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Abstract

We present a novel transformer-based architecture for
global multi-object tracking. Our network takes a short
sequence of frames as input and produces global trajecto-
ries for all objects. The core component is a global track-
ing transformer that operates on objects from all frames
in the sequence. The transformer encodes object features
from all frames, and uses trajectory queries to group them
into trajectories. The trajectory queries are object features
from a single frame and naturally produce unique trajec-
tories. Our global tracking transformer does not require
intermediate pairwise grouping or combinatorial associa-
tion, and can be jointly trained with an object detector. It
achieves competitive performance on the popular MOT17
benchmark, with 75.3 MOTA and 59.1 HOTA. More im-
portantly, our framework seamlessly integrates into state-
of-the-art large-vocabulary detectors to track any objects.
Experiments on the challenging TAO dataset show that our
framework consistently improves upon baselines that are
based on pairwise association, outperforming published
work by a significant 7.7 tracking mAP. Code is available
at https://github.com/xingyizhou/GTR.

1. Introduction

Multi-object tracking aims to find and follow all objects
in a video stream. It is a basic building block in applica-
tion areas such as mobile robotics, where an autonomous
system must traverse dynamic environments populated by
other mobile agents. In recent years, tracking-by-detection
has emerged as the dominant tracking paradigm, powered
by advances in deep learning and object detection [20, 36].
Tracking-by-detection reduces tracking to two steps: de-
tection and association. First, an object detector indepen-
dently finds potential objects in each frame of the video
stream. Second, an association step links detections through
time. Local trackers [4, 5, 54, 55, 60, 66] primarily con-
sider pairwise associations in a greedy way (Figure 1a).
They maintain a status of each trajectory based on loca-
tion [5, 68] and/or identity features [55, 66], and associate
current-frame detections with each trajectory based on its
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(b) Our global tracker
Figure 1. Local trackers (top) vs. our global tracker (bot-
tom). Local trackers associate objects frame-by-frame, optionally
with a external track status memory (not show in the figure). Our
global tracker take a short video clip as input, and associates ob-
jects across all frames using global object queries.

last visible status. This pairwise association is efficient,
but lacks an explicit model of trajectories as a whole, and
sometimes struggles with heavy occlusion or strong appear-
ance change. Global trackers [3, 6, 44, 63, 65] run offline
graph-based combinatorial optimization over pairwise as-
sociations. They can resolve inconsistently grouped detec-
tions and are more robust, but can be slow and are usually
detached from the detector.

In this work, we show how to represent global track-
ing (Figure 1b) as a few layers in a deep network (Fig-
ure 2). Our network directly outputs trajectories and thus
sidesteps both pairwise association and graph-based opti-
mization. We show that detectors [20, 36, 70] can be aug-
mented by transformer layers to turn into joint detectors and
trackers. Our Global TRacking transformer (GTR) encodes
detections from multiple consecutive frames, and uses tra-
Jjectory queries to group them into trajectories. The queries
are detection features from a single frame (e.g., the current
frame in an online tracker) after non-maximum suppression,
and are transformed by the GTR into trajectories. Each tra-
jectory query produces a single global trajectory by assign-
ing to it a detection from each frame using a softmax dis-
tribution. The outputs of our model are thus detections and
their associations through time. During training, we explic-
itly supervise the output of our global tracking transformer
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Figure 2. Overview of our joint detection and tracking framework. An object detector first independently detects objects in all frames.
Object features are concatenated and fed into the encoder of our global Tracking transformer (GTR). The GTR additionally takes trajectory
queries as decoder input, and produces association scores between each query and object. The association matrix links objects for each
query. During testing, the trajectory queries are object features in the last frame. The structure of the transformer is shown in Figure 3.

using ground-truth trajectories and their image-level bound-
ing boxes. During inference, we run GTR in a sliding win-
dow manner with a moderate temporal size of 32 frames,
and link trajectories between windows online. The model is
end-to-end differentiable within the temporal window.

Our framework is motivated by the recent success of
transformer models [49] in computer vision in general [14,
25,47,67] and in object detection in particular [8,53]. The
cross-attention structure between queries and encoder fea-
tures mines similarities between objects and naturally fits
the association objective in multi-object tracking. We per-
form cross-attention between trajectory queries and object
features within a temporal windows, and explicitly super-
vise it to produce a query-to-detections assignment. Each
assignment directly corresponds to a global trajectory. Un-
like transformer-based detectors [8, 30, 40, 53] that learn
queries as fixed parameters, our queries come from exist-
ing detection features and adapt with the image content.
Furthermore, our transformer operates on detected objects
rather than raw pixels [8]. This enables us to take full ad-
vantage of well-developed object detectors [20, 69].

