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ABSTRACT. A conjecture of Alon, Pach and Solymosi, which is
equivalent to the celebrated Erd&s-Hajnal Conjecture, states that
for every tournament S there exists €(S) > 0 such that if T' is
an n-vertex tournament that does not contains S as a subtour-
nament, then 7' contains a transitive subtournament on at least
n<S) vertices. Let Cs be the unique five-vertex tournament where
every vertex has two inneighbors and two outneighbors. The Alon-
Pach-Solymosi conjecture is known to be true for the case when
S = Cs. Here we prove a strengthening of this result, showing
that in every tournament 7" with no subtorunament isomorphic to
C5 there exist disjoint vertex subsets A and B, each containing a
linear proportion of the vertices of T', and such that every vertex
of A is adjacent to every vertex of B.

1. INTRODUCTION

A tournament is a complete graph with directions on edges. A tour-
nament is transitive if it has no directed triangles. For tournaments
S, T we say that T is S-free if no subtourament of T is isomorphic to
S. In [1] a conjecture was made concerning tournaments with a fixed
forbidden subtorunament:

Conjecture 1.1. For every tournaments S there exists € > 0 such that
every S-free n-vertexr tournament contains a transitive subtournament
on at least n® vertices.

It was shown in [1] that Conjecture 1.1 is equivalent to the Erdds-
Hajnal Conjecture [7, 8]. Conjecture 1.1 is known to hold for a few
types of tournaments S [2, 3|, but is still wide open in general.
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FI1GURE 1. The (5 tournament.

Let D be a directed graph, and let A, B C V(D) with An B = (.
We say that A is complete to B if all every vertex of A is adjacent to
every vertex of B, and that A is complete from B if every vertex of A is
adjacent from every vertex of B. A class of tournaments is hereditary if
it is closed under subtournaments. A hereditary class of tournaments
T has strong Erdés-Hajnal property if there exists € = ¢(T) such that
for every T' € T there exist disjoint subsets A, B of V(T'), each of size
e|V(T)| such that A is complete to B.

The following question is closely related to Conjecture 1.1.

Question 1.1. For which tournaments S does the class of S-free tour-
naments have the strong Erdos-Hajnal property?

It is easy to see [2] that if S is a tournament, and the class of S-free
graphs has the strong Erdos-Hajnal property, then 1.1 is true for S. In
[4] there is a list of necessary conditions for a tournament S to satisfy
1.1.

Denote by Cs the (unique) tournament on 5 vertices in which every
vertex is adjacent to exactly two other vertices. One way to construct
this tournament is with vertex set {0, 1,2, 3,4} and i is adjacent to i+ 1
mod 5 and i +2 mod 5 (see Figure 1).

In [2] it was proved that Cj satisfies the Erdés-Hajnal conjecture.
Here we prove the following stronger result:

Theorem 1.2. The class of Cs-free tournaments has the strong Erdds-
Hagnal property.
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2. REGULARITY TOOLS

We recall some definitions given in [3].

Let ¢ > 0, 0 < A < 1 be constants, and let w be a {0, 1}-vector of
length |wl|. Let T' be a tournament with |V(T")| = n. Denote by tr(T)
the largest size of the transitive subtournament of 7. For € > 0 we call
a tournament T e-critical for € > 0 if tr(T) < |T'|° but for every proper
subtournament S of 7' we have: tr(S) > |S|¢. A sequence of disjoint
subsets (51,52, ..., Sjw|) of V(T') is a (¢, A\, w)-structure if

e whenever w; = 0 we have |S;| > ¢n,
e whenever w; = 1 the set T'|.S; is transitive and |S;| > ¢ - tr(T),
e d7(S;,S;)=1—Aforall 1 <i<j<]wl.

We say that a (¢, A, w)-structure is smooth if the last condition of
the definition of the (¢, A, w)-structure is satisfied in a stronger form,
namely we have: for every i < j, every v € S; has at most A|S,|
inneighbors in S;, and every v € S; has at most A|S;| outneighbors in
Si-
Theorem 3.5 of [3] asserts:

Theorem 2.1. Let S be a tournament, let w be a {0, 1}-vector, and
let 0 <\ < % be a constant. Then there exist €,c > 0 such that every
S-free e-critical tournament contains a smooth (¢, A\, w)-structure.

Here we need a weaker form of Theorem 2.1 for the case when w
is the all-zero vector. It turns out that in that case we do need the
criticality assumption. The proof consists of standard regularity lemma
arguments, and can be easily reconstructed from the proof of 2.1 in [2].
Thus we have:

Theorem 2.2. Let S be a k-vertex tournament and let w an the all-
zero vector. There exists ¢ > 0 such that every S-free tournament
contains a smooth (c, %, w)-structure.

