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ABSTRACT  Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical
super-resolution (SR) without requirement of sophisticated imaging instruments. An open source package for SOFI algorithm is
needed to support not only the utilization of SOFI, but also the community adoption and participation for further development
of SOFI. In this work, we developed PySOFI, an open source python package for SOFI analysis that offers the flexibility to
inspect, test, modify, improve and extend the algorithm. We provide a complete documentation for the package and a collection
of Jupyter Notebooks to demonstrate the usage of the package. We discuss the architecture of PySOF]I, illustrate how to use
each functional module. A demonstration on how to extend the PySOF/ package with additional module is also included in the
PySOFI package. We expect PySOFI to facilitate efficient adoption, testing, modification, dissemination and prototyping of new
SOFl-relevant algorithms.

1. INTRODUCTION

Super-resolution optical fluctuation imaging (SOFI) [1] is a widely used optical super-resolution method applicable for a broad
range of conditions, where sophisticated control on the instrument and sample preparations are not required. It has attracted a
growing community of active practitioners and developers over a decade. The advancements utilizing this technology include
innovations in blinking dyes and fluorescent proteins, sample preparation [2, 3, 4, 5, 6], illumination schemes, experiment
designs, data processing methods [7, 8, 9, 10, 11, 12, 13, 14, 15], and integration with other methods [16, 17, 18, 19, 20, 21, 22,
23].

SOFT is compatible with simple wide-field imaging system to acquire image stacks of samples that exhibits optical fluctuation
of fluorescence signal. It is assumed that the position of the signal sources are static over the time course of acquisition, and the
optical fluctuations can be induced by either the stochastic blinking of the fluorophores, the diffusion of and stochastic binding
of fluorophores to static binding sites, fluctuation of the scatters [24, 25].

Various of prior studies have provided detailed explanations on the SOFI principles [1, 8, 7, 24, 26], and interested readers
are recommended to reference [27] for insights about moments, cumulants and their interplay. Here we provide a brief review
on the theory of SOFI processing. Given a sample with N emitters that blink independently with a binary fluorescence intensity
profile constituting a fluorescence "on’ stage and a fluorescence "off” state, the fluorescence signal captured at a given camera

pixel located at 7 and time ¢ is
N

F(F,1) = ) eb(DU(K =), M
k=1
where k is the emitter index, 7 is the location of the k" emitter, U is the point spread function of the imaging system, e is the
constant ’on’-state brightness, and by () is the time-dependent stochastic blinking profile that is either 0 or 1. by (#) equals to 1
when the emitter is in the ’on’ state, and O when the emitter is in the ’off’-state.
The first step of SOFI is to calculate the fluctuation of fluorescence signal around the temporal average for each pixel

N
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k=1
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Here both ¢, and U are constant, so only the fluctuation in the blinking profile b, would affect § F. Then, the correlation
functions can be calculated as follows:

Gn(r_)l:r-é’ ) VT;;;TI, T2, ,Tn—l) = <6F(7717 t)(sF(’?th + Tl) e (SF(I‘-;“ r+ Tn—l))t- (3)

Equation 3 represents the auto-correlation function when ¥ = 7] = 7, = - -+ = r;,, and cross-correlation function otherwise.
Replacing §F (77, 7;—1) with 6 F;, equation 3 can be simplified as shown below:

G (6F,0F>, -+ ,6F,) = (6F16F,---6F,));. @)

Here G, (6F;,8F,-- ,0F,) indicates the joint-moment of the set {§F;|i € [0, 1]}. Next, the n’" order joint-cumulant of the

set, C,(6F1,0F,, -+ ,0F,), can be derived from joint-moments and joint-cumulants of lower orders based on a recursive

relation (see section 3.1). Note here that the joint-moment and joint-cumulnat are generalized terms of correlation functions
and cumulants calculated from either auto-correlations or cross-correlations with different choices of 7; values and pixel
combinations[11].

The n'"*-order cumulant functions can also be addressed based on fluorescence fluctuation of a multi-emitter system:

N
Co(F, 11,12, Tyot) = Z €pwn i (T1, T2, Tu1))U" (k = 7%), ®)]
k=1
where wy i (11, T2, -+, Tu=1)) equals to n'"-order cumulant of §by (¢). Detailed derivation can be found at [1, 8, 11, 26]. With

n'" order cumulant analysis, the theoretical resolution improvement of SOFI is v/ fold. Such improvement increases to n when
combined with deconvolution, presenting a great potential for further advancements for SOFI [1].

