




use the combinatorial optimization to select globally con-

sistent assignments. Our method directly outputs consistent

long-term trajectories without combinatorial optimization.

This is done by a single forward pass in a relatively shallow

network.

Transformers in tracking. Trackformer [30] augments

DETR [8] with additional object queries from exist-

ing tracks, and propagates track IDs as in Tracktor [4].

TransTrack [40] uses features from historical tracks as

queries, but associates objects based on updated bounding

box locations. MOTR [64] follows the DETR [8] structure

and iteratively propagates and updates track queries to as-

sociate object identities. MO3TR [71] additionally uses a

temporal attention module to update the status of each track

over a temporal window, and feeds updated track features

as queries in DETR. The common idea behind these works

is to use the object query mechanism in DETR [8] to ex-

tend existing tracks frame-by-frame. We use transformers

in a different way. Our transformer uses queries to generate

entire trajectories at once. Our queries do not generate new

boxes, but group already-detected boxes into trajectories.

Video object detection. Applying attention blocks on

object features over a video is a successful idea in video ob-

ject detection [37]. SELSA [57] feeds region proposals of

randomly sampled frames to a self-attention block to pro-

vide global context. MEGA [9] builds a hierarchical local

and global attention mechanism with a large temporal re-

ceptive field. ContextRCNN [2] uses an offline long-term

feature bank [56] to integrate long-range temporal features.

These methods support our idea of using transformers to an-

alyze object relations. The key difference is they do not use

object identity information, but implicitly use object cor-

relations to improve detection. We explicitly learn object

association in a supervised way for tracking.

3. Preliminaries

We start by formally defining object detection, tracking,

and tracking by detection.

Object detection. Let I be an image. The goal of object de-

tection is to identify and localize all objects. An object de-

tector [8,36,45,70] takes the image I as input and produces

a set of objects {pi} with locations {bi}, bi ∈ R
4 as its out-

put. For multi-class object detection, a second stage [20,36]

takes the object features and produce a classification score

si ∈ R
C from a set of predefined classes C and a refined

location b̃i. For single-class detection (e.g., pedestrian de-

tection [31]), the second stage can me omitted.

Tracking. Let I1, I2, . . . , IT be a series of images. The

goal of a tracker is to find trajectories τ 1, τ 2, . . . , τK of

all objects over time. Each trajectory τ k = [τ1k , . . . , τ
T
k ]

describes a tube of object locations τ tk ∈ R
4 ∪ {∅} through

time t. τ tk = ∅ indicates that the object k cannot be located

in frame t. The tracker may optionally predict the object

class score sk [13] for each trajectory, usually as the average

class of its per-frame slices.

Tracking by detection decomposes the tracking problem

into per-frame detection and inter-frame object association.

Object detection first finds Nt candidate objects bt1, b
t
2, . . .

as bounding boxes bti ∈ R
4 in each frame It. Association

then links existing tracks τ k to current detected objects us-

ing an object indicator αt
k ∈ {∅, 1, 2, . . . , Nt} at each frame

t :

τ tk =

{

∅ if αt
k = ∅

bt
αt

k

otherwise

Most prior works define the association greedily through

pairwise matches between objects in adjacent or nearby

frames [4, 5, 66, 68], or rely on offline combinatorial opti-

mization for global association [6, 16, 65]. In this work, we

show how to perform joint detection and global association

within a single forward pass through a network. The net-

work learns global tracking within a video clip of 32 frames

in an end-to-end fashion. We leverage a probabilistic for-

mulation of the association problem and show how to in-

stantiate tracking in a transformer architecture in Section 4.

4. Global tracking transformers

Out global tracking transformer (GTR) associates ob-

jects in a probabilistic and differentiable manner. It links

objects pti in each frame It to a set of trajectory queries

qk. Each trajectory query qk produces an object association

score vector g ∈ R
N over objects from all frames. This as-

sociation score vector then yields a per-frame object-level

association αt
k ∈ {∅, 1, . . . , Nt}, where αt

k = ∅ indicates

no association and Nt is the number of detected objects in

frame It. The combination of associations then produces a

trajectory τ k. Figure 2 provides an overview. The associa-

tion step is differentiable and can be jointly trained with the

underlying object detector.