3. A LEMMA ON OUT-SIMPLICIAL DIRECTED GRAPHS

We say that a directed graph is out-simplicial if the out neighborhood
of each vertex is a clique in the underlying undirected graph.
The main lemma we use for the proof of Theorem 1.2 is this:

Lemma 3.1. If D is an out-simplicial directed graph onn > 1 vertices,
then there exist two disjoint subsets A and B of V(D), both of size
|n/6], such that either
(i) there is no edge, in any direction, between a vertex of A and a
vertex of B, or
(ii) there is a path from every vertex of A to every vertex of B.
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Proof. Assume this is false. Then D is not strongly connected, and,
moreover, every strongly connected component C' of D has size at
most n/3, for otherwise a balanced partition of C' satisfies (ii). Let
C1, ..., C,, be the strongly connected components of D. Let F' be the
directed graph with vertex set C', ..., C,,, and such that C; is adjacent
to C; if and only if there is an edge from C; to C; in D. For S € V(F)
let w(S) = > ¢ cs|V(Ci)|. Note that F' is an acyclic directed graph.
Let F’ be the underlying undirected graph of F'.

(1) F is outsimpicial.

To see this, suppose to the contrary that C; is adjacent to C; and
to C, but there is no edge from C; to Cy in F'. Then in D, no vertex
of C; is adjacent to or from a vertex of Cy. Let v;, v, € C, u; € Cj,
u, € Cy be such that (v;,u;) and (vg, u;) are edges in D. Since D is
outsimplicial and u; uy are not in D, it follows that v; # vz. We may
assume that v;, v, are chosen so that the directed path P in C; from
v; to vy, is as short as possible. Let p be the outneighbor of v; in P. It
follows from the minimality of P that (p, uy) is not an edge of D. Since
C; and CY} are distinct strongly connected components of D, it follows
that (u;, p) is not an edge. But now p and w; are both outneighbors of
vj, and there is no edge between then in either direction, contrary to
the fact that D is outsimplicial. This proves (1).

(2) F' is chordal.

Indeed, suppose C' is an induced cycle of length larger than 3 in F”.
Since I is out-simplicial, no vertex of C' has two outneighbors in C,
and therefore C'is directed, a contradiction to the fact that F' is acyclic.

(8) No clique of F' has weight n/3.

Indeed, suppose that K be a clique of weight n/3. Then K is a transi-
tive subtournament of F. Let Cy,,...,C}, be the vertices of K in the
transitive order. Then there is a path in D from every vertex of Cy, to
every vertex of Cy; for i < j. For every i € [p], choose some order on
the vertices in Cj,, and consider the corresponding order (Cj,, ..., Cy,)
on Vg = U Cy,. Let A be the first % vertices in this order and

let B = Vi \ A. Then A, B satisfy (ii), contradicting our assumption.
This proves (3).
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Since F’ is chordal, F’ has a tree decomposition with bags being
cliques of F’. Let (T, X) be such a tree decomposition, where the bag
corresponding to a vertex v of T'is denoted X,,.

By Lemma 7.19 in [6] there exists a bag X, of T" such that every
connected component D of F'\ X, has weight at most w(V (F"))/2. In
particular, F'\ X, contains at least two connected components. Write
x = |V(F)\X,| = 2n/3. Let X1, ..., X,, be the connected components
in F'\ X, ordered such that 1 < 3 < ... < x,, where z; = |X;].
Then z; < n/2 for all 4, and thus m > 2, showing x; < z/2. Write
Y = 22:1 z;. Let r be the index for which y,_1 < z/2 and vy, > z/2.

Suppose first that » = m. Then a = y,_; and b = x, are both
at least of size n/6, since a = x —x, > 2n/3 —n/2 = n/6 and b =
T =y = x— /2 =1x/2 > n/3. Therefore the sets A = (J_| X,
and B = X,, of sizes a and b respectively, satisfy (i), a contradiction.
It follows that » < m; let a = y, and b = z — y,. Note that z, < b,
and thus /2 + 2b > y,_1 + x, + b = z, showing b > x/4 > n/6, and
a > x/2 > n/3 by the choice of r. Therefore the sets A = |J_, X;
and B = {J;%, ., X, of sizes a and b respectively, satisfy (i), again a
contradiction. Thus the lemma is proved. O

4. PROOF OF THEOREM 1.2.

Let T be a Cs-free tournament on n vertices, and let ¢ be as in
Theorem 2.2 applied with S = C5. We show that there exist a constant
¢ and disjoint subsets A, B of V(T), such that |A] = |B| = ¢n/6 and
A is complete to B.

