


vidual dataset. A unified taxonomy further improves this

detector. Crucially, we show that models trained on diverse

training sets generalize to new domains without retraining,

and outperform single-dataset models.

2. Related Work

Training on multiple datasets. In recent years, training

on multiple diverse datasets has emerged as an effective

tool to improve model robustness for depth estimation [29],

stereo matching [43], and person detection [13]. In these

domains, unifying the output space involves modeling dif-

ferent camera transformations or depth ambiguities. In con-

trast, for recognition, dataset unification involves merging

different semantic concepts. MSeg [19] manually unified

the taxonomies of 7 semantic segmentation datasets and

used Amazon Mechanical Turk to resolve inconsistent an-

notations between datasets. In contrast, we propose to learn

a label space from visual data automatically, without requir-

ing any manual effort.

Wang et al. [40] train a universal object detector on

multiple datasets, and gain robustness by joining diverse

sources of supervision. This is similar to our partitioned

detector, while they work on small datasets and didn’t

model the training differences between different datasets.

Universal-RCNN [42] trains an partitioned detector on three

large datasets [17,22,48] and models the class relations with

a inter-dataset attention module. However again they use

the same training recipe for all datasets, and produce du-

plicated outputs for the same object if it occurs in more

one dataset. Both Wang et al. [40] and MSeg [19] observe

a performance drop in a single unified model. With our

dedicated training framework, this is not the case: our uni-

fied model performs as well as single-dataset models on the

training datasets. Also, these multi-headed models produce

a dataset-specific prediction for each input image. When

evaluated in-domain, they require knowledge of the test do-

main. When evaluated out-of-domain, they produce multi-

ple outputs for a single concept. This limits their general-

ity and usability. Our approach, on the other hand, unifies

visual concepts in a single label space and yields a single

consistent model that does not require knowledge of the test

domain and can be deployed cleanly in new domains.

Zhao et al. [47] trains a universal detector on multi-

ple datasets: COCO [22], Pascal VOC [6], and SUN-

RGBD [37], with under 100 classes in total. They manu-

ally merge the taxonomies and then train with cross-dataset

pseudo-labels generated by dataset-specific models. The

pseudo-label idea is complementary to our work. Our uni-

fied label space learning removes the manual labor, and

works on a much larger scale: we unify COCO, Objects365,

and OpenImages, with more complex label spaces and

900+ classes. YOLO9000 [30] combines detection and

classification datasets to expand the detection vocabulary.

LVIS [12] extents COCO annotations to > 1000 classes in

a federated way. Our approach of fusing multiple annotated

datasets is complementary and can be operationalized with

no manual effort to unify disparate object detection datasets.

Zero-shot classification and detection reasons about novel

object categories outside the training set [1,8]. This is often

realized by representing a novel class by a semantic embed-

ding [25] or auxiliary attribute annotations [7]. In zero-shot

detection, Bansal et al. [1] proposed a statically assigned

background model to avoid novel classes being detected

as background. Rahman et al. [28] used test-time training

to progressively generate new class labels based on word

embeddings. Li et al. [21] leveraged external text descrip-

tions for novel objects. Our program is complementary: we

aim to build a sufficiently large label space by merging di-

verse datasets during training, such that the trained detector

transfers well across domains even without machinery such

as word embeddings or attributes. Such machinery can be

added, if desired, to further expand our model’s vocabulary.

3. Preliminaries

Object detection aims to predict a location bi ∈ R
4 and

a class-wise detection score di ∈ R
|L| for each object i in

image I . The detection score describes the confidence that a

bounding box belongs to an object with label c ∈ L, where

L is the set of all classes (label space) of the dataset D.

Many existing works on object detection focus on the

COCO dataset [22], which contains balanced annotations

for 80 common object classes. This class balance simplifies

training and yields good generalization. Training an object

detector on COCO follows a simple recipe: Minimize a loss

ℓ, usually box-level log-likelihood, over an sampled image

Î and its corresponding annotated bounding boxes annota-

tions B̂ from the dataset D:

min
Θ

E(Î,B̂)∼D

[

ℓ(M(Î; Θ), B̂)
]

. (1)

Here, B̂ contains class-specific box annotations. The loss

ℓ operates on sets of outputs and annotations, and matches

them using an overlap criterion.

