4 §29(1 — ¢). By Lemma 4.9, it follows that no forcer in JFj is active
for B3. By Lemma 2.4, 35 is connected.
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For ¢ > 0, we define (ﬂ21+1,w2z‘+1) and (52¢+2,w2i+2) inductively. For i € {1, .. .,f(2,6)},
suppose (B2i,ws;) are such that fB; is connected and has no (ws;, ¢, d2;)-balanced separator for
do; = d — 2i6 > 1, wo;(f2;) = 1, and wk™* < w™* 4 §§29(1 — ¢). Further, suppose there exists
I C{1,...,f(2,0)} such that i < |[;| < f(2,0), no forcer in |J,.; F; is active for f2;, and for
all j € {1,..., f(2,0)} \ I, there is a forcer in F; active for Ba;.

Since d > 2f(2,6)0 + 26 and i < f(2,9), it follows that do; = d — 2i6 > 26 > 2§ — 2. Also,
since fBg; has no (wa;, ¢, da;)-balanced separator and (1 — ¢) + [w™ + §29(1 — ¢)](6 + §2) <
(1 —¢) + [w™> + £(2,0)62°(1 — ¢)](§ + 6%) < 3, the conditions of Theorem 3.4 for By are
satisfied. Let [2;+1 be the clique-free bag for (y; and let w11 be the weight function on
Ba2iy1 from Theorem 3.4. By Theorem 3.4, f9;11 does not have a (wg;r1,c,do; — 2(6 — 1))-
balanced separator, where wa;11(82i+1) = 1 and wy¥ < wi™ + (6 — 1)25(1 —c) < wmex 4
i629(1 — ¢) + (6 — 1)2°(1 — ¢). Let daiy1 = do; — 2(6 — 1). If no forcer in F is active for
B2i+1, then k = i, and the sequence ends. Otherwise, let o; € {1,..., f(2,0)} \ I; be such
that there is a forcer in F,, that is active for fo;+1. Let X,, = {Sk : K € Y,,} be the
set of canonical star separations of 241 for centers in Y;,. Since (2,11 has no (wait1, ¢, dit1)-
balanced separator, by Lemma 4.3, every clique K appears as the center of at most one separation
in X,, and every separation in X,, is (1 — ¢)-skewed. Since f2;41 has no clique cutset and
cliques in Y, are pairwise anticomplete and by Lemma 4.8 the separations in Y, are all proper,
it follows from Lemma 4.1 that X,, is laminar. Finally, do;y; > 2 and, since i < f(2,0),
(1—c) + Wi (6 +02) < (1—c¢) + [w™™ + f(2, §)629(1 — o] (646%) < %, so by Lemma 2.6, the
central bag 82,12 for X,, exists and 82,12 does not have a (anle? daj12)-balanced separator,
where daj1o = dojr1 — 2 = d —2(i + 1)d. Let woiqe = wx, be the weight function on S22
with respect to T, , where T, is the tree decomposition of Bai41 corresponding to X,,. By
Lemma 2.5, woit2(B2ite) = 1 and wiity < wiiyy + 20(1 — ¢) < w™™ + (i +1)02°(1 — ¢). By
Lemma 2.4, 8219 is connected. Let I; 11 be the set of all j € {1,..., f(2,0)} such that no forcer
in Fj is active for f;12. Since B2;42 C B2; and no forcer in Uje I Fj is active for (y;, it follows
that no forcer in Uje I, Fj is active for Ba;4o. Further, since 82,42 is the central bag for a tree
decomposition corresponding to Xy, it follows from Lemma 4.9 that no forcer in F,, is active
for Bo;1a. Therefore, |I11| > i+ 1, and (Ba;42, wat+2) satisfies the conditions of the induction.
It follows that the sequence (81, w1), ..., (Bokr1, wogt1) is well-defined, k < f(2,0), Bogs1 does
not have a clique cutset, and no forcer in F is active for Bog1. [ |

je€l;

We call (81,w1), ..., (Bak+1, wakr1) as in Theorem 4.10 an F-decomposition of G, and Bagy1
the terminal bag for (B1,w1),..., (Bak+1, Wakt1). A graph G is clean if G does not contain a
strong forcer. The following theorem shows that if F is the collection of all strong forcers of G
and ok is the terminal bag for a F-decomposition, then fa41 is clean.