Our framework is end-to-end trainable, and easily inte-
grates with state-of-the-art object detectors. On the chal-
lenging large-scale TAO dataset, our model reaches 20.1
tracking mAP on the test set, significantly outperforming
published work, which achieved 12.4 tracking mAP [32].
On the MOT17 [31] benchmark, our entry achieves com-
petitive 75.3 MOTA and 59.1 HOTA, outperforming most
concurrent transformer-based trackers [30, 61, 64], and on-
par with state-of-the-art association-based trackers.

2. Related work

Local multi-object tracking. Many popular trackers oper-
ate locally and greedily [4, 5, 46, 54,55, 61, 66, 68]. They
maintain a set of confirmed tracks, and link newly detected
objects to tracks based on pairwise object-track distance
metrics. SORT [5] and DeepSORT [55] model tracks with
Kalman filters, and update the underlying locations [5] or
deep features [55] in every step. Tracktor [4] feeds tracks to
a detector as proposals, and directly propagates the track-
ing ID. CenterTrack [68] conditions detection on existing
tracks, and associates objects using their predicted loca-
tions. TransCenter [61] builds upon CenterTrack by in-
corporating deformable DETR [72]. JDE [54] and Fair-
MOT [66] train the detector together with an instance-
classification branch, and associate via pairwise RelD fea-
tures similar to SORT [5]. STRN [60] learns a dedicated as-
sociation feature considering the spatial and temporal cues,
but again performs pairwise association. In contrast, we do
not rely on pairwise association, but instead associates to all
objects across the full temporal window via a transformer.

Global tracking. Traditional trackers first detect objects
offline, and consider object association across all frames
as a combinatorial optimization problem [6, 12,34, 44,65].
Zhang et al. [65] formulate tracking as a min-cost max-
flow problem over a graph, where nodes are detections and
edges are valid associations. MPN [6] simplifies the graph
construction and proposes a neural solver that performs the
graph optimization. LPC [12] additionally considers a clas-
sification module on the graph. Lif_ T [44] incorporates
person RelD and pose features in the graph optimization.
These methods are still based on pairwise associations and



use the combinatorial optimization to select globally con-
sistent assignments. Our method directly outputs consistent
long-term trajectories without combinatorial optimization.
This is done by a single forward pass in a relatively shallow
network.
Transformers in tracking. Trackformer [30] augments
DETR [8] with additional object queries from exist-
ing tracks, and propagates track IDs as in Tracktor [4].
TransTrack [40] uses features from historical tracks as
queries, but associates objects based on updated bounding
box locations. MOTR [64] follows the DETR [8] structure
and iteratively propagates and updates track queries to as-
sociate object identities. MO3TR [71] additionally uses a
temporal attention module to update the status of each track
over a temporal window, and feeds updated track features
as queries in DETR. The common idea behind these works
is to use the object query mechanism in DETR [8] to ex-
tend existing tracks frame-by-frame. We use transformers
in a different way. Our transformer uses queries to generate
entire trajectories at once. Our queries do not generate new
boxes, but group already-detected boxes into trajectories.
Video object detection. Applying attention blocks on
object features over a video is a successful idea in video ob-
ject detection [37]. SELSA [57] feeds region proposals of
randomly sampled frames to a self-attention block to pro-
vide global context. MEGA [9] builds a hierarchical local
and global attention mechanism with a large temporal re-
ceptive field. ContextRCNN [2] uses an offline long-term
feature bank [56] to integrate long-range temporal features.
These methods support our idea of using transformers to an-
alyze object relations. The key difference is they do not use
object identity information, but implicitly use object cor-
relations to improve detection. We explicitly learn object
association in a supervised way for tracking.

3. Preliminaries

We start by formally defining object detection, tracking,
and tracking by detection.
Object detection. Let I be an image. The goal of object de-
tection is to identify and localize all objects. An object de-
tector [8,36,45,70] takes the image I as input and produces
a set of objects {p; } with locations {b;}, b; € R* as its out-
put. For multi-class object detection, a second stage [20,36]
takes the object features and produce a classification score
s; € RC from a set of predefined classes C' and a refined
location b;. For single-class detection (e.g., pedestrian de-
tection [31]), the second stage can me omitted.
Tracking. Let I',12,... IT be a series of images. The
goal of a tracker is to find trajectories 71,7T2,..., Tk of
all objects over time. Each trajectory 7, = [1},..., 7]
describes a tube of object locations 7/ € R* U {0} through
time ¢. 7/, = () indicates that the object k cannot be located
in frame ¢. The tracker may optionally predict the object

class score sy, [13] for each trajectory, usually as the average
class of its per-frame slices.