However, there are imperfections in high-order SOFI cumulants (e.g., cusp-artifacts [26]), which can be explained under the
framework of virtual emitter interpretation[26]). Specifically, comparing the similarity between Equation | and Equation 5. The
high order SOFI cumulant image can be perceived as an imaged captured from a microscope with a PSF that is equivalent
to the n'" power of the original PSF (compare the terms that contains U between Equation | and 5), with emitters located a
the same location as in the original sample, but with emitter brightnesses replaced into €} w, . Because w, « is the n’ h order
cumulant of the blinking profile of the k" emitter, its value can be either positive or negative, which would introduce a cusp
artifacts in the SOFI cumulant images when we display the absolute value of an image with adjacent positive and negative
virtual emitters. We also demonstrated how the validity of one of the most widely used SOFI processing method, bSOFI [7], is
negatively impacted. But such findings have not receive common awareness as of yet.

We believe an insightful and thorough understanding of the method is crucial to ensure solid advancements in both SOFI and
SOFI-relevant innovations. However, for new investigators without prior experience with SOFI analysis, there is often a steep
learning curve to fully understand, modify, and extend the existing open-source packages [7, 28]. The existing SOFI analysis
routines are implemented in ImageJ [29], MATLAB [30, 28] or Igor Pro [28]. ImageJ requires professional programming skills
if customization and modifications are required, while MATLAB and Igor Pro require paid licenses. Such limitations present a
greater challenge for new investigators who are interested in joining the SOFI community but prefer not to use the existing
packages blindly.

Here we present PySOFI, an open source package for SOFI analysis implemented in Python. Benefited from the active
open-source community and the abundance of free learning materials for Python, PySOFT offers an easy option for investigators
interested in adopting the SOFI algorithm. PySOFI focuses on engaging the community and is designed to be simple, modular,
and highly customizable. PySOFI is hosted on GitHub to facilitate utilization, improvements, and continuous maintenance
by the interested users and developers. A collection of examples is provided in the form of Jupyter Notebooks. One can
use PySOFI to explore and characterize SOFI analysis, validate the results from the prior studies, and gain insights through
exploration. PySOFI is also useful for the prototyping of new methods to extend SOFI algorithm. Similar Jupyter Notebooks
can be adapted to promote the new methods and improve the reproducibility of the results. We expect PySOFI to appeal to
both beginners and experts, it facilitates innovations where modification and extensions are required, and further promote the
scientific advancements among scientists interested in SOFL.

The rest of the manuscript is organized as follows. Section 2 provides an overview of the PySOFI package. Section 3
discusses the PySOFI software architecture design and analysis pipeline, together with analysis examples for various of modules.
Section 4 summarizes the work and discusses future directions.

2. PYSOFI OVERVIEW

We designed a straightforward architecture for the PySOFI package. As shown in (figure 2), PySOFI contains eight independent
function modules (in the functions folder) and one data class (PysofiData). A detailed description of PySOFI is available
in our online documentation. To get started with the installation, the user can follow this page.


https://xiyuyi-at-llnl.github.io/pysofi/build/html/
https://xiyuyi-at-llnl.github.io/pysofi/build/html/start.html

Figure (1) provides the data-flow diagram that demonstrate the connections (arrows) between different processing steps
(green squares) and different types of data (purple ovals). Three collections of SOFI analysis routines are implemented in
the PysofiData class, including the "Shared Processes" that contains the traditional SOFT analysis steps [1], the "SOFI 2.0"
collection that contains the routines for SOFI 2.0 processing [11]. In the "Shared Processes" block, the processing steps
including bleaching correction (BC), Fourier interpolation (FI), and moment and cumulant calculations. The processing steps
can be performed in various sequences (green arrows). In the "SOFI 2.0" block, one can perform noise filtering and local
dynamic range compression (ldrc) on the image. In the data processing workflow, one can save and load the intermediate results
for each processing step (purple arrows). For example, in the "Shared Processes" collection, the intermediate results (purple
ovals) can be saved as separate new TIFF files or stored as attributes in the PysofiData class object, and then passed to another
processing step (purple arrow).
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Figure 1: Data-flow diagram for PySOFI. Three collections of SOFI analysis routines are implemented in PySOFI as depicted
in the diagram: Shared Processes, SOFI 2.0 analysis, and MOCA analysis. Green squares represent data processing steps with
functionalities labeled for each step. The purple ovals represent the data types as labeled in the diagram. Intermediate results are
abbreviated as "IR". The green arrow represents the direction of the data flow between different steps, and the purple oval
represents input and output data types at different processing steps. Note that the MOCA process and DeconvSK processing
step involve non-peer-reviewed work, which is beyond the scope of this manuscript and won’t be discussed.