Theorem 4.11. Let §,d be positive integers, let f(2,6) = 2(6 +1)>+ 1, let ¢ € [3,1), and let
m € [0,1], with d > 2f(2,8)5 + 25, and (1 —¢) + [m+ f(2,0)62°(1 —¢)] (6 +6%) < 3. Let G be
a connected Cy-free odd-signable graph with maximum degree 0, let w : V(G) — [0,1] be a weight
function on G with w(G) =1 and W™ < m, and suppose G does not have a (w, ¢, d)-balanced
separator. Let F be the set of all strong forcers of G, and let (B1,w1),. .., (Bog+1, Wokt+1) be an
F-decomposition. Then, the terminal bag Bogy1 s clean.

Proof. Suppose f3a1,+1 contains a strong forcer F' = (H, K). Then, F is a strong forcer in G, so
F e F. By Theorem 4.10, it follows that F' is not active for Sox11, a contradiction. |

5. TWIN WHEELS IN CLEAN GRAPHS

In this section we study twin wheels. It turns out that not all twin wheels are clique star
cutset forcers, but some of them (“terminal” ones) are. The goal of this section is to show that
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the central bag for the collection of all twin wheel forcers of a clean graph G does not contain a
terminal twin wheel.

Let G be a clean C)-free odd-signable graph. The following two lemmas describe the behavior
of twin wheels in G. Lemma 5.1 follows from the proof of Lemma 8.4 in [12] and Lemma 5.2
follows from the proof of Theorem 1.5 in [12]. For completeness we include their proofs.

Lemma 5.1. ([12]) Let G be a clean Cy-free odd-signable graph. Let (H,x) be a twin wheel
contained in G. Let x1-xo-x3 be the subpath of H such that N(x) N H = {x1,x2,x3}. Suppose
there exists a vertex u € V(G) such that N(u) N (H U z) = {x,z1, 2]}, where x| is the neighbor
of x1 in H \ x2. Then, (H,x) is xo-poor.

Proof. Let x1-pi-...-pgp-x3 be the long sector of (H,x), and let P = pj-...-pg. Suppose that
(H,x) is zo-rich. Then there exists a path @ = ¢1-...-¢ in G\ (N[z]\ {z2}) from x5 to P. We
may assume that @ is chosen to be the minimal such path. Then, ¢; has a neighbor in P, 1 and
x3 are the only nodes of H that may have a neighbor in @ \ ¢;, @2 is adjacent to ¢, and xo does
not have a neighbor in @ \ ¢1. Let p; (resp. py) be the neighbor of ¢; in P with lowest (resp.
highest) index.

(1) Both w and x1 have a neighbor in Q.

Nuw)NnQ # 0, else QU {p1,...,pi,x1,T2,u,x} induces a proper wheel with center x1, con-
tradicting the assumption that G is clean. Now suppose that N(x1) N Q = (. Let H' be the
hole induced by @ U {p1,...,pi,x1,x2}. Since G is clean, (H',u) is a twin wheel, and hence
i=1and N(u)NQ = {q}. Since {u,x,x3,q} cannot induce a C4, x3q; is not an edge. Since
{u,z, 22,1} cannot induce a Cy, I > 1. Suppose ¢/ = 1. If N(x3) N Q = 0, then Q U H in-
duces a theta. So N(x3) N Q # 0. Let ¢ be the node of N(x3) N @Q with highest index. Then

{qs,---q,p1,71, 7,23, u} induces a proper wheel with center u, a contradiction. So ¢’ > 1. But
then {q;,py,---, Pk, U, T1,T2, 3,2} induces a proper wheel with center x, a contradiction. This
proves (1).

(2) N(z3) N Q = 0.