Tracking by detection decomposes the tracking problem
into per-frame detection and inter-frame object association.
Object detection first finds NV; candidate objects b}, b5, . ..
as bounding boxes b! € R* in each frame I'. Association
then links existing tracks 7, to current detected objects us-
ing an object indicator o, € {0,1,2,..., N;} at each frame
t:

= {@t if af, = 0
bai otherwise

Most prior works define the association greedily through
pairwise matches between objects in adjacent or nearby
frames [4, 5, 66, 68], or rely on offline combinatorial opti-
mization for global association [6, 16,65]. In this work, we
show how to perform joint detection and global association
within a single forward pass through a network. The net-
work learns global tracking within a video clip of 32 frames
in an end-to-end fashion. We leverage a probabilistic for-
mulation of the association problem and show how to in-
stantiate tracking in a transformer architecture in Section 4.

4. Global tracking transformers

Out global tracking transformer (GTR) associates ob-
jects in a probabilistic and differentiable manner. It links
objects p! in each frame I' to a set of trajectory queries
qx- Each trajectory query ¢ produces an object association
score vector g € R over objects from all frames. This as-
sociation score vector then yields a per-frame object-level
association of, € {0,1,..., N;}, where ! = 0 indicates
no association and V; is the number of detected objects in
frame I*. The combination of associations then produces a
trajectory 7. Figure 2 provides an overview. The associa-
tion step is differentiable and can be jointly trained with the
underlying object detector.

4.1. Tracking transformers

Let pf,...,ply, be a set of high-confidence objects for
image I*. Let B" = {bf,..., b}, } be their corresponding
bounding boxes. Let f! € R be the D-dimentional fea-
tures extracted from boxes bf. For convenience let F'* =
{ff,.... fk,} be the set of all detection features of im-
age I', and F = FL U ... U FT be the set of all fea-
tures through time. The collection of all object features
F € RY¥*P g the input to our tracking transformer, where
N = ZtT Ny is the total number of detections in all frames.
The tracking transformer takes features F' and a trajectory
query ¢, € RP, and produces a trajectory-specific associa-
tion score g(qx, F) € RY.

Formally, let ¢! (qx, F') € R be the score of the i-th ob-
ject in the ¢-th frame. A special output token gé (qr, F)=0
indicates no association at time ¢. The tracking transformer



then predicts a distribution of associations over all objects
i in frame I* for each trajectory k. We model this as an
independent softmax activation for each time-step ¢:

Zje{®,17...Nt} exXp (9; (g, F))

PA(Ozt = i|qk, F

Since a detector produces a single bounding box b
for each object pf, there is a one-to-one mapping be-
tween the association distribution P4 and a distribu-
tion P, over bounding boxes for trajectory k at time ¢:
Py(blgr, F) = Yi) Lp—ptPalal = ilqi, F), where the
indicator 1 assigns an output bounding box to each asso-
ciated query. In practice, a detector’s non-maximum sup-
pression (NMS) ensures that there is also a unique map-
ping from P; back to P4. The distribution over bounding
boxes in turn leads to a distribution over entire trajectories
Pr(7lge, F) = [Ti—, Pu(r'ax, F).

During training, we maximize the log-likelihood of the
ground-truth trajectories. During inference, we use the like-
lihood to produce long-term tracks in an online manner.

4.2. Training

Given a set of ground-truth trajectories 71, ..., Tk, our
goal is to learn a tracking transformer that estimates Py, and
implicitly the trajectory distribution Pr. We jointly train
the tracking transformer with detection by treating the trans-
former as an Rol head like two-stage detectors [36]. Ateach
training iteration, we first obtain high-confidence objects
b, ... 7b§vt and their corresponding features F} after non-
maximum suppression. We then maximize log Pr(7|qx, F')
for each ground-truth trajectory 7. This is equivalent to
maximizing log P4 (a|gx, F) after assigning 7 to a set
of objects. We follow object detection and use a simple
intersection-over-union (IoU) assignment rule:

if 7/, =0 or max; IoU (bt,

ot 0, 1) <0.5
=
argmax; [oU (b,

2

71), otherwise

We use this assignment to both train the bounding box re-
gression of the underlying two-stage detector, and our as-
signment likelihood P4. However, this assignment likeli-
hood further depends on the trajectory query g, which we
define next.