The following modules are implemented to facilitate the PySOFI analysis pipeline. The reconstruction.py module
provides capabilities for SOFI moments and cumulants calculations [1], as well as bleaching correction for a TIFF movie.
The finterp.py module provides Fourier interpolation on a TIFF stack, which is a necessary step for fSOFI alike analysis
[9]. filtering.py and ldrc.py constitute a collection of modules relevant to SOFI 2.0 [11] analysis. Specifically, the
filtering.py module is for pixel-wise noise filtering along the time axis, and the 1drc.py is for local dynamic range
compression (Idrc) of images with a large dynamic range of pixel values [10]. The masks.py module is used to generate
Gaussian kernels, and the visualization.py module provides visualization options using an interactive visualization package
bokeh. The data class module (PysofiData) is encapsulated in the pysofi.py file. The input parameters from the users, the
raw data, and the intermediate results are bundled in the PysofiData object as attributes, and the processing steps as methods.
The processing steps are implemented as function modules, and imported and used in the data class module. In summary, the
specific functions are implemented in the function modules, while PysofiData serves the purpose of organizing the data
processing workflow.

In general, we adopted a simple architecture for PySOFI with a collection of independent function modules and only
one class module (the data class). The functions are imported and used inside the data class across different methods as
needed, therefore the implementation is flexible with minimum repetition of codes. The function modules can be implemented,
modified, and tested independently, ensuring flexibility and convenience for maintenance. Extending the package can be done
by implementing additional function modules. It can be used as a standalone process, or be integrated into the data processing
workflow through the PysofiData class. The investigators also have the flexibility to disseminate the PySOFI package and
construct their own data processing workflow (similar to the PysofiData class).

3. IMPLEMENTATION OF SOFI ANALYSIS USING PYSOFI

We provide a collection of Jupyter Notebooks (outlined in Figure 3) as examples for PySOFI implementations and applications.
The prefix (E#) of each filename is used as a reference to each notebook in the following text for simplicity. We present example
PySOFI analysis steps (E1, E2, E4 to E6), visualization of the result with combined color-map and transparency-map (ES8), and
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PySOFI modules

Data class |pysofi.py Defines the main data class called "PysofiData"
reconstruction.py Contains tools for cumulant and moment reconstruction.
finterp.py Contains tools for Fourier interpolation on *.tiff stacks for fSOFI processing.
filtering.py Contains tools for noise filtration along the time axis.

Function |deconvsk.py Contains tools for shrinking kernal deconvolution (DeconvSK).

modules Idre.py Contains tools for local dyanmic range compression of images.

visualization.py Contains tools for visualization of the results.
moca.py Contains tools for Multi Order Cumulant Analysis (MOCA).
masks.py Contains tools for generating Gaussian kernels.

Figure 2: PySOFI modules. PySOFI contains one data class and eight function modules. Detailed descriptions are available in
the online documentation for PySOFI. Note that the moca.py and deconvsk.py modules involves non-peer-reviewed work and is
beyond the scope of this work, while this work focuses on the introduction of the software package PySOFI, therefore, moca.py
and deconvsk.py won’t be discussed in this manuscript.

the effect of data acquisition length on SOFI reconstruction performance (E9, E10). We also demonstrate SOFI 2.0 analysis
(E11) and characterization of cusp-artifacts (E12 and E13). Two processing steps (E3 and E7) address non-peer-reviewed
methods that is beyond the scope of this work, therefore wont be discussed in this manuscript. The analysis processes are
integrated through the PysofiData class for all the notebooks except for the demonstration of noise filtration (E2).