Suppose x3 has a neighbor in . By (1), let g5 (resp. g¢) be the node of @ with the lowest
index adjacent to w1 (resp. u). If s < ¢, then {q,...,q,u, z, 71,22} induces a proper wheel
with center 1. So s > ¢. In particular, ¢ < [ and s > 1. If x3 has a neighbor in @ \ ¢;, then
(Q\ q) UPU{u,x,z3} contains a theta between u and 3. So x3 has no neighbor in @ \ ¢,
and hence N(xz3) N Q = {q;}. Let H' be the hole induced by Q U {z2,z3}. Since H' Uz cannot
induce a theta, (H',x1) is a wheel. Since s > 1, (H',z1) is a proper wheel or a short pyramid,
contradicting that G is clean. This proves (2).

By (1), let g5 (resp. g¢) be the node of ) with lowest index adjacent to z; (resp. u). If s =1
then {qi1,...,q,x,x2,21,u} induces a proper wheel with center x;, a contradiction. So s > 1.
By (2), QU {py,...,pk, x2, 3} induces a hole H'. But then, since s > 1, either H' Uz induces
a theta, or (H',z1) is a proper wheel or a short pyramid, a contradiction.

|

Lemma 5.2. ([12]) Let G be a clean Cy-free odd-signable graph. Let (H,x) be a twin wheel
contained in G, let N(x) N H = {x1,m2, 23}, where xo is the clone of x in H, and suppose
(H,z,xz2) is not a terminal twin wheel. Then, there exists a path P =pi-...-py in G\ (H Ux)
such that N(p1) N (HUz) = {z}, N(px) N (H Uz) is an edge of H \ {x1,x2,23}, and P* is
anticomplete to H U x. Similarly, there exists a path Q = qi-...-¢; in G\ (H Ux) such that
N(qi)N(HUz) ={x2}, N(gj) N (HUx) is an edge of H \ {x1,x2, 3}, and Q* is anticomplete
to HU .
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Proof. Since (H,x) is not terminal, it follows that (H, x) is z-rich and zs-rich. Let z1-¢;-. . .-q-x3
be the long sector of (H,x), and let Q be the path ¢i-...-¢;. Then by Lemma 5.1, there does
not exist a node u such that N(u) N (H Uz) = {x,z1,q1}, and by symmetry, there does not
exist a node w such that N(u) N (H Uz) = {z,x3,q}. Since (H,x) is z-rich, there exists a path
P =pi-...-p; in G\ (N[x2] \ {z}) from z to Q. We may assume that P is chosen to be the
minimal such path. Then, p; has a neighbor in @, x1 and x3 are the only nodes of H that may
have a neighbor in P\ pg, and N(p1) N (H Ux) = {x}. Let ¢; (resp. gi) be the neighbor of py
in @ with lowest (resp. highest) index.

(1) {z1,z3} is anticomplete to P.

Suppose that one of x1,z3 has a neighbor in P. Since {2, z2,x3, pr} does not induce a Cly,
not both z1,x3 are adjacent to py. Since H U (P \ pi) does not contain a theta between x; and
x3, it follows that at least one of xy, 3 is anticomplete to P\ pg. It follows (exchanging the roles
of x1, x3 if necessary) that we may assume that z3 has a neighbor in P, and 21 is anticomplete
to P \Pk

Since {1, p1, z3, x2} does not induce a Cy, it follows that if £ = 1, then 1 is non-adjacent to
pi. Consequently, PU{z1,,q1,...,q} induces a hole H'. Since H' Uxg does not induce a theta
or a strong forcer, x3 is adjacent to p; and N(x3) N H' C N(p1) N H'. If N(z3) N H' = {z,p1},
then H' U {z2,z3} induces a proper wheel with center x. So N(z3) N H' = N(p1) N H'.

Let H” be the hole induced by (H' \ {z,p1}) U{x2,23}. Then (H”,z) is a twin wheel, and
N(p1)N(H"Uzx) = {x, x5, x4}, where 2% is the neighbor of x3 in H” \ z. Since (H, ) is xg-rich,
there is a path R in G \ (N[z] \ z2) from z5 to Q. It follows R U {g;,...,q} contains a path
showing that (H”,z) is xo-rich. But Lemma 5.1 (with p; playing the role of u) implies that
(H”,x) is wo-poor, a contradiction. This proves (1).