Trajectory queries are key to our formulation. Each query
qr generates a trajectory. In prior work [8], object queries
were learned as network parameters and fixed during in-
ference. This makes queries image-agnostic and requires a
near-exhaustive enumeration of them [26, 42, 72]. For ob-
jects this is feasible [8], as anchors [23] or proposals [41]
showed. Trajectories, however, live in the exponentially
larger space of potential moving objects than simple boxes,
and hence require many more queries to cover that space.

Furthermore, tracking datasets feature many fewer anno-
tated instances, and learned trajectories easily overfit and
remember the dataset.

We instead directly use object features f! as the object

queries. Specifically, let &y be the matched objects for a
ground-truth trajectory 7 according to Equation (2). Any
feature { fé L f;i ,. ..} can serve as the trajectory query for
trajectory 7. In practice, we use all object features F' in the
all the 7" frames as queries and train the transformer for a
sequence length of T'. Any unmatched features f! are used
as background queries and supervised to produce ) for all
frames. We allow multiple queries to produce the same tra-
jectory, and do not require a one-to-one match [8]. During
inference, we only use object features from one single frame
as the queries to avoid duplicate outputs. All object features
within a frame are different (after standard detection NMS)
and hence produce different trajectories.
Training objective. The overall training objective com-
bines the assignment in Equation (2) and trajectory queries
to maximize the log-likelihood of each trajectory under its
assigned queries. For each trajectory 7, we optimize the
log-likelihood of its assignments ¢v:

T
lasso(Fs#r)== > > log Pa(&{|F5:, F) (3)
se{l..T|a5#0} t=1

For any unassociated features, we produce empty trajecto-
ries:

lpg(F Z Z ZlogPA

s=1j: ﬂaf*]t 1

=0|F;, F) @)

The final loss simply combines the two terms:
+Z lasso(F, 75) (5)

We train L5, jointly with standard detection losses [70],
including classification and bounding-box regression
losses, and optionally second stage classification and re-
gression losses for multi-class tracking [13],

Lasso(Fa {+1a"'7+K} Ebg

4.3. Online Inference

During inference, we process the video stream online
in a sliding-window manner with window size T' = 32
and stride 1. For each individual frame ¢, we feed the im-
age to the network before the tracking transformer and ob-
tain N; bounding boxes B! and object features F*. We
keep a temporal history buffer of T frames, ie., B =
{Bt=T+l ... B} and F = {F'"T*! ... 'F'}, and run
the tracking transformer for each sliding window. We use
object features from the current frame ¢ as trajectory queries
qrx = F} to produce N; trajectories. For the first frame,
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Figure 3. Left: detailed network architecture of GTR. Right: detailed structure of both self-att and cross-att blocks. We omit multi-
head [49] in the figure for simplicity. For self-attention, ¢ = & = F'. For cross attention, ¢ = @, k = F. We list data dimensionalities in
parentheses. ) indicates matrix multiplication (transpose when needed).

we initialize all detections as trajectories. For any subse-
quent frame, we link current predicted trajectories to exist-
ing tracks using the average assignment likelihood P4 as a
distance metric. Since the current trajectories share up to
T — 1 boxes and features with past trajectories, the overlap
can be quite large. We use a Hungarian algorithm to ensure
that the mapping from current long-term trajectories to ex-
isting tracks is unique. If the average association score with
any prior trajectory is lower than a threshold 6, we start a
new track. Otherwise we append the underlying current de-
tection (query) that generates the trajectory to the matched
existing track.

4.4. Network architecture

The global tracking transformer takes a stack of object
features ' € RN*P as the encoder input, a matrix of
queries Q € RM*D ag the decoder input, and produces
an association matrix G € RM>*¥ between queries and ob-
jects. The detailed structure of the tracking transformer is
shown in Figure 3 (left). It follows DETR [8] but only uses a
one-layer encoder and a one-layer decoder. Empirically, we
observe that self-attention for queries and Layer Normaliza-
tion [1] were not required. See Section 5.5 for an ablation.
The resulting network structure is lightweight, with 10 lin-
ear layers in total. It runs in a fraction of the runtime of the
backbone detector, even for hundreds of queries.