Let’s now consider training a detector on multiple

datasets D1,D2, . . ., each with their own label space

L1, L2, . . .. A natural way to train on multiple datasets is to

simply combine all annotations of all datasets into a much

larger dataset D = D1 ∪ D2 ∪ . . ., and merge their label

spaces L = L1∪L2∪ . . .. Labels that repeat across datasets

are merged. We then optimize the same loss with more data:

min
Θ

E(Î,B̂)∼D1∪D2∪...

[

ℓ(M(Î; Θ), B̂)
]

. (2)

This has shown promise on smaller, evenly distributed

datasets [6, 40, 41]. It has the advantage that shared



classes between the datasets train on a larger set of annota-

tions. However, modern large-scale detection datasets fea-

ture more natural class distributions that are imbalanced.

Objects365 [33] contains 5× more images than COCO and

OpenImages [18] is 18× larger than COCO. While the top

20% of classes in Objects365 and OpenImages contain 19×
and 20× more images than COCO, respectively, the bot-

tom 20% classes actually have fewer images than COCO.

This imbalance in class distributions and dataset sizes all

but guarantees that a simple concatenation of datasets will

not work. In fact, not even the same loss (1) works for all

datasets. Most successful Objects365 models [9] employ

class-aware sampling [35]. OpenImages models treat rare

classes differently [38] and model the hierarchy of classes

in the loss [26].

This suggests that training a detector Mk on a dataset Dk

requires a dataset-specific loss ℓk:

min
Θ

E(Î,B̂)∼Dk

[

ℓk(Mk(Î; Θ), B̂)
]

. (3)

No single loss generalizes to all datasets. In the next sec-

tion, we present a different view of multi-dataset training

and show how to train a model that performs well on all

datasets.

4. Training a multi-dataset detector

Our goal is to train a single detector M on K datasets

D1, . . . ,DK with label spaces L1, . . . , LK , and dataset-

specific training objectives ℓ1, . . . , ℓK . Our core insight is

that we can train a unified detector in the same way as we

train multiple dataset-specific detectors separately, as long

as we do not attempt to merge label spaces between dif-

ferent datasets. This can be considered training K dataset-

specific detectors M1, . . . ,MK in parallel, while sharing

their backbone architecture M. Each dataset-specific archi-

tecture shares all but the last layer with the common back-

bone. Each dataset uses its own classification layer at the

end. We call this a partitioned detector (Figure 2b). We

train a partitioned detector over all datasets by minimizing

the K dataset-specific losses:

min
Θ

EDk

[

E(Î,B̂)∼Dk

[

ℓk(Mk(Î; Θ), B̂)
]]

. (4)

Here, evenly sampling datasets, i.e. showing the partitioned

detector the same number of images from each dataset,

works best empirically, as we will show in Section 5.

While the partitioned detector learns to detect all classes,

it still produces different dataset-specific outputs. For

example, it predicts a COCO-person separately from an

Objects365-Person, etc. Next we show how to convert this

partitioned model into a joint detector that reasons about a

unified set of output labels L = L1 ∪ L2 ∪ . . ..

4.1. Learning a unified label space

Consider multiple datasets, each with its own label space

L1, L2, . . .. Our goal is to jointly learn a common la-

bel space L for all datasets, and define a mapping be-

tween this common label space and dataset-specific labels

Tk : L → Lk. Mathematically, Tk ∈ {0, 1}|Lk|×|L| is a

Boolean linear transformation. In this work, we only con-

sider direct mappings. Each joint label c ∈ L maps to at

most one dataset-specific label ĉ ∈ Lk: T ⊤
k 1 ≤ 1. I.e.,

no dataset contains duplicated classes itself. Also, each

dataset-specific label matches to exactly one joint label:

Tk1 = 1. In particular, we do not hierarchically relate con-

cepts across datasets. When there are different label granu-

larities, we keep them all in our label-space, and expect to

predict all of them1.