If k£ =1 then (since by (1) {x1, 23} is anticomplete to P) (H \ z2) U P Uz induces a theta or a
strong forcer. So k > 1. If i = ¢ or p;p; is not an edge, then the graph induced by (H \z2)UPUzx
contains a theta between x and either py (when ¢ # ¢') or p; (when ¢ = 4’). So p;py is an edge.

By symmetry between x and x5, the result follows..
|

We now use 5.2 to show that twin wheel forcers can be used in a way similar to strong forcers.

Theorem 5.3. Let §,d be positive integers, let f(2,8) = 2(6+1)2+1, let c € [%, 1), and let m €
[0, 1], with d > 2f(2,0)6+26 and (1—c)+[m+f(2,6)52°(1—c)](6+62) < L. Let G be a connected
clean Cy-free odd-signable graph with mazimum degree §, let w : V(G) — [0,1] be a weight
function on G with w(G) =1 and w™* < m, and suppose G does not have a (w, ¢, d)-balanced
separator. Let T be the set of all twin wheel forcers in G and let (81, w1), ..., (Bogs1, Wopt1) be
a T -decomposition of G. Then, Pop+1 does not contain a terminal twin wheel.

Proof. Let fy = G.

(1) For i € {1,...,2k + 1}, if (H,z,x2) is a terminal twin wheel in fB;, then (H,z,x2) is a
terminal twin wheel in B;_1.

Let (H,z,x2) be a terminal wheel in 8;, with N(z) NH = {z1,x2,z3}, and suppose (H,z, z3)
is not a terminal wheel in ;1. Since (H, z,z2) is not a terminal twin wheel in §;_1, by Lemma
5.2 there exists a path P = pi-...-py, in B;_1 such that N(p1)N(HUz) = {z2}, N(pm)N(HUz)
is an edge of H \ {z1,x2,z3}, and P* is anticomplete to H U x. Similarly, there exists a path
Q = qi-...-q in Bi_1 such that N(g1)N(HUz) = {x}, N(¢:)N(HUz) is an edge of H\{x1, x2, 23},
and Q* is anticomplete to H Uz. Since (H, z,x2) is a terminal twin wheel in §;, we may assume
that V(P) € V(8;). Ifiis odd, then by the definition of 7-decomposition, §; is the clique-free



INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS 1. 19

bag of 8;_1. By the definition of the clique-free bag, it follows that 3; is an induced subgraph of
Bi—1 obtained by decomposing 5;_1 with clique cutsets. Since H Uz U P does not have a clique
cutset, it follows that H Uz U P is contained in (;, a contradiction. Therefore, i is even, and so by
the definition of 7-decomposition, §; is the central bag for a tree decomposition corresponding
to a laminar collection of proper star separations in 5;_1. Let pg = x2 and let p,,11 be a neighbor
of pr, in H. Let £ € {1,...,m} and j € {1,...,m + 1} be such that ¢ < j, p;_1,p; € B;, and
ps & Bi for £ < s < j. It follows that p,—; and p; have neighbors in a connected component of
Bi—1 \ Bi. Since f; is the central bag for a tree decomposition corresponding to a collection of
star separations in ;_1, it follows that p,_; and p; are in a star cutset of 3;_1. In particular,
there exists v € f3; such that py_1,p; € N[v]. Since P* is anticomplete to H U z, it follows that
ve H.