In the text below, we provide brief descriptions of E1, E2, E4, ES, and E6. The complete detailed description and examples
are provided in the Jupyter Notebooks in the online Github repository.

3.1 Moment and cumulant reconstructions (E1)

Traditionally, SOFI achieves resolution enhancement by computing different orders of cumulants of optical signal fluctuations
in time. The theoretical resolution enhancement for SOFI is 1/+/n fold for the n'" order SOFI cumulant. Once combined with
deconvolution, the theoretical resolution enhancement can increase to 1/n.

To obtain the n’"* order SOFI cumulant, one way is to construct the 7'” order cumulant as a polynomial consists of moments
from the first order to the n" order, as shown in the previous work [1]. Another way, which is used by PySOFI, is to construct
the following recursive relation: Cum,, = G, — Zl’.’z_ll CfH - Cumy_; - Gi, where Cum,, represents the n'" order cumulant,
G, represents the n'" order moment, and C% means the number of combinations of "N choose M". Regarding the moment
calculations, PySOFI support calculations of moments directly from the time series of each pixel. The moments can be also
calculated as a reconstruction from a series of cumulants as used in our previous study [11].

The calculation of cumulants and moments are the fundamental processing elements in the SOFI analysis. The PysofiData
class organizes the analysis workflow and can be used to calculate both moments and cumulants. Essentially, the relevant function
modules are imported and integrated in the PysofiData to support such analysis. For example, the following scripts would
calculate the 4'" order moment and cumulant of the specified TIFF stack named Block1. tif through the PysofiData class:

# load data into PysofiData object

> filepath = ’../sampledata’
: filename = ’Blockl.tif’

d = pysofi.PysofiData(filepath, filename)

s # calculate the 4th order moment image

, m_im = d.moment_image (order=4)

7 # calculate the 4th order cumulant image

o

k_set = d.cumulants_images (highest_order=4)

We can also directly import the function module, reconstruction.py, to perform the relevant calculations. This option
is designed to support dissemination of the PySOFI package to facilitate independent analysis, which is often useful when
developing new methods built upon SOFI analysis. The following scripts demonstrate how to perform such analysis with
moment and cumulant calculations up to 4/ order:

# import the relevant function modules, and define the path and name for the data.

> from pysofi import reconstruction as rec
; filepath = ’'../sampledata’


https://xiyuyi-at-llnl.github.io/pysofi/build/html/
https://github.com/xiyuyi-at-LLNL/pysofi

Examples for PySOFI analysis (Jupyter Notebooks)

Group Notebook Name Data Section #
E1_MomentCumulantReconstructions Block1.tif (live cell imaging) 3.1
E2_NoiseFiltration Block1.tif - Block20.tif (live cell imaging) 3.2
E3_ShrinkingKernelDeconvolution Block10.tif (live cell imaging) N.A.

Processing steps E4_LDRCMethod Block1.tif (live cell imaging) 3.3
demonstration |ES_Fourierinterpolation Block10.tif (live cell imaging) 3.4
E6_BleachingCorrection Bleach_SlowVaryingRho_frame2000_Emi51.tif (simulation) (3.5
3Emitters_frame5000_Emi3_close.tif (simulation)
E7_MOCA SlowVaryingRho_frame2000_Emi51.tif (simulation)
RndomCurves_frame15000_rho04.tif (simulation) N.A.
E8_ResultVisualization RndomCurves_frame15000_rho04.tif (simulation) 3.6
. frame1000_10000.npy
Analysis E9_ReconstructionConvergence frame11000_15000.npy
explorations frame16000_20000.npy (generated in E8) NA.
E10_ReconstructionConvergence_SampleAnalysis |nobleach_frame20000_3.tif (simulation) NA.
SOFI 2.0 . - . e L
. E11_PysofiExample_LiveCellActinFilaments Block1.tif - Block20.tif (live cell imaging)
demonstration NA.
Cusp-artifacts |E12_CuspArtifactsDemol_3Emitters 3Emitters_frame5000_Emi3_close.tif (simulation) N.A.
demonstrations |E13_CuspArtifactsDemo2_SlowVaryingRho SlowVaryingRho_frame2000_Emi51.tif (simulation) N.A.