Given a set of partitioned detector outputs

d1i ∈ R
|L1|, d2i ∈ R

|L2|, . . . for a bounding box bi, we

build a joint detection score di by simply averaging the

outputs of common classes:

di =

∑

k T
⊤
k d

k

∑

k T
⊤
k 1

, (5)

where the division is elementwise. Figure 2c provides an

overview. From this joint detector, we recover dataset-

specific outputs d̃ki = Tkdi. Our goal is to find a set of

mappings T ⊤ =
[

T ⊤
1 . . . , T ⊤

N

]

and implicitly define a joint

label-space L such that the joint classifier does not degrade

in performance.

Simple baselines include hand-designed mappings T
and label spaces L [19, 47], or language-based merging.

One issue with these techniques is that word labels are am-

biguous. Instead, we let the data speak and optimize a label

space automatically based on correlations in the firings of a

pre-trained partitioned detector on different images, which

is a proxy for perceptual similarity.

For a specific output class c, let Lc be a loss function

that measures the quality of the merged label space di and

its re-projections d̂ki compared to the original disjoint label-

space dki on a single box i. Let Dk = [dk1 , d
k
2 , . . .] be the

outputs of the partitioned detection head for dataset Dk. Let

D =
∑

k
T ⊤
k

Dk

∑
k
T ⊤
k

1
be the merged detection scores, and D̃k =

TkD be the reprojection. Our goal is to optimize this loss

over all detector outputs given the Boolean constraints on

our mapping

minimizeL,T EDk

[

∑

c∈Lk

Lc(D
k
c , D̃

k
c )

]

+ λ|L| (6)

subject to Tk1 = 1 and T ⊤
k 1 ≤ 1 ∀k.

The cardinality penalty λ|L| encourages a small and com-

pact label space. A factorization of the loss Lc over the

1This follows the official evaluation protocol of OpenImages [18].





5. Experiments

Our goal is to facilitate the training of a single model

that performs well across datasets. In this section, we first

introduce our dataset setup and implementation details. In

Section 5.1, we analyze our key design choices for a par-

titioned detector baseline. In Section 5.2, we evaluate our

unified detector and our unified label space learning algo-

rithm. We further evaluate the unified detector in new test

datasets in a cross-dataset evaluation (Section 5.3) without

any training on the test domain.

Datasets. Our main training datasets are adopted from

the Robust Vision Challenge (RVC)2. These are four

large datasets for object detection: COCO [22], OpenIm-

ages [18], Objects365 [33], and optionally Mapillary [24].

To evaluate the generalization ability of the models, we

follow MSeg [19] to set up a ross-dataset evaluation pro-

tocol: we evaluate models on new test dataset without

training on them. Specifically, we test on VIPER [32],

Cityscapes [3], ScanNet [4], WildDash [44], KITTI [11],

Pascal VOC [6], and CrowdHuman [34]. A detailed de-

scription of all datasets is contained in the supplement. In

our main evaluation, we use large and general datasets:

COCO, Objects365, and OpenImages. Mapillary is rela-

tively small and is specific to traffic scenes; we only add it

for the RVC and cross-dataset experiments.

For each dataset, we use its official evaluation metric:

for COCO, Objects365, and Mapillary, we use mAP at IoU

thresholds 0.5 to 0.95. For OpenImages, we use the offi-

cial modified mAP@0.5 that excludes unlabeled classes and

enforces hierarchical labels [18]. For the small datasets in

cross-dataset evaluation, we use mAP at IoU threshold 0.5

for consistency with PascalVOC [6].

Implementation details. We use the CascadeRCNN detec-

tor [2] with a shared region proposal network (RPN) across

datasets. We evaluate two models in our experiments: a

partitioned detector (i.e., detector with dataset-specific out-

put heads) and a unified detector. For the partitioned de-

tector, the last classification layers of all cascade stages are

split between datasets. The unified detector uses CascadeR-

CNN [2] as is.

Our implementation is based on Detectron2 [41]. We

adopt most of the default hyper-parameters for training. We

use the standard data augmentation, including random flip

and scaling of the short edge in the range [640, 800]. We use

SGD with base learning rate 0.01 and batch size 16 over

8 GPUs. We use ResNet50 [15] as the backbone in our

controlled experiments unless specified otherwise. We use

a 2× training schedule (180k iterations with learning rate

dropped at the 120k and 160k iterations) [41] in most exper-

iments unless specified otherwise, regardless of the training

data size.