Since there does not exist a path from x9 to H \ {x1, 22,23} in §; not containing a neighbor
of z, it follows that v is adjacent to x, and thus py_1,p; # v. Let N(py,) N (H Ux) = {h1, ha},
where hy is on the path from z7 to hg through H \ z2. We may assume that if v is adjacent
to one of hi, ho, then v is adjacent to hy and hy = pm+1. Let R be the path from hy to x
not containing ho in H. Consider the hole H' given by x1-T2-p1-P-pm-hi-R-z1. Then, v has
two non-adjacent neighbors py—; and p; in H'. Since G is clean and theta-free, it follows that
(H',v) is a twin wheel. Since v is adjacent to both py_; and p;, and p,_1p; is not an edge, and
(H',v) is a twin wheel, either all the neighbors of v in H' are contained in RU z2, or they are all
contained in P U {po, pm+1}. Since v has at least 2 neighbors in P U {pg, pm+1}, it follows that
either p; = h1 = ppm+1, Pe—1 = po, and N(v) N (H U P) = {x1,x2, h1}, where hiz; is an edge and
v has no other neighbors in H because G is clean; or j = £+ 1 and N(v) N H' = {py—1,pe, pe+1}-
In the first case, ho € H\ N[v] and py,he is an edge, so P and H \ N[v] are in the same connected
component of 8;_1 \ N[v]. Since H C 3;, it follows that P C ;, a contradiction. Therefore,
the second case holds. Now, consider the hole H” given by x1-29-pi-P-ps_1-v-p;-P-pm-h1-R-z1.
Then, N(xz) N H"” = {x1, 29,0}, and since G is clean, (H”, x) is not a short pyramid. Therefore,
Pe—1 = T2 = Po.

Let S be the path from hg to z3 in H \ {h1}. Since N(v) N H" = {po,p1,p2}, it follows
that v has no neighbors in P\ {p1,p2}. Further, since v has three neighbors x2,p1,pe in the
hole given by xo-23-S-ho-p-P-p1-x2, it follows that v has no neighbors in S. Therefore, let
H" be the hole given by z-v-pe-P-pp,-ho-S-x3-x. Then, (H" x2) is a twin wheel, where x is
the clone of 9 in H"”. Furthermore, there is a path contained in Q U (P \ p1) U (H \ x2) from
x to H" \ {v,z,z3} containing no neighbor of zy other than x, so (H" xz3) is a-rich. But
N(p1) N (H" Uxzg) = {p2,v, 2}, contradicting Lemma 5.1. This proves (1).

Suppose that k41 contains a terminal twin wheel (H, z, z2). By (1), it follows that (H, z, x2)
is a terminal twin wheel in G, so we may assume that F' = (H, {z}) is a twin wheel forcer in G.
Then, by Theorem 4.10, F' is not active for for41, a contradiction. Therefore, fo11 does not
contain a terminal twin wheel. |

The following lemma shows that if G is a graph with no balanced separator, no clique cutset,
and no forcer, then G has no star cutset.
Lemma 5.4. Let ¢ € [%,1). Let G be a theta-free graph, let w : V(G) — [0,1] be a weight
function on G with w(G) = 1 and w™™* < m, and suppose that G has no (w,c,1)-balanced
separator, G has no clique cutset, and G has no forcer. Then G has no star cutset.

Proof. Suppose G has a star cutset C’ centered at v and let (A’,C’, B') be a star separation
such that A’ B’ # (. Let (A,C, B) be the canonical star separation for {v}. Since G has no
(w, ¢, 1)-balanced separator, G \ N[v] # ), and therefore B # ). Without loss of generality let
B C B'. Then, A’ C A, and therefore A # ().
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Let A* be a component of A. Since G does not have a clique cutset, it follows that there exist
ui, ug € N(A*) such that ujug € E(G). Let P be a path from wu; to ug through B and let @ be
a shortest path from u; to ug through A*. Let H be the hole given by u1-Q-us-P-ui. Then, v
has two non-adjacent neighbors in H. Because G is clean and theta-free, it follows that (H,v) is
not a proper wheel or a short pyramid. Therefore, (H,v) is a twin wheel, and since by definition
of canonical star separation v has no neighbor in B, Q = ui-a-us for some vertex a € A*, and
a is the clone of v in H. Since every path from a to B intersects N[v], it follows that (H,v) is
a-poor, so (H,v,a) is a terminal twin wheel in G, a contradiction. |

6. GRAPHS WITH NO STAR CUTSET

In this section, we show that if G is a Cy-free odd-signable graph with bounded degree and no
star cutset, then G has bounded treewidth. A partition (X7, X2) of the vertex set of a graph G
is a 2-join if for i = 1,2 there exist disjoint nonempty A;, B; C X; satisfying the following:

e A, is complete to Ay, By is complete to Bo, and there are no other edges between X

and Xo;
o for i :’172, G[X;] contains a path with one end in A;, one end in B; and interior in

X; \ (4; U B;) and G[X;] is not a path.