4.5. Connection to embedding learning and RelD

Consider a variation of GTR with just a dot-product as-
sociation score g!(qx, F') = qy. - F!. Further consider learn-
ing all trajectory queries @ = {qu1,...,qx} as free param-
eters, one per training trajectory 7. In this variation, the
softmax assignment in Equation (1) reduces to a classifica-
tion problem. For each object feature, we classify it as a
specific training instance or as background. This is exactly
the objective of classification-based embedding learning in
person-RelD [29], as used in RelD-based trackers [54, 66].

The two key differences between embedding learning
and GTR are: first, our transformer does not assume any
factorization of g! and allows the model to reason about
all boxes at once when computing associations. A dot-
product-based RelD network on the other hand assumes that
all boxes independently produce a compatible embedding.
See Section 5.5 for an ablation of this transformer struc-
ture. Second, our trajectory queries are not learned. This
allows our transformer to produce long-term associations in

a single forward pass, while RelD-based trackers rely on a
separate cosine-distance-based grouping step [54, 66].

5. Experiments

We evaluate our method on two tracking benchmarks:
TAO [13] and MOT17 [31].

TAO [13] tracks a wide variety of objects. The images
are adopted from 6 existing video datasets, including in-
door, outdoor, and driving scenes. The dataset requires
tracking objects with a large vocabulary of 488 classes in
a long-tail setting. It contains 0.5k, 1k, and 1.5k videos for
training, validation, and testing, respectively. Each video
contains ~ 40 annotated frames at 1 annotated frame per
second. There is significant motion between adjacent anno-
tated frames. The training annotations are incomplete. We
thus do not use the training set and solely train on LVIS [19]
and use the TAO validation and test set for evaluation.

MOT [31] tracks pedestrians in crowd scenes. It con-
tains 7 training sequences and 7 test sequences. The se-
quences contain 500 to 1500 frames, recorded and anno-
tated at 25-30 FPS. We follow CenterTrack [68] and split
each training sequence in half. We use the first half for
training and the second half for validation. We perform ab-
lation studies mainly on this validation set, and compare to
other approaches on the official hidden test set. We evaluate
under the private detection protocol.

5.1. Evaluation metrics

We evaluate under the official metrics for each dataset.
TAO [13] uses tracking mAP@0.5 as the official metric,
which is based on standard object detection mAP [24]
but changes the 2D bounding box IoU to 3D temporal-
spatial IoU between the predicted trajectory and the
ground-truth trajectory. The overall tracking mAP is
averaged across all classes. MOT [31] uses Multi-
Object Tracking Accuracy (MOTA) as the official met-

ric. MOTA =1 — Ef(FP“EFg'ngSWt) , where G'T} is the

number of ground truth objects in frame ¢, and F'P;, F'IN,
and I DSW, measure the errors of false positives, false neg-
atives, and ID switches, respectively.

As suggested by the MOT benchmark, we additionally
report HOTA, a new tracking metric [28]. HOTA is defined
as the geometric mean of detection accuracy (DetA) and as-
sociation accuracy (AssA). Both DetA and AssA have the

%’ with their respective true/false cri-

form



teria. In our experiments, we mainly use AssA to access
tracking performance.

5.2. Training and inference details

TAO training. Our implementation is based on de-
tectron2 [59]. For TAO [13] experiments, we use
Res2Net [17] with deformable convolution [11] as the back-
bone. We adopt CenterNet2 [69] as the detector, which
uses CenterNet [70] as proposal network and cascaded Rol
heads [7] for classification. Following the guideline of TAO
dataset [13], we train the object detector on the combination
of LVISv1 [19] and COCO [24]. We additionally incorpo-
rate a federated loss [69] to improve long-tail detection. We
first train a single-frame detector. The training uses SGD
with learning rate 0.04 and batch size 32 for 180K itera-
tions (the 4x schedule [59]). We use training resolution
896x896 following the scale-and-crop augmentation of Effi-
cientDet [43]. The detector yields 37.1 mAP on the LVISv1
validation set and 27.3 mAP on the TAO validation set.

TAO only provides a small training set for tuning track-
ing hyperparameters, but not for training the tracker. We
empirically observed that training on the TAO training set
hurts detection performance, and overall does not yield
good tracking accuracy. We find that training only on static
image datasets [19] with data augmentation is sufficient for
tracking. Our training strategy follows CenterTrack [68].
Specifically, we apply two different data augmentations to
an image, and use them as the starting and ending frame
of a video. We then interpolate the images and annotations
linearly to generate a smooth video for training.