Figure 3: Jupyter notebook examples for PySOFI. We provide 13 PySOFI demonstrations as Jupyter Notebooks which can
be categorized into to 4 Groups (first column). The filenames (second column) indicates the focus of each Jupyter Notebook.
The relevant data sets (third column) are shared on figshare. Brief descriptions of most processing steps (E1, E2, E4, ES, E6)
and their notebooks are provided in the relevant section (fourth column). The theory behind E9 to E13 are not included in
this manuscript but the relevant concepts are discussed in [26] and [11]. The notebooks are the PySOFI implementations of
the relevant methods to support the utilization of them. In particular, in E11, we show the general guidelines for performing
SOFI 2.0 analysis on live-cell fluorescence imaging results using PySOFI. Note that MOCA and DeconvSK processing step
involve non-peer-reviewed work which is beyond the scope of this w, therefore notebooks E3 and E7 won’t be discussed in this
manuscirpt.

filename = ’Blockl.tif’

s # calculate the 4th order moment image

» m_set = rec.calc_moments(filepath, filename, highest_order=4)
# calculate the 4th order cumulant image

k_set = rec.calc_cumulants_from_moments(m_set)

More detailed demonstrations are available in the corresponding Jupyter Notebook (E1).

3.2 Temporal Noise Filtering (E2)

Temporal noise filtering is fundamental in the image processing for fluorescence microscopy, especially in scenarios where
continuous and prolonged live cell imaging is desired where the excitation power is maintained at a low level to minimize
photo toxicity and photo-bleaching. The lower excitation power often results in reduced signal to noise ratio. Traditional noise
filtering is performed with a spatial filter where each image for every given time instance is spatially filtered independently.
However, because noise filtering in the spatial spectrum domain is equivalent to a convolution operation of the image with the
kernel corresponds to the inverse Fourier transform of the low-pass filter, it is conceivable that the spatial noise filtering would
reduce the spatial resolution. On the other hand, to achieve a super-resolution movie, we are focusing on the sample conditions
where the semi-static assumption is valid, which requires slow dynamics in the sample and the temporal noise filtering has been
proven useful [11]. This is because slow dynamics ensures that the signal of interest exists in the low frequency domain while
the noise is populated in the high frequency domain in the time axis, therefore the temporal spectrum filtering can be effective.
Additionally, because this filtering is performed along the time axis, the spatial resolution is not directly influenced.

We have implemented such temporal noise filtering in PySOFT as a function module filtering.py. It is useful when
analyzing multiple TIFF stacks corresponding to consecutive time-blocks. In such scenario, the feature is assumed to be


https://figshare.com/s/47d97a2df930380c96bb
https://github.com/xiyuyi-at-LLNL/pysofi/blob/master/Notebooks/E1_MomentCumulantReconstructions.ipynb
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semi-static within each individual time block, and the corresponding TIFF stack is analyzed independently. We can perform the
temporal noise filtering on the results across all the time blocks to further enhance the image quality.

For example, we can perform the temporal noise filtering on the 6/ order moment images calculated from 20 blocks of
TIFF stacks (each contains 200 frames) using the following scripts:

# First, we define the list of TIFF stacks that corresponds to 20 different time blocks of a movie:
filenum = 20

: filepath = ’../sampledata’

filenames = [’Block’ + str(i+l) + ’'.tif’ for i in range(filenum)]
# Second, we perform the sixth order moment calculations for all the blocks
dset = {}; m_set = {}
for filename in filenames:
dset[filename] = pysofi.PysofiData(filepath, filename)
m_set[filename] = dset[filename].moment_image (order=6, finterp=False)
# Third, we generate a noise filter as a 1-Dimensional Guasisan profile:
nf = masks.gaussld_mask(shape = (1,21), sigma = 2)
# Last, we perfrom the time-axis noise filtering

3 m_filtered_set = filtering.noise_filterld(dset, m_set, nf, return_option=True, return_type='dict’)

The results from the temporal noise filtering are stored as a dictionary in the m_filtered_set, where keys for elements
are file names for each block of TIFF images, and values are the corresponding filtered images. The filtered images are also
updated to each PysofiData objects as a PysofiData.filtered attribute. More detailed demonstrations are available in the
corresponding Jupyter Notebook (E2).