We say that (X3, Xs, A1, B1, Ag, Bs) is a split of the 2-join (X1, X2). A long pyramid is a
pyramid all of whose three paths are of length at least 2. An extended nontrivial basic graph R
is defined as follows:

V(R) = V(L) U{z,y}.

L 1s the line graph of a tree T

x and y are adjacent, and {z,y} NV (L) = 0.

L contains at least two maximal cliques of size at least 3.

The vertices of L corresponding to the edges incident with vertices of degree 1 in T are

called leaf vertices. Each leaf vertex of L is adjacent to exactly one of {z,y} and no other

vertex of L is adjacent to a vertex of {z,y}.
e These are the only edges in R.

We observe that in order to prove the decomposition theorem for Cy-free odd-signable graphs,
extended nontrivial basic graphs are defined in a more complicated way in [12], but for what we
want to prove here the above definition suffices. Let B* be the class of graphs that consists of
cliques, holes, long pyramids and extended nontrivial basic graphs.

Theorem 6.1. ([12]) A Cy-free odd-signable graph either belongs to B* or it has a star cutset or
a 2-join.

Let G be a graph and (X1, X, A1, B1, Ag, Ba) a split of a 2-join of G. The blocks of decomposi-
tion of G with respect to (X7, Xo) are graphs G; and G defined as follows. Block G is obtained
from G[X1] by adding a marker path Py = as-...-by of length 3 such that as is complete to Aq,
bs is complete to By, and these are the only edges between P» and X7. Block G is obtained
analogously from G[X3] by adding a marker path P, = aj-...-b;.

The following lemma follows from the proofs of Lemmas 3.5 and 3.7 in [22].

Lemma 6.2. ([22]) Let G be a Cy-free graph with no star cutset, let (X1, X2) be a 2-join of G,

and Gy and Gy the corresponding blocks of decomposition. Then G1 and Ga do not have star
cutsets.

Below, we prove that if G is a Cy-free odd-signable graph and (X1, Xo, A1, By, A2, By) is a
split of a 2-join of G, then the blocks of decomposition of G with respect to (X1, X2) are also
Cy-free odd-signable.

Lemma 6.3. Let G be a Cy-free odd-signable graph with no star cutset, let (X1, X2) be a 2-join
of G, and Gy and Go the corresponding blocks of decomposition. Then Gy and Go are Cy-free
odd-signable.
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Proof. By constructions of the blocks, clearly G1 and G9 are Cy-free. So by Theorem 1.7 it suffices
to show that if G; contains an even wheel, theta or a prism 3, then G contains an even wheel,
theta or a prism. Let (X7, X2, A1, By, A, Bs) be the split of (X7, X2), and let P, = as-...-bs be
the marker path of G;. We may assume that ¥ N P, # (), since otherwise we are done. Suppose
that Ay is complete to Bs. By definition of 2-join, either X5 \ (A2 U Bg) # (), or, without loss of
generality, |Bg| > 2. So for u € By, S = Ay U By U {u} is a star cutset in G separating X7 \ By
from Xo \ (Az U{u}). Therefore, Az is not complete to Bs, so let a € Ag and b € By be such
that ab is not an edge. By definition of 2-join, there exists a path Q2 in G[X3] whose one end is
in Ag, the other in By and whose interior is in X5 \ (A2 U By).

First suppose that ¥ = (H,x) is an even wheel. If H C X; then without loss of generality
x = ag, and hence (H, a) is an even wheel in G. So we may assume that HNP, # ). It follows that
without loss of generality, HNP> € {{az}, {a2,b2}, Po}. It follows that x € Xi. If HN P, = {az}
then let H' = (H \ {a2}) U{a}; if HN Py = {ag,ba} then let H = (H \ {a2,b2}) U {a,b}; and if
HN Py =P, then let H = (H \ P») UQ2. Then clearly (H',z) is an even wheel in G.