With the synthetic video, we fine-tune the network with
the tracking transformer head end-to-end from the single-
frame detector. Our fine-tuning protocol follows DETR [8]
and uses the AdamW optimizer [27], multiplies the back-
bone learning rate by a factor of 0.1, and clamps the gradi-
ent norm at 0.1. We use a base learning rate of 0.0001. We
generate video clips of length 7" = 8 and train with a batch
size of 8 videos on 8 GPUs, resulting in an effective batch
size of 64. We fine-tune the network for 22,500 iterations
(a 2x schedule). The fine-tuning takes around 8 hours on 8
Quadro RTX 6000 GPUs.

MOT training. For our MOT model, we follow past
works [66, 68] to use CenterNet [70] with a DLA-
34 backbone [62] as the object detector. We use
BiFPN [43] as upsampling layers instead of the original
deformable-convolution-based [11] upsampling [62]. We
use RolAlign [20] to extract features for our global tracking
transformer. We do not refine bounding boxes from the Rol
feature and use the CenterNet detections as-is. We use a
training size of 1280 x 1280 and a test size of 1560 (longer
edge). Following CenterTrack [68], we pretrain the detector
on Crowdhuman [39] for 96 epochs. We then fine-tune with
the GTR head on Crowdhuman (with augmentation) and the
MOT training setin a 1 : 1 ratio [40]. We againuse 7' = 8

frames for a video clip with a batch size of 8 clips. We fine-
tune the network for 32K iterations, which corresponds to
~36 epochs of Crowdhuman and 64 epochs of MOT. This
takes ~6 hours on 8 Quadro RTX 6000 GPUs.

Inference. During testing, we set the output score thresh-
old to 0.55 for MOT and the proposal score threshold to 0.4
for TAO, based on a sweep on the validation set. We do
not set an output threshold for TAO. For both datasets, we
set the new-track association threshold to # = 0.2. Since
the MOT dataset has high frame rate, we find it beneficial
to use location information during association. We asso-
ciate tracks based on the maximum of the trajectory associ-
ation score and the box-trajectory IoU. This is examined in
a controlled experiment in Section 5.5. We further remove
trajectories [6] of length < 5.

Tracking-conditioned classification. Our global associa-
tion module is applied to object features before classifica-
tion. This allows us to to classify objects using temporal
cues from tracking. On our TAO experiments, we assign
a single classification score to the trajectory by averaging
the per-box classification scores within the trajectory to a
global classification score offline.

Runtime. We measure the runtime on our machine with
an Intel Core 17-8086K CPU and a Titan Xp GPU. On the
MOT17 our backbone detector runs in 47ms and the track-
ing transformer in 4ms per frame. On TAO the backbone
runs in 86ms, the transformer in 3ms.

5.3. Global versus local association

We first validate our main contribution: global associa-
tion. We compare to baseline local trackers based on lo-
cation (SORT [5]), identity, or joint location and identity
(FairMOT [66]). To make a direct comparison of trackers,
we apply all baseline trackers to the detection outputs of the
same model to ensure the same detections (Rows 1-3 in Ta-
ble 1). The RelD features are trained with our association
loss (see discussions in Section 4.5), we also include base-
lines with the original instance-classification-based RelD
losses (row 4 in Table 1). We adopt the implementation
from FairMOT [66] with the default hyperparameters' and
tricks, including a track-rebirth mechanism for up to 30
frames, for all baselines.

Table 1 shows the results on the TAO [13] and
MOT17 [31] validation sets. First, despite close MOTA and
DetA, RelD-based methods (FairMOT [66] and ours) gen-
erally achieve higher tracking accuracy than the location-
only baseline [5]. For our method, when T' = 2 it reduces to
a local tracker that only associates across consecutive pairs
of frames. This tracker cannot recover from any occlusion
or missing detection, yielding a relatively low AssA. How-
ever, when we gradually increase the temporal window 7',

'We tuned the hyperparameters, but observed that the default settings
performed best.



# TAO MOT17

Track mAP HOTA DetA AssA MOTA IDF1 HOTA DetA AssA
I IoU [5] 8.8 327 305 354 689 650 574 592 56.1
2 RelD 10.9 350 314 395 709 740 617 60.0 637
3 ToU+ReID [66] 11.0 349 312 395 711 742 621 602 644
4 ToU+RelD (retrained) 6.7 234 188 295 699 730 609 594 625
5 GTR (T=2) 13.6 420 358 498 713 651 578 606 558
6 GTR (T=4) 17.7 440 364 536 716 696 599 608 59.6
7 GTR (T=8) 19.5 456 368 568 713 722 61.1 60.7 620
8 GTR (T=16) 22.5 458 368 574 714 751 625 60.6 65.0
9 GTR (T=32) 22.1 449 359 567 713 759 63.0 604 66.2

Table 1. Effectiveness of global tracking. We compare greedy trackers [5, 66] (top block) with our global tracker(GTR) under different
temporal windows on the TAO and MOT17 validation sets. We show the official metrics (Track mAP for TAO and MOTA/ IDF1 for
MOT17) as well as HOTA metrics. All metrics are higher better. All rows except row 4 are the same model trained with our losses
(evaluated with different tracking algorithms). Row 4 is a different model retrained with the original instance-classification loss [66]. Our
global tracker benefits from longer temporal windows, and outperforms local trackers.

