


32 GPU hours. The learned attention mechanism learns ac-

curate correspondences between camera and map-view di-

rectly from data.

2. Related Works

Map-view semantic segmentation lies at the intersection

of 3D recognition, depth estimation, and mapping.

Monocular 3D object detection. Monocular detection

aims to find objects in a scene, estimate their real-world

size, orientation, and placement in the 3D scene. Most

common approaches reduce the problem to 2D object de-

tection and infer monocular depth [25, 47]. CenterNet [47]

directly predicts depth for each image coordinate. ROI-

10D [25] lifts 2D detections into 3D using depth estimates

then regresses 3D bounding boxes. Psuedo-lidar based

approaches [24, 43, 44, 45] project to 3D points using a

depth estimate and leverage 3D point based architectures

(e.g. [18, 30, 42]) with 2D labels. This family of algorithms

directly benefits from advances in monocular depth estima-

tion and 3D vision.

Monocular 3D object detection is both easier and harder

than mapping from multiple cameras. The overall problem

setup deals with just a single camera and does not need

to merge multiple sources of inputs. However, it strongly

relies on a good explicit monocular depth estimate, which

may be harder to obtain.

Depth estimation. Depth is a core ingredient in many

multi-view mapping approaches. Classic structure-from-

motion approaches [1, 7, 20, 35, 37] leverage epipolar ge-

ometry and triangulation to explicitly compute camera ex-

trinsics and depth. Stereo matching finds corresponding

pixels, from which depth can be explicitly computed [15].

Recent deep learning approaches directly regress depth

from images [6, 8, 11, 12, 31, 46].

While convenient, explicit depth is challenging to utilize

for downstream tasks. It is camera-dependent and requires

an accurate calibration and fusion of multiple noisy esti-

mates. Our approach side-steps explicit depth estimation

and instead allows an attention mechanism with positional

embedding to take its place. Our cross-view transformer

learns to reproject camera views into a common map repre-

sentation as part of training.

Semantic mapping in the map-view. Driven by ever

larger 3D recognition datasets [3, 5, 10, 13, 38], a number

of works have focused on perception in the map-view. This

problem is particularly challenging as the inputs and out-

puts lie in different coordinate frames. Inputs are recorded

in calibrated camera views, outputs are rasterized onto a

map. Most prior works differ in the way the transformation

is modeled. One common technique is to assume the scene

is mostly planar and represent the image to map-view trans-

formation as a simple homography [2, 9, 16, 22, 36, 48].

A second family of methods directly produces map-view

predictions from input images, with no explicit geometric

modeling. VED [23] uses a Variational Auto Encoder [17]

to produce a semantic occupancy grid from a single monoc-

ular camera-view.

Closely related in spirit to our method, VPN [28] learns a

common feature representation across multiple views with

their proposed view relation module - an MLP that outputs

map-view features from inputs across all views. Both VED

and VPN show carefully-designed networks trained with

sufficient training data can jointly learn the map-view trans-

formation and perform prediction. However, these methods

do suffer certain drawbacks as they do not model the ge-

ometric structure of the scene. They forgo the inherit in-

ductive biases contained in a calibrated camera setup and

instead need to learn an implicit model of camera calibra-

tion baked into the network weights. Our cross-view trans-

former instead uses positional embeddings derived from

calibrated camera intrinsics and extrinsics. The transformer

can learn a camera-calibration-dependent mapping akin to

raw geometric transformations.