Assume to the contrary that this is false. Let w be the zero vec-
tor of length 5. By Theorem 2.2 there exists ¢ > 0 and a smooth
(¢, £,(0,0,0,0,0))-structure S = (Vi,...,Vs). By definition, we have
that |V;| > cn for all 1 < i < 5, and for each v; € V;, if j > 4, then the
number of inneighbors of v; in V; at most £|V}|, and if j < i then the
number of outneighbors of v; in V; is at most #|V;|. It follows that , if
J > 1, then the number of outneighbors of v; in V; at least 4%, and if
J <4 then the number of inneighbors of v; in V} is at least den

We now define a directed graph D on the set of vertices V; in the
following way: there is an edge between two vertices uy, vy of Vj if
and only if they have a common inneighbor in V5, and in this case the
direction of the edge is the same as the direction of the edge between

these two vertices in T.
Claim 4.1. If (u1,vq) is an edge in D then
(1) N_(Ul)ﬂ‘/ggN_<U1)ﬂ‘/3
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Proof. Assume v3 € V3 is an inneighbor of u;, but an outneighbor of
v1, and let v5 € V5 be a common inneighbor of u; and v;. Suppose
first (vs,vs) € E(T). We claim that there exists a vertex vy € V4 such
that {(ve, v3), (va, v5), (u1,vs), (v1,v2)} C E(T). Indeed, the number of
outneighbors of each of u; and vy in V5 is at least *, and thus the
number of common outneighbors of u; and vy in V5 is at least 3% Let
Oy € V5 be the set common outneighbor of wy,v; in V5. Since the
number of outneighbors of vs in Oy is at most <*, and the number of
outneighbors of vz in Oy is at most *, there must exist a vertex vy € O
that is a inneighbor of both v3 and vs. Now (uq, vy, v, vs,v5) form a
(5 subtournament of T, a contradiction.

So assume (vs,v3) € E(T). Let Oy € Vy be the set of common out-
neighbors of u; and vs. Then, as before, [O4| > 2. Since the number
of inneighbors v in V} is at least 487”, there exists a set Ny C Oy of size
at least 22 such that every vertex v € Ny has (u1,v), (v3,v), (v,v5) €
E(T). Similarly, there exists a set No C V3 of size at least 2, such
that every vertex v € Ny has (u1,v), (v,v3), (v,v5) € E(T). If there
exist vy € No, vy € Ny such that (vy,ve) € E(T) then (vs, uy, v4, v, vs)
is a C'5 subtournament of T', a contradiction. Otherwise N, is complete
to N4, contradicting our negation assumption. U

Claim 4.2. D is an out-simplicial directed graph.

Proof. In order to prove this, consider three vertices uy, v, w; € Vj
such that (u1,v1), (u1,wy) € E(D). We need to prove that there is a
D edge between v; and w; in some direction, i.e., that v; and w; have
a common inneighbor in V5. Let x5 € V5 be the common inneighbor
of u; and v; and let y5; € V5 be the common inneighbor of u; and w;.
Without loss of generality, (z5,y5) € E(T). As before, there exists a
set Oz C Vi of size at least ?’C?" such that every vertex v € O3 is an
outneighbor of both u; and wy, and there exists a set I3 C V3 of size at
least 3¢ such that every vertex v € I3 is an inneighbor of both x5 and
ys. Thus there exists a vertex zz € O3 N I3, and (uq, wy, 23, T5, Ys) is a
C5 subtournament in 7', a contradiction. Therefore x5 must also be an
inneighbor of wy, proving our claim. U

Now, by Lemma 3.1 there exist sets A and B of V' (D), each of size
\V(D)|/6 > ¢n/6, satisfying either (i) or (ii). Let C' be the set of
vertices complete from A in T

In case (i), there is no edge in D between A and B in any direction,
implying that no two vertices a € A and b € B have a common in-
neighbor in V5. Thus the set V; \ C' is complete from B, and either C
or V5 \ C is of size at least %, a contradiction.
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In case (ii), there is a directed path from every vertex in A to every
vertex of B. Let v € V3 \ C. Then v is an inneighbor of some a € A.
Let b € B. There is a directed path P in D from a to b. By (1), using
induction on the length of P, v is an inneighbor of every every p in
P, and in particular v is an inneighbor of b. It follows that V3 \ C' is
complete to B. Since either C' or V3 \ C is of size at least 5, we get a
contradiction. This concludes the proof of the theorem.
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