Now assume that ¥ is a theta or a prism. Let R, Rs, R3 be the three paths of . Note that
any two of the paths induce a hole, and assume up to symmetry that out of the three holes so
created, the hole H = R1UR» has the largest intersection with P,. Then without loss of generality
HNP, = {az}, {a2,b2} or Po. If HNP, = {ag} thenlet H' = (H\{az2})U{a}; it HNPy = {a2, b2}
then let H = (H \ {a2,b2})U{a,b}; and if HN Py = P, then let H' = (H\ P,)UQ2. Then clearly
H' is a hole in G. By the choice of H it follows that |R3 N P2| < 1 and hence either R3 C X7,
or HN Py ={az} and R3 N P, = {b2}. In the first case clearly H' U Rj is a theta or a prism, so
assume that H N Py = {a2} and R3 N Py = {b2}. Then, up to symmetry, az € Ro. But then it
follows that the hole Ry U R3 has a larger intersection with P, than H, a contradiction. | |

Let G be a graph. A flat path in G is a path of G of length at least 2 whose interior vertices
all have degree 2 in G and whose ends do not have a common neighbor outside this path. A leaf
in a graph is a vertex of degree at most 1. Let D be a class of graphs and B C D. Given a graph
G € D, a rooted tree Ty is a 2-join decomposition tree for G with respect to B if the following
hold:

e Each vertex of T is a pair (H, M) where H is a graph in D and M is a set of vertex-
disjoint flat paths of H.

e The root of T¢; is (G, D).

e Each non-leaf vertex of T¢; is (G', M') where G’ has a 2-join (X1, X2) such that the edges
between X7 and X5 do not belong to any flat path in M’. Let M (respectively Ms) be
the set of all flat paths of M’ that belong to G[X7] (respectively G[X2]). Let G1 and Ga
be the blocks of decomposition of G’ with respect to 2-join (X7, X2) with marker paths
Py and P respectively. The vertex (G’, M') has two children, which are (G1, M1 U{P»})
and (Go, Ma U {P1}).

e Each leaf vertex of T is (G', M’) where G’ € B.

The following theorem follows from Lemma 4.6 in [22].

Theorem 6.4. ([22|) Let G be a graph and let M be a set of vertez-disjoint flat paths of G.
Then one of the following holds:
(i) G has no 2-join.
(i1) There exists a 2-join (X1, X2) of G such that for every path P € M, P C Xy or P C Xos.
(i1i) G or a block of decomposition with respect to some 2-join of G has a star cutset.

The following lemma shows that Cy-free odd-signable graphs with no star cutset have 2-join
decomposition trees with respect to B*.

Lemma 6.5. If G is a Cy-free odd-signable graph with no star cutset then G has a 2-join
decomposition tree with respect to B*.
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Proof. 1f G is a Cy-free odd-signable graph that has no star cutset then, by Lemmas 6.2 and 6.3,
blocks of decomposition of G with respect to every 2-join are Cy-free odd-signable and have no
star cutset. So by repeated application of Theorem 6.4 there is a 2-join decomposition tree for
G in which the leaves correspond to Cy-free odd-signable graphs that have no star cutset and no
2-join, and hence by Theorem 6.1 are graphs from B*, i.e. the result holds. |

The rankwidth of a graph G, denoted by rw(G), is a property of G similar to treewidth. The
definition of rankwidth can be found in [18] (where it was first defined). The following theorem
bounds the rankwidth of graphs that have a 2-join decomposition tree with respect to B*.

Theorem 6.6. ([16,17]) If D is a class of graphs such that every G € D has a 2-join decompo-
sition tree with respect to B*, then rw(G) < 3.

Corollary 6.7. If G is a Cy-free odd-signable graph with no star cutset then rw(G) < 3.
Proof. Follows from Theorem 6.6 and Lemma 6.5. ]

The following theorem bounds the treewidth of G by a function of the rankwidth of G for
graphs G with no subgraph isomorphic to K, ,, where K, , is a complete bipartite graph with r
vertices in both sides of the bipartition.