3.3 Local dynamic range compression (/drc) (E4)

One of the key challenges for high order SOFI cumulant calculations is the high dynamic range (HDR) of pixel intensities [1].
The HDR issue also exists in the high order moment images [ 1]. The ’local dynamic range compression (/drc)’[11] method
was developed to mitigate such issue (and is implemented in PySOFI) by rescaling the pixel intensities of a given image based
on a reference image. First, a reference image with the same feature but a more confined dynamic range is defined (e.g., the
average image, the second-order moment or cumulant SOFI image). The compression is performed locally in a small window
that scans across the image with a stride of 1 pixel. In each window, the pixel intensities of the original image are linearly
re-scaled to share the same dynamic range as the reference window [11]. The final value of each pixel is the average of the
corresponding re-scaled values of them across all windows covering it.

In PySOFI, ldrc is implemented in the function module ldrc.py and integrated in the PysofiData.ldrc() method. The
following scripts will calculate the 6" order moment (m6) and the average image (mean), and perform Idrc on m6 using mean
as the reference:

# first, import the two relevant function modules, reconstruction and ldrc
from pysofi import reconstruction as r

;3 from pysofi import ldrc

ENC RS

)

11

# define the path and file name of the data file.

filepath = ’../sampledata’

filename = ’Blockl.tif’

# calculate the 6-th order moment (m6) and the average image (mean) using the reconstruction module
m6 = r.calc_moment_im(filepath, filename, order=6, frames=[0, 50])

mean = r.average_image(filepath, filename)

# compress the dynamic range of m6 with reference to mean using ldrc

ldrc_im = ldrc.ldrc(mask_im=mean, input_im=m6, order=6, window_size=[20, 20])

We can also perform the Idrc processing directly through the PysofiData.ldrc () method using the following script:

# load data into PysofiData object
filepath = ’../sampledata’

3 filename = ’Blockl.tif’

# load teh data into a PysofiData class object

= pysofi.PysofiData(filepath, filename)

calculate moments

.moment_image (order=6, finterp=False)

perfrom ldrc

.ldrc(mask_im=d.ave, input_im=d.moments_set[6], order=6, window_size=[20, 20])

Qo O H o

Note that the direct Idrc processing on m6 often yields noisy results (We have demonstrated the results in the relevant Jupyter
Notebook (E4)). However, ldrc plays an important role in the SOFI 2.0 pipeline where the noise filtering and deconvolution are
performed. In Figure 4, we compare the the partially processed SOFI 2.0 image (excluded Idrc) and the full SOFI 2.0 processed


https://github.com/xiyuyi-at-LLNL/pysofi/blob/master/Notebooks/E2_NoiseFiltration.ipynb
https://github.com/xiyuyi-at-LLNL/pysofi/blob/master/Notebooks/E4_LDRCMethod.ipynb

image (included Idrc). We can see that the feature in the image are preserved without /drc, but imperceptible due to the HDR
issue. On the other hand, Idrc mitigates the HDR issue and provide an image where the dim features are shown more clearly.
More detailed demonstrations are available in the corresponding Jupyter Notebook (E4).

e Max

(a) w/o Idrc mm | (b) w/ Idrc
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Figure 4: ldrc demonstration. Experimental demonstration of /drc algorithm on HeLa cells transfected with Dronpa-C12
fused to B-Actin. Both images are processed using 6’ order moment, noise filtering and deconvolution, and obtained during
the SOFI 2.0 analysis pipeline, before (a) and after (b) the Idrc step. Scale bars: 8um.

3.4 Fourier interpolation (E5)

Fourier interpolation stochastic optical fluctuation imaging (fSOFI) solves the finite pixelation problem of SOFI by adding
virtual pixels using Fourier transforms [9]. We have implemented the Fourier interpolation method in PySOFI to integrate
the fSOFI analysis as an optional processing step. In our implementation, for the forward Fourier Transform, the Fourier
transformation matrix was created with a size the same as the input image. We created the inverse Fourier transformation
matrix to include the extra interpolation position coordinates, and omitted the "zero-padding” step in the Fourier space to avoid
burdening the computation.With the Fourier interpolation, the input image/video is *projected’ onto a more refined grid with
finer pixel size.