4.1. Tracking transformers

Let pt1, . . . , p
t
Nt

be a set of high-confidence objects for

image It. Let Bt = {bt1, . . . , b
t
Nt

} be their corresponding

bounding boxes. Let f t
i ∈ R

D be the D-dimentional fea-

tures extracted from boxes bti. For convenience let F t =
{f t

1, . . . , f
t
Nt

} be the set of all detection features of im-

age It, and F = F 1 ∪ . . . ∪ FT be the set of all fea-

tures through time. The collection of all object features

F ∈ R
N×D is the input to our tracking transformer, where

N =
∑T

t Nt is the total number of detections in all frames.

The tracking transformer takes features F and a trajectory

query qk ∈ R
D, and produces a trajectory-specific associa-

tion score g(qk, F ) ∈ R
N .

Formally, let gti(qk, F ) ∈ R be the score of the i-th ob-

ject in the t-th frame. A special output token gt∅(qk, F ) = 0
indicates no association at time t. The tracking transformer



then predicts a distribution of associations over all objects

i in frame It for each trajectory k. We model this as an

independent softmax activation for each time-step t:

PA(α
t = i|qk, F ) =

exp (gti(qk, F ))
∑

j∈{∅,1,...Nt}
exp

(

gtj(qk, F )
) (1)

Since a detector produces a single bounding box bti
for each object pti, there is a one-to-one mapping be-

tween the association distribution PA and a distribu-

tion Pt over bounding boxes for trajectory k at time t:

Pt(b|qk, F ) =
∑Nt

i=1 1[b=bt
i
]PA(α

t = i|qk, F ), where the

indicator 1[·] assigns an output bounding box to each asso-

ciated query. In practice, a detector’s non-maximum sup-

pression (NMS) ensures that there is also a unique map-

ping from Pt back to PA. The distribution over bounding

boxes in turn leads to a distribution over entire trajectories

PT (τ |qk, F ) =
∏T

t=1 Pt(τ
t|qk, F ).

During training, we maximize the log-likelihood of the

ground-truth trajectories. During inference, we use the like-

lihood to produce long-term tracks in an online manner.

4.2. Training

Given a set of ground-truth trajectories τ̂1, . . . , τ̂K , our

goal is to learn a tracking transformer that estimates PA, and

implicitly the trajectory distribution PT . We jointly train

the tracking transformer with detection by treating the trans-

former as an RoI head like two-stage detectors [36]. At each

training iteration, we first obtain high-confidence objects

bt1, . . . , b
t
Nt

and their corresponding features Ft after non-

maximum suppression. We then maximize logPT (τ |qk, F )
for each ground-truth trajectory τ . This is equivalent to

maximizing logPA(α
t|qk, F ) after assigning τ to a set

of objects. We follow object detection and use a simple

intersection-over-union (IoU) assignment rule:

α̂t
k=

{

∅, if τ tk=∅ or maxi IoU(bti, τ
t
k)<0.5

argmaxiIoU(bti, τ
t
k), otherwise

(2)

We use this assignment to both train the bounding box re-

gression of the underlying two-stage detector, and our as-

signment likelihood PA. However, this assignment likeli-

hood further depends on the trajectory query qk, which we

define next.

Trajectory queries are key to our formulation. Each query

qk generates a trajectory. In prior work [8], object queries

were learned as network parameters and fixed during in-

ference. This makes queries image-agnostic and requires a

near-exhaustive enumeration of them [26, 42, 72]. For ob-

jects this is feasible [8], as anchors [23] or proposals [41]

showed. Trajectories, however, live in the exponentially

larger space of potential moving objects than simple boxes,

and hence require many more queries to cover that space.

Furthermore, tracking datasets feature many fewer anno-

tated instances, and learned trajectories easily overfit and

remember the dataset.

We instead directly use object features f t
i as the object

queries. Specifically, let α̂k be the matched objects for a

ground-truth trajectory τ k according to Equation (2). Any

feature {f1
α̂1

k

, f2
α̂2

k

, . . .} can serve as the trajectory query for

trajectory τ k. In practice, we use all object features F in the

all the T frames as queries and train the transformer for a

sequence length of T . Any unmatched features f t
i are used

as background queries and supervised to produce ∅ for all

frames. We allow multiple queries to produce the same tra-

jectory, and do not require a one-to-one match [8]. During

inference, we only use object features from one single frame

as the queries to avoid duplicate outputs. All object features

within a frame are different (after standard detection NMS)

and hence produce different trajectories.