2http://www.robustvision.net

COCO O365 OImg mean

Simple merge [40] 34.2 14.6 50.8 33.2

w/ uniform dataset sampling 41.1 16.5 46.0 34.5

w/ class-aware sampling 35.3 18.5 61.8 38.5

w/ dataset+class-aware sampling 41.8 20.3 60.0 40.6

Partitioned detector (ours) 41.8 20.6 62.7 41.7

Table 1. Effectiveness of our multi-dataset training strategies.

We start with a simple merging of datsets [40], then add a uniform

sampling of images between different training datasets (second

row), class-aware sampling within Objects365 and OpenImages

(third row), and both sampling strategies (fourth row). Our parti-

tioned detector combines these sampling strategies with a dataset-

specific loss (last row).

5.1. Multi­dataset detection

We first evaluate the partitioned detector. We use dataset-

specific outputs and do not merge classes between different

datasets. During evaluation, we assume the target dataset

is known and only look at the corresponding output head.

As discussed in Section 4, our baseline highlights two basic

components: uniform sampling of images between datasets

and dataset-specific training objective. For these experi-

ments we distinguish between modifications of the objec-

tive that merely sample data differently within each dataset

(e.g. class-aware sampling), and changes to the loss func-

tions (e.g. hierarchical losses).

We start from the baseline of [40, 41]. They simply

collect all data from all datasets and train with a common

loss. As is shown in Table 1, this biases the model to large

datasets (OpenImages) and yields low performance for rela-

tively small datasets (COCO). Sampling datasets uniformly

(second row) trades the performance on smaller datasets

with large datasets, and overall improves performance. On

the other hand, both OpenImages and Objects365 are long-

tailed and best train with advanced inter-dataset sampling

strategy [26, 35], namely class-aware sampling. Class-

aware sampling significantly improves accuracy on Open-

Images and Objects365. Combining the uniform dataset

sampling and the intra-dataset class-aware sampling gives

a further boost. Finally, OpenImages [18] requires predict-

ing a label hierarchy. For example, it requires predicting

“vehicle” and “car” for all cars. This breaks the default

cross-entropy loss that assumes exclusive class labels per

object. We instead use a dedicated hierarchy-aware sigmoid

cross-entropy loss for OpenImages [18]. Specifically, for an

annotated class label in OpenImages, we set all its parent

classes as positives and ignore the losses over its descen-

dant classes. Our partitioned detector combines both sam-

pling strategies and the dataset-specific loss. The hierarchy-

aware loss yields a significant +2.7mAP improvement on

OpenImages alone, and does not degrades other datasets.





|L| COCO O365 OImg. mean

GloVe embedding 696 41.6±0.00 20.3±0.12 62.4±0.06 41.4±0.05

Learned, distortion 682 41.6±0.15 20.7±0.06 62.6±0.06 41.7±0.09

Learned, AP (ours) 701 41.9±0.10 20.8±0.10 63.0±0.21 41.9±0.02

Expert human 659 41.5±0.06 20.7±0.06 62.6±0.06 41.6±0.04

Table 3. Evaluation of unified label spaces. We show label space

size (|L|) and mAP on the validation sets of the training domains.

We compare to a language-based baseline (GloVe) and a manual

unification by a human expert. Each model is a ResNet50 Cas-

cadeRCNN trained in a 2× schedule. We show the mean and stan-

dard deviation based on 3 repeated runs. Our learned label space

works better than the language and the human counterparts.

λ τ |L| COCO O365 Oimg. mean

0.1 0.25 700 41.9 20.6 62.9 41.8

0.5* 0.25* 701 41.9 20.8 63.0 41.9

1.0 0.25 703 41.9 20.9 63.0 41.9

0.5 0.2 668 41.6 20.7 62.9 41.7

0.5 0.3 728 41.8 20.9 62.9 41.9

Table 4. Hyper-parameter choices. We change λ and τ of the

label space learning algorithm. We show the size of the resulting

label space and the mAP on 3 datasets. *: the default option. The

pruning threshold τ impacts the label space size, but not mAP.