In PySOFI, Fourier interpolation is implemented in the function module finterp.py and integrated in the PysofiData. finter
p_tiffstack() method. We can perform the Fourier interpolation and save the output as as a series of .tiff stacks. For
example, the following scripts will calculate the 2- and 4- fold Fourier interpolation of the initial 100 frames from the
example data set block1®.tiff, and save the interpolated images into two .tiff stacks: block1®_InterpNum2.tiff and
block10®_InterpNum4.tiff respectively.

# import the relevant tools

> from pysofi import pysofi
3 # load data into PysofiData object

filepath = ’../sampledata’

s filename = ’Blockl10.tif’

d = pysofi.PysofiData(filepath, filename)

7 # calculte the Fourier interpolation

8

d.finterp_tiffstack(interp_num_lst=[2,4], frames=[0,100], save_option=True, return_option=False)

We can also perform the Fourier interpolation by using the finterp.py module as shown below:

# import the relevant tools

> import tifffile as tiff

;3 from functions import finterp

. # load a single image from the relevant data file
s filepath = ’../sampledata’

filename = ’Blockl10.tif’

7 im = tiff.imread(filepath + ’/’ + filename, key=15) # read a frame

# perform Fourier interpolation


https://github.com/xiyuyi-at-LLNL/pysofi/blob/master/Notebooks/E4_LDRCMethod.ipynb
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o finterp_im2 = finterp.fourier_interp_array(im, [10]) # perform a 10-fold interpolation in the image.

(b) 6x finterp + M6 = |ALER

Figure 5: Fourier interpolation demonstration. Experimental demonstration of Fourier interpolation algorithm on HeLa
cells transfected with Dronpa-C12 fused to S-Actin. (a) The 6'" order moment-reconstructed image of the original wide-field
acquisition. (b) The 6'" order moment image after the Fourier interpolation. Idrc is performed on both (a) and (b) to compress
the dynamic range of the reconstruction. (¢c) A zoom-in box of (a). (d) A zoom-in box of (d). Scale bars: 8um.

Figure 5 demonstrates the performance of the Fourier interpolation. Based on the Nyquist-Shannon sampling theorem [31,
32], we recommend setting the interpolation factor at least two times the highest order for moment-/cumulant reconstructions. For
instance, if we plan to start the SOFI 2.0 pipeline with the 6/ order moment image, we should pass interp_num_lst = [12]
tod.finterp_tiffstack. However, in practice, depending on the dimension and length of the input file, Fourier interpolation
might consume large processing memory and time. If computation resources are limited, we recommend saving the interpolated
image stack as tiff files firs tinstead of returning them, and then process the new file. Besides d. finterp_tiffstack, another
option to include Fourier interpolation in the SOFI processing pipeline is to pass (finterp = True) and a interpolation factor
(interp_num=6) when calculating the moment/cumulant reconstructions (see section 3.4).

More detailed demonstrations are available in the corresponding Jupyter Notebook (E5).

3.5 Bleaching correction (E6)

Photobleaching of fluorescent probes is a general concern for super-resolution imaging analysis methods. As for SOFI,
photobleaching can cause errors in virtual brightness displayed in moment or cumulant images [26]. Photobleaching leads to
the loss of the fluorescence signal, which is mathematically equivalent as if the fluorophore is switched to a prolonged "off"
state, degrading the quality of SOFI results. Therefore, a bleaching correction is critical.

PySOFI employs a bleaching correction technique [ 1] that divides the whole video into shorter blocks based on the total
signal intensity, /(z), where ¢ is the time index, and /(¢) is the summation of all the pixel values of the image at time index 7.
The individual blocks are processed independently and combined subsequently to form a SOFI movie. First, the time series of
the total signal intensity is smoothened to obtain a monotonically decreasing curve as an estimation of the bleaching profile of
the movie. Then, based on the signal evolution over time, the sizes of the shorter blocks are determined so that the fractional
signal decrease within each block (characterized by the bleaching correction factor, fp.) is identical [11]. The final SOFI
moment/cumulant images with bleaching correction are the average of those calculated from individual blocks. Fig. 6 shows
that with the help of bleaching correction, the virtual brightness distribution and the photophysical properties (7c, 7f) are
successfully restored, yielding similar values as compared to the simulated case without bleaching (7b).