Most recently, top-performing methods returned back to

explicit geometric reasoning [14, 27, 29, 32, 33, 34]. Ortho-

graphic Feature Transform (OFT) [33] creates a map-view

intermediate representation from a monocular image by av-

erage pooling image features from the 2D projection that

corresponds with the pillar in map-view. This pooling oper-

ation foregoes an explicit depth estimate and instead aver-

ages all possible image locations a map-view object could

take. Lift-Splat-Shoot (LSS) [29] constructs an intermedi-

ate map-view representation in a similar fashion. However,

they allow the model to learn a soft depth estimate and av-

erage across different bins using a learned depth-estimate-

dependent weight. Their downstream decoder can account

for uncertainty in depth. This weighted averaging operation

closely mimics the attention used in a transformer. How-

ever, their “attention weights” are derived from geometric

principles and not learned from data. The original Lift-

Splat-Shoot approach considers multiple views within a sin-

gle timestep. Recent methods have extended this further to

take aggregate features from previous timesteps [34], and

use multi-view, multi-timestep observations to do motion

forecasting [14].

In this work, we show that implicit geometric reasoning

performs as well as explicit geometric models. The added

benefit of our implicit handling of geometry is an improve-

ment in inference speed compared to explicit models. We

simply learn a set of positional embeddings, and attention

will reproject the camera to map-view.





We encode this direction vector dk,i using an MLP

(shared across all k views) into a D-dimensional positional

embedding δk,i ∈ R
D. We use D = 128 in our experi-

ments. We combine this positional embedding with image

features φk,i in the keys of our cross-view attention mecha-

nism. This allows cross-view attention to use both appear-

ance and geometric cues to reason about correspondences

across the different views.

Next, we show how to build an equivalent representation

for the map-view queries. This embedding can no longer

rely on exact geometric inputs and instead needs to learn ge-

ometric reasoning in consecutive layers of the transformer.

Map-view latent embedding. The map-view component

of the geometric similarity metric in Equation 2 contains

a world coordinate x(W ) and camera location tk. We en-

code both in a separate positional embedding. We use an

MLP to transform each camera location tk into an embed-

ding τk ∈ R
D. We build the map-view representation up

over multiple iterations in our transformer. We start with a

learned positional encoding c(0) ∈ R
w×h×D. The goal of

the map-view positional encoding is to produce an estimate

of the 3D location of each element of the road. Initially, this

estimate is shared across all scenes and likely learns an av-

erage position and height above the ground plane for each

element of the scene. The transformer architecture then re-

fines this estimate through multiple rounds of computation,

resulting in new latent embeddings c(1), c(2), . . .. Each po-

sitional embedding is better able to project the map-view

coordinates into a proxy of the 3D environment. Following

the geometric similarity measure in Equation 2, we use the

difference between map-view embeddings c and camera-

location embeddings τk as queries in the transformer.

Cross-view attention. Our cross-view transformer com-

bines both positional encodings through a cross-view atten-

tion mechanism. We allow each map-view coordinate to

attend one or more image locations. Crucially, not every

map-view location has a corresponding image patch in each

view. Front-facing cameras do not see the back, rear-facing

cameras do not see the front. We allow the attention mecha-

nism to select both camera and location within each camera

when corresponding map-view and camera-view perspec-

tives. To this end, we first combine all camera-aware po-

sitional embeddings δ1, δ2, . . . from all views into a single

key vector δ = [δ1, δ2, . . .]. At the same time, we com-

bine all image features φ1, φ2, . . . into a single value vec-

tor φ = [φ1, φ2, . . .]. We combine camera-aware positional

embeddings δ and image features φ to compute attention

keys. Finally, we perform softmax-cross-attention [41] be-

tween keys [δ, φ], values φ, and map-view queries c− τk.

The softmax attention uses a cosine similarity between

keys and queries as a basic building block

sim(δk,i, φk,i, c
(n)
j , τk) =

(δk,i + φk,i)·
(

c
(n)
j − τk

)

∥δk,i + φk,i∥∥c
(n)
j − τk∥

. (3)

This cosine similarity follows the geometric interpretation

in Equation 2. This cross-view attention forms the basic

building block of our cross-view transformer architecture.