Validation Test
mAPS50 HOTA DetA AssA mAP50 FPS
SORT_TAO [13] 13.2 - - - 102 15.2
QDTrack [32] 16.1 35.8 243 535 124 54
GTR w. QDTrack det. 204  40.7 30.1 55.6 - -
GTR 225 458 368 575 201 112
AOA [15] 25.8 - - - 275 1.0

Table 2. Results on TAO dataset [13]. We show the HOTA met-
rics on the validation set and the official metric tracking mAP50.
We show the frame-per-second tested on our machine in the last
column. We show the 2020 TAO challenge winner which are based
on a separate RelD network for per-box in the last row.

we observe a consistent increase in association accuracy.
On MOT17 with T = 32, our method outperforms Fair-
MOT [66] by a healthy 1.8 AssA and 1.7 IDF1, showing
the advantage of our global tracking formulation. On TAO
the performance saturates at 7' = 16. This may due to the
much lower frame-rate in TAO dataset which results in dras-
tic layout change within a long temporal window.

5.4. Comparison to the state-of-the-art

Next we compare to other trackers with different detec-
tions on the corresponding test sets. Table 2 shows the re-
sults on TAO validation and test sets. TAO [13] is a rela-
tively new benchmark with few public entries [13,32]. Our
method substantially outperforms the official SORT base-
line [13] and the prior best result (QDTrack [32]), yielding a
relative improvement of 62% in mAP on the test set. While
part of the gain is from our stronger detector, this highlights
one of the advantages of our model: it is end-to-end jointly
trainable with state-of-the-art detection systems. Table 2
3rd row show GTR with the detections from QDTrack [32].
We show GTR displays a 4.3 mAP and 1.9 AssA gain over
QDTrack using the same detector.

Our model underperforms the 2020 TAO Challenge win-

ner AOA [15], which trains separate RelD networks on
large single-object tracking datasets [21,35,37]. They feed
all detected boxes separately to the RelD networks in a
slow-RCNN [18] fashion. On our machine, AOA’s full de-
tection and tracking pipeline takes 989ms per image on av-
erage. Our model is more than 10x faster than AOA [15],
and uses a single forward pass for each frame with a light-
weighted per-object head.

Table 3 compares our tracker with other entries on
the MOT17 leaderboard. Our entry achieves a 74.1
MOTA, 71.1 IDF1, and 59.0 HOTA. This is better
than most concurrent transformer-based trackers, includ-
ing Trackformer [30], MOTR [64], TransCenter [61], and
TransTrack [40]. Our model currently underperforms
TransMOT [10] in both MOTA and IDF1. There are several
implementation differences between TransMOT and ours,
including the use of additional data (TransMOT uses ad-
ditional RelD data), detector architecture (TransMOT uses
YOLOVS [48] as detector and uses a separate tracker), and
training and testing parameters (Code not released). Our
tracker is 1.4 MOTA lower, but runs 2 x faster.

5.5. Design choice experiments

Here we ablate our key design choices. All experiments
are conducted under the best setting of Table 1, with T' =
32. The random noise across different runs is within 0.2
MOTA and 0.5 AssA.

Attention structure. We first verify the necessity of us-
ing a transformer structure for the association head. As the
counterpart, we remove both the self-attention layer and the
cross-attention layer in Figure 3, and directly dot-product
the object features after the linear layers. Table 4a shows
that this decreases AssA considerably. Further adding self-
attention layers in the decoder as in DETR [8] does not im-
prove performance, thus we just use encoder attention.