Training objective. The overall training objective com-

bines the assignment in Equation (2) and trajectory queries

to maximize the log-likelihood of each trajectory under its

assigned queries. For each trajectory τk we optimize the

log-likelihood of its assignments α̂k:

ℓasso(F, τ̂ k)=−
∑

s∈{1...T |α̂s

k
̸=∅}

T
∑

t=1

logPA(α̂
t
k|F

s
α̂s

k

, F ) (3)

For any unassociated features, we produce empty trajecto-

ries:

ℓbg(F ) = −
T
∑

s=1

∑

j:∄α̂s

k
=j

T
∑

t=1

logPA(α
t = ∅|F s

j , F ) (4)

The final loss simply combines the two terms:

Lasso(F, {τ̂ 1, . . . , τ̂K})=ℓbg(F )+
∑

τ̂k

ℓasso(F, τ̂ k) (5)

We train Lasso jointly with standard detection losses [70],

including classification and bounding-box regression

losses, and optionally second stage classification and re-

gression losses for multi-class tracking [13],

4.3. Online Inference

During inference, we process the video stream online

in a sliding-window manner with window size T = 32
and stride 1. For each individual frame t, we feed the im-

age to the network before the tracking transformer and ob-

tain Nt bounding boxes Bt and object features F t. We

keep a temporal history buffer of T frames, i.e., B =
{Bt−T+1, · · · , Bt} and F = {F t−T+1, · · · , F t}, and run

the tracking transformer for each sliding window. We use

object features from the current frame t as trajectory queries

qk = F t
k to produce Nt trajectories. For the first frame,
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Figure 3. Left: detailed network architecture of GTR. Right: detailed structure of both self-att and cross-att blocks. We omit multi-

head [49] in the figure for simplicity. For self-attention, q = k = F . For cross attention, q = Q, k = F . We list data dimensionalities in

parentheses.
⊗

indicates matrix multiplication (transpose when needed).

we initialize all detections as trajectories. For any subse-

quent frame, we link current predicted trajectories to exist-

ing tracks using the average assignment likelihood PA as a

distance metric. Since the current trajectories share up to

T − 1 boxes and features with past trajectories, the overlap

can be quite large. We use a Hungarian algorithm to ensure

that the mapping from current long-term trajectories to ex-

isting tracks is unique. If the average association score with

any prior trajectory is lower than a threshold θ, we start a

new track. Otherwise we append the underlying current de-

tection (query) that generates the trajectory to the matched

existing track.

4.4. Network architecture

The global tracking transformer takes a stack of object

features F ∈ R
N×D as the encoder input, a matrix of

queries Q ∈ R
M×D as the decoder input, and produces

an association matrix G ∈ R
M×N between queries and ob-

jects. The detailed structure of the tracking transformer is

shown in Figure 3 (left). It follows DETR [8] but only uses a

one-layer encoder and a one-layer decoder. Empirically, we

observe that self-attention for queries and Layer Normaliza-

tion [1] were not required. See Section 5.5 for an ablation.

The resulting network structure is lightweight, with 10 lin-

ear layers in total. It runs in a fraction of the runtime of the

backbone detector, even for hundreds of queries.

4.5. Connection to embedding learning and ReID

Consider a variation of GTR with just a dot-product as-

sociation score gti(qk, F ) = qk ·F
t
i . Further consider learn-

ing all trajectory queries Q = {q1, . . . , qk} as free param-

eters, one per training trajectory τk. In this variation, the

softmax assignment in Equation (1) reduces to a classifica-

tion problem. For each object feature, we classify it as a

specific training instance or as background. This is exactly

the objective of classification-based embedding learning in

person-ReID [29], as used in ReID-based trackers [54, 66].

The two key differences between embedding learning

and GTR are: first, our transformer does not assume any

factorization of gti and allows the model to reason about

all boxes at once when computing associations. A dot-

product-based ReID network on the other hand assumes that

all boxes independently produce a compatible embedding.

See Section 5.5 for an ablation of this transformer struc-

ture. Second, our trajectory queries are not learned. This

allows our transformer to produce long-term associations in

a single forward pass, while ReID-based trackers rely on a

separate cosine-distance-based grouping step [54, 66].

5. Experiments

We evaluate our method on two tracking benchmarks:

TAO [13] and MOT17 [31].