Theorem 6.8. ([13]) If G is a graph that has no subgraph isomorphic to K, ,, then tw(G)+1 <
3(r — 1)(2rw(@+ 1),

Finally, we show that the treewidth of G is bounded by a function of §.

Corollary 6.9. If G is a Cy-free odd-signable graph with mazximum degree § and no star cutset
then tw(G) < 456 — 1.

Proof. Follows from Corollary 6.7 and Theorem 6.8. |

7. BALANCED SEPARATORS IN (C4-FREE ODD-SIGNABLE GRAPHS

Let § be a positive integer and let G be a Cy-free odd-signable graph with maximum degree
6. In this section, we prove Theorem 1.5, showing that G has a balanced separator. We begin
by stating a helpful lemma showing that if G has bounded treewidth, then G has a balanced
separator.

Lemma 7.1 ([10], Lemma 7.19). Let G be a graph with treewidth at most k and let w : V(G) —
[0,1] be a weight function of G with w(G) = 1. Then, G has a (w, %, k + 1)-balanced separator.

Now, we prove that if G is a clean Cy-free odd-signable graph with maximum degree §, then
G has a balanced separator.

Theorem 7.2. Let §,d be positive integers, let ¢ € [%,1), let m € [0,1], and let f(2,0) =
206+ 1)2 + 1, with d > 475 +2£(2,6)6 — 2, and (1 —¢) + [m + 2f(2,0)62°(1 —¢) + (6 — 1)20(1 —
o)](6 +6%) < % Let G be a connected clean Cy-free odd-signable graph with mazimum degree §
and let w : V(G) — [0,1] be a weight function on G with w(G) = 1 and w™* < m. Then, G
has a (w, ¢, d)-balanced separator.

Proof. Suppose that G does not have a (w, ¢, d)-balanced separator. Let T be the set of all twin
wheel forcers in G and let fay41 be the terminal bag of a T-decomposition of G, with k < f(2,0).
It follows from Theorem 4.10 that 2541 does not have a clique cutset or a (w’, ¢, d—2k§—2(5—1))-
balanced separator for some weight function w’ with w/(Bopr1) = 1 and w/™* < @™a*
£(2,6)62%(1 — ¢) + (6 — 1)29(1 — ¢). By Theorem 5.3, fa,41 does not contain a terminal twin
wheel.

By Lemma 5.4, Bor4+1 has no star cutset. Since f(or41 has no star cutset, it follows from

Corollary 6.9 that tw(Bag+1) < 450 — 1. By Lemma 7.1, Oo;11 has a (w’,%,456)—balanced
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separator. Since d — 2k6 —2(§ — 1) > d — 2f(2,0)6 —2(6 — 1) > 456 and ¢ > 1, it follows that
Boki1 has a (W', c,d — 2kd — 2(6 — 1))-balanced separator, a contradiction. |

Finally, we prove Theorem 1.5.

Theorem 1.5. Let d,d be positive integers. Let G be a connected Cy-free odd-signable graph
with mazimum degree § and let w : V(G) — [0,1] be a weight function such that w(G) = 1.

Let f(2,6) = 2(0 + 1)2 4+ 1, and let ¢ € [3,1).  Assume that d > 495 + 4f(2,6)5 — 4 and
(1 —c¢) + [w™> +3£(2,6)02°(1 — ¢) +2(6 — 1)2°(1 — ¢)](0 4+ 62) < L. Then, G has a (w,c,d)-

5 .
balanced separator.

Proof. Suppose that G does not have a (w, ¢, d)-balanced separator. Let F be the set of all strong
forcers of G and let o511 be the terminal bag for an F-decomposition of G, with k < f(2,4).
By Theorem 4.10, fox41 is connected and does not have a (w', ¢, d — 2k — 2(6 — 1))-balanced
separator for some weight function w’ with w'(Bary1) = 1 and w' ™ < w™> 4 f(2,6)62°(1 —
c)+ (6 — 1)25(1 —¢), and by Theorem 4.11, 89511 is connected and clean. Since Bax41 is clean,
it follows from Theorem 7.2 that ;41 has a (w',c¢,d — 2ké — 2(§ — 1))-balanced separator, a
contradiction. |
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