Positional embedding. Positional embedding is a com-



MOTA1 IDF1T HOTAT DetAft AssAT FPJ| FN] IDS| FPS1
Trackformer [30] 65.0 63.9 - - - 70,443 123,552 3,528 -
MOTR [64] 65.1 66.4 - - - 45,486 149,307 2,049 -
ChainedTracker [33] 66.6 574 49.0 53.6 452 227284 160,491 5,529 6.8
CenterTrack [68] 67.8 64.7 52.2 53.8 51.0 18,498 160,332 3,039 17.5
QDTrack [32] 68.7 66.3 53.9 55.6 527 26,589 146,643 3,378 20.3
TraDeS [58] 69.1 63.9 52.7 552 50.8 20,892 150,060 3,555 66.9
TransCenter [61] 73.2 62.2 54.5 60.1 49.7 23,112 123,738 4,614 1.0
GSDT [52] 73.2 66.5 55.2 60.0 51.0 26,397 120,666 3,891 4.9
FairMOT [66] 73.7 72.3 59.3 60.9 58.0 27,507 117,477 3,303 259
TransTrack [40] 74.5 63.9 53.9 60.5 48.3 28,323 112,137 3,663 59.2
CSTrack [22] 74.9 72.6 59.3 61.1 57.9 23,847 114,303 3,567 15.8
FUFET [38] 76.2 68.0 57.9 629 536 32,796 98475 3,237 6.8
CorrTracker [50] 76.5 73.6 60.7 62.8 589 29,808 99,510 3,369 15.6
TransMOT [10] 76.7 75.1 - - - 36,231 93,150 2,346 9.6
GTR (ours) 75.3 71.5 59.1 61.6 57.0 26,793 109,854 2,859 19.6

Table 3. Comparison to the state-of-the-art on the MOT17 test set (private detection). We show the official metrics from the leader-
board. 1: higher better and |: lower better. FPS is taken from the leaderboard or paper. GTR achieves top-tier performance on MOT17.

HOTA DetA AssA MOTA

Direct dot product  61.3 59.5 63.6 70.5
*Encoder attention 63.0 604 66.2 71.3
Enc.+ Dec. attention 62.3 60.5 64.5 71.2

(a) With/without attention layers. Encoder attention improves tracking.

Enc. Dec. HOTA DetA AssA MOTA

*1 1 630 604 662 713
1 2 627 604 650 712
2 1 630 609 66.0 71.7

(c) Number of transformer layers. One layer is sufficient for both.

HOTA DetA AssA MOTA

*no embedding 63.0 604 662 71.3
w. positional emb. 62.5 60.7 650 71.7
w.pos.+ temp. emb. 62.4 60.7 64.6 71.7

(b) Different positional/temporal embeddings. Possitional embeddings do not help.

MOT17 TAO
HOTA DetA AssA MOTA mAP50

w/o location 61.7 60.6 63.3 71.3 22.5
*w/ location 63.0 604 662 71.3 22.5

(d) With/without using location during testing. Location helps MOT17 but not TAO.

Table 4. Design choice experiments on the MOT17 validation set. * means our default setting. We ablate the effectiveness of attention
layers, effectiveness of positional embeddings, number of transformer layers, and use of localizations in testing.

mon component in transformers. We have implemented a
learned positional embedding as well as a learned temporal
embedding. However, we didn’t observe an improvement in
association accuracy from these, as shown in Table 4b. We
thus don’t use any positional embedding in our final model.

Transformer layers. Table 4c shows the results of using
different numbers of attention layers in the encoder and de-
coder. While most transformer-based trackers [30, 40] re-
quire 6 encoder and decoder layers, we observe that 1 layer
in each is sufficient in our model. One possible reason is
that other trackers take pixel features as input, while we use
detected object features, which makes the task easier.

Using location in testing. As described in Section 4.3,
we combine the trajectory probability and location-based
IoU during inference. Table 4d examines this choice. On
MOT17, using location improves AssA by 3, due to the high
frame-rate on the dataset. On TAO, where frame-rate is low,
using our predicted association alone works fine.

6. Conclusion

We presented a framework for joint object detection and
tracking. The key component is a global tracking trans-
former that takes object features from all frames within
a temporal window and groups objects into trajectories.
Our model performs competitively on the MOT17 and TAO
benchmarks. We hope that our work will contribute to ro-
bust and general object tracking in the wild.
Limitations. Currently, we use a temporal window size of
32 due to GPU memory limits, and rely on a sliding win-
dows inference to aggregate identities across larger tempo-
ral extents. It can not recover from missing detection or oc-
clusions larger than 32 frames. In addition, our TAO model
is currently trained only on static images, due to a lack of
publicly available multi-class multi-object tracking training
sets. Training our model on emerging large-scale datasets
such as UVO [51] is an exciting next step.
Acknowledgments. This material is based upon work supported
by the National Science Foundation under Grant No. 1IS-1845485
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