TAO [13] tracks a wide variety of objects. The images

are adopted from 6 existing video datasets, including in-

door, outdoor, and driving scenes. The dataset requires

tracking objects with a large vocabulary of 488 classes in

a long-tail setting. It contains 0.5k, 1k, and 1.5k videos for

training, validation, and testing, respectively. Each video

contains ∼ 40 annotated frames at 1 annotated frame per

second. There is significant motion between adjacent anno-

tated frames. The training annotations are incomplete. We

thus do not use the training set and solely train on LVIS [19]

and use the TAO validation and test set for evaluation.

MOT [31] tracks pedestrians in crowd scenes. It con-

tains 7 training sequences and 7 test sequences. The se-

quences contain 500 to 1500 frames, recorded and anno-

tated at 25-30 FPS. We follow CenterTrack [68] and split

each training sequence in half. We use the first half for

training and the second half for validation. We perform ab-

lation studies mainly on this validation set, and compare to

other approaches on the official hidden test set. We evaluate

under the private detection protocol.

5.1. Evaluation metrics

We evaluate under the official metrics for each dataset.

TAO [13] uses tracking mAP@0.5 as the official metric,

which is based on standard object detection mAP [24]

but changes the 2D bounding box IoU to 3D temporal-

spatial IoU between the predicted trajectory and the

ground-truth trajectory. The overall tracking mAP is

averaged across all classes. MOT [31] uses Multi-

Object Tracking Accuracy (MOTA) as the official met-

ric. MOTA = 1−
∑

t
(FPt+FNt+IDSWt)∑

t
GTt

, where GTt is the

number of ground truth objects in frame t, and FPt, FNt,

and IDSWt measure the errors of false positives, false neg-

atives, and ID switches, respectively.

As suggested by the MOT benchmark, we additionally

report HOTA, a new tracking metric [28]. HOTA is defined

as the geometric mean of detection accuracy (DetA) and as-

sociation accuracy (AssA). Both DetA and AssA have the

form
|TP |

|TP |+|FN |+|FP | , with their respective true/false cri-



teria. In our experiments, we mainly use AssA to access

tracking performance.

5.2. Training and inference details

TAO training. Our implementation is based on de-

tectron2 [59]. For TAO [13] experiments, we use

Res2Net [17] with deformable convolution [11] as the back-

bone. We adopt CenterNet2 [69] as the detector, which

uses CenterNet [70] as proposal network and cascaded RoI

heads [7] for classification. Following the guideline of TAO

dataset [13], we train the object detector on the combination

of LVISv1 [19] and COCO [24]. We additionally incorpo-

rate a federated loss [69] to improve long-tail detection. We

first train a single-frame detector. The training uses SGD

with learning rate 0.04 and batch size 32 for 180K itera-

tions (the 4× schedule [59]). We use training resolution

896×896 following the scale-and-crop augmentation of Effi-

cientDet [43]. The detector yields 37.1 mAP on the LVISv1

validation set and 27.3 mAP on the TAO validation set.

TAO only provides a small training set for tuning track-

ing hyperparameters, but not for training the tracker. We

empirically observed that training on the TAO training set

hurts detection performance, and overall does not yield

good tracking accuracy. We find that training only on static

image datasets [19] with data augmentation is sufficient for

tracking. Our training strategy follows CenterTrack [68].

Specifically, we apply two different data augmentations to

an image, and use them as the starting and ending frame

of a video. We then interpolate the images and annotations

linearly to generate a smooth video for training.

With the synthetic video, we fine-tune the network with

the tracking transformer head end-to-end from the single-

frame detector. Our fine-tuning protocol follows DETR [8]

and uses the AdamW optimizer [27], multiplies the back-

bone learning rate by a factor of 0.1, and clamps the gradi-

ent norm at 0.1. We use a base learning rate of 0.0001. We

generate video clips of length T = 8 and train with a batch

size of 8 videos on 8 GPUs, resulting in an effective batch

size of 64. We fine-tune the network for 22,500 iterations

(a 2× schedule). The fine-tuning takes around 8 hours on 8

Quadro RTX 6000 GPUs.