We next quantitatively compare our learned label space

with alternatives. For each label space, we retrain a multi-

dataset detector with that label space. During training, as

with our partitioned model, we only apply training losses

to the classes that are annotated in the source dataset. We

compare our learned label space to a “best effort” human

baseline and a language-based baseline. For the language-

based baseline, we replace the cost measurement defined

in Section 4.2 with the cosine distance between the GloVe

word embeddings [27], and run the same integer linear pro-

gram. Table 3 shows the results. We repeat the training for

three runs with different random seeds and report the mean

and standard deviation. The four label spaces agree on most

classes and the overall mAP is thus close. Our automatically

constructed label space consistently outperforms the human

expert baseline, with a healthy 0.3 mAP margin on average.

The improvement appears statistically stable under multi-

ple training runs. Notably, the relative improvement of our

model over the expert is larger than the expert’s improve-

ment over the language-based baseline.

Hyper-parameter choices. Table 4 ablates the hyper-

parameters λ and τ of the label space learning algorithm

(Section 4.1). Our algorithm is robust to the cardinality

penalty factor λ. Varying the cardinality penalty λ from

0.1 to 1.0 only affects the size of the label space by 3. The

pruning threshold τ has a larger impact on the label space

size, but not the final performance. We use λ = 0.5 and

τ = 0.25 for a good balance between the label space size

and overage performance.

COCO O365 OImg. mean

Unified (naive merge) 44.4 23.6 65.3 44.4

Unified (retrained) 45.4 24.4 66.0 45.3

Partitioned (oracle) 45.5 24.6 66.0 45.4

Ensemble (oracle) 42.5 24.9 65.7 44.4

Table 5. Unified vs. partitioned detectors. We show vali-

dation mAP on training domains for a unified detector directly

from merging partitioned detector weights (top), the same detec-

tor retrained on the joint taxonomy (second), a partitioned detec-

tor knowing the target domain (thrid), and an ensemble of three

dataset-specific detectors (bottom). The bottom two rows require

a known test dataset source and the top two rows do not. All mod-

els use a ResNet-50 CascadeRCNN trained in an 8× schedule.

Unified vs. partitioned detectors. We next compare

unified detectors with and without retraining using the

joint taxonomy, a partitioned detector, and an ensemble of

dataset-specific detectors. The partitioned detector and the

ensemble need to know the target domain at test time, while

the unified models do not. This means that the unified mod-

els can be deployed without any modification in new do-

mains, while the alternatives must know which domain they

are in. Table 5 shows the results. A partitioned detector out-

performs a dataset-specific ensemble under the same con-

ditions (Table 5 bottom), especially on the “small” COCO

dataset. An offline unification loses some accuracy, but this

is regained when retraining the model under the unified tax-

onomy (Table 5 top). Crucially, the unified models do not

need to know what domain they are in at test time.

5.3. Cross­dataset evaluation

We evaluate the generalization ability of object detec-

tors by evaluating them in new test domains not seen during

training. In this setting, we do not assume to know the test

classes ahead of time. To allow for a fair and unbiased eval-

uation, we use a simple language-based matching to find

the test-to-train label correspondence. Specifically, we cal-

culate the GloVe [27] word embedding distances between

each test label and the training label, and match the test la-

bel to its closest training label. If multiple training labels

match, we break ties in a fixed order: COCO, Objects365,

OpenImages, and Mapillary4.

We compare both our multi-dataset models (partitioned

or unified) to single-dataset models. We use all four RVC

training sets to train the multi-dataset models. Specifically,

we start from a 6× schedule model trained on the three large

datasets, and add Mapillary [24] in a 2× fine-tuning sched-

ule with 10× smaller learning rate. We compare all models

under the same schedule 5, hyperparameters, and detection

4We also tried evaluating under different orders, and find the listed or-

der to perform best for all methods.
5except for the Mapillary model, for which a 2× schedule performs

better than longer schedules.