3.2. A cross­view transformer architecture

The first stage of the network builds up a camera-view

representation for each input image. We feed each image Ii
into feature extractor (EfficientNet-B4 [39]) and get a multi-

resolution patch embedding {φ1
1, φ

2
1, . . . , φ

R
n }, where R is

the number of resolutions we consider. We found R = 2
resolutions to produce sufficiently accurate results. We pro-

cess each resolution separately. We start from the lowest

resolution and project all image features into map-view us-

ing cross-view attention. We then refine the map-view em-

bedding and repeat the process for higher resolutions. Fi-

nally, we use three up-convolutional layers to produce the

full resolution output.

A detailed overview of this architecture is shown in Fig-

ure 2. The final network is end-to-end trainable. We train all

layers using ground truth semantic map-view annotations

and a focal loss [19].

4. Implementation Details

Architecture. We use (and fine-tune) a pre-trained

EfficientNet-B4 [39] to compute image features at two dif-

ferent scales - (28, 60) and (14, 30), which correspond to

a 8x and 16x downscaling, respectively. The initial map-

view positional embedding is a tensor of learned parame-

ters w × h × D, where D = 128. For computational ef-

ficiency, we choose w = h = 25 as the cross-attention

function grows quadratically with grid size. The encoder

consists of two cross-attention blocks: one for each scale of

patch features. We use multi-head attention with 4 heads

and an embedding size dhead = 64. The decoder consists

of three (bilinear upsample + conv) layers to upsample the

latent representation to the final output size. Each upsam-

pling layer increases the resolution by a factor of 2 up to a

final output resolution of 200 × 200. This corresponds to a

100× 100 meter area centered around the ego-vehicle.

Training. We train all models using a focal loss [19], with

a batch size of 4 (per GPU) for 30 epochs. We optimize

using the AdamW [21] optimizer with learning rate 1e-2

and weight decay 1e-7. Training converges within 8 hours

on a 4 GPU machine.



Setting 1 Setting 2 #Params (M) FPS

PON [32] 24.7 - 38 30

VPN [28] 25.5 - 18 -

STA [34] 36.0 - - -

Lift-Splat [29] - 32.1 14 25

FIERY [14] 37.7 35.8 7 8

Ours 37.5 36.0 5 35

Table 1. Vehicle map-view segmentation on nuScenes. Setting

1 refers to the 100m×50m at 25cm resolution setting proposed

by Roddick et al. [32]. Setting 2 refers to the 100m×100m at

50cm resolution setting proposed by Philion and Fidler [29]. Both

settings evaluate the Intersection over Union (IoU) metric. Higher

is better. For a fair comparison, we use single-timestep models

only. In particular, we compare to FIERY static [14]. In both

settings, our cross-view transformer performs at the state-of-the-

art with a smaller model and runs 4.5× faster during inference.

5. Results

We evaluate our cross-view transformer on vehicle and

road map-view semantic segmentation on the nuScenes [3]

and Argoverse [4] datasets.

Dataset. The nuScenes [3] dataset is a collection of 1000

diverse scenes collected over a variety of weathers, time-

of-day, and traffic conditions. Each scene lasts 20 seconds

and contains 40 frames for a total of 40k total samples in

the dataset. The recorded data captures a full 360° view

around the ego-vehicle and is composed of 6 camera views.

Each camera view has calibrated intrinsics K and extrinsics

(R, t) at every timestep. We resize every image to 224 ×
448 unless specified otherwise. The Argoverse [4] dataset

contains 10k total frames.

Vehicles and other objects in the scene are tracked across

frames and annotated with 3D bounding boxes using Li-

DAR data. Using the pose of the ego-vehicle, we generate

the ground-truth labels y, a binary vehicle occupancy mask

rendered at a resolution of (200, 200) by orthographically

projecting 3D box annotations onto the ground plane, fol-

lowing standard practice [14, 29].

Evaluation. There are two commonly used evaluation

settings for map-view vehicle segmentation. Setting 1 uses

a 100m×50m area around the vehicle and samples a map

at a 25cm resolution. The setting, popularized by Roddick

et al. [32], serves as the main comparison to prior work.