MOT training. For our MOT model, we follow past

works [66, 68] to use CenterNet [70] with a DLA-

34 backbone [62] as the object detector. We use

BiFPN [43] as upsampling layers instead of the original

deformable-convolution-based [11] upsampling [62]. We

use RoIAlign [20] to extract features for our global tracking

transformer. We do not refine bounding boxes from the RoI

feature and use the CenterNet detections as-is. We use a

training size of 1280× 1280 and a test size of 1560 (longer

edge). Following CenterTrack [68], we pretrain the detector

on Crowdhuman [39] for 96 epochs. We then fine-tune with

the GTR head on Crowdhuman (with augmentation) and the

MOT training set in a 1 : 1 ratio [40]. We again use T = 8

frames for a video clip with a batch size of 8 clips. We fine-

tune the network for 32K iterations, which corresponds to

∼36 epochs of Crowdhuman and 64 epochs of MOT. This

takes ∼6 hours on 8 Quadro RTX 6000 GPUs.

Inference. During testing, we set the output score thresh-

old to 0.55 for MOT and the proposal score threshold to 0.4
for TAO, based on a sweep on the validation set. We do

not set an output threshold for TAO. For both datasets, we

set the new-track association threshold to θ = 0.2. Since

the MOT dataset has high frame rate, we find it beneficial

to use location information during association. We asso-

ciate tracks based on the maximum of the trajectory associ-

ation score and the box-trajectory IoU. This is examined in

a controlled experiment in Section 5.5. We further remove

trajectories [6] of length < 5.

Tracking-conditioned classification. Our global associa-

tion module is applied to object features before classifica-

tion. This allows us to to classify objects using temporal

cues from tracking. On our TAO experiments, we assign

a single classification score to the trajectory by averaging

the per-box classification scores within the trajectory to a

global classification score offline.

Runtime. We measure the runtime on our machine with

an Intel Core i7-8086K CPU and a Titan Xp GPU. On the

MOT17 our backbone detector runs in 47ms and the track-

ing transformer in 4ms per frame. On TAO the backbone

runs in 86ms, the transformer in 3ms.

5.3. Global versus local association

We first validate our main contribution: global associa-

tion. We compare to baseline local trackers based on lo-

cation (SORT [5]), identity, or joint location and identity

(FairMOT [66]). To make a direct comparison of trackers,

we apply all baseline trackers to the detection outputs of the

same model to ensure the same detections (Rows 1-3 in Ta-

ble 1). The ReID features are trained with our association

loss (see discussions in Section 4.5), we also include base-

lines with the original instance-classification-based ReID

losses (row 4 in Table 1). We adopt the implementation

from FairMOT [66] with the default hyperparameters1 and

tricks, including a track-rebirth mechanism for up to 30
frames, for all baselines.

Table 1 shows the results on the TAO [13] and

MOT17 [31] validation sets. First, despite close MOTA and

DetA, ReID-based methods (FairMOT [66] and ours) gen-

erally achieve higher tracking accuracy than the location-

only baseline [5]. For our method, when T = 2 it reduces to

a local tracker that only associates across consecutive pairs

of frames. This tracker cannot recover from any occlusion

or missing detection, yielding a relatively low AssA. How-

ever, when we gradually increase the temporal window T ,

1We tuned the hyperparameters, but observed that the default settings

performed best.



# TAO MOT17

Track mAP HOTA DetA AssA MOTA IDF1 HOTA DetA AssA

1 IoU [5] 8.8 32.7 30.5 35.4 68.9 65.0 57.4 59.2 56.1

2 ReID 10.9 35.0 31.4 39.5 70.9 74.0 61.7 60.0 63.7

3 IoU+ReID [66] 11.0 34.9 31.2 39.5 71.1 74.2 62.1 60.2 64.4

4 IoU+ReID (retrained) 6.7 23.4 18.8 29.5 69.9 73.0 60.9 59.4 62.5

5 GTR (T=2) 13.6 42.0 35.8 49.8 71.3 65.1 57.8 60.6 55.8

6 GTR (T=4) 17.7 44.0 36.4 53.6 71.6 69.6 59.9 60.8 59.6

7 GTR (T=8) 19.5 45.6 36.8 56.8 71.3 72.2 61.1 60.7 62.0

8 GTR (T=16) 22.5 45.8 36.8 57.4 71.4 75.1 62.5 60.6 65.0

9 GTR (T=32) 22.1 44.9 35.9 56.7 71.3 75.9 63.0 60.4 66.2

Table 1. Effectiveness of global tracking. We compare greedy trackers [5, 66] (top block) with our global tracker(GTR) under different

temporal windows on the TAO and MOT17 validation sets. We show the official metrics (Track mAP for TAO and MOTA/ IDF1 for

MOT17) as well as HOTA metrics. All metrics are higher better. All rows except row 4 are the same model trained with our losses

(evaluated with different tracking algorithms). Row 4 is a different model retrained with the original instance-classification loss [66]. Our

global tracker benefits from longer temporal windows, and outperforms local trackers.