# VOC VIPER Cityscapes ScanNet WildDash CrowdH. KITTI mean

1 COCO 80.0 13.9 39.6 17.4 25.9 73.9 30.5 40.2

2 Objects365 71.9 20.7 43.4 24.9 27.6 71.8 32.2 41.8

3 OpenImages 64.4 10.4 29.8 24.2 20.3 66.7 21.8 33.9

4 Mapillary 11.4 15.2 44.7 0.0 23.4 49.3 37.8 26.0

5 Ensemble 79.7 16.8 46.0 30.1 32.1 73.9 34.3 44.7

6 Partitioned 83.1 20.9 48.4 32.2 34.4 70.0 38.9 46.8

7 Unified (retrained) 82.9 21.3 52.6 29.8 34.7 70.7 39.9 47.3

8 Dataset-specific 80.3 31.8 54.6 44.7 - 80.0 - -

Table 6. Cross-dataset evaluation. We show mAP50 on the validation sets of datasets that were not seen during training. We compare

models trained on each single training dataset (Rows 1-4), the ensemble of the 4 single dataset models (row 5), a partitioned detector (row

6), and the unified detector with our learned unified label space (row 7). For reference, we show the “oracle” models that are trained on

the training set of each test dataset on row 8. The columns refer to test datasets. Each model is a ResNet-50 CascadeRCNN trained until

converge or at most an 8× schedule.

models. In addition, we also compare to the ensemble of the

four single-dataset models trained analogously to the parti-

tioned model. For reference, we also show the performance

of detectors trained on the training set of each test dataset.

This serves as an oracle “upper bound” that has seen the test

domain and label space. Note that KITTI and WildDash are

small and do not have a validation set. We thus evaluate on

the training set and do not provide the oracle model.

Table 6 shows the results. The COCO model exhibits

reasonable performances of some test datasets, such as Pas-

cal VOC and CrowdHuman. However, its performance is

less than satisfactory on datasets such as ScanNet, whose

label space differs significantly from COCO. Training on

the more diverse Objects365 dataset yields higher accuracy

in the indoor domain, but loses ground on VOC and Crowd-

Human, which are more similar to COCO. Training on all

datasets, either with a partitioned detector (row 6) or a uni-

fied one (row 7) yields generally good performance on all

test datasets. Notably, both our detectors perform better

than the ensemble of the 4 single dataset models (row 5),

showing that the multi-dataset models learned more general

features. On Pascal VOC, both multi-dataset models out-

perform the VOC-trained upper-bound without seeing VOC

training images. Our unified model outperforms the parti-

tioned detector overall and operates on a unified taxonomy.

5.4. Scale up to large models

Next, we scale up our unified detector with a large back-

bone to develop a ready-to-deploy object detector. We

used a ResNeSt200 backbone [46] and followed the same

training procedure as in Section 5.2 with an 8× schedule.

The training took ∼16 days on a server with 8 Quadro

RTX 6000 GPUs. Table 7 shows our single model achives

52.9 mAP on COCO, 60.6 mAP on OpenImages, and

33.7 mAP on Objects 365. We compare to state-of-the-

art results with comparable baselines on each individual

dataset. On COCO, our result improves the COCO-only

ResNeSt200 [46] model, by 2 mAP with the same detector,

COCO OImg. Mapillary O365

Ours 52.9 60.6/56.8 25.3 33.7

ResNeSt200 [46] 50.9 - - -

TSD [36] - 60.5/- - -

CACascade RCNN [9] - - - 31.6

Table 7. Scale up to large models. We show results on COCO

test-challenge set, OpenImages challenge 2019 test sets (public

test set/ private test set), Mapillary test set, and Objects365 vali-

dation set. Top row: our detector with a ResNeSt200 backbone.

2-4 rows: state-of-the-art single-dataset models with comparable

backbones (without model ensembles or test-time augmentation).

thanks to our ability to train with more data. On OpenIm-

ages, our result matches the best single model in the Open-

Images 2019 Challenge, TSD [36], with a comparable back-

bone (SENet154-DCN [16] of TSD). On Objects365, we

outperform the 2019 Object365 detection challenge win-

ner [9] by 2 mAP points.

6. Conclusion

We presented a simple recipe for training a single ob-

ject detector across multiple datasets and a formulation to

automatically construct a unified taxonomy. Our resulting

detector can be deployed in new domains without additional

knowledge. We hope our model makes object detection

more accessible to general users.

Limitations. Our label space learning algorithm currently
uses only visual cues, integrating language cues as auxiliary
information may further improve the performance. Our for-
mulation currently does not consider label hierarchies, and
the resulting label space treats COCO person and OpenIm-
ages boy as two independent classes. We leave incorporat-
ing label hierarchies as exciting future work.
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