Setting 2 [29] uses a 100m×100m area around the vehicle,

with a 50cm sampling resolution. This setting was popular-

ized by Philion and Fidler [29] and serves as a comparison

to Lift-Splat-Shoot [29] and FIERY [14]. We use Setting 2

for all ablations. In both settings, we use the Intersection-

over-Union (IoU) score between the model predictions and

Vehicle Driveable Area

OFT [33] 30.1 71.7

Lift-Splat [29] 32.1 72.9

Ours 36.0 74.3

Monolayout [26] 32.1 58.3

PON [32] 31.4 65.4

Ours 35.2 73.6

Table 2. Additional comparison with models that perform map-

view segmentation for vehicles and driveable area. The top and

bottom rows correspond to on nuScenes [3] setting 2 and Argov-

erse [4] dataset respectively.

the ground truth map-view labels as the main performance

measure. We additionally report inference speeds measured

on an RTX 2080 Ti GPU.

5.1. Comparison to prior work

We compare our model to the five most competitive prior

approaches on online mapping. For a fair comparison, we

use single-timestep models only and do not consider tempo-

ral models. We compare to Pyramid Occupancy Networks

(PON) [32], Orthographic Feature Transform (OFT) [33],

View Parsing Network (VPN) [28], Spatio-temporal Aggre-

gation (STA) [34], Lift-Splat-Shoot [29], and FIERY [14].

PON, VPN, STA only report numbers in Setting 1, while

Lift-Splat-Shoot only uses Setting 2.

In both settings, our cross-view transformer and FIERY

outperform all alternative approaches by a significant mar-

gin. Our cross-view transformer and FIERY perform com-

parably. We have a slight edge in Setting 2, FIERY in

Setting 1. The main advantage of our model is simplic-

ity and inference speed, along with the accompanying edge

in model size. Our model trains significantly faster (32

GPU hours vs 96 GPU hours) and performs 4× faster infer-

IoU

No camera-aware embedding δ 31.0

No image features φ in attention 33.2

No map-view embedding refinement 33.6

Full model 36.0

Table 3. Ablations of the cross-view attention mechanism. The

first row compares to a model that does not use camera-aware po-

sitional embedding thus only uses image features as attention keys.

The second row does not use any image features in the keys of the

attention mechanism. The third row uses the full attention compu-

tation in camera-view but does not refine the map-view positional

embedding. All partial models degrade reasonably and perform

below the full model.





Figure 5. Qualitative results on scenes with varying degrees of occlusion. Left shows the six camera views surrounding the vehicle. The top

3 views are front-facing, the bottom 3 views back-facing. On the right is our predicted map-view segmentation for vehicles and driveable

area. Second from the right is the ground truth segmentation for reference. The ego-vehicle is located at the center of the map.

nore all predictions that are closer than a certain distance

to the ego-vehicle. Figure 3 compares to our closest com-

petitor FIERY.

Both models have close to identical error modes. As the

distance to the camera increases, the models get less ac-

curate. This is easiest explained through actual qualitative

results in Figure 5. Farther away vehicles are often (par-

tially) occluded and thus much harder to detect and seg-

ment. Our approach degrades slower for close-by distances,

but slightly under-performs FIERY at longer ranges.

Partially occluded far-away samples have fewer corre-

sponding image features, thus learning a mapping from

map-view to camera-view directly is harder: There is less

training data and fewer geometric priors to rely upon for

our model. We anticipate more data to make up for this

difference.





References

[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Si-

mon, Brian Curless, Steven M Seitz, and Richard Szeliski.

Building rome in a day. Communications of the ACM, 2011.

2
[2] Syed Ammar Abbas and Andrew Zisserman. A geometric

approach to obtain a bird’s eye view from an image. In ICCV

Workshops, 2019. 1, 2
[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-

ancarlo Baldan, and Oscar Beijbom. nuScenes: A multi-

modal dataset for autonomous driving. In CVPR, 2020. 1, 2,

5
[4] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-

jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter

Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3d

tracking and forecasting with rich maps. In CVPR, 2019. 5
[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
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