Validation Test

mAP50 HOTA DetA AssA mAP50 FPS

SORT TAO [13] 13.2 - - - 10.2 15.2

QDTrack [32] 16.1 35.8 24.3 53.5 12.4 5.4

GTR w. QDTrack det. 20.4 40.7 30.1 55.6 - -

GTR 22.5 45.8 36.8 57.5 20.1 11.2

AOA [15] 25.8 - - - 27.5 1.0

Table 2. Results on TAO dataset [13]. We show the HOTA met-

rics on the validation set and the official metric tracking mAP50.

We show the frame-per-second tested on our machine in the last

column. We show the 2020 TAO challenge winner which are based

on a separate ReID network for per-box in the last row.

we observe a consistent increase in association accuracy.

On MOT17 with T = 32, our method outperforms Fair-

MOT [66] by a healthy 1.8 AssA and 1.7 IDF1, showing

the advantage of our global tracking formulation. On TAO

the performance saturates at T = 16. This may due to the

much lower frame-rate in TAO dataset which results in dras-

tic layout change within a long temporal window.

5.4. Comparison to the state­of­the­art

Next we compare to other trackers with different detec-

tions on the corresponding test sets. Table 2 shows the re-

sults on TAO validation and test sets. TAO [13] is a rela-

tively new benchmark with few public entries [13, 32]. Our

method substantially outperforms the official SORT base-

line [13] and the prior best result (QDTrack [32]), yielding a

relative improvement of 62% in mAP on the test set. While

part of the gain is from our stronger detector, this highlights

one of the advantages of our model: it is end-to-end jointly

trainable with state-of-the-art detection systems. Table 2

3rd row show GTR with the detections from QDTrack [32].

We show GTR displays a 4.3 mAP and 1.9 AssA gain over

QDTrack using the same detector.

Our model underperforms the 2020 TAO Challenge win-

ner AOA [15], which trains separate ReID networks on

large single-object tracking datasets [21, 35, 37]. They feed

all detected boxes separately to the ReID networks in a

slow-RCNN [18] fashion. On our machine, AOA’s full de-

tection and tracking pipeline takes 989ms per image on av-

erage. Our model is more than 10× faster than AOA [15],

and uses a single forward pass for each frame with a light-

weighted per-object head.

Table 3 compares our tracker with other entries on

the MOT17 leaderboard. Our entry achieves a 74.1
MOTA, 71.1 IDF1, and 59.0 HOTA. This is better

than most concurrent transformer-based trackers, includ-

ing Trackformer [30], MOTR [64], TransCenter [61], and

TransTrack [40]. Our model currently underperforms

TransMOT [10] in both MOTA and IDF1. There are several

implementation differences between TransMOT and ours,

including the use of additional data (TransMOT uses ad-

ditional ReID data), detector architecture (TransMOT uses

YOLOv5 [48] as detector and uses a separate tracker), and

training and testing parameters (Code not released). Our

tracker is 1.4 MOTA lower, but runs 2× faster.

5.5. Design choice experiments

Here we ablate our key design choices. All experiments

are conducted under the best setting of Table 1, with T =
32. The random noise across different runs is within 0.2
MOTA and 0.5 AssA.

Attention structure. We first verify the necessity of us-

ing a transformer structure for the association head. As the

counterpart, we remove both the self-attention layer and the

cross-attention layer in Figure 3, and directly dot-product

the object features after the linear layers. Table 4a shows

that this decreases AssA considerably. Further adding self-

attention layers in the decoder as in DETR [8] does not im-

prove performance, thus we just use encoder attention.