PySOFI offers two ways for bleaching correction. One way is through the PysofiData class as shown below:

1 # import the relevant tools


https://github.com/xiyuyi-at-LLNL/pysofi/blob/master/Notebooks/E5_FourierInterpolation.ipynb

> from pysofi import pysofi
3 # load data into PysofiData object

filepath = ’../sampledata’

s filename_bleach = ’Bleach_SlowVaryingRho_frame2000_Emi51.tif’

o # load the dataset with bleaching into a PysofiData class object d_bleach

7 d_bleach = pysofi.PysofiData(filepath, filename_bleach)

# calculate the sofi cumulants with bleach correction
k_set_bleach_corrected = d_bleach.cumulants_images(highest_order=7, bleach_correction=True,
smooth_kernel=251, fbc=0.04)

We can also directly import the relevant function module reconstruction.py and perfrom bleaching correction as shown
below:

# improt the function module and define the path and file name of the dataset

> from pysofi import reconstruction as r
3 filepath = ’../sampledata/simulations’

filename_bleach = ’Bleach_SlowVaryingRho_frame2000_Emi51.tif’

s # perform bleaching correction on the designated dataset.

, r.correct_bleaching(filepath, filename_bleach, fbc=0.04, smooth_kernel=251,

save_option=True, return_option=False)

In this example, we applied bleaching correction to a TIFF stack, and the bleaching corrected movie is saved as a separate TIFF
stack with the string "_bc" appended to the original file name.
More detailed demonstrations are available in the corresponding Jupyter Notebook (E6).
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Figure 6: Bleaching correction demonstration on a simulation data. The fourth-order cumulant image (a-c) and multi-order
cumulant analysis (MOCA) (d-f) is performed on a simulated video. A semicircle is populated with emitters with on-time ratios
ranging from 0.01 (left) to 0.99 (right) with around 0.02 intervals. For emitters with photobleaching but without a bleaching
correction step, the reconstructed pixel intensities (a) and emitters on-time ratio estimation (d) are far off from the true values
(b, e), while the bleaching correction restores the information (c, ). Scale bars: 1.4um.

Pon Map

3.6 Result visualization (E8)

We provide some simple visualization options in PySOFI to display either single or multiple images, with the options to adjust
image contrast, and display the image with a transparency map defined as an input parameter. Bokeh is used to offer interactive
display. More detailed demonstrations are available in the corresponding Jupyter Notebook (E8).

4. DISCUSSION

In this work, we developed PySOFI, an open source python package for SOFI analyses. PySOFI contains the essential
functionalities for conventional SOFI analysis as well as several derivative methods [9, 11, 26, 10].

PySOFI adopts a simple architecture, where all the data processing steps are implemented as independent function modules,
and only one class module (the data class PysofiData) is used to manage the data processing workflow. The functions can
be tested independently and used in different processing pipelines. A fast prototype on new analysis can be achieved by
disseminating and reorganizing the processing step. One can implement additional processing steps as independent python
functions with the help of existing PySOFI functions. New functions can be used as standalone modules, or can be integrated
into the PysofiData class to support the new analysis pipeline. New classes can be constructed for different analysis pipelines
as well.


https://github.com/xiyuyi-at-LLNL/pysofi/blob/master/Notebooks/E6_BleachingCorrection.ipynb
https://github.com/xiyuyi-at-LLNL/pysofi/blob/master/Notebooks/E8_ResultVisualization.ipynb
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We adopted Sphinx to manage the PySOFI documentation, which is available as an online documentation to facilitate
community usage. Additionally, each processing element of the analysing pipeline are demonstrated in individual Jupyter
Notebooks. In each notebook, we also provide instructions on how to tune processing variables and explore input data.

PySOFI is housed on GitHub as an open source repository, any interested individuals can learn, inspect, validate and
contribute to the package. The user interactions on GitHub (e.g., fork, create pull requests, and report issues) engage the
community communications. We expect PySOFT to benefit general SOFI users for existing SOFI analysis, as well as developers
and new investigators interested in developing new SOFI-relevant analysis method.
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