Positional embedding. Positional embedding is a com-



MOTA↑ IDF1↑ HOTA↑ DetA↑ AssA↑ FP↓ FN↓ IDS↓ FPS ↑

Trackformer [30] 65.0 63.9 - - - 70,443 123,552 3,528 -

MOTR [64] 65.1 66.4 - - - 45,486 149,307 2,049 -

ChainedTracker [33] 66.6 57.4 49.0 53.6 45.2 22,284 160,491 5,529 6.8

CenterTrack [68] 67.8 64.7 52.2 53.8 51.0 18,498 160,332 3,039 17.5

QDTrack [32] 68.7 66.3 53.9 55.6 52.7 26,589 146,643 3,378 20.3

TraDeS [58] 69.1 63.9 52.7 55.2 50.8 20,892 150,060 3,555 66.9

TransCenter [61] 73.2 62.2 54.5 60.1 49.7 23,112 123,738 4,614 1.0

GSDT [52] 73.2 66.5 55.2 60.0 51.0 26,397 120,666 3,891 4.9

FairMOT [66] 73.7 72.3 59.3 60.9 58.0 27,507 117,477 3,303 25.9

TransTrack [40] 74.5 63.9 53.9 60.5 48.3 28,323 112,137 3,663 59.2

CSTrack [22] 74.9 72.6 59.3 61.1 57.9 23,847 114,303 3,567 15.8

FUFET [38] 76.2 68.0 57.9 62.9 53.6 32,796 98,475 3,237 6.8

CorrTracker [50] 76.5 73.6 60.7 62.8 58.9 29,808 99,510 3,369 15.6

TransMOT [10] 76.7 75.1 - - - 36,231 93,150 2,346 9.6

GTR (ours) 75.3 71.5 59.1 61.6 57.0 26,793 109,854 2,859 19.6

Table 3. Comparison to the state-of-the-art on the MOT17 test set (private detection). We show the official metrics from the leader-

board. ↑: higher better and ↓: lower better. FPS is taken from the leaderboard or paper. GTR achieves top-tier performance on MOT17.

HOTA DetA AssA MOTA

Direct dot product 61.3 59.5 63.6 70.5

*Encoder attention 63.0 60.4 66.2 71.3

Enc.+ Dec. attention 62.3 60.5 64.5 71.2

(a) With/without attention layers. Encoder attention improves tracking.

HOTA DetA AssA MOTA

*no embedding 63.0 60.4 66.2 71.3

w. positional emb. 62.5 60.7 65.0 71.7

w.pos.+ temp. emb. 62.4 60.7 64.6 71.7

(b) Different positional/temporal embeddings. Possitional embeddings do not help.

Enc. Dec. HOTA DetA AssA MOTA

*1 1 63.0 60.4 66.2 71.3

1 2 62.7 60.4 65.0 71.2

2 1 63.0 60.9 66.0 71.7

(c) Number of transformer layers. One layer is sufficient for both.

MOT17 TAO

HOTA DetA AssA MOTA mAP50

w/o location 61.7 60.6 63.3 71.3 22.5

*w/ location 63.0 60.4 66.2 71.3 22.5

(d) With/without using location during testing. Location helps MOT17 but not TAO.

Table 4. Design choice experiments on the MOT17 validation set. * means our default setting. We ablate the effectiveness of attention

layers, effectiveness of positional embeddings, number of transformer layers, and use of localizations in testing.

mon component in transformers. We have implemented a

learned positional embedding as well as a learned temporal

embedding. However, we didn’t observe an improvement in

association accuracy from these, as shown in Table 4b. We

thus don’t use any positional embedding in our final model.

Transformer layers. Table 4c shows the results of using

different numbers of attention layers in the encoder and de-

coder. While most transformer-based trackers [30, 40] re-

quire 6 encoder and decoder layers, we observe that 1 layer

in each is sufficient in our model. One possible reason is

that other trackers take pixel features as input, while we use

detected object features, which makes the task easier.

Using location in testing. As described in Section 4.3,

we combine the trajectory probability and location-based

IoU during inference. Table 4d examines this choice. On

MOT17, using location improves AssA by 3, due to the high

frame-rate on the dataset. On TAO, where frame-rate is low,

using our predicted association alone works fine.

6. Conclusion
We presented a framework for joint object detection and

tracking. The key component is a global tracking trans-

former that takes object features from all frames within

a temporal window and groups objects into trajectories.

Our model performs competitively on the MOT17 and TAO

benchmarks. We hope that our work will contribute to ro-

bust and general object tracking in the wild.

Limitations. Currently, we use a temporal window size of

32 due to GPU memory limits, and rely on a sliding win-

dows inference to aggregate identities across larger tempo-

ral extents. It can not recover from missing detection or oc-

clusions larger than 32 frames. In addition, our TAO model

is currently trained only on static images, due to a lack of

publicly available multi-class multi-object tracking training

sets. Training our model on emerging large-scale datasets

such as UVO [51] is an exciting next step.
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